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Nonadiabatic theory of fine-structure branching cross sections
for Na-He, Na-Ne, and Na-Ar optical collisions

L. L. Vahala'
Department of Physics, Old Dominion Uniuersity, Norfolk, Virginia 23508

P. S. Julienne
Molecular Spectroscopy Diuision, National Bureau ofStandards, Gaithersburg, Maryland 20899

M. D. Havey
Department ofPhysics, Old Dominion Uniuersity, Norfolk, Virginia 23508

{Received 17 December 1985)

The nonadisbstic close-coupled theory of atomic collisions in a radiation field is generalized to in-

clude electron spin and is used to consider the weak-field Na —rare-gss (RG) optical collision
Ns{ Siq2)+RG+nhv~Na{ P&)+RG+(n —1)he. The effects of detuning snd incident energy on
the branching into the atomic Na 3p P3q2 and 3p I'lq2 states sre examined. The cross sections 0(j)
are found to have a strong asymmetry between red snd blue detuning as well as s complex threshold
snd resonance structure dependence on energy. A partial cross-section analysis of 0{j) shows a sig-
nificant difference between contributions from states of e and f molecular parity. The theoretically
calculated detuning dependence of the branching ratio into each fine-structure state is in good agree-
ment with available experimental data for Na-Ar, Na-Ne, and Na-He, as well as the total absorption
coefficient for the production of Na 3p atoms. The fine-structure branching ratio for thermal ener-

gy collisions shows considerable variation with a rare-gas collision partner, due to the different in-

teraction potentials. For sufficiently high collision energy, the branching approaches a recoil limit

which is independent of collision partner.

I. INTRODUCTION

For some time, there has been considerable interest in

studying nonadiabatic effects in atomic and molecular
collisions. These effects play an essential role in deter-
mining final-state distributions in the usual elastic or in-

elastic scattering between atoms or molecules. More re-

cently, emphasis has been placed on the role of nonadia-

batic coupling in determining final-state distributions in
photoionization, molecular dissociation, and collisional
redistribution of hght. ' These processes have been
broadly termed photofragmentation. The final-state dis-
tributions of the photofragments may be conveniently
described in terms of the multipoles produced among
various final states accessible to the system.

In this paper, we consider spin-orbit effects in far-wing
collisional redistribution of light for Na —rare-gas sys-
tems. In particular, we compute the total cross section
o(j) for production of each fine-structure state of the Na
3p multiplet by optical collisions ~ith He, Ne, and Ar.
We find that the cross sectian o(j) depends strongly on
the interatomic potentials, the degree of detuning from
resonance, and the scattering energy. Similar calculations
have also been carried out by Kulander and Rebentrost
for the Na+ Ar system. ' " Our work differs from theirs
in that we also calculate the effect of He and Ne per-
turbers and use a different set of potentials for Na-Ar.
We also illustrate how the factorization of the radiative S
matrix by a generalized multichannel quantum-defect

analysis' leads to considerable insight into the nature of
the absorption profile and fine-structure branching.

Before presenting the nonadiabatic close-coupling
theory with spin, we give a broad outline of the physical
processes by considering nonadiabaticity from the
viewpoint of coupling between states using various
Hund's-case basis sets. We follow this by discussing
nonadiabatic collision dynamics in terms of a distorted-
wave analysis of the radiative scattering matrix. '4

A. Nonsdiabstic collision dynamics:
Molecular basis sets snd nonsdiabstic mixing

Consider the absorption of light during a strong col-
lision, followed by fragmentation of the molecule inta
electronically excited products:

A+RG+nhv +/I '+RG+—(n —1)hv,

where A and RG represent the alkali-metal (Na here) and
rare-gas atoms, respectively; n is the number of photons
of energy hv in the incident laser field. The phonon ener-

gy h v is chosen so that the only energetically allowed out-
come of the collision (1) is to leave RG in its ground state
while exciting the Na atom (A') to its 3p P, /z and
3p P3/2 states. The Born-Oppenheimer (BO) potentials
for the Na-RG systems are shown schematically in Fig. 1.
A single-mode laser field of frequency v causes electronic
transitions from free (E ~0) states of the molecular XX
ground state to free (E'~0) states of the excited molecu-
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FIG. 1. XX, A II, and BX Born-Oppenheimer potentials for
(a} Na-Ar, {b) Na-Ne, and (c) Na-He. The XX asymptotic ener-

gy has been shifted to coincide with that of the AH and BX
states.

lar electronic A H and BX states. From energy considera-
tions, E+h v= E'+ h vo with 5, the detuning from
resonant excitation, given by b =h (v —vo). With the usu-
al assumptions, the classical Franck-Condon principle
tells us that for any particular v, the electronic transitions
occur in the vicinity of the internuclear separation R'
where the difference between the upper and lower poten-
tials equals the excitation frequency v.

The BO potentials are just the internuclear-separation
(R) -dependent eigenvalues of the electronic part (H') of
the total molecular Hamiltonian H ". H' does not in-
clude the spin-orbit (H ) or rotational (H"') interac-
tions. It is convenient to introduce a Hund's case-(a}
molecular basis

~
JMp;SAX) to represent the electronic-

rotational states. Here J and M are the total and space-

fixed projection of the molecular angular momentum, p
the molecular parity, and A(X) the magnitude of the pro-
jection of the electronic orbital (spin) angular momentum
onto the moving, molecule-fixed internuclear axis. S is
the spin. In the absence of the radiative coupling J, M,
and p are strictly conserved during a collision. However,
the spin-orbit and rotational interaction parts of the
molecular Hamiltonian mix states of different A and X.
Thus, in the Hund s case-(a) representation, it is these in-
teractions which give rise to nonadiabatic coupling.

Since the case-(a) Hamiltonian is nondiagonal in spin-
orbit coupling and, in particular, is asymptotically nondi-
agonal, it is often convenient to choose as a basis the
Hund's case-(c) representation

~
JMp; J,Q), ' where J,

is the atomic electronic angular momentum (which is well
defmed as R ~ ao) and Q is the projection of J, on the in-
ternuclear. axis. In this basis, the spin-orbit operator H"
is diagonal so that the diagonal elements of 0 " ap-
proach the correct fine-structure splitting as R~oo. In
case (c},off-diagonal terms proportional to the BO differ-
ence potentials mix states of the same Q, and rotational
coupling terms mix states of different Q. Thus, the case-
(e) Hamiltonian is strongly nondiagonal in the small-R re-
gions where far-wing absorption occurs, since the elec-
tronic splitting is much larger than the spin-orbit coupling
terms. The case-(c) Hamiltonian is also nondiagonal at
large R where rotational coupling terms varying as R
mix states of different Q and of the same J, . As R ~ oo,
the molecular Hamiltonian is diagonal in the case-(e) rep-
resentation,

~
JMp; J,1 ), where l is the quantum number

of relative rotational angular momentum for the two
atoms, i.e., J=J, +1. The case-(e) states are the channel
states of scattering theory, and the scattering boundary
conditions are applied to the total wave function expanded
in the case-(e) basis. The off-diagonal matrix elements in
case (e) are proportional to the BO difference potentials
and cause strong coupling, at small internuclear separa-
tions, of ease-(e) states. "

At times, it is convenient to define a basis that is not a
pure Hund's case of angular momentum coupling. One
useful ehoiee is to diagonalize H'+H" as a function of
R, neglecting the rotational coupling terms. The resulting
states have the property that they go to case (c) asymptoti-
cally as R~ao and to case (a) at small R where the
separation of BO potentials is large compared to the non-
diagonal coupling terms. The potentials defined this way
provide an adiabatic correlation between the short-range
case-(a) states and the long-range case-(c) states. Figure 2
shows these potentials for the Na-Ar system.

Thus, the concept of nonadiabaticity should be dis-
cussed in conjunction with the representation of the
molecular state. Since the different Hund's bases are con-
nected by unitary transformations, they are formally
equivalent for constructing the close-coupled equations.
Nevertheless, some representations are more convenient
than others in considering the process Eq. (1). For exam-
ple, for detunings in the far wings of the line profile, the
Condon point(s) of stationary phase occur(s) in a region of
internuclear separation where the excited-state Hamiltoni-
an matrix is nearly diagonal in the Hund's ease-(a) basis.
Thus, for far-blue-wing detuning, excitation is to a nearly
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Here
~

ir'j+) is the field-fry initial state of given J and
parity with incoming boundary conditions and

~

III ) is
the final state with outgoing boundary conditions. The
Hund's case-(e) initial- and final-state indices i and f
specify the angular momenta (J„I,J) of those states.
Quite useful insights on nonadiabatic dynamics may be
obtained by examining the structure of the close-coupled
wave function. The generalized nonadiabatic Franck-
Condon matrix elements in Eq. (2)

(3)
I I I I I I I I I I I

8 &Q &2 )It, 16 ~8 20

R «o I

FIG. 2. Na-Ar excited-state potentials obtained by diagonal-
izing the electronic plus spin-orbit parts of the Hamiltonian
(8'+H") as a function of internuclear separation R.

pure BX state, while for far-red detunings, the excitation
is ta a predominately A II state. Under these rir-
cumstances, photon absorption is readily understood as
BX~XXor A II~XX molecular transitions.

In case (a), the nonadiabatic dynamics which determine
the distribution of final states occur at intermediate inter-
nuclear separations where the off-diagonal spin-orbit and
rotational terms in the Hamiltonian become comparable
to the final-state BO difference potentials. If some repre-
sentation other than case (a) is used in the R range where
absorption occurs, then the photon excitation must be
thought of as producing not a single state in this basis, but
a coherent mixture of states which are propagated using a
strongly nondiagonal Hamiltonian.

B. Distorted™a&ave analysis

The full radiative, close-coupled scattering calculations,
presented in the following section, directly give the
desired reduced radiative transition matrix elements S~;.
These are all that are required in order to give the full
close-coupled results discussed in this paper. However, a
distorted-wave analysis of these matrix elements for weak
fields is quite helpful in giving some insight into the
molecular dynamics between absorption and detection.
The desired matrix elements are' ' '

Sf,.= 2ni(2~—ItIlc)' (III
~

e.p ~

g+) .

can be factored into separate parts which exhibit the rate
of absorption and the nonadiabatic dynamics. The details
of such an analysis are presented elsewhere. '4

As discussed in the previous section, assume that the
detuning is in the far wings of the profile so that the
point(s) of stationary phase for (3) occur(s) in the case-(a)
region. For each initial parity and branch, the transition
amplitude matrix D above can be approximated by the
following factored form:

D=g dg+ . (4)

Here, d is a matrix of adiabatic Franck-Condon ampli-
tudes with elements

(5)

where f represents the ordinary, real, energy-normalized,
radial vibrational wave functions for the case-(a) diagonal
potentials (that is, the adiabatic, or single-channel, poten-
tials), pfI represents the molecular transition dipole [here
case (a)] and E+are, respect-ively, initial- and final-state
dynamical matrices. The df; terms are adiabatic Franck-
Condon amplitudes that carry all the information about
the radiative excitation process. The N+ matrices are in--
dependent of the radiation field and contain the informa-
tion about the field-free molecular dynamics.

For the present problem, N+ is 1X1, N is 3X3, and

g is 3g 1. There are 18 possible amplitudes Df; for each
initial J corresponding to the three possible transition
branches for each initial e or f parity. The initial-state

matrix N+ is a trivial phase factor e "', where 3); is the
phase shift for elastic scattering on the ground-state po-
tential. The unitary, nondiagonal final-state matrices N
describe the effects of nonadiabatic coupling among the
molecular states. The full expression for the transition
amplitude is thus

D(f I'Xi/3) =[N (f,B Xi/2)d(B 3Xi/3 x 3X,/2)+N (f, /I 311,/2)d(g II, /2 / 3X,/2)

+N (f, /I 113/2)d(A II3/2 X X }]I/2e (6)

feature of (6) is that the excitation amplitude
D(f~g 2X, /2) is made up of a coherent sum of ampli-
tudes from each of the excited electronic states. Of
course, choosing the photon frequency allows us to select
either predominant X or Il exci«tion. F« far-blue-wing
detuning, the antistatic d(II~X) exci«tion ampler«de is

negligible compared to the quasistatic d(X+—X) factor,
and vice versa for far-red-wing detuning.

One important feature of our postulated conditions (ab-
sorption into a region of uncoupled, or adiabatic, molecu-
lar states) is the unitarity of N .'" Therefore, the X
factors in (6) disappear when a suinmation over final
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states is taken:

(7)

The total absorption coefficient (or equivalently, the to-
tal cross section), while is proportional to the sum in (7),
is expressed in terins of the adiabatic Franck-Condon ma-
trix elements (5}. This presumes, of course, that absorp-
tion occurs at stationary-phase points in a region where
suitable adiabatic reference potentials can be defined.
This condition is normally satisfied in the line wings.
Thus, Eq. (7), based on the factorization (4), shows why
the simple semiclassical, or quasistatic, wing profiles
agree so well with the nonadiabatic quantum close-
coupled results; the semiclassical approximation to the
adiabatic Franck-Condon factors is quite good for
isolated Condon points. This favorable quantum-
quasistatic comparison of wing absorption has been
demonstrated both for 0('S~'D) + Ar (Ref. 8) and for
Na( P&~ Si/i)+Ar.

The introduction of the E matrix enables us to devise
a time-independent "half-collision" quantum-mechanical
analog of the time-dependent, semiclassical picture which
has been used for "whole-collision" depolarization cross
sections. ' In the present case, the initial-state collision
prepares the molecule for absorption. The absorption pro-
cess is described by the d adiabatic Franck-Condon ampli-
tudes, and the nonadiabatic dynamics in the final state is
described by X . The final-state scattering may be
viewed as a progression from regions of one Hund's case
to another. * It is possible to set up time-independent
coupled equations for N (R) which integrate N from
the absorption region, where X =lo, through the re-
gions of nonadiabatic coupling to the asymptotic region
where scattering boundary conditions can be applied to
extract the desired asymptotic X matrix. ' %e may
thu~ attempt to obtain either fully quantal solutions, or
semiclassical approximations, to the X matrix. Since
our present paper concentrates on our full radiative,
scattering, close-coupled results, we defer any detailed
analysis of N to the future. However, there are simple
limiting cases for N which give some insight into the
nonadiabatic dynamics.

The simplest approximation to X is an adiabatic
correlation. For example, we could define adiabatic po-
tentials that connect the short-range molecular states to
the long-range PJ states by diagonalizing the electronic
plus spin-orbit Hamiltonian as a function of R. In an adi-
abatic correlation, g is diagonal and 8 Xi/2 A 113/2,
and A 0~~2 correlate, respectively, with I'3~&, I'3&z, and
P, /2. This leads to branching (as per Sec. III} ratios of 0

for far-blue detuning and 1 for far-red detuning. Such
behavior is not observed in our close-coupled calculations,
except under special circumstances, so an adiabatic ap-
proximation to N is unsatisfactory for the systems we
have examined.

Another simple approximation to N is to use the
recoil limit, which is a "sudden*' approximation, applic-
able at large fragment separation velocity. This limit has
been extensively studied recently by Singer et al. in the
context of diatomic photodissociation. There is a close re-

lationship between the theories of laser-assisted collisions
and photodissociation. '" ' In fact, expression (3) can be
used for photodissociation as well, except that the initial-
state dynamical matrix N+ is missing and d becomes a
set of bound-free adiabatic Franck-Condon amplitudes.
From the standpoint of final-state dynamics, photodisso-
ciation and laser-assisted collisions are treated the same
way, and are described by the same N matrix. In the
recoil hmit, the atoms are assumed to separate so rapidly
that no angular momentum recoupling occurs before the
atoms are well separated. The distribution of asymptotic
atomic states is thus obtained simply by projecting the
molecular state prepared by optical excitation onto the
asymptotic channel states. These coefficients are given by
a simple unitary transformation, in our case, the (a}~(e)
transformation. Singer et al. were able to show for the
special case where one of the product atoms is in an S
state that the total fine-structure branching ratios (that is,
summed over the 2j+1 spatial degeneracy of each j state}
are statistical. Thus, for our problem, the recoil limit
predicts a branching ratio of O.S, irrespective of whether
the detuning is to the red or to the blue, and irrespective
of collision partner (He, Ne, or Ar).

Finally, the recoil-limit prediction is not altered by
strong nonadiabatic mixing (due to, for example, a curve
crossing) occurring at a smaller internuclear separation
than the case (a)~(e) transformation region. However,
the manner by which the recoil limit is approached (either
as a function of scattering energy or detuning) will depend
on that mixing.

G. CLOSE-COUPLED EQUATIONS

As the details of the quantum-mechanical close-coupled
theory of atomic collisions in a radiation field have been
described in several recent papers" * ' we will only
present a brief discussion here.

A. Hamiltonian

H'(r, R)%,(r, R)= W~(R)%, (r,R) . (10)

Here r represents the electron coordinates and R is the in-
ternuclear separation. T is the kinetic energy operator
(relative to the center of mass) and 8(R)La is the rota-
tional operator with La ——J—L—S and 8(R)=iii i2pR .
I. and 8 are the electronic orbital and spin angular
momentum operators, while J is the total angular momen-

The Hamiltonian H is given by

~m01+0 fRd+ vrRd

where H" is the free photon field Hamiltonian and V"
is the dipole interaction operator which couples the
molecular and radiative degrees of freedom. The total
molecular Hamiltonian, 0 ", in barycentric coordinates
is given by

H "=H'(r, R}+B(R)LR+H"+T,
where H is the electronic Hamiltonian whose eigenvalues
are the BO potentials W~(R):
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TABLE I. Elements of the symmetric matrix of the molecular Hamiltonian H " evaluated in
Hund's case (a}. The + ( —) corresponds to f (e) parity. X' is J'(J'+ I ) where J' is the final-state an-

gular momentum.

State

X XI/2

8 X~/2

A HI/2

03'

K~x+8[X+ ~ +(X+ ~
}'~2]

lVsx+3[X'+ —,+(X'+ —,}' ']
(2}'"8[1+(X'+—,

' )'"]+ A
(2)'"

~2~]/'2~~~~ 3 ~1/2

8'gg+8(X'+ 4 ) —A f2
—a~x' ——,

' ~'~' 8'gg+8(X' —
4 )+A /2

turn operator. The phenomenological spin-orbit operator
used 1s

H"=A (R)[L,S,+ ,
' (L+S —+L S~ )]

and A(R) is the spin-orbit coupling parameter. The di-

pole operator is given by
1/2

27PfKO (12)

(A /2p) +E V(R—) nh—v F =+V-'J' FJ
f

d2
(A /2p, ) +E VI(R)——(n —l)hv FII

g Pg dF + g HmolF

f (+f'&

(17)

where P is the photon flux and Ro the linear polarization

vector of the incident radiation. Ro is taken to be along a
space-fixed z axis.

B. Wave functions

We introduce a Hund's case-(a) molecular basis aug-

mented by the radiation field

IJ&=IJMJ;SAr&eI angv, &,

where we consider a single-mode radiation field with n

photons of frequency v and a linear polarization vector 'Ro

in the z direction. In this representation, the nonrelativis-

tic electronic Hamiltonian is diagonalized, but both the
rotational and spin-orbit Hamiltonians have nonzero off-
diagonal terms. The molecular parity is defined with

respect to inversion of all particle coordinates so that

I JMP+, SAr&=(2)-'"(IJM;SAX&+ IJMS —A —X&)

with parity defined by

p =( —1) 'J, e parity

P+ =( —1) +'J, f parity .

C. Close-coupled equations

For each initial total angular momentum J and parity,
we expand the total wave function:

%/(E, R}=
I

J &F,,(E,R)/R+y I f&FfJ(E,R)/R .
f

Here E is the scattering energy, Ii & is the initial state,
and the sum over the final states includes all channels that
can be reached from the initial state by either radiative or
nonradiative transitions. The amplitudes F„(R) and

F/J(R) satisfy coupled radial equations:

where V, (R) and VJ(R) are the effective gorn-
Oppenheimer potentials which include centrifugal and di-
agonal spin-orbit contributions. In evaluating Eq. (17) we
use a limited electronic basis set in a case-(a) representa
tion of the initial I Xi Jz state and final A II,Ji, A 113/2,
and & XiJi states. The matrix elements of I "for the
final-state manifold are presented in Table I. They are di-
agonal in J, M, and p, and we have assumed, for the pur-
pose of evaluating the matrix elements, that the atomic
orbital angular momentum quantum number is a good
quantum number.

The radiative coupling matrix elements V™dcouple an
initial state (J,P) to final states (J',p') where pp'= —1,
and J'=J—1 (P branch), J'=J (g branch), J'=J+1 (R
branch). For the space-fixed dipole operator d, we find

& JMP;SA X
I
d,

I JMJ;S„z &

=«J 1J"MoM'}& J'P"'S&'&'I Id I I~P SA& &,

where the reduced matrix elements are presented in Table
II. For sufficiently weak incident laser intensity, the tran-
sition amplitudes are linearly dependent on the laser inten-
sity. Thus, the Wigner-Eckart theorem may be used to
separate geonmtric effects into angular momentum alge-
bra and remove the explicit M dependence from the
close-coupled equations. The full formalism is discussed
in detail by Julienne and Mies ' and will not be repeated
here.

The coupled equations (17) can be set up and solved us-

ing any basis related to the case-(a) basis by an orthogonal
transformation. Of course, the asymptotic S matrix must
be projected in the asymptotic channel state, or case-(e)
basis. Kulander and Rebentrost' '" used the case-(e) basis
for setting up their coupled equations. Therefore, our for-
mulation and assumptions are equivalent to theirs, and
would lead to the same numerical results, given the same
potentials. Our numerical solutions were generated using
the same close-coupling scattering code and procedure as
that used in Ref. 8. The solution to the unique problems
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TABLE II. Reduced e-parity matrix elements of the dipole coupling V", evaluated in a Hund's case
(a). J is the lower-state angular momentum and the signs in parentheses change the e- to f-parity re-
duced matrix elements.

Branch (8 X|y2j ld l lX X&y2) (A Hiypl ldl lx x|g2) ~3nl ld II& '»zz)

1/2
2J —1

4J

1/2
2J —1

( —)
8J

(2J —1)(2J—3)
SJ(2J +1)

1/2

1/2

(
(2J —1)

' ' 8J(J+1)
(2J —1)(2J+3)

8J(J+1)

1/2

' 1/2
2J+3

4(J+1)

' 1/2
(2J +3)
8(J+1)

(2J +3)(2J+5)
8(J+1)(2J+1)

TABLE III. Parameters used in analytical representations of the Na-He, Na-Ne, and Na-Ar (a) XX
and BX and (b) A 0 Born-Oppenheimer potentials. (c) contains the Na-Ar CERN parameters. In each

case, the internuclear separation E. is in atomic units and the potential is in cm units. The parameter
labels on the right in (b) correspond to Na-Ar only.

Q1

Q2

Q3

Qg

D,
8,

0.492
0.477
4.419
2.999
2.38

12.00

Na-He

0.338
0

0.0292
0.51

19.00

Na-Ne
XX

0.492
—0.024

5.233
0.483
9.37

10.00

0.273
0

0.292
4.408

14.50

XX

0.472
0.137
5.444
0.882

41.00
9.437

Na-Ar

0.313
—0.595

7.594
1.516

32.00
12.86

Co
Cg

C8

C1o

Do

Na-He
AH

4.03
16.55

—3.11
0.12

4.04@10'

(b)
Na-Ne

AH

4.04
13.64

—3.25
0.09

4.04' 10'

Na-Ar
AH

4.841
5.75

510.481
—0.454

0.301
0.297

—0.235
0.059

Do
b.
b)
bg

b(
be

X, (10)
X2
X3 (10")
X.

'
(10 )

X (10")

XQ

Xp
X8
Xg

Na-He
XX

0.2921
0.7458
0.4035
0.2139

—0.1202
1.1560
5.9920
0.6768
8.0710

Na-Ne
BX

2.876
0.8155
1.2720
0.6326

—0.4263
2.1720
4.6700
0.8435
6.1440

Na-Ar
AH

1.1430
0.9867
0.7061
0.0692

—0.1501
1.4610
4.9640
0.7856
5.3770
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associated with the presence of nonvanishing asymptotic
radiative couplings in optical collisions are described in
the Appendix of Ref. 21.

D. Potentials and transition moments

To proceed with the determination of the cross sections,
we specify the particular BO potentials and dipole transi-
tion moments used in our numerical codes. %'e use two
different fits to the Na-Ar (Ref. 37) numerical potentials,
and one for Na-He (Ref. 38) and Na-Ne. ~

One particular set of potentials for Na-Ar is obtained

by using a European Organization for Nuclear Research
(CERN) parameter-fitting routine, MINUET. We specify
the generic form

atomic Na 3s-3p transition (2.52 a.u.). The fine-structure
coupling coefficient A (R) is treated as constant and equal
to its atomic Na value of 11.46 cm '. On the basis of
spectroscopic studies, this is an excellent approximation
for Na-Ne, and we have applied it also to the electroni-
cally similar Na-Ar and Na-He molecules. The ab initio
calculation of Cooper of A (R) for Na-Ar also supports
this approximation at distances R & 9ao, the range of in-
ternuclear separations of interest to us. Spectroscopic re-
sults ' indicate that A (R) is not constant (-10%) for
smaller internuclear separations than those important for
the fine-structure transition process of interest here. Nu-
merical values of the parameters used in Vx(R) and
Vn(R) are summarized in Table III. The BO potentials
used ate illustrated in Fig. 1.

g,g aX3 Xg X5
V(R) =Xie ' — —P

R 8
where

(19) III. RESULTS AND DISCUSSION

Vz(R) =D, I 1 —exp[ —a i (R —R, )]j

X Il —aqexp[ —(R —tti) /aq]) D, —(20)

with coefficients ai, az, a3, and a4 determined by a stan-
dard least-squares flt. D, is the dissociation energy and

R, is the equilibrium position. For Na-Ar, we use the nu-

merical potentials of Saxon et a/. , while for Na-He, we

use the theoretical potentials of Pascale, and for Na-Ne,
the potentials of Peach. For Na-Ar, the A II BO poten-
tial is fitted to a Thakkar potential

Vn(R) =Do[1—(R./R )t']

x 1+gb,.(1—R, /R)' D, —
I =2

(21)

with the dissociation energy

6

D, =Do 1+gb; (22)

The coefficient b; and the parameters Do, D„and p are
obtained by a least-squares flt.

For Na-He and Na-Ne, we use

1

1+exp[ —X6(R —X~ )]

1

1+exp[ —Xs(R —X9 ) ]

and fix the R coefficient to give the correct asymptotic
representation as R ~ 00. The particular parameter
values so determined are listed in Table III.

An alternate representation of the ground and excited X
potentials also used had the form

In the numerical computation of the cross sections cr(j ),
it is convenient to calculate the I'-, Q-, and R-branch par-
tial cross sections for each contributing lower-state angu-
lar momentum J and parity p. Most of the computations
were done at a single scattering energy of 200 cm ' and
for a detuning range extending from 500 cm ' blue to 150
cm ' red of the center of gravity of the Na 3p multiplet.
The scattering energy of 200 cm ' corresponds closely to
kT, with T the temperature in recent measurements ' 6 of
fine-structure branching ratios on the systems considered
here. The intensity of the incident radiation field was tak-
en to be 1 kW/cm . This is a weak field for far-wing ex-
citation and numerically we found that the cross section
depended linearly on the incident laser intensity, In all
runs, convergence in J was easily achieved, allowing trun-
cation of the infinite J series occurring in o(j).

Our most extensive results are for Na-Ar, and we

present those first. In particular, we have also calculated
the energy dependence of o(j) for a blue detuning of 100
cm ' with energy E ranging from threshold to 2000
cm ', allowing us to study the energy-dependent ap-
proach to the recoil limit discussed in Sec. I8. %e then
present our results for Na-Ne and Na-He and compare
them to those of Na-Ar. In order to facilitate compar-
isons with experimental data, it will be convenient to
present our results as a normalized absorption coefficient'
E(j ) =o(j)U/p or as a branching ratio B(b, )

=E(j =1/2)/E(j=3/2). Here v is the initial relative
scattering velocity and P is the photon flux. Note that if
a denotes the Beer's law absorption coefficient then E is
simply the normalized absorption coefficient
a/[Na][RG]; [X] represents the density of species X.
Note also that in this report detunings b are measured rel-
ative to the center of gravity of the Na 3p multiplet.

Vn(R) =Doexp( —COR) —C6/(10R)

—Cs/(10R) —Cio/(10R)' (23)

A. Na-Ar results

1. J dependence
The transition dipole moments ro and ri are taken from

the Na-Ar calculations of I.askowski et al. ' The dipole
moments are nearly equal and have an approximately con-
stant value of 2.6 a.u. over the range of internuclear
separations of interest; they are nearly equal to that of the

Typically, the partial cross sections crq(j ) display an os-
cillatory dependence on I, as shown in Fig. 3. These os-
cillations, which arise through the J dependence of the ex-
citation amplitudes, depend on detuning and collision en-
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3.0-

C)

quantity 5 (parity) is defined as the difference divided by
the sum. The origin of this parity dependence can be seen
from Tables I and II which exhibit large parity-dependent
diagonal and off-diagonal terms in the case-(a) Hamiltoni-
an. Thus, both excitation ( V" ) and propagation (H ")
contribute to the parity dependence of cr(j } A. n examina-
tion of the table reveals that the Ilia&- X&&2 coupling ma-
trix element at the curve crossing is different for each par-
ity:

10- (2)'~ BI I+[J(J+1)+—,
' ]'

) +(2) (24)

35 115 19.5 27.5 35,5 43,5 51.5 595 675 755 835

FIG. 3. Na-Ar partial cross section cr~{j) for the P branch
and f parity. E=200 cm ' and 5= 100 cm

ergy. It should be noted that a shape or Feshbach-type
resonance in crt(j ) can occur at certain collision energies.
At these resonances, the entire cross section can be dom-
inated by the contribution from a single J. We discuss
resonances in a later section.

The cutoff in oq around J =79.M has an elementary
semiclassical explanation. Indeed, for a particular detun-
ing, there is typically a narrow range of internuclear
separations, centered at R ', over which optical transitions
take place. For collision energy E, velocity U, and re-
duced mass p, this limits the maximum impact parameter
such that J' =puR'/A. This estimate of J quite accu-
rately predicts the numerically detellllined cutoff J~ in
the cross sections for all three Na-RG systems considered
here.

2. Parity dependence

The total cross section o(j) can be calculated from the
sum of partial cross sections for each branch and initial
parity. We find that for each branch (P,Q,R) the partial
cross section depends strongly on parity, Fig. 4. The

with upper (lower) sign for the e (j) parity. A is the
spin-orbit coupling parameter. If these matrix elements
are used in a Landau-Zener s model for the curve crossing
near 12.2ao in the BO potentials for Na-Ar (Fig. 1), we
see that the diabatic transition probability increases with J
for f parity, but decreases for e parity. The J dependence
of the e-f parity differences in cr(j) obtained from this
model is in general qualitative agreement with the numeri-
cal close-coupling calculations. The A H3/2 A H]/2 io-
tational coupling is not parity dependent.

3. Energy dependence E and the recoil limit

The energy dependence of K(j) is presented in Fig. 5
for a blue detuning of 100 cm '. The total
E(1/2)+E(3/2) is constant at high E in accordance
with the predictions of the quasistatic theory. " The
cross section itself decreases with increasing E since it is
proportional to 1/v. " Physically, this decrease can be
considered to be due to a decrease in the average collision
time, with a corresponding decrease in the probability of
photon absorption during the collision.

The E(j) for blue detuning vary smoothly with E.
There is some resonance structure (not shown) at very
small E associated with resonances (quasibound levels) in
the shallow XX and BX potentials. However, E(j) for
red detuning (not shown} exhibits a considerable amount
of complex structure at low E due to the increased impor-
tance of quasibound levels for the deeper A II potentials.
Figure 6 illustrates how a single resonance for J=49.5A' is
principally responsible for a strong narrow resonance
feature near E=71.975 cm ' for a red detuning of 50

NaAr
'E =200cm
e parity

parity

10-

-0 5-

05-I—
IX

Ae

cfog

E
V

C)

50-

&0-

30-

NaAr

~=~00cm '

b

0 ~ 0

500 400 300 200 $0 0 -IN -200

g(crr) )

FIG. 4. Differential contributions to Na-Ar K {j= 1/2) from
states of e and f parity as a function of detuning lL. E=200
CID

10-

1 I l 1 I I

0 200 400 600 800 $000 1200 1400 &600 &800 2000

ENERGY (cm '
1

FIG. 5. Energy dependence of Na-Ar absorption coefficient
K{j) for detuning 5= 100 crn
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50-
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FIG. 6. Na-Ar partial cross section o.J|',j =1/2) for the
E=71.975 cm ' resonance at 5= —50 cm '. Note that the
resonance at 7=49.M is one unit of J wide and about 10'
stronger than the resonance at J=45.5A.

cm '. The presence of other (relatively weaker} resonance
contributions to the sum is also evident in Fig. 6. In gen-

eral, the resonance structure is very complex and our com-
putations are on too coarse a grid to map these features
accurately. Some resonances are several cm ' in width
while others are very narrow (~0.01 cm '). The total
cross sections can vary by orders of magnitude, making a
detailed survey extremely difficult. An estimate of the
contribution of quasibound resonances to the thermally
averaged spectrum shows that their overall infiuence is
relatively minor in the present case due to the limited
phase space available to the resonances.

The resonances are in some instances A H~~2 shape res-
onances, while in others they are A II3&z resonances
predissociating to the 3 II»z state. An interesting
feature of the resonances is their propensity to decay al-
most entirely to the asymptotic I'&&2 state even when the
total energy is above the P3&z asymptote. As the near-
threshold excess energy is virtually all potential (rotation-
al), resulting in slow radial dissociation, this behavior is
likely due to adiabatic adjustment of the motion to the

H&&2 state, with a corresponding adiabatic correlation
to the P»2 state.

At sufficiently high separation velocities, the recoil lim-
it should predict the fine-structure branching ratio. In
this limit, the branching r taio„E(1 /2)/K( 3/2), for our
case will be 0.5, irrespective of collision partner. We ex-
pect this to occur when the separation time hR, /U is
much shorter than a characteristic time of spin-orbit cou-
pling, say fi/b, E. Here b,R, is some characteristic separa-
tion distance from the case-(a) absorption region to the
separated atoms and we take AE to be the asymptotic
atomic Na P3&2- P»2 energy difference. If we apply the
criterion U ~~DEER, /fi and use b,R, =7ao we require the
relative separation velocity U &&1.2& 10 cm s '. Thus
the final-state collision kinetic energy must be much
greater than 800 cm ' for Na-Ar and much greater than
200 cm ' for Na-He. Since the final-state total energy

30- ~=100 em-'

+ NaAr

& NaAr potentials, NaHe mass

Eo 20-
C3
C)

II

Q3 0
10-

05-

0

k ~ ~ 0

I I 1 0 I 1 % I I

1000 2000

ENERGY (cm 'I

FIG. 7. Approach of branching ratio 8(h) to the recoil limit
for 6=+100 cm '. Na-Ar and Na-Ar with Na-He reduced
IQass.

E'=E+b„ the recoil limit may be approached for red- or
blue-wing detunings by increasing the initial-state scatter-
ing energy E. In Fig. 7 we show the energy dependence of
the Na-Ar branching ratio 8(h) for a blue detuning of
b, =100 cm '. As discussed in previous paragraphs,
while there is considerable low-energy variation in 8 (b, ),
the branching ratio indeed approaches the recoil limit of
0.5 for large E. A similar approach to the recoil limit,
with increasing energy E', is found for far-red-wing de-
tuning. In this case the ratio 8 is less than 0.5 for low E'
and increases to 0.5 as E' increases.

An informative test of the effects of the mass of the
collision partners is to calculate the energy dependence of
8(b, ) for b, =100 cm ' using the potentials for Na-Ar,
but the reduced mass of Na-He. These results are also
shown in Fig. 7 where we see that in fact the recoil limit
is approached for much lower velocity and the departures
from the recoil limit are smaller than for the normal cal-
culation with the Na-Ar reduced mass. The same effect is
found for red detuning. Note that this result is consistent
with the photodissociation calculation of Singer et al. '

for Na-H. Although the Na-H potentials are much dif-
ferent than those for the Na-RG molecules, they found
that the recoil limit for the Na P branching ratio was
reached for about 200 cm ' of separation kinetic energy.

The model calculations with Na-Ar potentials and Na-
He mass do, for b, =100 cm ', show small departures
from the recoil limit at high velocity. It is apparent from
examining the transition amplitudes [see Eq. (6)] that sig-
nificant X-0 interference is occurring at 4=100 cm ' be-
tween the quasistatic X-wing and the antistatic II-wing
excitation amplitudes. In fact, for this detuning and for
2000 cm of recoil kinetic energy, there is only about a
factor of 5 difference between the X and II excitation am-
plitudes (a factor of 25 in X-II absorption coefficients}.
For a larger detuning of 6=300 cm ' the interference
was greatly decreased and the recoil limit approached
more closely.
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4. Branching ratios and total cross sections

The normalized absorption coefficient K(j ) for Na-Ar
as a function of detuning (at energy E=200 cm ') is

shown in Fig. 8. The substantial difference between

K(1/2) and K(3/2) as a function of b, and the strong
red-blue asymmetry in these differences are indicative of
the nonadiabatic mixing in the excited states. The asym-

rnetry may be brought out more clearly, and more readily
compared to experiment, by calculating a branching ratio
8(b, )=K(l/2)/K(3/2). This is shown in Fig. 9 for
E=200 cm '. The ratio is a direct measure of the rela-

tive population produced in the Na I &&2 and I 3/2 states.
For now we note that in an adiabatic limit 8(b, ) =0 for
far-blue detuning (b, ~~0), when excitation is to the 8 X
state, while 8(h)=l for red detuning (6«0). In the
recoil limit 8(h) =0.5 for either detuning. In Sec. III C
we discuss, through comparisons of our results for Na-Ar,
Na-Ne, and Na-He optical collisions, the sensitive depen-
dence of the branching ratios on the interatomic poten-
tials.

In Fig. 9, we compare the branching ratio 8(h), at
E=200 cm ', with recent experimental data. ' The
overall agreement is quite good, particularly considering
the energy dependence of TT(1/2) and cT(3/2). We also
present in Fig. 9 for b, =100 cm ' a thermally averaged
branching ratio which is in good agreement with the ex-

periment. The recent Na-Ar theoretical calculations of
Kuiander et al. ,

" done at a scattering energy E=219.47
cm ', are also presented in the figure. These authors also
used a fully quantum-mechanical approach, but numeri-

cally solved the the full 10X10 set of differential equa-

tions. They used the Na-Ar potentials of Duren et al. ,
which are similar, in the asymptotic region, to those used

in our calculations. The good correspondence between

their calculations of 8(b, ) and ours is evident from the
figure. The difference may be attributed to the strong en-

ergy dependence of 8(b ) (see Fig. 7) and to the different

NaAr

1Q-

0

0

~ 0
~ e ~ ~

Q I I l I

7QQ 6QQ 5QQ 4QQ 3QQ QQQ ]QQ

~ (crn ')

C

Q -1QQ -2QQ

FIG. 9. Detuning dependence of the branching ratio B(h)
for Na-Ar. E=200 cm '. Our calculations (0); calculations of
Ref. 11 {0); experimental data of Refs. 15 and 46 (+).
Thermal average of our calculations for 6=100cm ' (+).

1. J dependence

The partial cross sections for Na-He and Na-Ne also
exhibit oscillatory dependence on J, but due to the
reduced-mass dependence of J,we find

J~ (Na-He) &J~ (Na-Ne) &J~ (Na-Ar) .

potentials used in the two calculations.
While the size of the branching ratio 8(h) is principal-

ly sensitive to the shape of the BO A II-BX difference po-
tentials, the total normalized absorption K(1/2)+K(3/2)
is sensitive to XX-AII and XX-BX difference potentials.
In Fig. 8, we also compare the total (quantum-
mechanical) calculated normalized absorption profile to
the experimental one of Jongerius, ' which is consistent
with other experimental determinations. ' The good
agreement with our results is evident, and attests to the
quality of the potentials used in our calculations.

B. Na-He and Na-Ne results

10 ~7-

E

2. Parity dependence

The parity dependence of the partial cross sections for
Na-He and Na-Ne is similar to that for Na-Ar, as shown
in Fig. 10.

3. Cross sections and branching ratios

) 0-39

n-&0)0 I I I 1 I I I I I T I I

-100 100 300 500 700 900 1100

FIG. 8. Na-Ar normalized absorption coefficients for pro-
duction of Na(3p) atoms vs detuning: K{1/2) and E(3/2),
E(1/2)+K(3/2). E=200 cm

Here we see a strong red-blue asymmetry, but in a sense
opposite to that for Na-Ar. Here for the blue wing
K(3/2) ~K(1/2) while generally K(1/2)-K(3/2) on
the red wing. Those differences are clearly brought out in
the branching ratios 8(b) for Na-He and Na-Ne optical
collisions; these are presented in Fig. 11 for a single
scattering energy E=200 cm ' and compared to recent
experimental data. As discussed in the following section
the difference between the Na-Ar case and that of Na-He
and Na-Ne is likely due to the considerably greater attrac-
tion of' the Na-Ar BX potential.
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FIG. 10. Contributions to Na-He and Na-Ne EC(j =1/2)
from states of e and f parity as a function of detuning b.
E =200 cm

predominately BX state with the contribution from the
antistatic A II state wing decreasing rapidly with b, . The
situation approximates the recoil limit discussed previous-
ly, and we expect 8(b ) to approach 0.5 in the far blue
wing, irrespective of coHision partner. In the near blue
wings the X-0 spin-orbit coupling becomes important, as
do the detailed shapes of the 3 II and BX potentials (Fig.
1). For Na-Ar, the relatively strong attraction in the BX
state (&pA) produces a reversal of 8(b, ) from expecta-
tions based on adiabatic correlation to the atomic Na 3p
states (Fig. 2). The projection of the Na-Ar roots of the
diagonalized electronic-rotational Hamiltonian (Fig. 12)
onto the case-(a) basis in the vicinity of the curve crossing
clearly displays the strong 8 X&&z—A H~~2 diabatic tran-
sition that produces the reversal 8(h. ) thus approaches
the recoil limit, with increasing b„ from above 0.5. For
Na-He and Na-Ne, on the other hand„ the BX state at-
traction is weak («A), resulting in considerably less
likelihood of a diabatic 8 X&&2—A 11&&2 transition com-
pared to the Na-Ar case. The smaller diabatic transition
probability is reflected in the approach (with increasing b,)
of 8(LL) to the recoil limit from below 0.5 for Na-He and
Na-Ne.

In the vicinity of the impact region (within a few cm ')
of the atomic Na S~&2- P3~2 state, resonant excitation
dominates wing excitation of the P~~2 state, and 8(b ) be-
comes small for each Na-RG case. In contrast, within the
impact region of the Na S~&2- P~&2 transitions 8(h) be-
comes large, due to direct excitation of the P&&2 state.
However, the effect of inelastic collisions is not negligible
even in the impact region and they produce finite 8(b, )
even for resonant excitation. The details of our studies of

C. Discussion

In this section we discuss the general detuning depen-
dence of the branching ratio 8(b, } and contrast its
behavior for the Na-He, Na-Ne, and Na-Ar molecules.
The qualitative features of 8(b } may be understood as
follows. For detunings far into the blue wing final-state
scattering energy is increasing with b. Excitation is to a

10- NOH' ~
NONe e
E=200am

J=3,5
Qa& k

O, S-

C) 0.6-
C3

0.5-
LL
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FIG. 11. Branching ratio 8(h) vs 6 for Na-He and Na-Ne
at E=200 cm '. Our calculations (); Na-He experimental
data of Ref. 46 (+ ).

FIG. 12. Projection of the Na-Ar roots of the diagonalized
electronic-rotational matrix onto a Hund's case-(a) basis as a
function of internuclear separation. The detuning is 100 cm
E=200 cm ', and the data are for the I' branch. 8 X&~2 (4);
A II &~2 (0). The curves through the data are to guide the eye.
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the region between the D lines and in the line cores will be

presented in a future report.
In the red wings excitation is principally to the AH

state. The A
Ilia

component of this state correlates adi-

abatically to the P3&z state, while the A H~~q component
correlates to the P&&z state. The A II3/2 state is coupled

only weakly by rotation to the A Il, &z state. In contrast
to the blue-ming results we then have small branching ra-

tios where the A IIi~z—8 Xi~z coupling is strong (as in

Na-Ar) and larger branching ratios where it is weak (as in

Na-He and Na-Ne). Further into the red wings 8(h)
varies rapidly as a result of scattering resonances in the
A II state. Near threshold the Na P3&z channel closes for
a scattering energy 17.196 cm ' higher than for the Na

Pi~2 channel; this results in a rapid increase in 8(b, ) in

this region.

IV. CONCLUSIONS

In conclusion, we have carried out fully quantum-
mechanical calculations of fine-structure branching cross

sections for Na-He, Na-Ne, and Na-Ar optical collisions.
We obtain good agreement with available experimental
data' ' and with previous Na-Ar calculations by Ku-
lander et al. ' '" The calculations indicate that the recoil
limit gives correct branching ratios for sufficiently high
separation velocity and that, even for molecules with iden-
tical BO potentials, the approach to the recoil limit is
mass dependent. Low-velocity collisions show large
departures from the simple recoil limit and from an adia-
batic limit. These are a consequence of the detailed non-
adiabatic dynamics and are a measure of the influence of
the interatomic potentials and nonadiabatic couplings.
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