
Old Dominion University
ODU Digital Commons

CCPO Publications Center for Coastal Physical Oceanography

2004

Estimation of Drag Coefficient in James River
Estuary Using Tidal Velocity Data from a Vessel-
Towed ADCP
Chunyan Li

Arnoldo Valle-Levinson
Old Dominion University

Larry P. Atkinson
Old Dominion University, latkinso@odu.edu

Kuo Chuin Wong

Kamazima M. M. Lwiza

Follow this and additional works at: https://digitalcommons.odu.edu/ccpo_pubs

Part of the Oceanography Commons

This Article is brought to you for free and open access by the Center for Coastal Physical Oceanography at ODU Digital Commons. It has been
accepted for inclusion in CCPO Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Li, Chunyan; Valle-Levinson, Arnoldo; Atkinson, Larry P.; Wong, Kuo Chuin; and Lwiza, Kamazima M. M., "Estimation of Drag
Coefficient in James River Estuary Using Tidal Velocity Data from a Vessel-Towed ADCP" (2004). CCPO Publications. 98.
https://digitalcommons.odu.edu/ccpo_pubs/98

Original Publication Citation
Li, C. Y., Valle-Levinson, A., Atkinson, L. P., Wong, K. C., & Lwiza, K. M. M. (2004). Estimation of drag coefficient in James River
Estuary using tidal velocity data from a vessel-towed ADCP. Journal of Geophysical Research-Oceans, 109(C03034), [1-11]. doi:
10.1029/2003jc001991

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ccpo_pubs?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ccpo?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ccpo_pubs?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/191?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ccpo_pubs/98?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Estimation of drag coefficient in James River Estuary using
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[1] A phase-matching method is introduced to calculate the bottom drag coefficient in
tidal channels with significant lateral variation of depth. The method is based on the fact
that the bottom friction in a tidal channel causes tidal velocity to have a phase difference
across the channel. The calculation involves a few steps. First, the observed horizontal
velocity components are analyzed to obtain the amplitude and phase of the velocity at the
major tidal frequency. The phase of the longitudinal velocity is then fitted to a relationship
derived from the linearized momentum balance. The drag coefficient is then calculated.
This method is applicable to narrow (approximately a few kilometers wide) tidal channels
without strong stratification and where the cross-channel variation of surface elevation is
negligible compared to tidal amplitude. This analytic approach is easy to implement when
appropriate observational data are available. It allows a spatial variation of the drag
coefficient, and the resolution is only limited by that of the observations. The method is
validated by identical twin experiments and applied to tidal velocity data, obtained in the
James River Estuary, using an acoustic Doppler current profiler during spring tides and
neap tides in October–November 1996. The obtained bottom drag coefficient ranged
from 1.2 � 10�3 to 6.9 � 10�3 at different positions along two cross-channel transects
each 4 km long and 2 to 14 m deep. The maximum drag coefficient is found in the
shallowest water near the banks of the estuary, while the minimum values occur between 9
and 12 m in the center of the channel. The friction of the lateral boundary may have
contributed to the apparent increase of the bottom friction on the banks. The transverse
mean values of the drag coefficient ranges between 2.2 and 2.3 � 10�3 for the spring and
neap tides, respectively. INDEX TERMS: 4594 Oceanography: Physical: Instruments and techniques;

4203 Oceanography: General: Analytical modeling; 4560 Oceanography: Physical: Surface waves and tides

(1255); 4568 Oceanography: Physical: Turbulence, diffusion, and mixing processes; KEYWORDS: drag

coefficient, tides, analytic model

Citation: Li, C., A. Valle-Levinson, L. P. Atkinson, K. C. Wong, and K. M. M. Lwiza (2004), Estimation of drag coefficient in James

River Estuary using tidal velocity data from a vessel-towed ADCP, J. Geophys. Res., 109, C03034, doi:10.1029/2003JC001991.

1. Introduction

[2] A depth-averaged hydrodynamic model is often used
to study tidal properties in a shallow estuary, where the
maximum water depth is on the order of a few tens of
meters. In such a model, the intensity of the overall energy
dissipation is related to the surface and bottom drag coef-
ficients. For the major tidal frequency component, only the
bottom drag coefficient is relevant and the wind stress
usually has lower and variable frequencies. The estimation

of the bottom drag coefficient can be accomplished by (1) a
simple scaling argument (a straightforward order of magni-
tude estimate) [Godfrey, 1980], (2) a dimensional analysis
using the logarithmic law [Lueck and Lu, 1997],
(3) comparisons of results from a highly simplified analytic
model to observational data [Wang and Craig, 1993], or
(4) full-scale assimilative numerical models, the so-called
adjoint variational method [Spitz and Klinck, 1998; Ullman
and Wilson, 1998]. A scaling argument is useful when very
little information is available. However, this simple method
is often not the best choice when there is a large amount of
data available which can provide more information than just
an order-of-magnitude estimate. Dimensional analysis is
applicable to a steady and uniform flow over an immobile
flat bed with no boundary. Some studies have suggested that
it can be applied to tidal flow problems when the temporal
variation of flow is taken into account [Wilkinson, 1986;
Friedrichs and Wright, 1997; Kuo et al., 1996]. The
comparison of an analytic model with observations, while
useful for ideal cases, is difficult to generalize because
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analytic models often require regular geometry of the
region. The adjoint variational method has been developed
for various long wave problems [Thacker, 1988; Thacker
and Long, 1988; Thacker, 1989; Panchang and Richardson,
1993; Ten Brummelhuis et al., 1993; Lardner and Das,
1994; Lardner and Song, 1995] and used by some studies to
estimate parameters using field observations in, for exam-
ple, the Chesapeake Bay [Spitz, 1995] and the Hudson River
Estuary [Ullman and Wilson, 1998].
[3] The adjoint variational method requires two numeri-

cal models: One is essentially the same as an ordinary
numerical model, except that the parameters are to be
determined by the model solution, and the other is the
adjoint variational model which must be integrated back-
ward in time. The parameters are determined by minimizing
a cost function which represents the misfit between the data
and the model solution.
[4] A non-adjoint variational numerical method has also

been developed [Bang, 1994] to estimate both the horizontal
pressure gradient and vertical eddy viscosity by assimilating
data of a vertical profile of horizontal tidal velocity obtained
at a single station. The bottom drag coefficient is derived
after the eddy viscosity and horizontal pressure gradient are
calculated.
[5] One alternative to the complex adjoint variational

method is using an analytic method by fitting observational
data to the momentum equations at the major tidal frequency
[Bowden and Fairbairn, 1952; Huntley et al., 1994]. This
method does not need a ‘‘first guess’’ or ‘‘initial value’’ but
requires an accurate measurement of the pressure gradient.
Since the pressure gradient (�10�4–10�5 m/s2) related to
tidal motion is proportional to a small difference between
two relatively large numbers (the tidal elevations) divided by
a close distance, it is not trivial to directly measure the
pressure gradient in the field with a good accuracy.
[6] In this paper, we introduce an analytic method, which

does not require a direct measurement of the horizontal
pressure gradient, to calculate the effective bottom drag
coefficient by assimilating semi-diurnal tidal velocity data
obtained from an acoustic Doppler current profiler (ADCP)
along a transverse transect in a narrow estuary. We call it the
Phase-Matching Method. The horizontal pressure gradient
can then be obtained after the drag coefficient is estimated.
It should be noted that the method presented here uses a
drag coefficient defined by the depth-averaged velocity as in
numerous applications for practical reasons [e.g.,
Proudman, 1953; Godfrey, 1980; Parker, 1984; Wang and
Craig, 1993; Ullman and Wilson, 1998; Spitz and Klinck,
1998]. This is in contrast to the bottom drag coefficient
defined by the vertical profiles of the flow [e.g., Lueck and
Lu, 1997]. The two types of drag coefficient are not
necessarily equal to each other since they are defined in
different momentum equations (one with depth-averaged
velocity and the other with the three-dimensional velocity).
They should, however, be consistent as far as the overall
energy dissipation is concerned. The method is developed in
section 2 and applied to the ADCP data from the James
River Estuary in section 3. In section 4, we demonstrate
with some identical twin experiments using a two-dimen-
sional tidal model that the phase-matching method can
correctly recover the bottom drag coefficient in a two-
dimensional tidal model. In section 4, we also use the

calculated drag coefficient in the two-dimensional model
to calculate the flow field which is compared with the
observations. We then summarize the results in section 5.

2. Phase-Matching Method

[7] According to the scaling analysis of Bang [1994], the
baroclinic pressure gradient in a typical shallow estuary is
about 2 orders of magnitude smaller than the barotropic
pressure gradient. As a result, the pressure gradient in
shallow water waves tends to be depth-independent in
estuaries with typical longitudinal density gradient values.
This is true, of course, at the major tidal frequency when
only the linear momentum balance is considered. As a first-
order approximation, we therefore assume that it is suffi-
cient to include only the barotropic component of the
pressure gradient at the major tidal frequency. The nonlinear
dynamics including overtides and compound tides [e.g.,
Parker, 1984, 1991] are neglected. At subtidal frequencies,
the baroclinic pressure gradient will be important for most
estuaries [e.g., Hansen and Rattray, 1965], a regime that we
do not discuss here. The nonlinear effect will complicate the
problem substantially to prevent an analytic approach.
[8] The depth-averaged longitudinal momentum equation

for an estuary without Coriolis force is [e.g., LeBlond, 1978;
Clarke, 1990; Wang and Craig, 1993]:

@u

@t
¼ �g

@z
@t

� b
h
u; ð1Þ

where u, z, x, t, h, b, and g are the longitudinal velocity,
surface elevation, longitudinal coordinate, time, the un-
disturbed water depth, bottom friction coefficient, and
acceleration due to gravity, respectively. By neglecting the
Coriolis force in the longitudinal momentum balance, we
are limiting our discussion to narrow estuaries or tidal
channels in which the transverse velocity v is much smaller
than the longitudinal velocity u so that j fvj � j@u/@tj. Using
the James River as an example, the width is on the order of
4 km and the transverse velocity is on the order of 10 cm/s,
about 10% of the longitudinal velocity. The friction
coefficient b is defined by [Proudman, 1953; Parker, 1984]

b ¼ 8CDU0

3p
; ð2Þ

in which CD and U0 are the bottom drag coefficient and the
magnitude of the tidal velocity. In general, U0 is a function
of position and is to be determined by observations.
Following Bowden and Fairbairn [1952] and Huntley et
al. [1994], we consider the semi-diurnal tidal component
only. We write

u ¼ Re Ueist
� �

; z ¼ Re Aeist
� �

; ð3Þ

where s, i, U, A, z, and Re are the angular frequency of
the semi-diurnal tide, the unit imaginary number (

ffiffiffiffiffiffiffi
�1

p
),

the complex amplitude of the longitudinal velocity, the
complex amplitude of the tide, the semi-diurnal tidal
elevation, and a mathematical operator which produces the
real part of the complex number inside the braces,
respectively.
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[9] By substituting equation (3) into equation (1), we
obtain the following:

U ¼ � g

isþ b=h
@A

@x
: ð4Þ

[10] A direct analysis of equation (4) can provide us with
physical insights. For instance, the magnitude of the veloc-
ity is jUj = ah/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h2 þ b2

p
, where a is a constant with units

of m s�2 at a given x. For a typical shallow estuary, the
larger h is, the larger jUj will be, although the relationship is
not linear, particularly at large h (>20 m). In practice, with
known vertical profiles of the velocity, the depth-averaged
velocity U can be obtained. However, since the longitudinal
pressure gradient (@A/@x) is unknown, the drag coefficient
CD or the friction coefficient b cannot be estimated from the
magnitude of equation (4) in general. However, an exam-
ination of the phase relationship obtained from equation (4)
may provide new insights, and a method can be developed
to estimate the unknown drag coefficient. To illustrate this,
we note that friction is crucial in determining the character-
istics of tide: if b is zero, then both jUj and the phase of U
will be independent of h. With friction, both the flood and
ebb occur first at shallow water. The phase lag of along
channel velocity can be on the order of 1 hour [e.g., Valle-
Levinson et al., 1998]. This fact can be seen from the
dependence of phase of along-channel velocity on the
variation of water depth: �tan�1(sh/b), which gives a larger
value for a smaller h; that is, the phase in shallow water
leads that in deep water as demonstrated by a 2-D [Li and
Valle-Levinson, 1999] and a 3-D [Li, 2001] analytic tidal
models with arbitrary cross-channel depth variations. We
now write the three terms of equation (4) by their ampli-
tudes and phases,

U ¼ U1e
ifU ;

@A

@x
¼ Axe

ifAx ;

� g

isþ b=h
¼ BeifB ;

ð5Þ

in which U1, Ax, and B are the complex amplitude (of the
semi-diurnal tidal constituent) of the longitudinal velocity,
the complex amplitude of the longitudinal component of the
horizontal pressure gradient, and the complex amplitude of
�g/(is + b/h); fU, fAx, and fB are the (semi-diurnal tidal)
phase of the longitudinal velocity, the phase of the
longitudinal component of the horizontal pressure gradient,
and the phase of �g/(is + b/h), respectively. It can readily
be shown that fB is

fB ¼ tan�1 s
�b=h

� �
¼ � tan�1 sh

b

� �
; ð6Þ

and from equation (4) we have

fU ¼ fAx þ fB ¼ fAx � tan�1 sh
b

� �
: ð7Þ

[11] If tidal velocity can be measured across an estuary or
tidal channel, the left-hand side of equation (7) is known.
The friction coefficient b and the phase of the pressure

gradient fAx are unknown and should be functions of
the transverse position. For tidal wave problems in a
narrow estuary (with width approximately a few kilometers),
however, there is an important characteristic of the motion:
The propagation of the wave (represented by the surface
elevation) is almost one-dimensional [Li and Valle-Levinson,
1999], although the tidal velocity may have a strong lateral
shear and thus is two-dimensional or even three-dimensional
[e.g., Li, 2001]. In other words, the lateral variation of the
surface elevation in a narrow estuary is negligible. Even for
an estuary as wide as the Chesapeake Bay, the tidal elevation
contours are mostly perpendicular to the axis of the channel
[e.g., Browne and Fisher, 1988; Spitz, 1995] and the across-
mouth variation in tidal elevation is much smaller than the
tidal amplitude [Li et al., 2000].
[12] We therefore assume that at tidal frequencies, the

lateral variation of elevation and the lateral variation of
pressure gradient are negligible. Under this assumption,

equation (7) implies that fU is equal to � tan�1 sh
b

� �
plus

a constant fAx. Since tan
�1 sh

b

� �
is a continuous function of

h and therefore approaches zero as h approaches zero, the
constant fAx can be estimated from equation (7). To do this,
we fit the phase fU to a polynomial of the water depth h and
obtain the phase for the pressure gradient fAx by requiring
that h approach zero. This polynomial can be considered as
a Taylor series expansion assuming that the drag coefficient
only varies continuously with position or depth. The phase
for the pressure gradient is the intercept. It should be noted
that the procedure to obtain fAX is a mathematical operation

(an extrapolation to h ! 0) based on the fact that tan�1 sh
b

� �
is a continuous function of h and does not require that
h is exactly zero. The validity of this extrapolation will
be examined later with an identical twin experiment.
After obtaining fAx, the drag coefficient is obtained from
equations (7) and (2),

CD ¼ 3psh
8U0 tan fAx � fUð Þ : ð8Þ

The drag coefficient obtained by equation (8) is a function of
fU and U0, which are space dependent. Since the method
described above is based on the phase relationship
(equation (7)) of the momentum balance (equation (4)), we
call it the phase-matching method. The phase-matching
method is further explained in the following section by its
application to observational data obtained in the James River
Estuary.

3. Drag Coefficient Estimation in James River
Estuary

[13] Velocity profiles were sampled along two cross-
estuary, 4-km-long transects in the lower James River
(Figure 1a) throughout two spring (October 26–27) and
two neap (November 2–3) tidal cycles in 1996. The
profiles were obtained during 25-hour cruises with a
600-kHz Broad Band RD Instruments acoustic Doppler
current profiler (ADCP). The ADCP was mounted facing
downward on a small (1.2 m long) catamaran and towed at
an average speed of 2.5 m/s to the starboard side of a
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25-foot boat. The ADCP recorded velocity profiles aver-
aged over 30 s, which gave a horizontal spatial resolution
of about 75 m. The bin size for vertical resolution was
0.5 m, and the closest bin to the surface was located at
nearly 2 m. Compass calibration and data correction were
performed following Joyce [1989]. Navigation was carried
out with a differential GPS receiver. In addition to the
underway sampling, which provided spatial coverage,
moored digiquartz pressure sensors (SeaBird SBE 26)
were deployed at both ends (37�0.3490N, 76�27.1130W)
and (36�58.3470N, 76�29.6540W) of one transect and
validated the assumption of small cross-estuary variations
of surface elevation (�5%), relative to the tidal amplitude
(Figure 1b). Time series of current velocity recorded at
each point along each transect and at each depth consisted
of 20 values for the spring tide cruise and 17 values for

the neap tide cruise. These time series spanned two tidal
cycles and were subject to least-squares harmonic analysis
on the semidiurnal and diurnal frequencies. A CTD was
also used to obtain the density field across the estuary. The
mean density field showed a structure typical in a partially
mixed estuary (Figure 2). During the first cruise (spring
tides), the density difference between the surface and
bottom appeared to be slightly larger than that during
the second cruise (neap tides). This was apparently caused
by a larger river discharge during the first cruise than
during the second cruise [Li et al., 1998].
[14] After the semi-diurnal component of the vertical

profiles of the horizontal velocity are obtained, it is neces-
sary to calculate the amplitude and phase of the depth-
averaged velocity at the same frequency in order to use the
method of the last section to calculate the drag coefficient.

Figure 1. Study area and transverse pressure difference. (a) Study area and the two sampling transects;
t1 and t2 represent the first and second transect, respectively. (b) Time series of the relative transverse
variation of surface elevation in comparison to the mean elevation (da/a), obtained from two pressure
sensors across the James River in 2 months. The cross-channel difference is on the order of 5%.
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Assume that the semi-diurnal tidal velocity at any given
position (x, y) can be expressed as

u z; tð Þ ¼ u0 zð Þ sin st þ f zð Þð Þ; ð9Þ

in which u0(z), f(z), and z are the amplitude of the velocity,
phase of the velocity, both at the semi-diurnal frequency s,
and the vertical coordinate, respectively. Note that by using
equation (9), we assume that we have obtained u0(z) and
f(z) at each depth z at the given position using a harmonic
analysis. Since the relation between f(z) and u(z,t), as
shown by equation (9) is not linear, we cannot directly
integrate f(z) and u0(z) to get the amplitude and phase and
the depth-averaged velocity. The vertically averaged
velocity is defined by

u tð Þ ¼ 1

h

Z 0

�h

u z; tð Þdz: ð10Þ

If we write the depth-averaged velocity in terms of a sine
function with the same frequency, or

u tð Þ ¼ u0 sin st þ fUð Þ; ð11Þ

where u0 and fU are the amplitude and phase of the depth
averaged velocity, respectively, then it can be shown, by
direct derivation, that

u0 ¼
1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 0

�h

u0 cos fð Þdz
� �2

þ
Z 0

�h

u0 sin fð Þdz
� �2

s
ð12Þ

fU ¼ tan�1

Z 0

�h

u0 sin fð ÞdzZ 0

�h

u0 cos fð Þdz

0
BBB@

1
CCCA: ð13Þ

Obviously, if the amplitude (u0) and phase (f) of the
horizontal velocity are independent of z, the amplitude (u0)
and phase (fU) of the depth-averaged velocity will be equal
to u0 and f, respectively. Note that the above reasoning
involving equations (9) through (13) is purely operational.
The equations can be used if the harmonic analysis to the
velocity is first conducted at each depth. Alternatively, we
can vertically integrate the velocity at each location and do
the harmonic analysis to the depth-averaged velocity. In
this case, we don’t need equations (9), (12), and (13). The
parameters u0 and fU of equation (11) are then given by
the harmonic analysis. The difference between the two
methods is negligible for our applications. Since we
already obtained the harmonic constants at each depth [Li
et al., 1998], we derive these equations for the analysis of
this work.
[15] As mentioned in the last section, the first step of the

phase-matching method is to fit the phase of the depth-
averaged velocity fU to a Taylor series expansion, assuming
that the phase is a continuous function of depth. This allows
us to write a polynomial of the water depth h defined by

fU* ¼ a0 þ a1hþ a2h
2; ð14Þ

where f*U and ai (i = 0, 1, 2) are the fitted phase of velocity
and coefficients of the polynomial, respectively. The fitting
for the ADCP data obtained in the James River Estuary in

Figure 2. Mean density profiles (r � 1000 kg/m3). (a) Density profile for transect 1 during the first
cruise (spring tide). (b) Density profile for transect 1 during the second cruise (neap tide). (c) Density
profile for transect 2 during the first cruise. (d) Density profile for transect 2 during the second cruise.
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late October to early November of 1996 is shown in
Figure 3. The coefficients a0, a1, and a2 for the spring tides
(October 26–27) are 121.59 (degree), �9.93 (degree/M),
and 0.53 (degree/M2), respectively. For the neap tides
(November 2–3), these coefficients are �21.72 (degree),
�11.48 (degree/M), and 0.52 (degree/M2), respectively. The
RMS of the fitting is about 5�, which is equivalent to 10 min
for semi-diurnal tide. Since our typical phase lag can be 20–
30� (i.e., up to 1 hour), this is relatively small. The
estimated phase of the pressure gradient is fAx = a0.
The drag coefficient is then calculated with equation (8), the
formula obtained from the phase-matching method. Figure 4
shows the drag coefficient for both the spring tides (October
26–27, 1996) and the neap tides (November 2–3, 1996)
and fitted quadratic functions of the water depth h. The
standard deviation of the fitting for the drag coefficient is
about 5 � 10�4.
[16] The classical ‘‘standard’’ value of the bottom drag

coefficient is 0.0025 [Proudman, 1953], although the
actual value is case dependent and can be quite variable.
The present results show that the estimated drag coeffi-
cient has the correct order of magnitude: CD varies from
1.2 � 10�3 to 6.9 � 10�3 with a transverse mean value of
2.2 � 10�3 for the spring tides and 2.3 � 10�3 for the
neap tides (Figure 4). The spring-neap variation of the
transverse mean is thus not obvious during this time
period. However, some cross-channel differences between
the spring and neap are observable. The drag coefficient in
shallow waters (h less than 9 m) appear to have larger
values in neap than in spring while the drag coefficient in
deep waters (h larger than 9 m) appear to have smaller
values in neap than in spring (Figure 4). This difference is
about the same order of the standard error mentioned
above (5 � 10�4). The cause of the difference, if signif-
icant, is not known. More observations and analysis will
be required to establish the statistical significance of this

difference in shallow and deep waters from spring to neap
and to determine the physics behind it.
[17] Secondly, the drag coefficient is a function of the

water depth with the largest values on the shoals. The drag
coefficient reaches its minimum also at around h = 9 m and
increases slightly in the deep water from 12 to 14 m. Overall,
the result is consistent with those of Ullman and Wilson
[1998] and Spitz and Klinck [1998] such that in shallower
waters, CD is larger. The overall pattern of the CD-h relation-
ship fits the relationship between the drag coefficient and the
ratio between water depth and the bottom roughness under no
stratification [Mofjeld, 1988]: The larger the ratio between
water depth and the bottom roughness, the smaller the drag
coefficient. The exceptions in the deep water might indicate
that the bottom roughness is not uniform across the transect.
We may also interpret the minimum drag coefficient at the
9-m water with the following reasoning. The two cross
sections have 9-m plateaus bounded by a narrow trench on
the left-hand side (facing downstream direction) shown in
the figures (up to 12–14 m deep). Over the plateaus, the
depth-averaged velocity amplitude is the maximum [Li and
Valle-Levinson, 1999]. Although there is a slight increase of
depth-averaged velocity over the deep trench, the increase is
quite small (almost constant). The phase over the trench is
also constant or even slightly reversed. This is most likely a
result of the increased side boundary friction as the trench is
on the northern boundary but the model does not include the
lateral friction. Nor could we include the lateral friction if we
were still going to solve it analytically as has been done.
Indeed, the drag coefficient is larger near the banks than in the
center. The minimum drag coefficient near 9 m therefore
appears to be caused by lateral friction of the side boundaries.
[18] It is important to note that in the present model, as in

the models of Ullman and Wilson [1998] and Spitz and
Klinck [1998], stratification was not included. This may have
influenced the ‘‘apparent’’ drag coefficient calculated by the
barotropic models used in these (including the present)
studies. Indeed, these two-dimensional adjoint variational
barotropic numerical models yielded contradictory results.

Figure 3. Depth-phase relation. The horizontal axis is the
water depth in meters. The vertical axis is the phase of the
longitudinal component of the semi-diurnal tidal velocity in
degrees. Circles and stars are for transects 1 and 2,
respectively. The solid lines show the fitted polynomial of
water depth (h). (a) From data obtained during October 26–
27, 1996, when the tidal elevation had a magnitude of 0.5 m
(spring tides). (b) From data obtained during November 2–
3, 1996, when the tidal elevation had a magnitude of 0.25 m
(neap tides).

Figure 4. Drag coefficient as a function of the water
depth. Circles and stars are for the spring tides and neap
tides, respectively. The solid line and the dashed line show
the fitted polynomial of water depth (h) during the spring
and neap tides, respectively.
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The adjoint variational method of Spitz [1995] and Spitz and
Klinck [1998] applied to the Chesapeake Bay showed that
the drag coefficient was larger during neap tides than during
spring tides. In contrast, Ullman and Wilson [1998] showed
larger drag coefficient values in the Hudson River during
spring tides than during neap tides. In this study, we have
found a third possibility: The transverse mean drag coeffi-
cient did not change in the James River Estuary from spring
tides to neap tides during our observations. However, as
discussed above, our results indicate a larger drag coefficient
in neap tides than in spring tides in shallow waters but a
smaller drag coefficient in neap tides than in spring tides in
deep waters (with 9 m as the division between shallow and
deep waters). The difference between spring and neap tides
is comparable to the standard error (5 � 10�4) of the
estimated drag coefficient. Therefore, its statistical signifi-
cance is not well established, from this data set. A physical
explanation of the conflicting results can be made based on a
consideration about the effect of stratification and tidal
mixing. Increased tidal mixing can increase drag coefficient,
just as Ullman and Wilson [1998] argued. However, in-
creased river discharge can limit tidal mixing, thus lowering
the drag coefficient. During our studies, the tidal amplitude
reduced by half (from 0.5 m to 0.25 m) from spring tides to
neap tides. Smaller tidal amplitude should result in weaker
tidal mixing [Simpson and Hunter, 1974]. At the same time,
the river discharge reduced by about half as well (from 132
to 56 m3/s) [Li et al., 1998]. As a result, during spring tide,
the stratification was stronger than that during neap tide
(Figure 2). Therefore, averaged across the channel, the
increased tidal motion during spring tide apparently did
not cause a significantly increased tidal mixing because of
increased river discharge. Our result of unchanged transverse
mean drag coefficient from spring to neap can be explained
by the nearly canceling effect of the two when a weaker tidal
forcing of neap tides coincided with a weaker river discharge
or a stronger tidal forcing coincided with a larger river
discharge that in turn limited the tidal mixing. According
to experimental results [Linden and Simpson, 1988], obser-
vations in estuaries [Peters, 1997], an empirical relationship
[Bowden, 1967], and a Taylor series expansion [Li et al.,
1998], it can be shown that, to first order, tidal mixing is
proportional to tidal amplitude and stratification is propor-
tional to river discharge. Consequently, our result can be
explained at least qualitatively since both the tidal amplitude
and river discharge decreased by about half from spring tides
to neap tides.

4. Validation of the Phase-Matching Method

[19] In section 2, we have developed a method to estimate
the bottom drag coefficient as a function of water depth. In
section 3, we have applied this method to some ADCP data
obtained in the James River Estuary. In this section, we will
further test the method by some ‘‘identical twin experi-
ments’’ (ITEs). The first step of the ITE is to solve an
analytic model with a given spatial distribution of bottom
drag coefficient in a rectangular domain with variable cross-
channel depth variation. The second step uses the velocity
field obtained from the analytic model as hypothetical
observations and applies the phase-matching method to
calculate the drag coefficient. Note that the second step

uses the empirical method proposed above and does not
involve the model. By comparing the drag coefficient
obtained in the second step to that specified in the first
step, the validity of the phase-matching method can be
tested. We have conducted the ITEs with two different
approaches for the second step for comparison: One uses
the model velocity as is and the other uses the velocity field
plus a random noise, to recover the drag coefficient. As one
more step beyond the ITEs for further examination of the
model performance, we will then apply the drag coefficient
estimated from the phase-matching method as a function of
cross-channel position in the analytic model to calculate the
velocity field and compare with the observations.

4.1. First Step: Solving an Analytic Model

[20] The model is based on an earlier model of Li and
Valle-Levinson [1999], which was verified by comparing to
an exact solution and by a momentum balance calculation.
Here we extend the solution to allow a variable drag
coefficient in the transverse direction. The most important
aspect of the model is that it is based on the assumption that
the lateral variation of the elevation in a narrow estuary is
small, a characteristic we have discussed in section 2. In the
following, we outline the method and the solution. The
depth-averaged momentum and continuity equations, cor-
rect to the first order (O(a/h), a ratio of tidal amplitude and
mean depth) are

@u

@t
¼ �g

@z
@x

� b
h
u;

@v

@t
¼ �g

@z
@y

� b
h
v;

@z
@t

þ h
@u

@x
þ @hv

@y
¼ 0:

ð15Þ

[21] The depth function is assumed to be a function of the
across-estuary position,

h ¼ h yð Þ: ð16Þ

[22] For a single frequency co-oscillating tide, the solu-
tion can be expressed as

u ¼ Ueist; v ¼ Veist; z ¼ Aeist; ð17Þ

where s, i, U, V, and A are the angular frequency of the tide,
the unit imaginary number

ffiffiffiffiffiffiffi
�1

p
, the complex amplitude of

the longitudinal velocity, the complex amplitude of the
transverse velocity, and the complex amplitude of the tidal
elevation, respectively.
[23] Substituting equations (17) into equations (15) yields

isU ¼ �g
@A

@x
� b
h
U ;

isV ¼ �g
@A

@y
� b
h
V ;

isAþ h
@U

@x
þ @hV@y ¼ 0:

ð18Þ

[24] For a co-oscillating tide problem, the tidal amplitude
at the estuary mouth is usually known. The longitudinal
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velocity at the head (x = L, a solid boundary) vanishes. For
simplicity, we specify that the side boundaries are parallel to
each other and the y axis is thus perpendicular to the side
boundaries. The transverse velocity at the side boundaries
(0, D) must therefore be zero. Hence the boundary con-
ditions are

A

����
x¼0

¼ a;
@A

@x

����
x¼L

¼ 0; V

����
y¼0;D

¼ 0: ð19Þ

[25] The first equation of (18) yields

U ¼ � g

isþ b=h
@A

@x
ð20Þ

@U

@x
¼ � g

isþ b=h
@2A

@x2
: ð21Þ

[26] Li [1996] has shown that based on a perturbation
solution, the lateral variation of tidal elevation in an estuary
or tidal river of a few kilometers wide is very small
compared to that of the longitudinal variation. We therefore
assume that the lateral variation of elevation is negligible in
the x-momentum and the continuity equations. The complex
amplitude of the tidal elevation is therefore taken to be
approximately independent of y, which leads to a dramatic
simplification of the solution.
[27] Multiplying equation (29) by h and then integrating

the product across the estuary from y = 0 to y = D (the width
of the estuary) yields

Z D

0

h
@U

@x
dy ¼ �

Z D

0

gh

isþ b=h
@2A

@x2
dy � F @2A

@x2
; ð22Þ

where

F ¼ �
Z D

0

gh

isþ b=h
dy; ð23Þ

in which b can be an arbitrary function of y.
[28] Note that we have neglected the lateral variation of

@2A/@x2 in obtaining equation (22) due to the assumption
we made. The error of the approximation of equation (22) is
F@2jDAj/@x2, where DA is the lateral variation of A. The
relative error is therefore j@2DA/@x2j/j@2A/@x2j � jDAj/jAj.
As shown by Figure 1b, the observed magnitude of jDAj/jAj
in the James River Estuary is about 5%. The error of
approximation of equation (22) is therefore about 5% for
the James River Estuary. Integrating the continuity equa-
tions (18) across the estuary and applying the lateral
boundary conditions in equations (19) yields

isABþF @2A

@x2
¼ 0: ð24Þ

Again, we have used the assumption, that A is laterally
independent, in obtaining equation (24). Equation (24) has a
solution satisfying the boundary conditions (19) for A,

A ¼ a
cos w x� Lð Þð Þ

cos wLð Þ ; ð25Þ

in which

w2 ¼ isB
F : ð26Þ

[29] Consequently, we have, by virtue of equations (25)
and (20), the solutions for U and the along-channel gra-
dients of A and U as follows:

U ¼ g

isþ b=h
aw

cos wLð Þ sin w x� Lð Þð Þ; ð27Þ

dA

dx
¼ � aw

cos wLð Þ sin w x� Lð Þð Þ; ð28Þ

@U

@x
¼ g

isþ b=h
aw2

cos w x� Lð Þð Þ ¼
gw2

isþ b=h
A: ð29Þ

[30] With a straightforward derivation, A, U, and their
derivatives can be obtained in terms of their real and
imaginary parts [Li and Valle-Levinson, 1999]. Alternatively,
we can use some commonly used computer languages, such
as MATLAB and IDL, that allow complex variables and
functions, for direct calculations without separating the real
and imaginary parts. The present model is programmed in
MATLAB. Now both A and U are solved and expressed in
simple forms for any depth function h(y). This solution is
identical to the one presented by Li and Valle-Levinson
[1999], except that here, CD or b is allowed to be a function
of y. Evidently, the lateral dependence of U is dictated by
the forms of CD(y) and h(y) as shown by equation (27). For
a constant h and a constant CD, the solution is the same as
those of previous theories [e.g., Ippen and Harleman, 1961;
Officer, 1976]. Substituting equation (29) into the third
equation of (18), it yields

isAþ ghw2

isþ b=h
Aþ @hV

@y
¼ 0; ð30Þ

which can be used to solve V by integration with respect
to y,

V ¼ � 1

h
isyþ

Z y

0

ghw2

isþ b=h
dy

� �
A: ð31Þ

[31] It follows from the second equation of (18) and (31)
that

@A

@y
¼ � 1

g
isþ b=hð ÞV

¼ isþ b=h
gh

isyþ w2

Z y

0

gh

isþ b=h
dy

� �
A; ð32Þ
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from which the magnitude of @A/@y can be calculated and
used to check the assumption that A is almost laterally
uniform, which has been discussed by Li and Valle-
Levinson [1999].

4.2. Second Step: Recovering Drag Coefficient

[32] Two ITEs are conducted. The observed cross-
channel depth distributions along the two transects of
the James River (Figures 5a and 6a) are used. The drag
coefficient as a function of cross-channel distance is
given by the results of section 3. The length and width
of the models are 70 km and 4 km, respectively. In all
experiments, tidal amplitude at the open boundary is
chosen to be 1 m. The analytic solution is calculated
for each ITE model to obtain the velocity field. The
velocity field along a transverse line at different distances
from the mouth is then used as hypothetical observational
data, and the phase-matching method is applied. In our
presentation, we only demonstrate the results from a
cross section at 10 km inside the mouth, typical of all
results from different cross sections. When no noise is
added to the velocity field, the drag coefficient is
accurately recovered in each case. It should be empha-
sized that the accurate recovery of the drag coefficient
demonstrates that the extrapolation at h ! 0 that leads to
equation (8) is correct. It can be shown that by altering
equation (8) even slightly, the accurate recovery will not
be possible.

[33] Next, we add a random error to the velocity field
from each of the two models. The random function has a
zero mean defined by the MATLAB function. The magni-
tude of the random error velocity is between �0.10 m/s and
0.10 m/s, with the maximum model produced velocity of
about 0.80 m/s. Figures 5b and 6b show the comparison
between the given drag coefficients used in producing the
hypothetical observational (i.e., the model) velocity and the
recovered drag coefficients from equation (8). In each case,
with only the depth distribution across the channel and the
velocity field, we are able to infer the drag coefficient
distribution that is needed to produce the velocity field.
The inferred and given drag coefficients are consistent in
each test.
[34] Note that the phase-matching method is independent

of the analytic model; that is, in implementing the second
step, the dynamical equations are not used and only the
equations of section 2 (particularly equation (8)) are used.
From these ITE results, we conclude that the phase-match-
ing method does reflect the tidal dynamics in idealized
occasions (no observational errors). Even with a moderate
random error of velocity field, which is always present in
real observations, the method can still successfully recover
the drag coefficients.
[35] It should also be noted that the phase-matching

method presented here is applicable to data from a cross
section of the tidal channel. By applying the method to

Figure 5. Identical Twin Experiment (1), results for the
first transect. (a) Depth distribution across the channel.
(b) Comparison between the given and inferred drag
coefficients. The circles are the given values, while the line
is calculated.

Figure 6. Identical Twin Experiment (2), results for the
second transect. (a) Depth distribution across the channel.
(b) Comparison between the given and inferred drag
coefficients. The circles are the given values, while the line
is calculated.
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different cross sections along the channel, we can obtain a
two-dimensional distribution of the bottom drag coefficient
just as a two-dimensional adjoint variational model would.
To conduct concurrent observations along multiple trans-
ects, however, is not generally practiced because of logistic
reasons and cost of operations.

4.3. Comparison of Calculated and Observed
Flow Fields

[36] By applying the drag coefficient values calculated
from section 3 to the two-dimensional model of section
4.1, we have calculated the tidal flow field for comparison
with the observations. The comparison is shown in
Figure 7. Figures 7a and 7b are for the two transects,
respectively. They show the cross-channel distributions of
the phase and amplitude of the major (M2) tidal compo-
nent of the depth-averaged velocity. Apparently, the model
phase matches that of the observations, as required by the
method. The distribution of the velocity amplitude repro-
duces the general characteristics of the observed velocity
amplitude, but it has some relatively large errors at a
number of places, especially near the banks of the estuary.
The best performance of the model appears to be in the
center of the channel. This supports the idea that the lateral
friction, which is missing in the analytical model, may be
important and contributes to the effective bottom drag
coefficient at near the banks. Although the analytical

model is linear and quite simplified and the errors are
large at places, the comparison nevertheless demonstrates
that the drag coefficient values obtained from the phase-
matching method are generally valid.

5. Additional Discussion and Summary

[37] In this paper, we have developed a phase-matching
method to estimate the bottom drag coefficient for the
depth-averaged, semi-diurnal and barotropic motion. It is
suitable for tidally dominated estuaries with narrow width
(much smaller than the Rossby deformation radius) and
shallow water depth. It is applicable to the velocity mea-
surement along a transverse section for at least one tidal
cycle. The technique is introduced with the assumption that
the lateral variation of elevation, and thus that of the
longitudinal pressure gradient, is negligible. The calculation
involves a few steps. First, the observed horizontal velocity
components are analyzed by harmonic decomposition so
that the amplitude and phase of the velocity at the major
tidal frequency are obtained. The phase of the longitudinal
velocity is then fitted to a quadratic function of the water
depth to obtain the phase of the pressure gradient. The drag
coefficient, as a function of the transverse position, is then
calculated from the phase relationship of the longitudinal
momentum equation. The application of this method to the
ADCP data obtained in the James River Estuary yields a
drag coefficient distribution across the channel with a mean
value of �2.2 � 10�3. The drag coefficient is larger in the
shallow water than in the deep water. The drag coefficient is
larger near the banks, indicating an effect of increased
lateral friction. Since lateral friction is not included in the
model, the lateral friction is ‘‘folded’’ into the bottom
friction in effect. The variation of the transverse mean drag
coefficient between the spring and neap tides is not obvious,
a result that can be attributed to the canceling effect of a
weaker mixing coinciding with a weaker river discharge
during the neap tides.
[38] To validate the phase-matching method, we have

designed and conducted two ITEs. The ITEs involve two
steps. The first step solves an analytic model with a given
spatial distribution of bottom drag coefficient in a rectan-
gular domain. The second step uses the velocity field
obtained from the analytic model as hypothetical observa-
tional data and applies the phase-matching method to
recover the drag coefficient. The tests show that the
phase-matching method can correctly recover the drag
coefficient. By using the drag coefficient estimated from
the phase-matching method and applying the two-dimen-
sional analytic model, we have demonstrated a general
agreement of the flow field between the model and the
observations.
[39] The phase-matching method presented here is based

on the linearized momentum equation. As demonstrated by,
for example, Parker [1984], nonlinear effect can contribute
to errors as much as 17%. An extended discussion on the
nonlinear effect may be accomplished by using a numerical
model that includes all the nonlinear terms in the momen-
tum and continuity equations. The present method is obvi-
ously limited to only linear problems because of the limit of
an analytical approach. We expect that, for example, if a
spatial variability of drag coefficient is much larger than

Figure 7. Comparison between model and observations.
The model results are obtained by applying the drag
coefficient values calculated from the phase-matching
method to the analytical model of section 4. (a) First
transect. (b) Second transect. The model results are
denoted by the circles, and the observations are shown
by the lines.
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10% (as is the case of the present problem, where the drag
coefficient ranges from 1.2 � 10�3 to 6.9 � 10�3), the
present model would provide the correct characteristics of
spatial distribution unless the nonlinear effect is too strong
to be negligible.
[40] The application of the phase-matching method in this

paper has used the ADCP data from a moving platform.
Data from an ADCP on a moving platform have larger
errors than those from a bottom-mounted ADCP. However,
in most cases a moving platform involving only a small
vessel is convenient and cost effective. Many bottom-
mounted ADCPs would be required to resolve the cross-
channel variation of velocity field comparable to that from a
vessel-based moving ADCP. If enough bottom-mounted
ADCPs are used in a cross section of a tidally dominated
channel, the phase-matching method proposed here will
also be applicable and the results should have even less
error.
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