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Multicast Encryption Infrastructure for
Security in Sensor Networks

R. R. BROOKS1, BRIJESH PILLAI1, MATTHEW PIRRETTI2,
and MICHELE C. WEIGLE1

1Holcombe Department of Electrical and Computer Engineering, Department of

Computer Science, Clemson University Clemson, SC
2Computer Science and Engineering Department, The Pennsylvania State

University University Park, PA

Designing secure sensor networks is difficult. We propose an approach that uses
multicast communications and requires fewer encryptions than pairwise
communications. The network is partitioned into multicast regions; each region is
managed by a sensor node chosen to act as a keyserver. The keyservers solicit nodes
in their neighborhood to join the local multicast tree. The keyserver generates a binary
tree of keys to maintain communication within the multicast region using a shared key.
Our approach supports a distributed key agreement protocol that identifies the
compromised keys and supports membership changes with minimum system overhead.
We evaluate the overhead of our approach by using the number of messages and
encryptions to estimate power consumption. Using data from field tests of a military
surveillance application, we show that our multicast approach needs fewer encryptions
than pair-wise keying approaches. We also show that this scheme is capable of
thwarting many common attacks.

Keywords Sensor Network Security; Multicast Security; Group Key Management

1. Introduction

Wireless technology has seen remarkable growth in the past decade [1, 2]. Low cost, low

powered sensors with reasonable processing power have become a reality. A sensor

network is a dense mesh of low cost devices that collect and propagate information to a

remote user community. Security is a major concern as adversaries can manipulate these

sensors to disseminate incorrect information [3, 4]. Secure information exchange between

two nodes requires a secure communications pipe between the nodes.

Point-to-point communication schemes use a separate encryption key for every pair of

nodes. In this type of environment, each node must either maintain a minimum of (n-1)

encryption keys to securely communicate with n partner nodes, or use a secure index

structure for key discovery.

Secure packet forwarding can be done in two ways. One way is to decrypt and re-

encrypt the packet at every hop. If a message takes multiple hops to reach the recipient,
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which is typical for sensor networks, a large number of encryptions and decryptions will

drain the node power reserves. Another way is using the scheme in [5], where a packet is

encrypted once for every recipient and decrypted locally by each recipient. This assumes

that the routing information is kept as plain text. In the seminal document on sensor network

security [6], the NAI Labs studied many key management protocols for sensor networks.

They found traditional secret key protocols inflexible for managing group membership and

refreshing cryptographic keys. They also found RSA based public key protocols too power

hungry for use in sensor networks. It has yet to be established whether or not elliptic curve

public key cryptography also has excessive power needs.

Since public key approaches appear unsuited to use in sensor networks, authentication

has been attempted by placing secret keys on the devices. To mitigate the security damage

caused by secret keys being exposed when the nodes are physically compromised,

Eschenauer et al. [7] proposed random key predistribution (RKP). In RKP a large pool of

keys is generated and each node is provided with a small number of keys randomly chosen

from the pool. Nodes with keys in common can communicate securely. In that paper, they

explain how to revoke keys on compromised nodes; however, they do not discuss how to

detect when these nodes are compromised.

Many extensions to RKP have been proposed. In [5], the nodes authenticated using

RKP use multiple disjoint communications paths to negotiate new point-to-point keys. This

has a number of drawbacks:

(i) the number of communications required seems excessive and

(ii) as with public key systems each node has a key for each partner, limiting the

scalability of the approach.

Another extension to RKP that establishes keys for point-to-point communications is given

in [8]. They improve on the results in [5] but do not solve the scalability issue associated

with pair-wise key management schemes.

Unfortunately, most sensor network applications are data-centric and map poorly to

point-to-point communications schemes [9]. Applications are interested in data describing

geographic regions, thus the specific node used to collect data is of absolutely no impor-

tance. The multicast key management approaches given in [10] and [11] map better to this

application domain. These approaches were developed for use in mobile communications

systems and use binary trees to efficiently distribute and refresh secret keys. Unfortunately,

the approaches in the literature do not deal adequately with the problem of node authentica-

tion for sensor networks.

In this paper we show how to use RKP to authenticate nodes and initialize a multicast

key management infrastructure in a sensor network. In our approach, a network of nodes

deployed at random using the authentication approach in [7] self-organize into a set of

multicast regions. Our distributed system is capable of identifying and counteracting

several important classes of attacks. We use data from a military sensor network prototype

[9] to quantify the power requirements of this approach and find that, for that specific

application, it requires about 10% of the energy budget required by existing point-to-point

security methods.

Figure 1 summarizes our approach. RKP bootstraps network security. Authenticated

sensor nodes collaborate to create secure multicast regions. Geographic regions have local

multicast keys. Local key sharing allows applications to support data-centric concepts and

reduces communications overhead. Keys are refreshed periodically. We show how to

identify and remove compromised nodes from the network.
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The paper is organized as follows. Section 2 gives an overview of our approach and

explains how the network self-organizes to support multicast communications. Section 3

describes our key management policies and quantifies system overhead. Overhead is

studied in terms of both the number of encryptions and the number of packet exchanges

required. Section 4 explains how our key agreement protocol removes cloned nodes and

keyservers from the network. In Section 5 we show the power consumption overhead for

encryptions and wireless communications incurred. We analyze the security of this

approach and show how it can be used to counter common attacks in Section 6. We

conclude in Section 7 with a summary of our approach and its viability.

2. Multicast Tree Management

The approach we present uses two separate tree structures to organize communications

among the nodes in the multicast region:

(i) a communications tree (Fig. 2a) that defines the connections used to transmit

packets between nodes, and

(ii) a binary key tree (Fig. 2b) that is used to group nodes so that they share common

keys which allows the number of encryptions to be kept to a minimum.

To avoid confusion, we will use these terms throughout the article to distinguish between

these two structures.

Sensor node initialization
RKP to generate a key ring 

for every node.

Ad-hoc Sensor deployment
Random distribution of 

nodes in the field 

Authentication using random key, a node can 
communicate with any other node that falls within its 

communication range and shares a common key. 

Hash based cluster-head selection. 
Select K cluster-heads to form a giant 

component.

Solicit membership of 
nodesh hops away from  

cluster-head in each 

Build multicast trees 
for group key 
management.

Group agreement among 
keyservers to detect 
misbehaving nodes.

Collect bloom filters to 
monitor key usage 

statistics in each cluster.

Ostracize
Revocation of nodes with 

suspect behavior

Ostracize
Compromised Keyservers

Add
New nodes

Periodic key 
refresh

Figure 1. Flowchart of sensor network security approach presented in this paper.
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The work presented here builds on the results [12] that provide optimizations for group

re-keying in multicast environments. In this approach, the multicast keys are managed using a

rooted multicast key tree [10, 11]. Each sensor node is associated with a leaf node on the key

tree. All nodes attached to the key tree share a common symmetric key for encrypting/

decrypting data. The data encryption key and a set of key encryption keys are managed by a

unique keyserver node. Each of the n sensor nodes in the key tree has a unique Key

Encryption Key (KEK) and a set of approximately log n Shared Key Encryption Keys

(SKEKs). KEKs and SKEKs are used only for key management. A binary key tree is used

to manage the SKEKs to minimize both the number of keys stored on end nodes and the

number of messages sent over the communications tree to refresh and/or revoke keys.

The keyserver solicits every node within h hops to join its multicast region. To reduce

unnecessary multi-hop data transmissions, during initialization the keyserver constructs a

communications tree which groups the nodes it successfully recruits by geographic proxi-

mity. The keyserver constructs and securely transmits a unique KEK to each node. This can

be done using Shamir’s no-key protocol, which requires three messages [13]. The keyserver

then constructs, encrypts, and securely transmits the appropriate SKEKs to the sensor

nodes. There is one SKEK for each non-leaf node of the key tree, forcing each sensor

node to store approximately log n SKEKs. Given this key structure, the keyserver can

securely communicate with any subset of nodes grouping the multicast region by choosing

the minimal set of KEKs and SKEKs.

The first step in our approach is determining the membership of each multicast region

by choosing the keyserver. To determine the number of keyservers k and number of hops h

to use for a given network we use the approach in [14] and [15], which uses concepts from

the percolation theory to find the values of these two parameters necessary for the system to

self-organize into a viable communications substrate. Keyservers maintain the security of

the multicast region by controlling group formation and membership.

Using our approach, there is the threat that network security could be compromised if

malicious nodes collude to be chosen as keyservers. They could then undermine the

keyserver election scheme and skew the process to favor the election of malicious nodes.

We avert this possibility by using the secure selection scheme in [16]. This selection

scheme ensures that all nodes have an equal chance of becoming a keyserver. When

selecting the keyservers (cluster head in [16]), each node:

� Generates a random number n.
� Calculates a hash value from the number h(n). Any hashing algorithm ranging from

modulo arithmetic to SHA1 could be used.

n6

n2

n3

n5

n1

n4

n8k1

n7
n1 n4 n2 n6 n3 n7 n5 n8

k1

(a) Communications tree (b) Binary key tree

Figure 2. Tree structures (Communications tree and binary key tree).
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� Broadcasts the hash value to the participating nodes. This commits the node to its

number without revealing its value.
� Waits an an agreed-upon time-out period for every participating node to broadcast

its hash value.
� Broadcasts a list of all nodes that have transmitted hash values.
� Matches the lists it receives to its local list and requests a hash value from any

missing node.
� Waits on an agreed-upon time-out period, and then broadcasts its random number.
� Verifies the random numbers against pre-committed hash values to ensure integrity.

The keyserver is then chosen using an agreed-upon criteria based on these random numbers.

For example, the node whose id satisfies (1) becomes the keyserver.

Mod
Xn

i¼1

ri

 !
; n

 !
þ 1 (1)

where ri is the pseudo random number generated by node i of the n nodes participating in

the selection process. Note that collusion to foil this approach to favor any given node

effectively requires the cooperation of all participating nodes.

The second step of the process is creating a binary key tree structure rooted at the

keyserver. We use this binary tree structure to manage a set of KEKs that are used when

refreshing keys to guarantee the security of the new keys. Let nc be the number of nodes in a

given multicast group, or cluster. Each node is a member of the set S ¼ m0;m1; . . . ;mnc�1f g.
The keyserver is node mk. We construct a binary key tree Tb where each member mi is

associated with the leaf nodes of Tb. Every node in Tb represents a key Kij where i is the level

of the node and j indicates the number of the node (jth node on level i). The key acts as a KEK

for all nodes within its sub-tree. Each sensor node in the multicast group stores log nc KEKs

and a session key. Each KEK represents a group of sensor nodes that are associated with

the leaf nodes of the KEK in the key tree. Since finding the optimal tree is NP-complete [14],

no tractable polynomial time algorithm exists for solving this problem.

We construct the key tree by using a two-pass protocol, where phase

(i) creates an initial tree and phase

(ii) groups nodes to assign tree nodes to sets of physical sensor nodes.

Phase (i) constructs the initial tree Tbd which is used to construct the binary key tree Tb in

Phase (ii)

1. Initialize Tbd by making the keyserver the root node. It is both root and leaf at this

point.

2. Each node not in the tree Tbd, that is one hop from a leaf node, becomes its child.

3. Repeat step 2, (h-1) times where h is the maximum number of hops from the

keyserver to any sensor node in the multicast group. Techniques for computing the

parameter h are given in [14].

Phase (ii) constructs the binary key tree Tb from the initial tree Tbd. (We will illustrate this

phase with the example shown in Fig. 3.)

1. Assign any leaf node of the tree Tbd as nt. (Let nt be node 5 as shown in Fig. 3b.)

2. Count the number of siblings of nt (child nodes of its parent node). Node 5 has 2

siblings: nodes 6 and 7.
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a. if (even) group parent with nt, (node 1 gets grouped with node 5), group all

siblings into pairs, (nodes 6 and 7 are grouped together)

b. if (odd) do not group parent node group all siblings and nt into pairs

3. Remove nodes that were grouped in step 2 from consideration and repeat steps 1

and 2 until all nodes are grouped. (The iterations group nodes 8 & 9, 10 & 3, 11 &

12, 2 & 4 as shown in Fig. 3c.)

4. Fuse grouped nodes into single nodes, reconstruct a balanced tree of the fused nodes

and repeat steps 1, 2 and 3. (Fig. 3d shows how nodes 5, 1, 6, 7 get grouped.)

5. Repeat step 4 until only one node exists in the initial tree. Construct the key tree

according to the grouping of nodes at every iteration in step 4. (Further iterations

group nodes 8, 9, 10, 3 into one group and 11, 12, 2, 4 into another finally to form

the binary tree as shown in Fig. 3e.)

Figure 3 shows how to construct a binary key tree from the ad hoc network cluster. This

protocol creates an efficient tree for key management within the multicast group. An n-ary

tree with N nodes will contain (logn N + 1) levels. A binary tree is used, since binary search

trees require a minimal number of operations to distinguish subsets of nodes [17]. To

minimize the amount of network traffic using this approach, nodes need to be grouped in a

manner that reflects the physical layout of the multicast communications tree. One mes-

sage-hop is the transmission of one message over one hop in the network. When physical

neighbors are leaves on the same key sub-tree, the number of message-hops needed to

transmit a new key to those nodes is minimal.

Key-
server

1

2

4

3

109

8

7

6

5

11

12

Ad-hoc cluster of 
sensor nodes

Balanced Key Tree Tbd

Key-
server

1 2 3 4

5 6 7 8 9 10 11

12

5, 1

6, 7

8, 9

10, 3

11, 12

2, 4

1 5 6 7 8 9 3 10 11 12 2 4

Binary Key Tree Tb

Grouping of nodes 
in the key tree

5, 1

6, 7 8, 9 10, 3

11, 12

2, 4

(a) (b) (c)

(d)

(e)

Figure 3. From the ad hoc network (a), we create an initial tree (b). We group nodes (c and d). The

result is a binary tree (e) that groups nodes by the keys they will have in common.

144 R. R. Brooks et al.



If msg(a) is the number of hops from the key server to node a, and msg(a,b) indicates

the number of hops from the key server to nodes a and b, then

msgða; bÞ ¼ msgðaÞ þ msgðbÞ � msgða
T

bÞ:

The grouping of nodes a and b is optimal when msg(a,b) is minimum (i.e. when the number of

hops is shared by nodes the paths from the keys a and b is maximized). This occurs at:

min msgða; bÞð Þ ¼ min msgðaÞ;msgðbÞð Þ þ 1:

For example, consider the two leftmost leaf nodes on the binary key tree Tb in Fig. 3e. They

correspond to nodes 1 and 5 in the communications tree. To change the KEK for the key tree

node that has nodes 1 and 5 as children takes a total of two message-hops. If the same tree nodes

had been mapped to physical nodes 6 and 12, the same operation would require 3 hops to node

12 and 2 hops to node 6, or 5 message-hops total.

Our protocol is a heuristic that provides good results in most cases. Some simulations found

multiple trees with equal numbers of message-hops to every node. For the cluster of 10 nodes in

Fig. 4a, our protocol gives the binary tree as shown in Fig. 4b. Another possible configuration is

shown in Fig. 4c. However, we see by counting that both Fig. 4b and Fig. 4c require 82 message-

hops. This is calculated by:

� 3 messages from the keyserver to each node in the cluster (45 message-hops for both

Fig. 4b and Fig. 4c).
� 1 encryption for each parent node and transmission to both children.

� For Fig. 4b: k1,2 2 message-hops, k6,7 4 message-hops, k4,8 5 message-hops, k3,9 3

message-hops.

� For Fig. 4c: k1,2 2 message-hops, k5,7 3 message-hops, k4,8 5 message-hops, k3,9 3

message-hops.

� 1 encryption for each higher level parent node and transmission to all children.

� For Fig. 4b: k5,6,7 4 message-hops, k1,2,5,6,7 5 message-hops, k4,8,3,9 5 message-

hops, k1,2,3,4,5,6,7,8,9 9 message-hops.

K

21

5
3

9

4
8

7

6

K

21 5 3 94 876

K

21 5 3 94 867

Fig b Fig c

Fig a

Figure 4. Example solutions to the tree generation process.
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� For Fig. 4c: k1,2,5,7 4 message-hops, k1,2,5,6,7 6 message-hops, k3,4,8,9 5 message-

hops, k1,2,3,4,5,6,7,8,9 9 message-hops.

3. Group Key Management

Key management is performed by the keyserver, which coordinates the following

activities:

a. Initial keying.

Every sensor node elects the keyserver in a distributed and secure manner by the

scheme in [16]. The keyserver establishes a unique private key with each member of

the multicast group using Shamir’s protocol [13] which sets up a shared key over an

untrusted channel by exchanging 3 messages. The keyserver then generates a key-

encryption key (KEK) for pairs of nodes each at level (log nc-1) of the binary key

tree. It encrypts the key for level j with the private key for level j+1 of the tree.

Finally, the session key denoted by the root of the binary tree is established. This

session key can now be used to secure multicast data communications.

b. Member ostracism.

If a single node is found to be insecure [18], a new multicast key is created and sent to

the rest of the multicast tree. If node ml leaves the cluster, its former sibling replaces

their parent node. All keys with member ml are compromised and must be re-keyed.

When a single node is compromised, the entire log nc keys associated with it are

compromised. However, since the node’s sibling is promoted one level in the tree

structure, one less key needs to be replaced. Removing isolated nodes is the worst-

case scenario, since it is often the case that sets of nodes will have some SKEK in

common. The existence of a common key allows the keyserver to group nodes in a

way that reduces both the number of encryptions and the number of message-hops.

c. Member join operation.

A join operation is a request from a sensor node to join the cluster. It is not efficient to

re-key the entire tree to perform a single join. Instead, the new sensor node is attached

to leaf nodes without siblings when they are available. If nc was even, then there are

usually no isolated nodes. In this case, the new sensor node attaches itself to the nearest

sensor node. Over time the key tree may become unbalanced and a complete re-keying

of the multicast region will be necessary. In our approach, we assume that the process

does not have to keep previous transactions secret from new members. If that is the

case, a new session key needs to be distributed to all nodes in the multicast region.

The overhead for encryptions, messages, and the number of hops required for each

operation is derived in Section 5.

4. Group Agreement Protocol

Random key predistribution security schemes are well-suited for use in sensor networks

due to their low overhead. However, the security of a network using pre-distributed keys

can be compromised by cloning attacks. Chan and Perrig [4] explain how clones can falsify

sensor data, extract data from the network, and/or stage denial of service attacks.

In this section, we expand the approach in [18] for detecting cloning attacks on sensor

networks using random key predistribution. In that approach, clone detection is done by a

central authority outside the network. We show here how this process can become an

organic (in military usage) part of the network.
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Each sensor node makes a counting Bloom filter of the keys used by its neighbors to

authenticate themselves [18]. A Bloom filter is essentially a hashing function that supports

membership queries. Counting Bloom filters provide information on the number of times

an element exists in the set. For our purpose, Bloom filters simultaneously reduce the

volume of data transmitted and avoid sending key values over the network. Each keyserver

collects key usage statistics within its cluster. Equations that define threshold values for

cloned key use in sensor networks can be found in [18]. If a key is used more than the

threshold value, sensor nodes authenticated by using that key are assumed to be cloned.

Since counting Bloom filters are transmitted within the cluster, any keyserver can only

recognize the keys within its key ring. Hence, a second round of message exchanges

between keyservers is necessary so that the key usage for every key is available to every

keyserver.

The threshold for the number of times a key is used for authentication is based

on the probability that two nodes share a key and the probability that they share a

connection. The expected number of times a key is used for communications in the

network is:

�k ¼

Pn
j¼1

Mj � Nj

Mj

� �
P

(2)

with variance:

�k ¼

Pn
j¼1

Mj � Nj

Mj
� �k

� �2

P
(3)

where Mj is the probability a key is on exactly j nodes, P is the total number of keys in the

system, and Nj is the expected number of times a key on exactly j nodes is used.

We determine whether or not a key is cloned by comparing Ui (the number of times key

i is used to establish connections, which we collect by using Bloom filters) to �k computed

using (2) [4]. If Ui is significantly higher than �k it is likely that the key is being used by

cloned nodes. Our approach monitors key usage and detects statistical deviations in key use

that indicate cloning attacks. The system can recover from a cloning attack by terminating

connections using cloned keys. In [18] we detail the clone detection protocol and derivation

of equations (2) and (3).

If any keyserver turns out to be subverted, it gives rise to a problem similar to the

Byzantine Generals Problem. Barborak [19] provides a survey of related research that

contains algorithms for forcing agreement as long as well-known criteria (described in

Section 4.1.4 of [19]) are satisfied. By applying these algorithms, our group key agreement

protocol can ensure security as long as less than one-third of the keyservers are

compromised.

Since compromised nodes may incorrectly report key usage statistics and adversaries

may collude to cause legitimate nodes to be detected as cloned nodes and ostracized from

the network, our group agreement protocol must be immune to internal subversion. The

protocol in Section 4.1 reaches agreement on the set of cloned keys and can tolerate
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subversion of less than 1/3 of the keyservers. The limit of 1/3 is the theoretical bound on

distributed consensus in the presence of malicious parties [19].

4.1. Group Key Agreement Protocol

To reach consensus on the set of cloned keys in the network:

1. Each node transmits to its keyserver the counting Bloom filter for the keys used by

the node.

2. The keyserver transmits the counting Bloom filters from all the nodes within its

multicast region to every other keyserver using an authenticated channel. These

channels are established using Shamir’s 3 pass protocol [13].
3. Every keyserver now has counting Bloom filters for every multicast region. Each

keyserver computes key usage statistics for keys in its key ring to identify cloned

nodes.

4. The keyservers use a Byzantine agreement protocol [19] to reach consensus on key

usage statistics. The protocol from [20] comes to a correct consensus as long as less

than one-third of the keyservers are faulty or compromised. It also degrades grace-

fully as long as fewer than ½ of the inputs are malicious.

� The keyserver computes a vector v of usage statistics from the Bloom filters

provided by the keyservers.� The vector v is sorted, and the lowest and the highest � values are discarded to

give rise to a new vector v’ containing (k – 2*�) entries, where � is the number of

adversaries the network can tolerate as keyservers.

� The key usage value is the mean of the vector v’.
� This protocol is guaranteed to be correct when k� 3� + 1. Performance degrades

slowly until k = 2� + 1, at which point the majority of the information is false and

the opponents control the network.

Suppose that the system is designed to tolerate up to � = 10 subverted keyservers. The key

usage reported by the subverted keyservers is questionable and should not be taken into

account in the decision process. We discard 20 values (the first 10 and last 10 from the

sorted vector v of key usage statistics) so that values with highest deviation from the mean

do not affect the clone detection protocol. Any adversary that launches a Byzantine attack

will have to report values near to those reported by the legitimate nodes if their values need

to be a part of the decision-making process. The protocol is thus robust against Byzantine

attacks. The average number of nodes in a single multicast group is nc. Hence, (nc-1)

messages have to be transmitted for the keyserver to collect the counting Bloom filters from

every node in its multicast group. This amounts to (k * (nc-1)) for the entire network of k

keyservers.

A secure private key has to be established between every pair of keyservers to

exchange the compressed counting Bloom filters. Using Shamir’s 3 pass protocol

3k k � 1ð Þ=2 messages have to be transmitted to setup a secure connection between every

pair of keyservers. We require additional kðk � 1Þ messages to exchange counting Bloom

filters.

Total number of messages for group agreement = k nc � 1ð Þ þ 5 k2 � kð Þ
�

2 (Derived

in [14])
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5. Message Overhead and Power Consumption

We now compute the number of encryptions, messages, and hops required by our approach.

We denote the key associated with the jth node on ith level of the binary key tree as Ki,j.

The results tabulated in Table 1 for system overhead for every membership operation

are derived below.

a. Initial keying.

Number of encryptions:

At level (log nc), 0 encryptions are needed. Shamir’s protocol requires no encryp-

tion. At each of (log nc)-1 levels from level 0 to level (log nc)-1, a KEK is

established using 2 encryptions.

The number of KEKs at these levels ¼
Pðlog ncÞ�1

i ¼ 0

2i ¼ 2log nc � 1 ¼ nc � 1

The total number of encryptions ¼ 2 � ðnc � 1Þ þ 0 ¼ 2ðnc � 1Þ (4)

Number of messages exchanged:

At level (log nc), 3 messages are exchanged using Shamir’s protocol to setup the

private key. At each of (log nc)-1 levels from level 0 to level (log nc)-1, a KEK

is established and it takes two messages to transmit to both the branches. Thus

for each KEK, we have 2 messages.

Total number of messages ¼ 2 � ðnc � 1Þ þ 3 � ðnc � 1Þ ¼ 5ðnc � 1Þ (5)

Number of hops:

Let ni denote the number of nodes exactly i hops from the root node such that

nc � 1ð Þ ¼
Ph

i ¼ 1

ni. At level (log nc), each of the 3 messages required to set a

private key using Shamir’s protocol require hi hops where hi is the number of

hops to member mi from the root node, i.e. the keyserver. The number of hops to

set up keys at level ðlog ncÞ ¼ 3 �
Ph

i ¼ 1

ðni � iÞ. At level (log nc)-1, again we

transmit one message to each of the members of the multicast group. The number

Table 1

Overhead for group membership operations

Total

Encryptions

Total messages

transmitted Total hops required

Initial keying 2(nc -1) 5nc –2 nc-1 + (4 + �́ *

((log nc)-2))*
Ph
i¼1

ðni � iÞ

Member ostracism 2 *((log nc)-1) 2 *((log nc)-1) nc + �́ * nc/2
j *

((log nc)-2)*
Ph
i¼1

ðni � iÞ

Member join 2 5 + ((log nc)-2) �́ *h*(5 + ((log nc)-2))
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of hops to set up keys at level ðlog ncÞ � 1 ¼
Ph
i¼1

ðni � iÞ. At level 0, the session

key for the entire cluster has to reach all the members. The number of hops to set

up the session key at level 0 ¼
Ph
i¼1

ni ¼ ðnc � 1Þ. At the remaining (log nc)-2

levels (level 1 to level (log nc)-2), each level i has 2i nodes. At each node we

transmit two messages to their respective left and right branch, which have to

reach nodes mi each of which are hi hops away (i = 0, . . ., nc-1). However, the

number of hops is reduced according to our ability to group nodes so that paths

from the root to neighboring nodes overlap. We define a variable �́ which

represents this effect. Consider a physical layout where there is no overlap.

Every sensor node in the multicast group has a separate path from the keyserver.

This worst case estimate can be calculated by setting �́ to 1. In the best case

scenario, the number of hops at (level 1 to level (log nc)-2) would be h. The

average number of hops at (level 1 to level (log nc)-2) = �́
Ph
i¼1

ðni � iÞ

The total number of hops ¼ ðnc � 1Þ þ ð4þ �́� ððlog ncÞ � 2ÞÞ �
Xh

i¼1

ðni � iÞ (6)

b. Member ostracism.

Number of encryptions:

(log nc)-1 keys have to be replaced, each requiring 2 encryptions.

Total number of encryptions ¼ 2 � ððlog ncÞ � 1Þ (7)

Number of messages exchanged:

For the replacement of (log nc)-1 keys, each replacement requires sending one

message to each of the key’s two child nodes.

Total number of messages ¼ 2 � ððlog ncÞ � 1Þ (8)

Number of hops:

Each message must reach a subset of nodes within the cluster which consist of all

leaf nodes associated with the new KEK. The session key at level 0 (K0.0) has to

be encrypted with its child node (K1.0 and K1.1) and then transmitted to the set of

all leaf nodes served by K1.0 and K1.1. In general, the size of the subset of nodes is

nc/(2
(j-1)) where j denotes the level of the KEK in the key tree. The average

number of hops to deliver 2 *((log nc)-1) messages, where each message

reaches nc/(2
(j-1)) nodes = [2 * ((log nc)-1)] * [nc/(2

(j-1))] = nc((log nc)-1)/2j.

The average number of hops at each level = �́
Ph
i¼1

ðni � iÞ. With every change,

the session key has to be rekeyed, which requires nc hops to reach all nodes
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within the cluster. The number of hops required to transmit remaining ((log

nc)-2) KEKs = �́ * nc/2
j * ((log nc)-2)*

Ph
i¼1

ðni � iÞ

The total number of hops ¼ nc þ �nc=2j � ððlog ncÞ�2Þ �
Xh

i¼1

ðni � iÞ (9)

c. Member join operation.

Number of encryptions:

When a node joins a leaf node, it creates an extra parent node and a KEK associated

for that node.

Hence; a total of 2 extra encryptions are required (10)

Number of messages exchanged:

As the case for encryption, we require 2 messages to transmit that KEK. Also, the

new node should establish its private key (3 messages) and receive existing ((log

nc)-2) KEKs in the path to the root node (keyserver) in the keytree.

Total number of messages ¼ 5þ ððlog ncÞ � 2Þ (11)

Number of hops:

Since the join occurs on any of the members less than h hops away, the total number

of hops required to transmit the messages to the new member and its sibling can

be a maximum of (5+((log nc)-2))*h and minimum of (5 + ((log nc)-2)).

The total number of hops ¼ �h � ð5þ ððlog ncÞ � 2ÞÞ (12)

The overhead calculations for the number of encryptions and messages are of the order

of the multicast region size (nc) and for some operations proportional to its logarithmic

value which scales better with the number of nodes. We compute power requirements for

our scheme using data from NAI Labs [6]. Table 2 summarizes the results we get by

applying the NAI Labs empirical values to our scheme. We consider networks using the

SA-110 StrongARM and ARC-3 processors using AES (Advanced Encryption Standard)

and RSA encryption. Symmetric key cryptography algorithms like AES consume less

power than asymmetric algorithms like RSA. For the sake of argument, we calculate the

power overhead incurred when the random key predistribution protocol preloads each

sensor node with 50 keys and that the average message length is 900 bits.

The StrongARM 110 processor consumes 108 nJ for each 128-bit operation [6]. The

StrongARM consumes 12 times the energy of the ARC-3 [6]. Hence the power consump-

tion for a 128-bit operation on ARC-3 can be estimated as 9 nJ.
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RSA encryption roughly requires 7,056 128-bit operations and decryption requires

145,408 128-bit operations. Therefore, RSA requires 5.36 mJ to encrypt a message of

900 bits and decryption consumes 110.42 mJ on StrongARM 110 processor. RSA encryp-

tion on ARC-3 requires 0.45 mJ and decryption 9.20 mJ.

AES requires less energy than RSA. AES encryption and decryption overhead is nearly

identical. Encrypting 900 bits on a StrongARM processor would require 15.3 �J whereas

the ARC-3 requires only 0.6 �J. These estimates are based on 0.00217 mJ/128 bit encryp-

tion for StrongARM and 0.00008/128 bit encryption for the ARC-3 processor [6].

Our protocol requires 2(nc -1) encryptions by the keyserver and log(nc) decryptions at

each node. Table 2a gives the power consumption for encryption and decryption key

initialization at any keyserver and sensor node.

Transmission costs are usually 1.5 times the energy required for reception. The energy

consumed by idling and receiving data is nearly identical. Assuming that only transmission

requires extra energy, we estimate the cost for transmitting 900-bit messages within a range

of 50 meters. Radio communications using Bluetooth expend 10-7 joules per bit for

transmission.

Private key establishment with each sensor node requires two message transmissions

by the keyserver and one by the sensor node. Each sensor node receives two messages and

has to transmit one. Also, for each KEK in the binary key tree other than leaf nodes, the

keyserver transmits two messages and every sensor node receives log nc such transmis-

sions. There exist nc � 1ð Þ such KEKs. Thus, we have a total of 4 nc � 1ð Þ transmissions and

nc � 1ð Þ receptions at the keyserver and one transmission and 2þ log ncð Þ receptions at

each of the nc � 1ð Þ sensor nodes in the multicast group.

Table 2b tabulates the total power consumption for transmission and reception during

key initialization.

Thus for a sample network of 100 nodes scattered in unit square with a communication

radius of 0.2, the ideal cluster size [14] is a 2-hop radius containing 26 nodes on an average.

Assuming AES encryption on ARC-3 processor, the keyserver consumes 28 �J for

Table 2

Power consumption for network initialization

RSA–SA 100 RSA-ARC 3 AES-SA 110 AES-ARC 3

Keyserver

2(nc -1)

encryptions

10.72(nc -1) mJ 0.90(nc -1) mJ 30.52(nc -1) �J 1.12(nc -1) �J

Each sensor

node log(nc)

decryptions

110.42log(nc) mJ 9.2log(nc) mJ 15.26log(nc) �J 0.56log(nc) �J

Bluetooth

Tx & Rx

Keyserver

4(nc -1) Tx

& (nc -1) Rx

Each sensor node 1 Tx &

(2+ log(nc)) Rx

Total power

consumption

for 900-bit

messages

0.42(nc -1) mJ (150 +60 log(nc)) �J
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encryption and 10.5 mJ for communication, whereas every sensor node in the multicast

consumes 2.6 �J for decryption and 0.43 mJ for communication.

ColTraNe [21] is a surveillance application that tracks military targets using a

sensor network. We use the data collected from our field test of this network to estimate

the power overhead required by our approach. Our multicast approach requires fewer

encryptions and less energy consumption than pair-wise keying approaches. One track-

ing method used in the field tests required 911 packets to be exchanged between

70 sensor nodes. A pair-wise keying approach would require one encryption per packet

to securely transmit the data. AES encryption on a MC68328 Dragonball processor

requires 205.68 mJ energy to encrypt the 911 packets that contain a total of 254,552 bytes

of data.

Our multicast approach requires fewer encryptions. In the worst-case each packet would

have to be encrypted for all 12 multicast regions. This would require only 95 encryptions.

The total power consumption for encrypting data drops to 17.76 mJ. A more detailed analysis

of these results is available in [14].

6. Security Analysis

Applications need to guarantee that adversaries cannot subvert the sensor network, and our

approach can be used to neutralize many important classes of attacks. In Byzantine attacks

malicious nodes try to force disagreement among legitimate nodes. In Sybil attacks [22]

compromised nodes try to maintain multiple identities. This can be used either to stage

Byzantine attacks or drain power from legitimate network nodes. Cloning attacks create

multiple copies of legitimate nodes. They can disrupt a network by inserting false detec-

tions, dropping packets, modifying data, and eavesdropping. In this section we describe

these attacks and show how they fail against our multicast encryption infrastructure.

6.1. Byzantine Attack

In a Byzantine attack, a compromised node forwards manipulated information to cripple

the decisions of legitimate nodes and, in certain cases, also to influence the result. Assume

that a cloned node C reports incorrect information about its key usage by transmitting

randomly generated Bloom filters. In this case, when a keyserver has to calculate the key

usage statistics, it will discard the extreme � values after sorting as in the Byzantine

agreement protocol. False information from malicious nodes gets thrown out.

Consider a network of N nodes scattered randomly on unit area. Let c of the n nodes be

adversaries. The probability that an illegitimate node gets selected as the keyserver is the

same as any other node in the network, i.e., c=n. If we pick k nodes at random as keyservers,

the expected number of cloned keyservers is ðc:kÞ=n. According to the group agreement

protocol in Section 4.1, to secure the network against a Byzantine attack, we have to

introduce redundancy in the network. To tolerate c clones in the entire network, we have to

select max ð3c:kÞ=nþ 1; k

��
keyservers.

6.2. Sybil Attack

The Sybil attack [13, 22] is an attack on a network where one compromised node acts as

multiple nodes (i.e., has multiple identities.) For example, multiple Sybil identities can
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drain resources from legitimate nodes by sending spurious traffic. Alternatively, Sybil

nodes can skew voting algorithms, like the Byzantine Agreement. Sybil attacks are known

to affect routing, data aggregation, and detection of cloned nodes in sensor networks. Our

approach counteracts these attacks, since they make it easier for the compromised nodes to

be identified.

Lemma. A Sybil attack from any node picked as a keyserver on the sensor network makes it

easier to detect that adversary.

Proof. We select k nodes out of N nodes distributed randomly in a square field of area A as

keyservers. Hence, the density of keyservers in the field is k/A.

In the case of a Sybil attack, a compromised keyserver reports the existence of multiple

keyservers. This leads to an increase in the density of reported keyservers. We have a prior

threshold on the density of keyservers in the sensor network. Since the keyservers are

selected at random, their density should remain within a predictable variance from the

mean. A Sybil attack will increase the keyserver density when the multicast region is

contained entirely in the field. Alternatively, compromised keyservers can report a region

outside the regular field to create Sybil nodes without changing the node distribution. To

counter this, it is advisable to restrict deployments to predefined regions.

The key usage statistics will also support the detection of the Sybil nodes. Since the

Sybil nodes require its keys to be used multiple times, they quickly fall into the category of

suspicious cloned nodes that will be ostracized by the network.

Consider a network of 1000 nodes spread over unit area with 100 keyservers picked at

random. Hence, the average density of the nodes is 1000 and that of the keyservers is 100.

Assume a node located at location (0.1, 0.1) is a Sybil node. It reports the false existence of

6 keyservers around it, within a range of 0.1. Hence the density of the keyservers around the

Sybil node increases to 6/(�*0.1*0.1) = 192. Such a high density of the reported keyservers

implies that the node is a Sybil node. To avoid detection of this increased density, the Sybil

node would have to report its Sybil keyservers to be located outside our bounded area, say

locations (-0.05, -0.1) which would in turn make that node void, since it lies outside the

area of the network.

6.3. Cloning Attacks

In a cloning attack, the adversary fills the network with copies of compromised nodes. The

cloned nodes then launch a variety of attacks ranging from forwarding erroneous data to

manipulating the messages in the network. It also attempts to drain other legitimate nodes

of its limited power. Our previous work [18] shows that by using statistical analysis of the

key usage in the network such clones can be easily detected. They can be ostracized from

the network by discarding the keys used by that node. A key that is used very often indicates

unusual activity by the nodes using it.

Each node transmits a counting Bloom filter of the used keys. The keyservers come to a

consensus on which keys are cloned on the basis of pre-defined thresholds. Any key that is

used more than a given threshold times is a candidate to be a suspected cloned node. If the

mean usage and variance of a key is above the specified threshold, the keyserver calculates

a confidence on the suspected cloned key. The cloned nodes are removed from the network

by terminating all connections that use the set of cloned keys.

Simulations on a 250-node network support the predicted equations. With a key pool

size of 1000, each node randomly picking a key ring of 50 keys and with an assumption that
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10% of the keys are already cloned, analysis predicts that any key used more than 100 times

on average indicates a cloned node. Simulations showed that cloned nodes used the same

keys an average of 100 times. In a network of 250 nodes, if there are at least 20 clones, the

cloned nodes can be detected with a false positive rate of 70%.

A re-encryption of only log nc keys to form new key encryption keys restores the

credibility of the network with the suspected node thrown out of the network. Since a single

point of failure does not affect connectivity, the network still maintains a giant component

and is able to perform its task.

7. Conclusions

In this paper we present a fully distributed approach to sensor network security. The

proposed approach allows the network to organize itself into a set of security zones. We

have shown how to organize and maintain the security regions. In doing so, we quantified

both the energy savings attained and showed that the approach is able to tolerate many

classes of attacks.

We start with an ad hoc network of sensor nodes deployed using random key predis-

tribution. Each node is equipped with a random sampling of keys from a large key pool that

they use for authentication. Once the nodes have authenticated their neighbors using the

random key predistribution approach, we create multicast regions. Some nodes are chosen

at random to work as keyservers and maintain security within their local multicast region.

We use a secure selection scheme to randomly select the keyservers. The keyserver

nodes establish local multicast groups using the protocol described in Section 2. This

approach has no single point of failure and is resilient to collusion among nodes.

The key agreement protocol presented in Section 3 secures the network from cloning

attacks and internal corruption. Keyservers use a Byzantine agreement protocol to identify

and ostracize compromised nodes. Group key management reduces the network overhead

due to encryption and message exchanges, which results in significant energy savings. We

use statistics from standard commercial hardware to quantify the energy savings provided

by our approach.

Our approach uses key usage statistics to detect cloned nodes. This keeps the false

positive rates within manageable bounds. If the number of clones is below this threshold,

they will not be detected. This means that applications that use our approach need to be

designed to tolerate inputs from a small number of malicious participants.

Further research is desirable in developing more efficient protocols for two portions of

the proposed framework. The first aspect is keyserver selection. The current approach

requires O(n2) messages. It would be useful to have a localized server selection protocol,

which requires less network bandwidth. The second issue is the use of Byzantine agreement

for securing against malicious keyserver nodes. Byzantine agreement protocols tend to

require a large number of messages. It may be possible to develop local agreement

protocols that provide similar safeguards.
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