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If you’re a new biological oceanographer who is interested
in the role of phosphorus in phytoplankton productivity and
make up 10 L of a Redfield-like growth media with 3.2 mg
nitrate-nitrogen and 0.3 mg phosphate-phosphorus, but the
phytoplankton won’t grow, you’ve made a systematic error.
The Redfield ratio (Redfield et al. 1963) is atomic, not weight-
based, and therefore your solution has an atomic N:P ratio of
16:0.7, not the 16:1.5 that you had planned for a phosphorus-
enriched culture. Similarly, if you were analyzing a seawater
sample for cadmium using ICP-MS and hadn’t accounted for
isobaric molybdenum interference, you’d overestimate the
actual concentration of cadmium in your sample. In both
cases, you’re not getting the “right” number, either because of
miscalculations or from an analytical error. Getting the “right”
number in chemical oceanography may seem like an obvious
goal, but what is right? Is it getting the same value every time

you analyze your sample, or the real value—something that
you can trace to an absolute standard? The former is precision,
the measurement of random errors, whereas the latter is accu-
racy, the measurement of random and systematic errors. A pre-
cise value is not necessarily accurate, but good accuracy
requires good precision. The problem with determining the
right or correct concentration of a chemical constituent in sea-
water is finding the best means to evaluate accuracy. System-
atic errors can occur at each stage in the process of acquiring
a sample, then storing it, and finally to analyzing it. Oceanic
trace metals are in the nano- to picomolar concentration
range, and thus working on metal ships assures that contami-
nation is probable. In fact, sampling contamination was
shown to be a factor that affected the accuracy of most trace
metal data until the late 1970s (e.g., Bruland et al. 1979). From
the analytical perspective, seawater is not a simple matrix, its
high ionic strength makes analysis a difficult task, and com-
bined with very low concentrations for constituents like trace
metals, the quest for accuracy is made even harder.

Most chemical oceanographers have used certified refer-
ence materials to establish accuracy at the analytical stage of
their studies. Nevertheless, many of these are not actual
marine materials, but close substitutes. In this respect, the
need for appropriate certified marine reference materials
(water and particles) was thoroughly addressed by the US
Committee on Reference Materials for Ocean Science (NRC
2002), although very few of these materials have been pro-
duced to date. Interestingly, numerous laboratories are now
determining trace element isotopes in seawater (e.g., Lacan et
al. 2006, John and Atkins 2012), and it is likely that these
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Abstract
Intercalibration has a strict metrological definition, but in brief, it’s an open sharing of methods and results

between laboratories to achieve the most accurate data with the fewest random and systematic errors. In the
field of chemical oceanography where concentrations of many constituents can be in the nano- to picomolar
range, the salt water matrix can be difficult to analyze, and knowing the exact concentrations, or even chemi-
cal forms, of biologically required elements is essential, intercalibration is a very relevant and needed tool.
Implementing it is not simple because errors can occur at any step in the process of taking a water or particle
sample, handling and processing it, and finally analyzing it and treating the resulting data. The international
GEOTRACES program provides a good example of implementing intercalibration for studies of dissolved and
particulate trace elements and isotopes, and is described here.
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efforts may become limited by the unavailability of appropri-
ate certified isotope reference materials. These isotope materi-
als were not even addressed by the NRC Committee. There are
notable exceptions to the lack of reference materials to assess
accuracy, one being work by scientists examining the carbon
dioxide system who spent considerable time and efforts pro-
ducing appropriate seawater reference materials for total dis-
solved inorganic carbon and total alkalinity (e.g., Dickson
1998; Dickson et al. 2003). Another example is the marine dis-
solved organic carbon (DOC) reference materials that have
been produced and distributed to establish the analytical accu-
racy of DOC determinations (Sharp et al. 2002). Both the CO2

and DOC standards evaluate analytical accuracy, but sampling
and sample handling can tremendously alter a sample’s origi-
nal composition and therefore accuracy. Toward this end, a
group of chemical oceanographers studying marine colloids
set up a program to evaluate how different cross-flow filtration
methods affect the concentration of organic carbon (Buesseler
et al. 1996) and other colloidal parameters (e.g., Fe and Al;
Reitmeyer et al. 1996).

The marine trace element community has long recognized
problems with the sampling and analyses of metals at sub-
nanomolar levels. In 1978, a large scale (>20 laboratories) eval-
uation of analytical variability for seven trace metals (Cd, Cu,
Fe, Pb, Mn, Ni, and Zn) used North Atlantic seawater collected
and pooled/homogenized for this purpose (Bewers et al. 1981).
In retrospect, the seawater was likely contaminated via the
collection and pooling methods, but the results showed that
sample storage (frozen versus acidified) and analytical meth-
ods affected the reported concentrations and precision of the
metals examined, particularly Fe and Zn. One other small
experiment studied multi-trace element precision and accu-
racy in the early 1990s (Landing et al. 1995), but most recent
attention has been focused on only the determination of iron
in seawater. Bowie at al. (2006) presented intercomparison
results from 24 laboratories using seven different analytical
methods that determined the concentration of dissolved iron
in a pooled, 700 L surface water sample from the equatorial
Atlantic. Results from this large experiment showed a minor
loss of dissolved iron during storage, and some of the analyti-
cal methods had systematic differences in the reported iron
concentration compared with others.

The Bowie et al. (2006) study thoroughly covered the ana-
lytical aspects of seawater iron determinations with an inter-
national cadre of participants. Subsequently, the 2006 Sam-
pling and Analysis of Iron (SAFe) program was undertaken to
evaluate the accuracy and precision of dissolved iron mea-
surements from start to finish—sampling to sample analyses
(Johnson et al. 2007). Most of the SAFe goals were accom-
plished on a cruise in the North Pacific with four different
sampling systems (GO-FLO sampling bottles [General Ocean-
ics]) hung on a nonmetallic cable typically made of Kevlar
fibers and triggered with plastic messengers (Bruland et al.
1979; Vane samplers, Bell et al. 2002; CLIVAR (Climate Vari-

ability program) rosette system with GO-FLO bottles; Meas-
ures et al. 2008; and a surface pumping system; Bruland et al.
2005), 8 analytical methods (e.g., shipboard cathodic strip-
ping voltammetry and flow injection analysis; preconcentra-
tion and inductively coupled plasma-mass spectrometry at
shoreside laboratories), and 18 individual laboratories from 8
different countries. In addition to examining sampling meth-
ods and shipboard determinations, over 600 L of 0.2 μm fil-
tered seawater were collected from surface waters, acidified,
and mixed in two linked 500 L, fluorinated low density poly-
ethylene tanks, and then placed in 0.5 L low density polyeth-
ylene bottles; this was repeated with water from 1000 m
depth. These samples allowed more laboratories to participate
in the SAFe program and the remaining bottles to become
long-term reference materials. Perhaps the most significant
aspect about this seminal cruise was that a true intercalibra-
tion was accomplished—all participants shared their data,
found differences or problems, and then modified their pro-
cedures so that everyone got the same accurate results. Indeed,
the metrological definition of intercalibration is “the process,
procedures, and activities used to ensure that the several labo-
ratories engaged in a monitoring program can produce com-
patible data. When compatible data outputs are achieved and
this situation is maintained, the laboratories can be said to be
intercalibrated” (Taylor 1987).

The SAFe program found that most clean sampling systems
obtained good, uncontaminated samples, but handling steps
such as filtration and acidification could change results (e.g.,
iron-organic complexes may not break down and therefore
affect analytical recoveries; Lohan et al. 2006). Analytical off-
sets due to contamination from handling, reagents, or artifacts
from chemical speciation (not only organic complexation, but
also redox state) were also observed. This intercalibration
allowed a large group of investigators to develop and test their
iron methods, but another benefit of SAFe was the creation of
deep and surface seawater reference samples for which there is
a consensus concentration of dissolved Fe (and now other
trace elements: http://www.geotraces.org/science/intercalibra-
tion/322-standards-and-reference-materials) based on reports
from intercalibrated laboratories. These consensus reference
samples are available for other laboratories to validate their
analytical methods. The SAFe intercalibration was limited to
only one element and phase, dissolved iron, but chemical
oceanography is clearly more encompassing than one element
and phase. The GEOTRACES program is ongoing, provides a
good example of how intercalibration can be applied to a large
range of parameters in both the particulate and dissolved
states, and is reviewed below.

Assessment: GEOTRACES Intercalibration Program
GEOTRACES is an international program whose mission is

“To identify processes and quantify fluxes that control the dis-
tributions of key trace elements and isotopes (TEIs) in the
ocean, and to establish the sensitivity of these distributions to
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changing environmental conditions” (GEOTRACES 2006).
The key TEIs in GEOTRACES were selected on the basis of
being micronutrients, paleoceanographic proxies, or tracers of
sources, removal, transport, and contamination: Fe, Al, Zn,
Mn, Cd, Cu, δ15N-nitrate, δ13C, 230Th, 231Pa, Pb isotopes, and
Nd isotopes. There are many other TEIs critical to the success
of GEOTRACES, but these listed are considered the minimum
to achieve the GEOTRACES’ mission and are measured in both
the dissolved and particulate phases. The GEOTRACES pro-
gram began with a thorough intercalibration of all aspects of
TEI sampling and analyses, and will continue throughout the
10+ year life of the program to ensure precision and accuracy,
overseen by an international Standards and Intercalibration
Committee.

The first effort in GEOTRACES intercalibration was under-
taken by the USA on two cruises in 2008 (Atlantic) and 2009
(Pacific), but was international in scope and participation
(Table 1). The overall goals for these cruises were to (1) test the
precision and accuracy of the sampling systems, sample han-
dling, and analytical methods for as many dissolved and par-
ticulate TEIs as possible; (2) evaluate aerosol and rainwater
sampling and analyses; and (3) obtain and bottle >500 L of 0.2
μm filtered deep (2000 m) and surface seawater to allow an
international intercalibration for many TEIs and to supple-
ment/replace the SAFe consensus reference samples. The
Atlantic cruise in June-July 2008 (Figs. 1 and 2) occupied the
Bermuda-Atlantic Time Series (BATS; 31°50′ N, 64°10′ W) sta-
tion that was selected for its stratified, oligotrophic surface
waters (low nutrient, low bioactive trace elements, low parti-
cle concentrations) and the wealth of existing TEI data (e.g.,
Weiss et al. 2003; Sedwick et al. 2005). An additional station at
the shelf break off the eastern USA coast (37°02′ N, 74°25′ W)

was occupied to provide a contrasting environment with
higher particle abundance and TEI concentrations, particu-
larly short-lived radionuclides. Major efforts at the Atlantic
stations were evaluating the US trace element sampling system
for the acquisition of hydrographically representative and
contamination-free samples for dissolved and particulate TEIs,
and intercalibrating in-situ pumping systems for acquiring
large volume, particulate TEI samples.

In May-June 2009 (Fig. 3), the SAFe station in the North
Pacific Ocean (30° N, 140° W) was occupied due to its very low
surface concentrations of many TEIs and the considerable TEI
data base at this location (e.g., Johnson et al. 2007). In paral-
lel to the Atlantic cruise, a coastal station in California’s Santa
Barbara Basin (34°16.45′ N, 120°02.55′ W) was selected for its
higher dissolved and particulate TEIs and its strong redox gra-
dients, with suboxic waters in the deepest 100 m (Sholkovitz
and Gieskes 1971; Reimers et al. 1990). This allowed not only
the sampling system to be tested with high chemical depth
gradients under such conditions, but also handling procedures
for redox sensitive elements such as Fe to be evaluated.

Perhaps what sets GEOTRACES apart from previous large
chemical oceanographic programs such as GEOSECS (e.g.,
Broecker and Peng 1982) is that particles are sampled in addi-
tion to dissolved constituents. Therefore, particular emphasis
during the intercalibration was placed on evaluating the dif-
ferences between particulate TEI sampling via filtration using
GO-FLO bottle sampling (up to 11 L filtered) versus those from
in-situ pumping such as the well-established MULVFS appara-
tus (Multiple Unit, Large Volume Filtration System; Bishop et
al. 1985) in the upper 1000 m or independently powered units
with a variety of filtration and handling procedures at greater
depths. Given that many future GEOTRACES cruises may not
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Table 1. Participant summary for GEOTRACES Intercalibration Cruise Program, including those who participated directly in the cruises
and those receiving and analyzing samples. 

TEI (Diss and Part) Nr of laboratories Countries

Al* 8 Canada, China, Japan, Netherlands, UK, USA
Cd* 13 Australia, Canada, Germany, Japan, UK, USA
Cu* 16 Australia, Canada, Germany, Japan, UK, USA
Fe* 20 Australia, Belgium, Bermuda, Canada, China, Germany Japan,

Netherlands, UK, USA
Mn* 12 Canada, Japan, Netherlands, UK, USA
Zn* 13 Australia, Canada, Germany, Japan, UK, USA
13C* 4 USA, China, Japan
15N* 8 Canada, France, Germany, Japan, USA
230Th* 11 Canada, France, Germany, Japan, Sweden, UK, USA
231Pa* 11 Canada, France, Germany, Japan, Sweden, UK, USA
Pb isotopes* 5 France, Germany, UK, USA
Nd isotopes* 9 France, Germany, India, Japan, Sweden, Taiwan, USA
Other TEI (e.g., Co, Ni, 210Pb, Pu, Ra, REE, 234Th) 59 Australia, Belgium, Canada, China, Denmark, France, Germany, India,

Japan, Monaco, New Zealand, S. Korea, Spain, Taiwan, UK, USA
*Listed in the GEOTRACES Science Plan as a “key parameter.”
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Fig. 2. Participants on the second leg of the 2008 GEOTRACES Intercalibration cruise in the North Atlantic Ocean aboard R/V Knorr. 

Fig. 1. Participants on the first leg of the 2008 GEOTRACES Intercalibration cruise in the North Atlantic Ocean aboard R/V Knorr. 

Fig. 3. Participants on the 2009 GEOTRACES Intercalibration cruise in the North Pacific Ocean aboard R/V Knorr. 



have in situ pumps due to costs and station time, comparisons
between low volume rosette bottle sampling and the large vol-
ume pumps were critical.

The scope of the GEOTRACES intercalibration cruises was
large enough that none of the three lead investigators (G. Cut-
ter at Old Dominion University, K. Bruland at UC Santa Cruz,
and R. Sherrell at Rutgers University) had expertise to cover all
TEIs, so a group of 18 “Elemental Coordinators” was put in
place to oversee implementation and interpretation of final
results from their respective, international TEI communities.
More significantly, each TEI community established accept-
ance criteria as metrics to judge whether intercalibration was
achieved for a given TEI (e.g., 5% accuracy and precision). In
this respect, it is important to re-emphasize that GEOTRACES,
and the intercalibration program, is international in scope
(Table 1). After each cruise and subsequent analytical work, a
workshop was held to present results for the entire suite of
TEIs to all participants, and the GEOTRACES S&I Committee,
to make an overall assessment of general sampling procedures
and the success, or failure, for each TEI examined. One out-
come from these workshops is the collection of papers found
in the special issue of Limnology and Oceanography: Methods,
Volume 10, Intercalibration in Chemical Oceanography. These
articles include the following: evaluating the performance
(hydrographic fidelity, degree of contamination) of the US
Sampling system (Cutter and Bruland 2012; Fitzsimmons and
Boyle 2012); comparing the composition and elemental con-
centrations of particles collected via in situ pumping systems
and GO-FLO bottles (Bishop et al. 2012; Planquette and Sher-
rell 2012); optimizing the collection and handling, and then
intercalibrating samples for neodymium isotopes and rare
earth elements (van de Flierdt et al. 2012; Pahnke et al. 2012),
anthropogenic radionuclides (Kenna et al. 2012), 210Pb and
210Po (Church et al. 2012; Baskaran et al. 2013); radium iso-
topes (Charette et al. 2012); the suite of Th and Pa in the dis-
solved and particulate states (Anderson et al. 2012; Auro et al.
2012; Maiti et al. 2012); atmospheric aerosols (Buck and Pay-
tan 2012; Morton et al. 2013); organic complexation of Fe and
Cu (Buck et al. 2012); and a variety of other trace metals and
their isotopes (Boyle et al. 2012; Lamborg et al. 2012; Sharma
et al. 2012; Zurbrick et al. 2012).

Discussion
GEOTRACES is but one example of a program that has

intercalibration as an essential component of field-based
efforts. The standing GEOTRACES Standards and Intercalibra-
tion Committee was initiated to ensure precision and accuracy
throughout the program’s life. To facilitate consistent sam-
pling and sample handling procedures between cruises and
participating laboratories, the S&I Committee in collaboration
with the Elemental Coordinators created a set of written pro-
tocols for each suite of TEIs (“Sampling and Sample Handling
Protocols for GEOTRACES Cruises,” http://www.geotraces.org/
libraries/documents/Intercalibration/Cookbook.pdf) to which

cruise participants can refer. The protocols are updated bienni-
ally. It is important to note that only a few specific analytical
methods are listed in these protocols in order to not stifle the
development of newer, better methods. Any new analytical
procedure only needs to intercalibrate with existing, estab-
lished methods. In a similar fashion, exact sampling systems
are not specified as the only acceptable ways to acquire samples
as long as they can be intercalibrated with existing methods.

To ensure full intercalibration throughout the program, each
GEOTRACES transect across one of the world’s ocean basins
occupies at least one “crossover station” that also has been sam-
pled by another GEOTRACES cruise. The results for each TEI are
then compared between the investigators from both cruises to
determine if any significant differences in data are observed and
then resolved based on the quality objectives set by the Ele-
mental Coordinators; the net result is complete intercalibration
between the two cruises. These intercalibrated data are submit-
ted to the S&I Committee for final review and compiled in the
GEOTRACES International Data Assembly Centre
(http://www.bodc.ac.uk/geotraces/). The advantage of having
crossover stations is that it includes all steps—from sampling to
analysis to data reduction. However, if a cruise cannot occupy a
crossover station, the protocols require more rigorous sampling
at one station, including multiple hydrocasts and from these
collecting multiple samples from 3 different depths, and the
resulting samples then distributed to multiple laboratories for
TEI determinations. Although these requirements cannot inter-
calibrate an individual sampling method, they at least help to
evaluate sample handling to analyses. The international GEOT-
RACES program has tried from its beginning to incorporate pro-
cedures to acquire the most precise and accurate data possible,
keeping in mind the wide variety of countries and their labora-
tories who are participating. The GEOTRACES intercalibration is
an ongoing process and hopefully its lessons can provide a
roadmap for other developing programs.

In the science of metrology, intercalibration is seen as an
essential component to its successful practice. The discoveries
of trace element-biological interactions in the ocean on a
molecular level (e.g., Bruland et al. 1991; Saito et al. 2008)
show that we really have to measure the elemental stoichiom-
etry (e.g., Redfield ratio) correctly. Thus, getting the “right
number” for the practice of modern chemical oceanography is
essential. As a community, we must continue to develop and
test new sampling and analytical methods through intercali-
bration to keep up with, and make, new discoveries.
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