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Manganese reduction was catalyzed by enrichment cultures of anaerobic bacteria obtained from coastal
marine sediments. In the absence of oxygen, these enrichment cultures reduced manganates when grown on

either lactate, succinate, or acetate in both sulfate-free and sulfate-containing artificial seawaters. Sodium azide
as well as oxygen completely inhibited microbial manganese reduction by these enrichment cultures, whereas
molybdate had no effect on them. The addition of nitrate to the medium slightly decreased the rate of Mn2+
production by these enrichment cultures. These findings are consistent with the hypothesis that the
manganese-reducing organisms in these enrichment cultures use manganates as terminal electron acceptors
and couple manganese reduction in some way to the oxidation of organic matter.

Microbes often catalyze manganese reduction, that is, the
production of reduced Mn2" from solid Mn3+, Mn4+ oxides
known as manganates, manganese oxides, or MnO (where x
is generally less than 2). Manganese reduction can occur
when reduced metabolic end products are excreted and react
abiotically with these oxides. For instance, sulfate-reducing
bacteria can be considered (indirect) manganese-reducing
organisms because of the rapid reaction between sulfide and
manganates (D. J. Burdige, Ph.D. thesis, University of
California, San Diego, 1983; D. J. Burdige and K. H.
Nealson, manuscript in preparation). Some organic com-
pounds also reduce manganese oxides (28), suggesting an-
other type of indirect microbial manganese reduction be-
cause many reduced organics may be produced as metabolic
end products during bacterial fermentation.

Bacteria can also directly reduce manganates under a wide
range of experimental conditions (3, 10, 11, 17, 21, 22,
29-33). Many of these studies, as well as studies of the
geochemistry of marine sediments (7, 9, 15) and thermody-
namic considerations, suggest that bacteria link manganese
reduction to their oxidation of organic substrates, with
manganates serving as an alternative electron acceptor when
oxygen and nitrate are depleted. However, some laboratory
studies with pure bacterial cultures have observed that the
presence of oxygen does not inhibit microbial manganese
reduction (29-31). Trimble and Ehrlich (29) showed that
oxygen does not interfere with manganese reduction by the
two organisms they examined and that 02 and manganates
do not compete with one another as electron acceptors.
Further studies with one of these organisms (10, 11, 30)
showed that it possesses a manganese-reductase system
whose activity is inducible by Mn2+ and is coupled to an
electron transport chain (with glucose as an electron donor)
but was unaffected by the presence or absence of 02-

Bromfield and David (3) observed that a soil Arthrobacter
sp. capable of oxidizing Mn2+ could also catalyze the
reduction of manganese oxides, depending on the experi-

* Corresponding author.
t Present address: Marine Sciences Program, University of North

Carolina at Chapel Hill, Chapel Hill, NC 27514.

mental conditions. Zehnder and Brock (33) noted that man-
ganese oxides stimulated anaerobic methane oxidation by
both freshwater sediments from Lake Mendota, Wis., and
digested sewage sludge. However, it was not clear whether
the manganese oxides were reduced or what role they played
in methane oxidation. Wollast et al. (32) showed that an
enrichment culture from the upper Scheldt estuary (Belgium)
reduced manganates under anaerobic conditions in a syn-
thetic medium containing inorganic salts, manganates, and
acetate as the sole carbon source. Sterile controls in this
experiment showed no reduction activity.
The biochemical study of Hochster and Quastel (13)

demonstrated that under anaerobic conditions manganese
oxides could substitute for oxygen and serve as an electron
acceptor in a number of enzyme-catalyzed biological redox
reactions. In many cases a reversible electron carrier such as
methylene blue or ferricyanide was required at low concen-
trations to couple the anaerobic oxidation of substrates such
as ethanol, lactate, or succinate to manganese reduction.
These experiments were performed with cell extracts of a
variety of eucaryotic organisms and tissues, which contain
enzymes and respiratory chain compounds similar to those
found in bacteria and are suggestive of ways manganese
reduction could be coupled to bacterial metabolic processes.
Given these observations, the experiments described here

were undertaken to further study manganese reduction by
microorganisms. Anaerobic organisms were enriched for in a
medium in which (i) manganates were the sole possible
inorganic electron acceptors (02, nitrate, sulfate, and ferric
iron were excluded from the medium), and (ii) there were
low concentrations of organics (yeast extract and peptone)
and carbon sources that are difficult to ferment (such as
succinate or acetate rather than glucose). These criteria were
aimed primarily at excluding the growth of sulfate-reducing
and fermentative bacteria in the enrichments, because the
metabolic end products of these types of organisms can lead
to the indirect microbial reduction of manganates. With this
medium, enrichment cultures containing manganese-
reducing organisms were obtained from two coastal marine
sediments. Experiments were then performed with these
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492 BURDIGE AND NEALSON

enrichment cultures to examine some of the constraints on

microbial manganese reduction.

MATERIALS AND METHODS

All of the experiments described here were performed
under anaerobic conditions in a Coy anaerobic chamber (Coy
Laboratory Products, Ann Arbor, Mich.) containing 10%
H2-90% N2. The manganate used was prepared by the
oxidation of Mn2+ by permanganate under basic conditions
by the reaction 3Mn2+ + 2MnO4 + 2H20 -> 5 5MnO2 +

4H+. It was inferred to be the mineral-phase vernadite or

5MnO2 on the basis of the average oxidation state of this solid
(O:Mn ratio, 1.94 + 0.02) and its X-ray diffraction pattern (2,
5, 18). The 5MnO2 was stored in a desiccator as a fine,
freeze-dried powder, and before use in any ofthe experiments
described here it was reequilibrated in sulfate-containing
artificial seawater (ASW; see below). This preparation was a

modification of previously published methods (2, 18) and is
described in detail elsewhere (Burdige, Ph.D. thesis). In this
paper, bMnO2 prepared in this manner will be referred to as

preconditioned 5MnO2.
Two types of artificial seawater were used in this study.

Sulfate-free artificial seawater (SF ASW contained (per liter
of distilled water) 17.55 g of NaCl (300 mM); 0.76 g of KCI
(10 mM), 1.5 g of CaCl2 * H20 (10 mM), and 10.2 g of
MgCl2 * 6H20 (45 mM). Total chloride in this solution was

420 mM, and the ionic strength was 0.475 (approximately
two-thirds that of natural seawater). ASW contained the
major cations of seawater in their natural concentrations and
was prepared with (per liter of distilled water) 23.8 g of NaCl
(407 mM), 11 g of MgCl2 * 6H20 (54 mM), 1.5 g of
CaCl2 * 2H20 (10 mM), 4 g of Na2SO4 (28 mM), and 0.76 g of
KCl (10 mM).
Media for both initial enrichment cultures and experi-

ments were prepared by first dissolving 0.2 g of yeast extract
and 0.1 g of Bacto-Peptone (Difco Laboratories, Detroit,
Mich.) in either 1 liter of SF ASW or 667 ml ofASW and 333
ml of distilled water and adjusting the pH to 7.6. These two

solutions had approximately the same ionic strength (0.475
and 0.462, respectively). Hereafter, the latter solution will be
referred to as 2/31 ASW. After either of these solutions was

autoclaved, the following were aseptically added from ster-

ile, stock solutions: 10 mM HEPES buffer (N-2-
hydroxyethylpiperazine-N'-2-ethanesulfonic acid; pH 7.8), 2
mM HCO3f, and either 15 mM succinate, 20 mM lactate, 30
mM acetate, or a carbon mixture containing 7 mM pyruvate,
5 mM succinate, and 10 mM acetate (all concentrations are

final concentrations). Stock solutions were sterilized by
autoclaving and were prepared with distilled water and
sodium salts, except for lactate which was prepared by
diluting 60% lactate syrup with distilled water. The initial pH
of these media was 7.5 + 0.1.
Enrichment procedures. The medium used for enrichment

cultures was prepared with SF ASW and the three-carbon
mixture (pyruvate, acetate, and succinate). Aliquots (10 ml)
were then aseptically placed in presterilized screw-cap test

tubes containing preconditioned 8MnO2 (initial concentra-

tion, 0.05 to 0.1 mg/ml = 575 to 1,150 mM). These were then
stored in the anaerobic chamber until used (minimum equil-
ibration time before use was overnight).

Enrichment cultures used in these experiments were ob-
tained by inoculating these tubes with surface sediments (1
to 10 cm) collected from Skan Bay, Alaska (24), and the San
Clemente basis off southern California (8). All enrichments
were maintained at room temperature (25°C) in the anaerobic

chamber and were transferred (0.1 ml) to tubes containing
fresh medium upon depletion (on the basis of visual inspec-
tion) of the solid 5MnO2. After three to five transfers in this
medium, enrichments were transferred to a medium contain-
ing SF ASW and succinate. For consistency among experi-
ments, these were used to inoculate all experiments.

Studies of manganese reduction by enrichment cultures.
Media for these experiments were prepared with either ASW
or SF ASW (as described above) with either lactate, acetate,
or succinate as the single carbon source. Portions (20 ml) of
these media were aseptically dispensed into presterilized
screw-cap test tubes, and the tubes were equilibrated over-
night in the anaerobic chamber before use.

Before an experiment was begun, preconditioned 5MnO2
was added to the experimental tubes from a sterile,
anaerobic stock suspension. The initial concentration of
bMnO2 was either 0.05 or 0.1 mg/ml. After inoculation with
0.2 ml of an enrichment culture (see above), samples (gen-
erally 0.5 ml) were removed as a function of time to measure
the amount of Mn2+ produced in the experiment. All exper-
imental tubes were gently agitated for the duration of the
experiment on an orbit shaker set inside the anaerobic
chamber. A sterile glass bead was placed in each tube so that
this agitation would keep the solid manganate in suspension.
Uninoculated parallel blank experiments were run for all
experiments.
The extent of manganese reduction was determined by

measuring the total amount of Mn2+ produced (i.e., the end
product of the reduction reaction). Because manganate
suspensions above pH 5 to 7 have large capacities for
binding or adsorbing Mn2+ (18, 19), a method was developed
to measure both free, soluble Mn2+ and Mn2+ which is
bound or adsorbed to the surfaces of the remaining 5MnO2
particles. Samples were removed from the tubes and filtered
(inside the anaerobic chamber) through a 0.2-Lm-pore-size
membrane filter (Gelman Sciences, Inc., Ann Arbor, Mich.)
by using a 13-mm (diameter) Swinnex filter holder (Millipore
Corp., Bedford, Mass.) and a 5-ml disposable plastic sy-
ringe. The filters were then removed from the filter holder
and soaked for 2 h in 2 ml of an anaerobic 10 mM CuS04
solution (pH 4.7), allowing the bound Mn2+ ions to be
replaced by the excess cuprous ions. The CuS04 solution
was then filtered. Dissolved manganese was measured in
both filtrates by flame atomic absorption spectrophotometry
with an air-acetylene flame. Values were corrected for
sample dilution and summed to obtain the amount of Mn2+ in
a given sample. This method was found to desorb >90% of
the Mn2+ bound to a 8MnO2 surface (Burdige, Ph.D. thesis).

Except where noted, all experiments were performed with
2/31 ASW. In one set of experiments, 20 mM sodium
molybdate or 20 mM sodium molybdate and 10 mM sodium
azide were added to experimental tubes 6 h after they were
inoculated. Molybdate was added an an inhibitor of sulfate-
reducing bacteria (20, 27), whereas azide was added to
poison organisms that possesses an electron transport sys-
tem and generate at least a portion of their ATP by oxidative
phosphorylation (12). The combination of azide and molyb-
date should, under anaerobic conditions, only allow the
growth only of fermentative bacteria.
The effect of nitrate on manganese reduction was assessed

by adding 200 ,uM NaNO3 to the medium before inoculation.
To study the effect of oxygen on manganese reduction, we
covered another set of tubes with Belco cap closures (rather
than screw caps), removed them from the anaerobic cham-
ber just after inoculation, and then mixed them vigorously
for 2 to 3 min to ensure that the medium was fully equili-
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MANGANESE REDUCTION BY ENRICHMENT CULTURES

brated with atmospheric oxygen at the start of the experi-
ment. These were then also shaken (under laboratory air) for
the duration of the experiment.

RESULTS
The two enrichment cultures used in these studies were

isolated from coastal marine sediments. Enrichment culture
SK-13 came from surface sediments collected in Skan Bay,
Alaska, and after being returned to the laboratory was
transferred three times before use in these experiments. The
predominant organism in this culture was an oblate-shaped
rod approximately 4 to 6 ,um long and 1 to 2 pum wide
(estimated by light microscopy at xl,000 magnification).
Most of the cells were nonmotile and occurred both individ-
ually and as linked chains of 3 to 10 bacteria. Enrichment
culture SC-44 was obtained from surface sediments taken
from the San Clemente basin off southern California. This
culture was transferred four times before being used in these
studies. The dominant organisms in this enrichment culture
were long thin rods (7 to 11 by 0.6 to 1.2 Rm). They were
almost exclusively nonmotile, and many seemed to have, or
were forming, terminal endospores.
The results from these experiments are shown in Fig. 1 to

7 and summarized in Tables 1 to 3. The rates listed in the
tables were obtained by linear least-squares fitting of the
data. Data points were omitted from the calculation when (i)
the Mn2+ values in the early part of the experiment had not
increased above background levels, suggesting that the
culture had not yet come out of lag phase (see Fig. 4, 6, and
7), or (ii) the manganese profile appeared to level off near the
end of an experiment owing to depletion in either the total
5MnO2 added to the experiment (see Fig. 1) or, possibly,
other nutrients, leading to growth limitation (see Figs. 3 and
6). With this fitting procedure, we did not consider the
possibility that in mixed enrichment cultures such as these
the observed rate of Mn2+ production does not necessarily
have to be constant. Because the activities of the different
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FIG. 2. Mn2+ production by enrichment culture SK-13 when

grown with succinate as the carbon source in SF ASW (closed
symbols, broken line) or 2/31 ASW (solid line). Parallel uninoculated
experiments are indicated by open symbols and the same line type.

manganese-reducing organisms in the enrichment cultures
may vary over the course of an experiment, it is possible that
the resulting Mn2+ production could be nonlinear over time.
However, as we will show below and in comparison of rates
among different experiments, we believe that to at least a
first approximation this fitting procedure was valid in ana-
lyzing our data.

Relative to uninoculated parallel blank experiments, these
enrichment cultures were able to reduce 8MnO2 when grown
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FIG. 1. Mn21 production by enrichment culture SC-44 when

grown with lactate as the carbon source in SF ASW (closed
symbols, broken line) or 2/31 ASW (solid line). Parallel uninoculated
experiments are indicated by open symbols and the same line type.

FIG. 3. Mn2+ production by enrichment culture SC-44 grown
with lactate as the carbon source and no added inhibitors (closed
symbols, solid line), 20 mM molybdate (broken line, +M), or 20 mM
molybdate and 10 mM azide (dot-dash line [+MA]). As discussed in
the text, these inhibitors were added 6 h after inoculation. Parallel
uninoculated experiments are indicated by open symbols and the
same line type.
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494 BURDIGE AND NEALSON

TABLE 2. Summary of rate data for Mn2+ production by
enrichment culture SK-13

.t. 1 Rate of Linear Time
Exptl Initial Mn2 + correlation range of

conditionsa bMnO2 production coefficient calculation Figure
(mg/mi) (I.M/h) (r) (h)

SF, L 0.05 2.02 0.988 14-62 b
L 0.05 4.29 0.992 14-62
SF, S 0.05 2.49 0.995 14-62 2
S 0.05 1.59 0.985 14-62 2
SF, A 0.05 1.06 0.924 14-62
A 0.05 1.89 0.980 14-62
S 0.1 5.24 0.997 24-59 4
S + M 0.1 6.48 0.999 24-59 4
S + MA 0.1 0.54 0.968 24-59 4
S 0.1 5.42 0.991 22-69 7
S + N 0.1 4.16 0.950 22-69 7
S + 0 0.1 0.07 0.32 22-69 7

a For a definition of the abbreviations, see footnote a to Table 1.
b _, not shown here but shown in Burdige, Ph.D. thesis.

0 20
Time (hr.)

FIG. 4. Mn2+ production by enrichment culture SK-13 grown
with succinate as the carbon source and no added inhibitors (closed
symbols, solid line), 20 mM molybdate (broken line [+M]), or 20
mM molybdate and 10 mM azide (dot-dash line [+MA]). As dis-
cussed in the text, these inhibitors were added 6 h after inoculation.
Parallel uninoculated experiments are indicated by open symbols
and the same line type.

with either lactate, succinate, or acetate as a carbon source
in both SF ASW and ASW. Two typical experiments are
shown in Fig. 1 and 2, and the results of all experiments
performed are summarized in Tables 1 to 3.
When SC-44 was grown on lactate (Fig. 3) and SK-13 was

grown on succinate (Fig. 4), the addition of 20 mM molyb-
date had little effect on manganese reduction. Although
molybdate caused a 13% decrease in the rate of Mn2+
production by SC-44 when it was grown on lactate (Table 1),

TABLE 1. Summary of rate data from Mn2+ production by
enrichment culture SC-44

ExptI Initial Rate of Mn2+ Linear TimecxptioSa 8MnO2 production correlation range of Figure
(mg/ml) (,uM/h) coefficient (r) calculation (h)

SF, L 005 693 0960 14-62 1
L 005 1324 0980 14-49 1
SF, S 005 176 0988 14-62
S 005 278 0979 14-62
SF, A 005 067 0983 14-62
A 005 080 0949 14-62 -
L 01 1514 0936 10-48 3
L + M 01 1313 0968 10-59 3
L + MA 01 112 0911 10-59 3
S 01 170 089 10-59 5
S + M 01 1042 0987 10-59 5
S + MA 01 053 065 10-59 5
L 01 1408 0921 22-58 6
L + N 01 1188 0988 22-69 6
L + 0 01 081 0737 22-69 6

a Abbreviations: SF ASW (unless noted by SF, all experiments were
performed in 2/31 ASW which contains sulfate [see the text]); L, lactate added
as the carbon source; S, succinate added as the carbon source; A, acetate
added as the carbon source; M, 20 mM molybdate added; MA, 20 mM
molybdate and 10 mM azide added; N, 200 ,uM nitrate added; 0, experiment
was removed from the anaerobic chamber and oxygenated (equilibrated with
atmospheric 02) at the start of the experiment.

h, not shown here but shown in Burdige, Ph.D. thesis.

the rate of manganese reduction by SK-13 grown on suc-
cinate increased 24% in the presence of 20 mM Mo042-
(Table 2). However, when SC-44 was grown on succinate
(Fig. 5), the addition of molybdate actually caused a five- to
sixfold enhancement in both the rate of manganese reduction
and the amount of Mn2+ produced after 59 h. This rate was
only slightly lower than the rate of Mn2+ production when
SC-44 was grown on lactate (Table 1).

In these same experiments, the simultaneous addition of
azide and molybdate caused a large decrease in microbial
manganese reduction. When SC-44 was grown on lactate,
the rate in the presence of both compounds was only 7.4% of
the rate in their absence (Table 1). For SK-13 grown on
succinate, these inhibitors decreased the rate of manganese
reduction to 9.7% of the unpoisoned rate (Table 2). For
comparison, rates in uninoculated experiments were 0.2 to
1.9% of the rates in unpoisoned, inoculated experiments
(Table 3). When SC-44 was grown with succinate, the rate of

TABLE 3. Summary of rate data for Mn2+ production in
uninoculated experiments

Iiil Rate of Linear
Exptl Ital Mn2 + Timerneo

conditions MnO2 d correlation calculation (h) Figure
(mg/ml) (iM/h) coefficient (r)

SF, L 0.05 -0.18 -0.49 14-62 1
L 0.05 0.56 0.932 14-62 1
L 0.1 0.3 0.65 10-59 3
L + M 0.1 0.24 0.89 10-59 3
L + MA 0.1 0.16 0.65 10-59 3
L 0.1 1.78 0.974 10-69 6
L + N 0.1 1.04 0.997 10-69 6
L + 0 0.1 0.17 0.36 10-69 6
SF, S 0.05 0.51 0.75 14-62 2
S 0.05 0.22 0.64 14-62 2
S 0.1 0.17 0.89 10-59 4,5
S + M 0.1 0.12 0.53 10-59 4,5
S + MA 0.1 0.03 0.31 10-59 4,5
S 0.1 0.33 0.963 10-69 7
S + N 0.1 0.12 0.937 10-69 7
S + 0 0.1 -0.09 -0.42 10-69 7
SF, A 0.05 0.02 0.07 14-62 b
A 0.05 0.53 0.58 14-62

a For a definition of the abbreviations, see footnote a to Table 1.
b -, Not shown here but shown in Burdige, Ph.D. thesis.
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FIG. 5. Mn2+ production by enrichment culture SC-44 grown
with succinate as the carbon source and no added inhibitors (closed
symbols, solid line), 20 mM molybdate (closed symbols, broken line
[+M]), or 20 mM molybdate and 10 mM azide (dot-dash line
[+MA]). As discussed in the text, these inhibitors were added 6 h
after inoculation. Parallel uninoculated experiments are indicated by
open symbols and the same line type.

Mn2+ production in the presence of azide and molybdate was
31.2% of the rate in their absence; however, this was only
5.1% of the enhanced rate observed when molybdate alone
was present (Table 1).
The results in Fig. 6 and 7 show the effects of NO3 and

oxygen on manganese reduction by these enrichments. The
addition of 200 ,M NO3- to the medium led to a slight
decrease in the rate of Mn2+ production by both enrichment
cultures (approximately 20%; Tables 1 and 2), whereas
oxygen caused an almost complete cessation of microbial
manganese reduction. Under aerobic conditions, the rate of
manganese reduction by SK-13 grown with succinate was
only 1.3% of the rate under anaerobic conditions; for SC-44
grown with lactate, the rate of Mn2+ production in the
presence of 02 was 5.7% of the rate observed in its absence.

DISCUSSION
The results presented here serve to illustrate a few points

and to generate several questions. In agreement with the
results of other workers, the presence of viable bacteria led
to a great enhancement in the rate of manganese reduction.
However, in contrast to other studies (11, 29-31), our
enrichment cultures reduced manganese under anaerobic but
not aerobic conditions (Fig. 6 and 7). Whether the individual
organisms responsible for manganese reduction are faculta-
tive or obligate anaerobes is not yet known, but here the
process of microbial manganese reduction is clearly depen-
dent on the exclusion of oxygen. Troshanov (31) noted that
the manganese-reducing organisms he isolated from lake
sediments were microaerophiles that were unaffected by the
presence of oxygen. Trimble and Ehrlich (29) observed that
not only did oxygen not interfere with manganese reduction
by a marine Bacillus species and an unidentified marine
coccus but that oxygen was required to adapt the cultures to
utilize manganates. In addition, further studies with the
Bacillus sp. (11) showed that 10 mM azide stimulated man-
ganese reduction by this organism, whereas in our experi-
ments this concentration of azide inhibited essentially all

SC-44

/

-44+N

/
/

200 [

I-- -X
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Time (hr. )

60 80

FIG. 6. Mn2+ by enrichment culture SC-44 grown with lactate as
the carbon source and no additional electron acceptors (closed
symbols, solid line), 200 ,uM NO3 (broken line [+N]), or oxygenated
after inoculation (dot-dash line [+O]). Parallel uninoculated exper-
iments are indicated by open symbols and the same line type.

microbial manganese reduction (Fig. 3 to 5). These differ-
ences suggest that the manganese-reducing organisms in our
enrichment cultures are metabolically distinct from the oth-
ers that have been studied previously. Pure culture studies
should resolve the detailed nature of these differences.

In our initial enrichment cultures, SF ASW was used in
conjunction with carbon sources which favor respiratory
metabolism in an effort to eliminate the possibility of isolat-
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FIG. 7. Mn2+ by enrichment culture SK-13 grown with succinate
as the carbon source and no additional electron acceptors (closed
symbols, solid line), 200 ,uM NO3 (broken line [+N]), or oxygen-
ated after inoculation (dot-dash line [+O]). Parallel uninoculated
experiments are indicated by open symbols and the same line type.
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496 BURDIGE AND NEALSON

TABLE 4. Rates of manganese reduction and first-order
reduction rate constants from a number of environments and for

enrichment cultures of manganese-reducing bacteria

Sourcea kred (yr') Mn2+ production rateSource krd (Yr-') ~(upper limit; p.M/day)

East equatorial Atlantic .0015-.0021 0.38
sediments (4)

Chesapeake Bay sediments .0173 0.57
(14)

Lake Michigan sediments 0.47
(25)

Long Island Sound 8.2-25 576
sediments (1)

Anoxic water column 220
Saanich Inlet (6)

Enrichment culture SC-44 363
(this work)

Enrichment culture SK-13 156
(this work)
a Numbers in parentheses refer to references in which the rate data were

reported.

ing sulfate-reducing or fermentative organisms. However,
because some strains of sulfate-reducing bacteria can grow
on pyruvate in the absence of sulfate (23), it is possible that
the enrichment procedure described here could have se-
lected for such a sulfate-reducing organism. The lack of
molybdate inhibition of manganese reduction (Fig. 3 to 5)
indicates that this did not occur. The concentration of
molybdate we used has been shown to be an effective
inhibitor of sulfate reduction in both laboratory (pure cul-
ture) and field studies of this process (20, 27; Burdige, Ph.D.
thesis). As a result, it appears that the reduction of 5MnO2
by these two enrichment cultures is not due to the presence
of sulfate reducers (and the sulfide they produce) in either of
the cultures.
The fact that the simultaneous addition of azide and

molybdate stopped virtually all manganese reduction (Fig. 3
to 5) indicates that the organisms responsible for manganese
reduction in these enrichment cultures coupled manganese
reduction to electron transport and respiration. Although it
is possible that this azide inhibition was the result of a non
specific inhibition of other enzymes by azide, we are not
familiar with any studies which illustrate such a phenomenon
and we have assumed that, as has been shown previously
(11, 12), azide was acting here as an inhibitor of electron
transport.

If manganates were used here as terminal electron accep-
tors, then the slightly lower rates of Mn2+ production in the
presence of nitrate (Fig. 6 and 7, Tables 1 and 2) may be due
to the fact that some of the manganese-reducing bacteria in
these enrichment cultures preferentially utilized nitrate as an
electron acceptor. The reduction of nitrate can be more
efficient (in terms of free energy gained per mole of carbon
substrate utilized), depending on how far nitrate is reduced
(NO2- or N2) and the manganate phase available for reduc-
tion. Given that there is strong evidence indicating that
marine and freshwater bacteria capable of reducing nitrate or
ferric iron can reduce the other compound as well (16, 21,
26), it is not unlikely that such a relationship might also exist
for manganese reducers.

If solid manganates are indeed used as electron acceptors,
then one must also address the question of how electron
transport is effected from the bacteria to an insoluble sub-
strate. For example, do they attach themselves directly to
the manganate particles (as the photomicrographs in Ghiorse

and Ehrlich [11] indicate for the manganese-reducing orga-
nism they studied), or do the organisms use a diffusible
reversible electron carrier which shuttles between their
electron transport system and the manganate particles. The
works of Hochster and Quastel (13) and Stone and Morgan
(28) suggest that compounds such as ferricyanide, methylene
blue, or certain quinones could serve in such a role. As with
the above questions, these can be answered only with pure
cultures of manganese-reducing organisms, which are now
being isolated in our laboratory.

Finally, how do these results compare with other reported
rates of manganese reduction? Table 4 lists rates and rate
constants for a number of environments (rates of manganese
reduction are reported here as Mn2+ production rates).
First-order rate constants were obtained from geochemical
models, assuming that the rate of manganese reduction is
first order with respect to the concentration of solid mangan-
ate present (1, 4, 14). These environmental rates are upper
limits, because solid-phase manganese generally goes to zero
in the zone of manganese reduction. Also listed in Table 4
are the maximum rates of manganese reduction observed in
the experiments presented here. The fact that these experi-
mental microbial rates are generally higher than environmen-
tal rates could be the result of a number of factors, including
the following. (i) The density of manganese-reducing orga-
nisms in our laboratory experiments was higher than in the
environments examined. (ii) The concentration of nutrients
(including manganates) in our experiments was greater than
is commonly observed in nature. (iii) The manganate phase
used in these experiments was kinetically more reactive than
natural manganates. (iv) Variability in other physical param-
eters (e.g., pH, Eh, or temperature) may have existed
between these experiments and the environments studied. It
should also be kept in mind that these are modeled, not
measured, rates and they do not take into account the
possibility of simultaneous oxidation and reduction of man-
ganese in, perhaps, microenvironments of these regions.
Such an occurrence would lead to an underestimation of true
activity. It is also possible that in many environments,
including some of those listed in Table 4, mechanisms of
manganese reduction other than those studied here (such as
indirect microbial manganese reduction mediated by sulfide
or reduced organics) may be responsible for the observed
activity. Careful microbiological field studies will be re-
quired to address these questions.
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