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The main topological feature of a superfluid is a quantum vortex with an identifiable inner and outer

radius. A novel unitary quantum lattice gas algorithm is used to simulate quantum turbulence of a Bose-

Einstein condensate superfluid described by the Gross-Pitaevskii equation on grids up to 57603. For the

first time, an accurate power-law scaling for the quantum Kelvin wave cascade is determined: k�3. The

incompressible kinetic energy spectrum exhibits very distinct power-law spectra in 3 ranges of k space: a

classical Kolmogorov k�ð5=3Þ spectrum at scales greater than the outer radius of individual quantum vortex

cores and a quantum Kelvin wave cascade spectrum k�3 on scales smaller than the inner radius of the

quantum vortex core. The k�3 quantum Kelvin wave spectrum due to phonon radiation is robust, while the

k�ð5=3Þ classical Kolmogorov spectrum becomes robust on large grids.

DOI: 10.1103/PhysRevLett.103.084501 PACS numbers: 47.37.+q, 03.67.Ac, 03.75.Kk, 67.25.dk

Introduction.—Superfluid dynamics is an intriguing sub-
ject: Quantum turbulence occurs in liquid helium II and
should occur in Bose-Einstein condensates (BECs) of cold
atomic vapors. Yet it is all-important for comparing to
classical fluid turbulence to help us solve one of the grand
challenge problems of the millennium [1,2]. There is a
broadly acknowledged need for high resolution quantum
turbulence simulations—in this Letter, we strive to meet
this with a unitary simulation of the Gross-Pitaevskii (GP)
equation on large spatial grids up to 57603.

Fundamental to superfluid turbulence is the quantum
vortex: a topological singularity with the superfluid density
exactly zero at the vortex core in the simplest case [3].
Furthermore, in the simplest case, all of the quantum
vortices are discrete and have the same charge (i.e., quan-
tized circulation in multiples of �2�), and the flow is
inviscid. This stands in sharp contrast to classical incom-
pressible fluid turbulence, where the concept of a vortex
tube or eddy is imprecise and where viscosity plays an
essential role. Moreover, in classical turbulence there are
two strongly competing effects: sweeping of small scale
eddies (advection) by large scale eddies and straining of
eddies (deformation) by eddies of similar scales. Building
on Richardson’s local cascade of energy from large to
smaller and smaller eddies until viscosity dissipates the
smallest ones into heat [4], Kolmogorov [5] assumed there
is an inertial energy spectrum that depends only on the
energy input and wave number. Assuming the energy trans-
fer and the interacting scales are purely local and sweeping
is not important for energy transfer, he derived the inertial
energy spectrum for classical incompressible turbulence:

EðkÞ ¼ CKE2=3k�ð5=3Þ, for some constant CK, where E is
the energy dissipation and k is the wave number
magnitude.

Phenomenology of quantum turbulence.—Quantum tur-
bulence is envisaged to arise from dense quantum vortex
tangles [6], and this is borne out by numerical simulation,
for example, as shown in Fig. 1. The coherence length �
defines the inner radius of a quantum vortex core, while��
approximates its outer radius. Since the flow outside a
quantum vortex core is simple potential flow, it is thought
that for large scales ��� the discrete nature of the quan-
tum vortices is lost and the superfluid density is approxi-
mately constant while supporting phonon radiation. Large
eddies can form as aggregated quantum vortices, concom-
itant with sweeping and straining (the latter important to

FIG. 1 (color online). Quantum turbulence (zoom-in online to
view tangles). These are vortex core isosurfaces from our quan-
tum lattice simulation on a 10243 grid at the t ¼ 50 000 time
step, with parameters a ¼ 0:03 and g ¼ 1:004 as defined in (15).
The initial conditions are the same as for the 57603 run for a
repulsive nonlinear interaction.
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incompressible classical turbulence), so large scale quan-
tum turbulence could resemble a Kolmogorov energy cas-

cade EðkÞ � k�ð5=3Þ, for k � ð��Þ�1. The dissipation

wave number kdiss ¼ E1=4��ð3=4Þ cuts off the Kolmogorov
energy cascade in classical turbulence—in quantum turbu-
lence, one expects that kdiss � ð��Þ�1.

For length scales on the order of the coherence length,
one needs to consider the effects of vortex reconnection—a
reconnection that occurs in superfluids without the need for
viscous dissipation, unlike classical vortex tube reconnec-
tion. During the quantum vortex-vortex reconnection or
collision and vortex self-interaction, the vortex lines are
sharply distorted, supporting large amplitude Kelvin waves
(large relative to the wavelength). The Kelvin wave modes
couple to generate Kelvin waves of smaller and still
smaller wavelength, emitting phonon radiation in the pro-
cess [1,2]. This Kelvin wave energy cascade continues
until one reaches the shortest operable scale, e.g., a
k-space cutoff on the order of half the inverse the mean-
free path length in helium II or ultracold quantum gases or
the grid scale in simulations. For the k dependence of the
Kelvin wave cascade in quantum turbulence, one antici-
pates a power law in the incompressible kinetic energy
spectrum: EðkÞ � k��, for k � ��1, where the exponent
is here determined to be � ¼ 3:00. There has been consid-
erable effort to devise theories and methods [1,2,7] to
predict this exponent’s value as well as to predict the
incompressible kinetic energy spectrum in the transition
region ð��Þ�1 & k & ��1 between the Kolmogorov and
the Kelvin wave cascade spectra.

Gross-Pitaevskii equation.—At sufficiently low tem-
peratures, the ground state wave function ’ of a BEC
can be described by the (normalized) GP equation

i@t’ ¼ �r2’þ aðgj’j2 � 1Þ’: (1)

We have introduced two parameters in (1) that are useful in
our numerical simulations: a is simply a spatial rescaling
parameter to enhance the grid resolution of the vortex core,
and g is a measure of the strength of the nonlinear coupling
term in GP. Unlike the Navier-Stokes equation for classical
turbulence, the GP equation is an Hamiltonian system: the
total energy ETOT ¼ const. It is well known [8] that the
Madelung transformation ’ ¼ ffiffiffiffi

�
p

ei� on the GP equation

results in compressible inviscid fluid equations for the
density � ¼ j’j2 and velocity v ¼ 2r�, with the appear-
ance of quantum pressure terms in the momentum and
energy equations. TheETOT can be split into incompressible
and compressible kinetic energies, an internal energy, and a
quantum energy [9]:

ETOT ¼ E
comp
kin ðtÞ þ E

incomp
kin ðtÞ þ EintðtÞ þ EquðtÞ ¼ const:

(2)

Typically, the GP equation has been solved numerically
by the split Fourier time method [10]. In the seminal work
of Nore, Abid, and Brachet [11], the GP equation was
solved on a 5123 grid and their incompressible kinetic

energy spectra while not incompatible with the

Kolmogorov k�ð5=3Þ scaling did not unequivocally prove

the k�ð5=3Þ scaling. Barenghi [2] and Kobayashi and
Tsubota [1] attributed this to the presence of the Kelvin
wave cascade. The Tsubota group [1] introduced a wave-
number-dependent dissipative term into their simulations
to damp out wave numbers on the order of the vortex core.
While this suppresses the Kelvin wave cascade on the
quantum turbulence, it also leads to a time decay in both
the total number and total energy ETOT. To circumvent the
decay in the total number, they add a time-varying chemi-
cal potential in the GP equation although the total energy
still decays. Most of their simulations were restricted to a
5123 grid and did not yield a convincing incompressible

kinetic energy spectrum of k�ð5=3Þ for this augmented GP
equation. These earlier simulations could not (nor did not
want) to resolve the Kelvin wave cascade regime and its
spectral power.
In this Letter, we, for the first time (to our knowledge),

perform very high grid resolution runs (up to 57603) of the
Hamiltonian GP equation to resolve the quantum Kelvin
wave cascade. We use a novel unitary quantum algorithm
whose solution naturally exhibits three power-law regions

forE
incomp
kin ðkÞ: for small k the Kolmogorov k�ð5=3Þ spectrum

while for high k a Kelvin wave spectrum of k�3. A transi-
tional power law on the order of k�6 to k�7 joins these two
spectral regions. For very large k, the Kelvin wave power-
law spectrum, along with consequent phonon emissions, is
cutoff by the lattice.
Unitary quantum lattice gas algorithm.—To recover the

GP equation in 3þ 1 dimensions, we need only specify
2 complex amplitudes per point x on a cubic lattice

c ðx; tÞ ¼ �ðx; tÞ
�ðx; tÞ

� �
: (3)

At each point, these excited state probability amplitudes
are entangled by a collision operator of the form

C ¼ eið�=4Þ�xð1��xÞ; (4)

where the Pauli spin matrices are

�x¼ 0 1
1 0

� �
; �y¼ 0 �i

i 0

� �
; �z¼ 1 0

0 �1

� �
: (5)

With n ¼ 1
2 ð1� �zÞ and �n ¼ 1

2 ð1þ �zÞ, the local qubit

entanglement is then spread throughout the lattice by
streaming operators

S��x;0 ¼ nþ e��x@x �n; S��x;1 ¼ �nþ e��x@xn; (6)

unitarily shifting the components of c along��x, respec-
tively. In particular, let us consider the evolution operator
for the 	th component of c . Our quantum algorithm
interleaves the noncommuting collide and stream opera-
tors, i.e., ½S�x;	; C� � 0,

Ix	 ¼ S��x;	C
yS�x;	C; (7)
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where Cy is the adjoint of C and 	 is either 0 or 1
corresponding to streaming either the � or � component
of c in (3). Since j�xj is small, (7) is close to unity.

Consider the following evolution operator for the 	
component of c :

U	½�ðxÞ� ¼ I2x	I
2
y	I

2
z	e

�i"2�ðxÞ; (8)

where " is a small perturbation parameter and � will be
specified later. With this evolution operator, the time ad-
vancement of the state c is given by

c ðx; tþ �tÞ ¼ U	½��c ðx; tÞ: (9)

After considerable algebra, it can be shown that, for the
particular sequence of unitary collide, stream, and phase-
rotation operators in (8), one obtains the following quan-
tum lattice gas equation on expanding in ":

c ðx; tþ �tÞ ¼ c ðx; tÞ � i"2
�
� 1

2
�xr2 þ�

�
c ðx; tÞ

þ ð�1Þ	"3
4

ð�y þ �zÞr3c ðx; tÞ þOð"4Þ;
(10)

where 	 ¼ 0 or 1. Since the order "3 term in (10) changes
sign with 	, one can eliminate this term by using a sym-
metrized evolution operator

U½�ðxÞ� ¼ U1

�
�

2

�
U0

�
�

2

�
: (11)

Under diffusion ordering �t� "2, in the scaling limit
½c ðx; tþ�tÞ � c ðx; tÞ� ! "2@tc ðx; tÞ, the quantum map
c ðx; tþ �tÞ ¼ U½�ðxÞ�c ðx; tÞ leads to a representation
of the two-component parabolic equation

i@tc ¼ ð�1
2�xr2 þ�Þc þOð"2Þ; (12)

where we still have not specified the local generator�. To
see an emergent GP equation (1), one simply rescales the
spatial grid r ! a�1r, contracts the two-component field
c to the (scalar) BEC wave function ’

’ ¼ ð1; 1Þ � c ¼ �þ �; (13)

and chooses � ¼ gj’j2 � 1:

i@t’ ¼ �r2’þ aðgj’j2 � 1Þ’þOð"2Þ: (14)

Several comments are in order here. (i) Our unitary
algorithm precisely reproduces the Hamiltonian nature of
(1). No artificial numerical dissipation is introduced by our
reversible algorithm. (ii) While the quantum lattice algo-
rithm is ostensibly second-order accurate, it turns out that
its actual accuracy approaches pseudospectral accuracies.
Unitarity causes detailed-balanced collisions in the meso-
scopic representation and yields Onsager reciprocity.
(iii) This quantum lattice gas code with an interleaved

unitary collide-stream sequence and operator e�i"2� was
benchmarked against exact collisions of scalar and of
vector soliton solutions of the 1D and 2D nonlinear
Schrödinger equation [12,13] as well as Korteweg–

de Vries solitons [14]. (iv) Since our quantum algorithm
consists of local collisions and information streaming to
the nearby grid points, it is ideally parallel. In fact, we have
seen no saturation in performance up to the maximum
number of cores available to us: 12 288 cores on the
CRAY XT-5 and 163 840 cores on the IBM Blue Gene/P.
(v) While not stressed here, our quantum algorithm is an
exact quantum simulation suited to quantum computing
when it becomes available; two qubits represent the c field
at a point instead of two complex amplitudes in (3) and the
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FIG. 2 (color online). The incompressible kinetic energy spec-
tra for a periodic 12-vortex set with a ¼ 0:02, and an initial core
inner radius is approximately � ¼ 10 lattice units. The linear
regression fits for power-law k�� yield �0s given in Table I.
There are 3 distinct spectral regions: (a) k�ð5=3Þ Kolmogorov
energy cascade for small k, (b) steep semiclassical transition
region for intermediate k, and (c) k�3 Kelvin wave cascade for
large k. The Kolmogorov cascade becomes robust for large grids,
as seen by the insets.
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operator (4) would be implemented by a 2-qubit
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
quantum gate creating pairwise entanglement between the
on-site qubits. This entanglement spreads through the qu-
bits by (6).

Quantum turbulence simulations.—Most of our simula-
tions had as initial conditions a set of 12 straight line
vortices consisting of three groups of 4 vortices [9], with
the group axes in the x, y, and z directions. Because the
space is periodic, these lines are loops on a torus. The
groupings by 4 ensures periodicity. Asymptotically, one
can determine the form of a straight line vortex with a unit
winding number using a Padé approximate to the steady
state solution of (14), following Berloff [15]. In polar
coordinates ðr; 
; zÞ, one such straight line z vortex (cen-
tered at the origin) is

’ðrÞ ¼ ei


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ar2ð12þ ar2Þ

g½384þ ar2ð128þ 11ar2Þ�

s
: (15)

Asymptotically, j’j ! 1=
ffiffiffi
g

p
as r ! 1 and j’j � r

ffiffiffiffiffiffiffiffiffi
a=g

p
as r ! 0. For a typical isolated core, its inner radius scales

as the quantum coherence length � � ð2=aÞ1=2, and its
outer radius scales as ���. Two or more perpendicularly
oriented line vortices are unstable, and vortex entangle-
ment ensues from such initial conditions.

The incompressible kinetic energy spectrum can be
extracted from the conserved total energy, following
Nore, Abid, and Brachet [8]. On the top of Fig. 2, we
present such spectra from our simulation of the GP equa-
tion on a 20483 grid for a ¼ 0:02 and g ¼ 3 at evolution
time t ¼ 8000 and t ¼ 20 000 (in lattice units). The power
laws are determined by linear regression. Thus, within a
single simulation run, we find that the incompressible
kinetic energy spectrum has three distinct power-law k��

regions that range from the classical turbulent regime of
Kolmogorov for ‘‘large’’ scales (greater than the outer
radius of quantized vortex cores) to the quantum Kelvin
wave cascades at the ‘‘small’’ scales (smaller than the inner
radius of the individual quantized cores). There is a semi-
classical region adjoining the Kolmogorov and Kelvin
spectra. On an L3 grid, the wave number corresponding

to the core’s inner radius is kinner 6 ð ffiffiffiffi
D

p
=2Þ L� , while the

outer radius wave number is kouter 6 kinner=�, whereD ¼ 3
is the number of spatial dimensions [9]. These three power-
law regions are quite robust as shown in the middle and

bottom of Figs. 2 from simulations on larger grids: 30723

and 57603 and different initial conditions. The exponent �
for the spectral k�� are given in Table I, together with the
range of k for these regions. An inset linear regression fit
for the Kolmogorov range is shown in Fig. 2. The Kelvin
wave cascade is cut off by the lattice.
We thank S. Ziegeler for help with graphics. We used the

CRAY XT-5, 12 288 cores at NAVO, and 10 240 cores at
ARL. We are grateful for help from the administrative staff
of NAVO and ARL.
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