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Letters to the Editor 

diagonalizing a few-channel Hamiltonian-the energy 
adaptation may lead to very large reductions in computa­
tional effort. 

Although the simple approach used here has apparently 
never been utilized before, it is similar in spirit to other ap­
proaches that have been tried. One very similar approach is 
the method of contracted scattering basis functions, which 
was developed and applied successfully in the context of the 
Kohn variational method.3 Another approach that may suc­
ceed for the same physical reasons is the use of basis func­
tions based on a semiclassical interpretation oftrajectories.4 

Such basis functions include momentum adaptation and 
may be more efficient for expanding several degrees of free­
dom, whereas energy adaptation, which is simpler, should 
suffice for expanding translational functions in algebraic 
close coupling approaches! to scattering problems. Finally 

COMMENTS 

we note that similar techniques have been employed by Kur­
uoglu and Micha for expanding the T operator,S and a simi­
lar prediagonalization technique has been used by Bacic and 
Light for discrete-variable ray basis sets for bound-state 
eigenvalue calculations.6 
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A recent paper in this journal! reported expressions de­
scribing the orientation and alignment produced, in an axial 
recoil limit, by one photon dissociation of diatomic mole­
cules. Reported also were values, applicable to the resonance 
transitions of the alkali atoms, for orientation and alignment 
depolarization coefficients g(l) and g(2). However, due to a 
numerical oversight,! most of the values presented for g(k) in 
that paper are incorrect, in some cases by as much as a factor 
of2. We give in this Comment a tabulation of correctg(l) and 
g(2) values applicable to the resonance transitions of the com­
mon alkali isotopes. The values of g(2) we obtain yield linear 
polarization degrees for the 6Li, 7Li, and 23N a resonance 
transitions in agreement with experimental data.2

--4 Further, 
due to the dependence of g(k) on measured hyperfine split­
tings and radiative lifetimes [see Eq. (1) below] there is 
always some uncertainty in the value of g( k). As estimates of 
this uncertainty are of considerable value to experimentalists 
using the g(k), we supplement the values of g(k) presented 
here with uncertainties in the coefficients derived from those 
in the measurements. Finally, an application to the results of 
Rothe et al., 5 on the polarization of atomic NaD 2 resonance 
produced in photodissociation of Na2, is made. 

The depolarization coefficients6-8 generally describe the 
influence of an initially unpolarized and unobserved angular 
momentum I on an average tensor multipole (T kq) describ­
ing a state of angular momentum J. The orientation and 
alignment are the axially symmetric tensors (TIO ) and 
(T20). If a multipole of initial value (T kq (O)) becomes de­
polarized via an interaction between I and J, then 
(Tkq) =g(k) (Tkq(O», where 

(k) = '" '" (2F' + 1) (2F + 1) W 2 (FF'JJ;KI) 
g £.,£., 2 • 

F F' 21 + 1 1 + (WFF''T) 

(1) 

Here F and F' are the set of quantum numbers formed by 
couplingJ andJ, W(···) is a Racah coefficient, andwFF • the 
angular frequency splittings produced by the interaction of I 
andJ. The average duration of the interaction is 'T. (Tkq (O)) 
might be produced by photodissociation of a diatomic mole­
cule, in an optical collision, or by numerous other excitation 
mechanisms. Equation ( 1) is applicable so long as the angu­
lar momentum J is not effected by the dynamics of the cre­
ation of (Tkq (0», and so long as the excitation mechanism 
is rapid compared to all W FF ,.9 If J interacts with more than 
one angular momentum (say via a fine and hyperfine inter-
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Letters to the Editor 1649 

TABLE I. A summary of data used to calculate hyperfine depo1arization coefficients and values for ill and i21 for common alkali isotopes. Uncertainties in 
the last digits are given in parentheses; for g(k), if no uncertainty is given, it is less than one-half of the following digit. 

Natural Nuclear Atomic 
Atom abundance spin state 1'(ns) 

6Li 7.5 2 2PI/2 26.9(2.7) 
2 2P3/2 26.9(2.7) 

7Li 92.5 3/2 2 2PI/2 26.9(2.7) 
2 2P3/2 26.9(2.7) 

23Na 100 3/2 3 2PI/2 16.2(5) 
3 2P3/2 16.1(5) 

39K 93.3 3/2 4 2PI/2 26.2(2.6) 
4 2P3/2 25.8(2.5) 

41K 6.7 3/2 4 2PI/2 26.2(2.6) 
4 2P3/2 25.8(2.5) 

85Rb 72.2 5/2 5 2PI/2 29.4(2.9) 
5 2P3/2 27.0(2.7) 

87Rb 27.8 3/2 5 2PI/2 29.4(2.9) 
5 2P3/2 27.0(2.7) 

133es 100 7/2 6 2PI/2 34(3.4) 
6 2P3/2 33(3.3) 

action), Eq. (1) is not applicable; other expressions are 
available for those cases.8 

We present in Table I values for g(l) andg<2) for selected 
excited states of the common alkali isotopes, including those 
considered by Band et 01. I Also given are the data used to 
determine the (() FF'; these are largely derived from the rec­
ommended values for the dipolar (A) and quadrupolar (D) 
coupling constants (and their uncertainties) as tabulated by 
Arimondo et al. lO

•
ll Radiative lifetimes were taken from 

summaries of atomic transition probabilities. 12,13 The 
quoted uncertainties ing(k) were obtained by assuming that 
the given uncertainties in A, D, and 7' are statistical, and 
represent one standard deviation. Equation (1) was then 
used to calculatel4 the uncertainty in g(k). 

As an example of the utility of these results, consider the 
experiment on the photodissociation ofNa2 by Rothe et 01., S 

via theD Illu""'X 1~8+ transition. IS Photodissociation ofN~ 
at 457.9 nm produced mainly atomic Nain the 3p 2P3/2 fine­
structure level. The resulting atomic Na 3p 2P3/2-3s 2S1/2 

resonance fluorescence was observed at right angles to the 
exciting light and its polarization vector, and was observed 
to have a linear polarization degree PL of - 5(1)%; 
P L = (111 - II ) 1 (111 + II ). In terms of the alignment, and 
for the geometry of the experiment 7 

3h (2) (T20 ) (2) 
PL = , 

4 + h (2) (T20 ) 

where h (2) is a ratio ofRacah coefficients and is characteristic 
of the angular momentum ofthe initial and final states. For a 
2P3/2-2S1/2 transition h (2) has a value of - 5/4. Using the 

A(MHz) B(MHz) ill i21 

17.375(18) 0.436(4) 0 
- 1.155(8) 0.10(14) 0.958(5) 0.88(1 ) 

45.914(25) 0.378 0 
- 3.055(14) -0.221(29) 0.752(9) 0.49( I) 

94.3(1 ) 0.377 0 
18.69(9) 2.90(21 ) 0.555(2) 0.297(1) 

28.85(30) 0.382(1) 0 
6.06(8) 2.83(13) 0.673(8) 0.372(6) 

15.19(21) 0.399(3) 0 
3.40(8) 3.34(24) 0.807(8) 0.55(1) 

120.72(25) 0.352 0 
25.009(22) 25.88(3) 0.409(1) 0.237 

406.2(8) 0.375 0 
814.845 (55) 12.52(9) 0.501 0.270 

291.90(13) 0.344 0 
50.34(6) - 0.38(18) 0.370 0.219 

results of Table I with (T20 ) = 0.053 ( 11), we have 
(T20 ) = (T2o )lg(2) = 0.18(4). Thus a proper analysis of 
this Na2 photodissociation process, with the obscuring ef­
fects of the atomic Na hyperfine structure accounted for, 
must consider an alignment of 0.18 ( 4). This value would 
produce a linear polarization degree of about - 18 ( 4 ) % in 
the absence of hyperfine structure. 

The support of the National Science Foundation under 
Grant No. PHY -8509881 is gratefully acknowledged. 
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ISThe analysis presented here was not done in Ref. 5; the conclusions of that 

paper thus should be reconsidered. 
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