Old Dominion University ODU Digital Commons

Electrical & Computer Engineering Faculty Publications

Electrical & Computer Engineering

2010

Comment on "Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades"

Jeffrey Yepez

George Vahala

Linda L. Vahala *Old Dominion University,* lvahala@odu.edu

Min Soe

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs Part of the <u>Engineering Physics Commons</u>

Repository Citation

Yepez, Jeffrey; Vahala, George; Vahala, Linda L.; and Soe, Min, "Comment on "Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades"" (2010). *Electrical & Computer Engineering Faculty Publications*. 47. https://digitalcommons.odu.edu/ece_fac_pubs/47

Original Publication Citation

Yepez, J., Vahala, G., Vahala, L., & Soe, M. (2010). Comment on "Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades. *Physical Review Letters*, 105(12), 1. doi: 10.1103/PhysRevLett.105.129402

This Response or Comment is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Yepez *et al.* **Reply:** We agree with Krstulovic and Brachet [1] that the k^{-3} power law, in the energy spectrum for a linear vortex, marks the presence of a vortex core, using the standard kinetic energy definition, $\int dx^3 \frac{1}{2}m\boldsymbol{v}(x)^2 |\varphi(x)|^2$. Yet, the k^{-3} power law also marks the presence of a vortex tangle with a Kelvin wave (KW) cascade, provided it occurs with a $k^{-5/3}$ power law at small \boldsymbol{k} .

Our initial vortices had winding number n = 6, equivalent to 6 overlapping n = 1 vortices, a highly unstable configuration as illustrated in Fig. 1. We used ray tracing to image surfaces around the nodal lines $\varphi = 0$.

to image surfaces around the nodal lines $\varphi = 0$. Consider an $L^3 = 2048^3$ simulation with initial vortex wave number $k_{\xi} = 40$ and vortex-vortex separation $\ell \sim \sqrt{\frac{L^3}{L_v}} = \frac{2048}{\sqrt{72}} \approx 241$, using a total vortex length $\mathcal{L}_v = 12nL$. In the initial linear vortex spectrum, the transitional wave number between k^{-1} and k_{linear}^{-3} related to the inverse co-herence length, k_{ξ}^{linear} , is pronounced. In contrast, in the quantum turbulence spectrum with clean $k^{-5/3}$ and k_{tangle}^{-3} power laws the transitions related to the inverse power laws, the transitions related to the inverse Kolmogorov scale, $k_{outer} = k_{\ell} \sim \ell^{-1}$, and an inner scale, $k_{\text{inner}}^{\text{tangle}}$, are both pronounced. This is seen in Fig. 2 with k_{ℓ}^{tangle} , and this similarity also occurred for the ⁵5760³ simulation reported in our Letter [2]. We identified the classical to quantum transition region as $k_{outer} \leq k \leq$ k_{inner} , and identified the outer scale with the Kolmogorov length $(k_{\text{outer}} \approx k_{\ell})$ and the inner scale with the coherence length. When the k^{-3} spectrum is absent or significantly diminished, temporarily due to intermittency [3], we do not see a vortex tangle with a KW cascade. When the k^{-3} spectrum at high $k \gtrsim k_{\text{inner}}$ is present (along with a $k^{-5/3}$ Kolmogorov spectrum at small $k \leq k_{outer}$ marking a vortex tangle), we see distorted vortices supporting KWs undergoing kelvon-kelvon couplings, including at $k > k_{\mathcal{E}}^{\text{linear}}$.

We believe there is essential dynamics at high wave numbers $k > k_{\xi}$. The $L^3 = 5760^3$ grid simulation we reported has $\sim 10^{11}$ microscopic (bit) particles, and a single vortex can contain hundreds of thousands of grid points. The unitary algorithm $\Psi' = U\Psi$ employs a tensor product state $\Psi = \psi(x)^{\otimes L^3}$ separated over the L^3 points of the system, where each local ket $\psi(x)$ is a 2-spinor. This gives an exact quantum simulation modulo the lattice cutoff $\ll \xi$ that accurately solves the Gross-Pitaevskii equation. A

FIG. 1 (color online). Two initially nearly intersecting rectilinear n = 6 vortices on a portion of a 4032³ grid (left). By t = 4000, many n = 1 vortices are subject to the KW instability by mutual interaction (middle). By t = 57500, a vortex tangle is evident (right).

FIG. 2 (color online). Incompressible kinetic energy spectra with 12 linear n = 6 vortices at t = 0 (left) and during turbulence with a KW cascade at $t = 20\,000$ (right) for a 2048³ grid. Low-*k* power-law regression fits: $k^{-1.00}$ (left) and $k^{-1.67}$ (right). High-*k* power-law fits: $k^{-3.16}$ (left) and $k^{-3.03}$ (right). Initially, the wave number cutoff is $k_{\xi} \approx 40$ (red vertical line). Later at $t = 20\,000$, we find $k_{outer} = k_{\ell} \approx 40$ (green vertical line) and $k_{inner} \approx \pi k_{outer} = 127$ (red vertical line).

fluctuating part of $\psi(x)$ are quasiparticles

$$\delta \psi(x) \cong \varepsilon \left(\begin{array}{c} u(\mathbf{x})e^{-i\omega t} \\ -v^*(\mathbf{x})e^{i\omega t} \end{array} \right)$$

governed by the Bogoliubov-de Gennes (BdG) equations,

$$i\hbar \begin{pmatrix} \partial_t u \\ -\partial_t v \end{pmatrix} = \begin{pmatrix} \mathcal{L} & -g\varphi_v^{*2} \\ -g\varphi_v^{*2} & \mathcal{L} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix},$$

with a spatial operator $\mathcal{L} \equiv -\frac{\hbar^2}{2m}\nabla^2 + 2g|\varphi_v|^2 - \mu$. High *k*-space resolution, especially at large *k*, is vital to ensure these fluctuations are numerically represented inside the cores. Finally, high-*k* kelvons are known experimentally [4], and such kelvons have been verified numerically at the BdG level [5,6]. The cutoff $r_c < \xi$ is inside the core with a modified KW dispersion relation [6].

Jeffrey Yepez,^{1,*} George Vahala,² Linda Vahala,³ and Min Soe⁴

- ¹Air Force Research Laboratory, Hanscom Air Force Base Massachusetts 01731, USA
- ²Department of Physics, William & Mary
- Williamsburg, Virginia 23185, USA
- ³Department of Electrical and Computer Engineering
- Old Dominion University, Norfolk, Virginia 23529, USA
- ⁴Department of Mathematics and Physical Sciences

Rogers State University, Claremore, Oklahoma 74017, USA

Received 29 April 2010; published 13 September 2010 DOI: 10.1103/PhysRevLett.105.129402 PACS numbers: 47.37.+q, 03.67.Ac, 03.75.Kk, 67.25.dk

*To whom correspondence should be addressed.

- [1] G. Krstulovic and M. Brachet, preceding Comment, Phys. Rev. Lett. **105**, 129401 (2010).
- [2] J. Yepez et al., Phys. Rev. Lett. 103, 084501 (2009).
- [3] G. Vahala *et al.*, Proc. SPIE Int. Soc. Opt. Eng. **7702**, 770207 (2010)
- [4] V. Bretin et al., Phys. Rev. Lett. 90, 100403 (2003).
- [5] T. Mizushima, M. Ichioka, and K. Machida, Phys. Rev. Lett. 90, 180401 (2003).
- [6] T.P. Simula, T. Mizushima, and K. Machida, Phys. Rev. Lett. 101, 020402 (2008).