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An arthropod defensin expressed by the hemocytes of the American dog 

tick, Dermacentor variabilis (Acari: lxodidae). 
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Abstract. 

Both soluble and cell-mediated components are involved in the innate 

immune response of arthropods. Injection of Bon-elia burgdorferi, the Lyme 

disease agent, results in the secretion of defensin into the hemolymph of the 

ixodid tick, D. variabi/is. The presence of the peptide is observed as early as 15 

minutes post-challenge and remains present through 1 Bhrs post-challenge. As is 

observed in insects and soft ticks the transcript for defensin is detected as early 

as 1 hour post-challenge in D. variabilis. RT-PCR resulted in an amplicon of 

624bp with a 225bp region that translates to a 7 4 amino acid preprodefensin. 

The defensin encoding region was amplified, cloned and sequenced from the 

hemocytes. It appears as though defensin is stored in the granulocytes of the 

hemolymph and secreted into the hemolymph upon bacterial insult. The role of 

def ens in as a contributing factor in determining vector competency is discussed. 

Keywords: Defensin, hemocytes, ticks, innate immunity 

Introduction. 

The innate immune system is one of the most important factors in the ability of 

metazoan organisms to survive when challenged by microbes. The innate 

immune system is comprised of cell-mediated and soluble components and is 

initiated through recognition of pathogen-associated molecular patterns (PAMP's) 

(Girardin et al., 2002}. In many invertebrates, the soluble component of the 

system includes antimicrobial peptides such as lectins (Chen et al., 2001), 
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attacins (Gillespie et al., 1997), lysozyme (Kopacek et al., 1999), defensin (Johns 

et al., 2001; Nakajima et al., 2002; Nakajima et al., 2001) and others. 

In insects, the expression of defensin is induced in the fat body following 

bacterial injection (Gillespie et al., 1997). In Drosophila, septic injury alone, 

bacterial challenge with Escherichia coli or Micrococcus luteus, or challenge with 

the fungus Beauveria bassiana induced the expression of defensin between 0 

and 3 hours post-challenge (Lemaitre et al., 1997). However, this pattern of rapid 

induction is not universal. In the Mediterranean mussel, Mytilus galloprovincialis, 

defensin is constitutively expressed and the mature peptide is secreted from the 

granulocytes into the plasma 24 hours post-injection of heat killed Vibrio 

algino/yticus (Mitta et al., 1999). In the soft tick 0. moubata, defensin is 

expressed in the midgut as early as 1 hour post-feeding (Nakajima et al., 2001 ). 

A defensin (varisin) was observed in the hemolymph of the hard tick, 

Dermacentor variabilis, between 1 and 6 hours post-injection of the Lyme 

disease spirochete, B. burgdorferi (Johns et al., 2001). The sequence for the first 

30 amino acids of the predicted 38 to 40 amino acids was determined by Edman 

degradation. A MALDI-TOF predicted a molecular weight of 4228.66 for the 

secreted peptide (Johns et al., 2001 ). However, neither the full amino acid 

sequence for the mature peptide nor the preprodefensin was determined. 

This paper reports the nucleotide sequence and the derived amino acid 

sequence of the preprodefensin from the hemocytes of B. burgdorferi-challenged 



D. variabilis ticks. In addition, a mechanism of storage and release of defensin 

into the hemolymph by hemocytes is also discussed. 

Materials and Methods. 
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D. variabilis ticks collected near Suffolk, VA were reared and maintained as 

described (Johns et al. 1998). Female ticks fed for 6 days were used in all 

experiments. All use of animals in this research was done in accordance with 

protocols approved by the Old Dominion University Institutional Animal Use and 

Care Committee protocols 01-006 and 01-007 approved on February 13, 2002. 

Three-day B. burgdorferi cultures were adjusted to approximately 1.0 x 104 

cells/µI and three microliters injected into the hemocoel as described (Johns et 

al., 1998). Depending upon the experiment, hemolymph was collected at 1 hr, 

6hr, 9hr, 12hr, 15hr and 18hr post-injection and diluted in either RNA later 

(Ambion, Austin, TX) or modified tick saline (1mM EDTA, 0.1mM PMSF, pH 8.5) 

adjusted to approximately 300 mOsm using alkaline water (pH 11). Hemocytes 

were removed by centrifugation at 830 x g for 15 minutes at 4°C washed gently 

with tick saline and the cell pellet resuspended in 50µ1 of lysis buffer (20mM Tris­

HCI, 137mM NaCl, 2mM EDTA, 0.1% Triton-X 100, 10% glycerol, pH 7.2) (Han 

and Ip, 1999). The hemocyte lysates were sonicated for 90s on ice and the 

lysate clarified by centrifugation at 16,000 x g for 15 min at 4°C. The hemolymph 

plasma and hemocyte lysate were stored in aliquots at -20°C until used. 
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A synthetic defensin peptide representing the first 20 amino acids of the mature 

peptide was prepared and conjugated to keyhole limpet hemocyanin (KLH) 

(Genemed Synthesis, Inc., San Francisco, CA). A New Zealand White rabbit, 

Oryctolagus cunnicu/us, was immunized subcutaneously with 0.6 mg of synthetic 

defensin-KLH conjugate mixed 1: 1 with Freund's complete adjuvant (Sigma, St. 

Louis, MO) followed by two-booster immunizations of 0.25 mg mixed 1: 1 in 

Freund's incomplete adjuvant (Sigma) spaced at 2 to 3 week intervals. Immune 

serum was collected 2 weeks after the final immunization and antigen-affinity 

purified. The antigen-affinity column was made by linking the synthetic defensin 

peptide to an activated 4% agarose Aminolink Plus Immobilization affinity column 

according to the manufacturers instructions (Pierce Biotechnology Inc., Rockford, 

IL). Immune rabbit serum was passed twice over the affinity column, eluted with 

0.2 M glycine buffer pH 2.5, the eluate neutralized with 50µ1 of 1 M Tris-HCL, pH 

9.0 and concentrated in a 5000 MWCO Microcon filter (Millipore, Billerica, MA) 

according to the manufacturer's instructions. The rabbit anti-defensin antibody 

was resuspended in PBS (0.1M NaH2P04, 0.1M Na2HP04, 0.15 NaCl, pH 7.2), 

supplemented with 0.02% NaN3 and 10% glycerol, and stored in aliquots at 

-20°C until used. 

Hemocyte lysate, 60ug, was run on 4%-12% NuPAGE Tris-Bis SDS gels 

(lnvitrogen) with Mark XII molecular weight markers (lnvitrogen) and silver 

stained using Silver Express staining kit (lnvitrogen). For Western blots, gels 

were transferred to 0.45µm pore-size nitrocellulose for 1hr 30 min at 25V 
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constant voltage in an EC140 Miniblot System (ThermoEC, Holbrookn, NY). Tick 

hemocyte protein bands were detected using primary antibodies (1 :75) incubated 

overnight at 4°C followed by goat anti-rabbit lgG (H+L) conjugated to horseradish 

peroxidase (1 :1000) and the bands visualized with Protein Detector TMB 

Western Blotting kit (Kirkegaard and Perry Laboratories, Inc., Gaithersburg, Md). 

Western blot controls included testing the conjugate with and without pre-immune 

rabbit sera as the primary antibody where we observed bands > 14 kDa 

consistent with the presence of imbibed lgG from ticks fed on rabbits (Jasinskas 

et al., 2000) or lgG-binding proteins (Wang and Nuttall, 1995). However, only 

purified rabbit anti-defensin antibody reacted with the 4.2 kDa defensin protein. 

Poly A RNA was extracted from the hemocytes on the day of collection using 

QuickPrep TM Micro mRNA Purification Kit (Amersham Biosciences, Piscataway, 

NJ). First-strand synthesis was performed using 25ng of mRNA in Promega's 

lmProm-11 Reverse Transcription System (Promega, Madison, WI). Five hundred 

nanograms of cDNA cloning primer (5'GAAGAATTCTCGA 

GCGGCCGC I I I I I I I I I I I I I I I I I I IV 3') (Integrated DNA Technologies, 

Coralville, IA) were used to prime the mRNA during first strand synthesis. PCR 

using 200nM ofVsn F2-I (5'GGITTYGGITGYCCICTIAAYCAR 3') and the cDNA 

cloning primers were used to amplify the cDNA. PCR cycling was as follows: 

95°C for 5 min followed by 30 cycles of 95°C for 30 sec, 54°C for 1 min, 68°C for 

1 min followed by a final extension at 68°C for 1 O min. The resultant amplicon 
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was cloned into pCR4 TOPO vector (lnvitrogen, Carlsbad, CA) and sequenced 

on an ABI Prism 310 Genetic Analyzer (Applied Biosystems, Foster City, CA). 

Two hundred nanomoles of the nested gene specific primers based on the 

sequence obtained following RT-PCR above (GSP) (GSP 1, S'GTCTGCTTG 

ATGATGCCAGAGC AGTA 3'; GSP 2, S'GAGCAGTAGCCGCCTCGGCG 

CCGAA T 3') was used with the GeneRacer RACE kit (lnvitrogen) to obtain the 5' 

region. The initial PCR cycling parameters were: denaturation at 95°C for 5 min 

followed by 30 cycles of 95°C for 30 sec, 58°C (GSP 1) for 1 min, 68°C for 1 min 

followed by a final extension at 68°C for 10 min. One microliter from the initial 

PCR was used in nested PCR and was cycled under the following conditions: 

denaturation at 95°C for 5 min followed by 30 cycles of 95°C for 30 sec, 65°C 

(GSP 2) for 1 min, 68°C for 1 min followed by a final extension at 68°C for 10 

min. Amplification of the 624bp cDNA fragment for defensin from hemocyte 

cDNA was done using primers, Vsn F (S'GACTGCGCTTTGAGACGACAAA 3') 

and Vsn R (S'AGAAAGCATAA CCAI 111 IAATATGCATTT 3') that were 

designed from the sequence for the defensin from hemocytes. The cycling 

parameters were as follows: denaturation at 95°C for 5 min followed by 30 cycles 

of 95°C for 30 sec, 56°C for 1 min, 68°C for 1 min followed by a final extension at 

68°C for 10 min. All sequencing was performed using ABI Prism Big Dye 

Terminator V3.0 Ready Reaction Kit as described above. The defensin 

sequence designated vsnA 1 and associated region was submitted to GenBank 

under accession number AY181027. 
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Results and Discussion. 

A previous study using silver-stained, SOS-PAGE gels of plasma from D. 

variabilis injected with 8. burgdorferi showed the 4.2 kDa defensin band as early 

as 15 minutes through 6 hr (Johns et al., 2001) and we have subsequently 

detected defensin in plasma through 18 hours (data not shown). This finding 

suggested that defensin is available immediately after bacterial challenge, as is 

found in many insects (Bulet et al., 1999; Gillespie et al., 1997). 

In M. ga/loprovincialis, defensins are secreted from the hemocytes within 24hrs 

post-injection, and remain in the hemolymph plasma through 48 hours following 

challenge. The data suggests that expression continues during this period and 

then is down regulated (Mitta et al., 1999). In M. ga/loprovincialis defensin is 

transcribed as a 550 bp fragment, translated, and then stored in the granulocytes 

until needed; no defensin was present in the hemolymph plasma of unstimulated 

animals (Mitta et al., 1999). Interestingly, in D. variabilis, a Western blot 

confirmed the presence of defensin in hemocyte lysates collected from 

unstimulated ticks (Fig. 1 ). Similar to the situation in the mussel, this suggests 

that defensin is stored in the hemocytes of the tick and is released upon bacterial 

stimulation. 

In the soft tick 0. moubata, two defensin isoforms were amplified at 1 hour post­

injection of Escherichia coli JM109 and Stahylococcus aureus (Nakajima et al., 

2001). More recently an additional two isoforms were reported from this species 
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(Nakajima et al., 2002). Similarly, we amplified a defensin gene from the 

hemocytes as early as 1 hr post-borrelial challenge. However, in contrast to 0. 

moubata, only one isoform of defensin has been found in the hemocytes of D. 

variabilis. Sequencing the 624 bp cDNA fragment revealed a 225 bp ORF that 

translated to a 74 amino acid preprodefensin (Fig. 2). This was found to be 

identical to the defensin peptide that was previously purified from D. variabilis 

plasma with the exception of one amino acid at residue 27 (Johns et al., 2001 ). 

Examination of the Edman degradation results suggest the possibility for two 

residues at position 27, either glutamine or glycine; however, glutamine 

predominated in the amino acid sequence obtained. If confirmed this data would 

suggest two isoforms; however only the gene encoding the peptide with a glycine 

at position 27 has been isolated. Therefore, at this time, it appears as though the 

defensin present in D. variabilis plasma is similar to the defensin produced by the 

hemocytes. The presence of defensin in the hemolymph of D. variabilis early 

after infection and the detection of transcript as early as 1 hr post-challenge 

suggest a rapid response similar to that observed in the soft tick 0. moubata and 

insects. 

During feeding ticks are exposed to the normal flora or pathogens infecting the 

host. Hence, the ability to respond to microbial challenge is presumed to be 

present in the midgut. Defensin has been observed in the midgut of several 

blood-feeding insects, e.g., the biting fly Stomoxys calcitrans (Munks et al., 

2001 ), the malaria mosquito Anopholes gambiae (Richman et al., 1996), the 
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tsetse fly, Glossina morsitans (Boulanger et al., 2002) as well as the soft tick 0. 

moubata ; Nakajima et al., 2001). Whether or not defensin is produced by the 

midgut of D. variabi/is is currently unknown. 

The insect fat body, believed to be functionally analogous to the vertebrate liver, 

detects microbial cell wall components known as PAMP's through the Toll or imd 

pathways (Belvin and Anderson, 1996). The fat body is one of the tissues 

responsible for defensin production (Lowenberger et al., 1999). Protein analysis 

of fat body lysates from unchallenged D. variabilis ticks suggests that defensin is 

stored in this tissue as well (Ceraul and Sonenshine, unpublished). With regard 

to the defensin peptide purified from the hemolymph of D. variabi/is, secretion 

may take place from the fat body, the hemocytes or both. 

Defensin is present in all types of organisms from humans to plants. A common 

function of defensins from all organisms is to lyse bacterial cells; however, the 

amino acids sequences can vary. A database (BLAST) search shows that the 

mature defensin peptide from D. variabilis has 89% identity to the defensin from 

the scorpion, Leiurus quinquestriatus, also an arachnid but in a different subclass 

(Subclass Scorpionomorphae) than the ticks (Subclass Acari) . Less similarity is 

observed between the preprodefensins of D. variabi/is and 0. moubata (Fig. 2). 

Comparisons like these are interesting from a phylogenetic standpoint where it is 

hoped that the evolution of defensins can be mapped. 
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The function of each tissue involved in the innate response may be to 

complement one another thereby protecting the organism from infection. 

Organisms such as the Rocky Mountain spotted fever agent Rickettsia rickettsii 

in the case of D. variabilis or the Lyme disease agent B. burgdorferi in/. 

scapularis are imbibed with a blood meal. These organisms then interact with 

antimicrobial peptides in the midgut that contribute to their destruction. 

Transmigration of surviving microbes to the hemocoel again exposes them to 

secreted antimicrobial peptides as well as to a cell-mediated response. 

The efficiency of the innate immune response in different tick species may 

contribute to a better understanding of vector efficiency for the diverse microbes 

they transmit. However, the question of why some ticks are competent vectors of 

pathogens and others are not is more complicated than the elucidation of the 

presence or absence of specific peptides as constituents of the antimicrobial 

defenses. Other considerations, such as the rate and sustainability of expression 

may contribute to the efficacy of the host's ability to destroy invading microbes. 

Thus, the robustness and rapidity of the immune response may be as important 

as the peptides themselves. Future work will include amplifying the defensin 

gene cDNA from the fat body and midgut, investigating the rate of expression for 

defensin within the fat body and midgut, as well as expression of defensin at 

different life stages of D. variabi/is and in other tick species. 
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Figure Legends 

Figure 1. A. Silver-stained 4%-12% NuPAGE SOS gel and B. corresponding 
Western blot. Lane 1, Molecular weight markers; Lane 2, D. variabilis 
hemocyte lysate. 
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Figure 2. D. variabilis defensin peptide alignment. The defensin peptide 
sequence derived from the preprodefensin in these studies is identical to the 
peptide previously isolated from the hemolymph plasma (Johns et al., 2001) 
with the exception of residue 27 (GenBank AY 181027). The defensin from 
D. variabilis shares 68% identity with the putative defensin isolated from the 
ixodid tick Boophilus microplus (GenBank AA048943) and 65%, 68%, 65% 
and 63% identity to the argasid tick 0. moubata defensin A (GenBank 
BAB41028), B (GenBank BAB41027), C (GenBank BAC10303) and D 
(GenBank BAC10304), respectively (Nakajima et al. 2002). The mature 
defensin peptide from D. variabilis has 60% identity to MGD1 (GenBank 
P80571) and MGD2 (GenBank AAD45118) both defensins from the 
Mediterranean mussel, Mytilus galloprovincialis. The mature defensin peptide 
from D. variabilis shares 89% identity to the mature peptide from the scorpion 
Leiurus quinquestriatus (GenBank P41965). Black highlights indicate 
identical residues, gray highlights indicate similar residues. 
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