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EFFECTS OF THE FISHERY ON THE NORTHERN QUAHOG (¼HARD CLAM,

MERCENARIA MERCENARIA L.) POPULATION IN GREAT SOUTH BAY,

NEW YORK: A MODELING STUDY

J. N. KRAEUTER,1 J. M. KLINCK,2 E. N. POWELL,1 E. E. HOFMANN,2 S. C. BUCKNER,3

R. E. GRIZZLE4 AND V. M. BRICELJ5

1Haskin Shellfish Research Lab, Institute of Marine and Coastal Sciences, Rutgers University, 6959
Miller Avenue, Port Norris, New Jersey 08349; 2Center for Coastal Physical Oceanography, Crittenton
Hall, Old Dominion University, Norfolk, Virginia 23529; 3Town of Islip Environmental Control, 401
Main Street, Islip, New York 11751; 4Jackson Estuarine Laboratory, 85 Adams Point Road, University of
New Hampshire, Durham, New Hampshire 03824; 5Institute for Marine Biosciences, National Research
Council, 1411 Oxford Street, Halifax, Nova Scotia Canada B3H 3Z1

ABSTRACT Anumerical bioenergetics simulationmodel based on the physiological processes affecting individual clams across

a range of phenotypes describing a cohort has been developed and applied to the conditions in Great South Bay, New York. The

clam population is relatively sensitive to food and to a lesser extent to temperature within this system. The timing of temperature

and food in the spring, and more importantly in the fall, can increase population sensitivity beyond the effects of one factor

operating alone. The effects of fishing on the stocks in proportion to the size structure present, and as directed fisheries on various

size classes (littleneck, cherrystone, chowder) was simulated. Recruitment overfishing was responsible for the stock decline in the

1970s and 1980s, but the continued decline into the late 1990s and 2000s cannot be attributed to fishing alone. Recruit-per-adult

declined after the mid 1990s. Modeled stock recovery times under constant environmental conditions are on order of 10–15 or

more years depending on the exploitation rate. Under base conditions a proportional fishery that removes approximately 25% of

the stock, or a littleneck fishery that removes approximately 37.5% of that size class annually would provide the best economic

returns under constant average environmental conditions. Slightly less harvest would be desirable to avoid overfishing in years of

less than optimal environmental conditions.

KEY WORDS: quahog, hard clam, Mercenaria, fishery, model

INTRODUCTION

The northern quahog (¼hard clam) (Mercenaria mercenaria)
historically supported a large fishery in Great South Bay, NY

(GSB), but landings declined dramatically after the early 1980s
(Fig. 1). The extent of the fishery and its social, political, and
economic importance to the region have been well documented

(COMSA 1985, Kassner 1988, Kassner & Squires 1991,
McHugh 1991, Schubel et al. 1991). The importance of the
fishery to the local economy resulted in collection of substantial
data on the biology, ecology, distribution and abundance of this

species. Suffolk County, NY, has supported collection of water
column data (Nuzzi &Waters 1999), and the towns of Babylon,
Brookhaven and Islip, NY, have supported fishery-independent

stock evaluations of hard clams in their respective waters. In
addition, the US Environmental Protection Agency (EPA)
initiated GSB-wide studies during the late 1970s and early

1980s that provide a synoptic evaluation of hard clam stocks
and information on potential predators (WAPORA, Inc. 1981,
WAPORA, Inc. 1982).

The hypotheses proposed to explain the decline in hard clam
abundance in GSB invoke a wide range of potential causes.
Overfishing is perhaps the most obvious potential explanation
for the decline. Ascribing the observed declines to this single

cause may not be correct as other factors may have contributed
to produce the present diminished clam population. These other
factors potentially contributing to the continued low clam

abundance include:

environmental changes that arise from general warming of GSB

water due to higher than average winter temperatures,
altered circulation patterns (EPA 1985), change in quantity and

timing of freshwater inflow due to installation of sewage

treatment plants (Dennison et al. 1991, WAPORA, Inc.
1981),

a change in nutrient loading and composition of GSB waters
due to increased treatment of sewage (Dennison et al. 1991,

EPA 1985)
modifications to the hard clam food supply through changes in

the phytoplankton assemblages and/or phytoplankton pro-

duction resulting in a reduction in hard clam growth rate,
changes in predation rates and/or predator assemblages result-

ing from the modified conditions (Polyakov et al. 2007),

a decreased recruitment of clams (Kraeuter et al. 2005).

Recently, attention has been given to the potential effects of
brown tide (Aureococcus anophagefferens), which appeared in

GSB in the mid1980s (Cosper et al. 1987, Nuzzi &Waters 1989).
The occurrence of blooms of this toxic alga may result in
reduced feeding of adult clams and thus reduced fecundity and

reduction in growth rate of juvenile clams (Greenfield et al.
2002, Bricelj et al. 2004). These reductionsmaymake themmore
susceptible to predation or starvation. In addition, reduced

growth or starvation of hard clam larvae (Bricelj &MacQuarrie
2007, Padilla et al. 2006) may affect recruitment.

Modeling provides one approach for investigating the

potential for multiple variables and/or their interactions to
reduce hard clam populations and to identify and scale the
effects of these factors, working singly or in combination. This*Corresponding author. E-mail: Kraeuter@hsrl.rutgers.edu
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study uses an existing model that was developed to simulate the
growth and development of hard clams in GSB (Hofmann et al.
2006) to investigate the effects of fishing on the hard clam
population. The focus is on fishing, because this is themost cited

reason for the decline in GSB hard clam populations. The
effects of other factors such as environmental variability and
brown tide can then be scaled relative to that of fishing. The

extensive fishery-independent data sets on hard clam abun-
dance collected by the Town of Islip and the GSB hard clam
landings data (Fig. 1) are used to evaluate the simulation results.

Background and Data Sets

Great South Bay

Great South Bay is a shallow (mean depth ;2 m), high

salinity estuary with sand as the dominant (95%) habitat, but
with local areas of muddy substrate near river mouths, and
areas of eelgrass (Zostera marina) near the islands along the

southern shore (Polyakov et al. 2007). Much of the early
physical and biological data for GSB have been summarized
by Schubel et al. (1991). The estuary has high phytoplankton

production with average values of 450 g C m–2yr–1 (Carpenter
et al. 1991). Since the middle 1980s there have been repeated
blooms of Aureococcus anophagefferens (brown tide) (Cosper
et al. 1987, Nuzzi & Waters 1989, Nuzzi & Waters 2004).

Because freshwater input into the system is limited, historic
salinity changes have been dramatic and based on the opening,
closing and stabilization of inlets (Schubel et al. 1991). Histor-

ically, openings and closings, among other perturbations,
have caused significant changes in hard clam and oyster stocks.
The most significant event responsible for the increase in

clams stocks took place in 1931 when a new inlet formed in
Moriches Bay and increased salinity in the eastern part of GSB
(McHugh 1991). Stabilization ofGSB inlets began in 1940 when
rock jetties were built at Fire Island Inlet and in 1958 at

Moriches Inlet. These stabilizations have maintained the bay
salinities at the higher end of the historic spectrum (McHugh
1991).

MATERIALS AND METHODS

Great South Bay Hard Clam Fishery

The fishery for hard clams in Great South Bay is conducted
by individual baymen from small boats using either clam tongs
or rakes to harvest the clams (Kassner & Squires 1991). Licenses
for commercial or recreational clamming are issued by the

Town of Islip, but only landings by commercial harvesters are
recorded by the State. The number of licenses generally follows
the abundance of clams (Fig. 2), but in all likelihood, most of

the clams are harvested by relatively few individuals, who work
full time on the water and rely on the hard clam for a significant
portion of their income (Conrad 1982, Kassner & Squires 1991).

Commercial licenses peaked in 1976 at 2325 (Fig. 2). By 2001 a
nearly 10-fold drop had occurred and only 227 commercial
harvesters were licensed. At one time a significant recreational
fishery was also present in GSB. In the Town of Islip, 2525

recreational harvesters were licensed in 1975, but these too
declined so that by 2001 only 299 permits were sold (Fig. 2). The
license data for Islip mirror those of the other towns surround-

ing GSB. It is difficult to estimate the numbers of commercial or
recreational harvesters who are not licensed, but it is likely that
this could be significant.

Hard Clam Sampling Methods

The data from the Town of Islip provide the longest and
most comprehensive survey that is available for hard clam
abundance and distribution in GSB. Thus these data are

assumed to be representative of the hard clam population
conditions in GSB, and landings data (Fig. 1) indicate that
Islip is representative of bay-wide harvest trends. Islip has about

6,000 hectares of bay bottom under its management. Histori-
cally, 80% of the Town’s waters were open for harvest of clams
(certified), 10% were closed because of pollution (restricted or
prohibited), and 13% were leased. Since 1978, Islip has

conducted an annual, fishery-independent survey of its clam

Figure 1. Hard clam (Mercenaria mercenaria) commercial landings from Great South Bay and those limited to the Islip, NY region.
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populations (Buckner 1984), and methodology has remained
relatively unchanged since its inception. The survey is based on
a grid system in which town waters (approximately bounded by
40�39#N, 73�17#W, 40�43#N, and 73�10#W) are divided into

grids 400 m on each side. Duplicate grab samples were removed
from a randomly chosen area within each grid. The number and
sizes of all live clams and all articulated valves were recorded.

The survey was typically conducted using a barge with a
commercial clam shell bucket that removed between 0.68 and
1.51 m2 of bottom (Table 1). In most years, either a 0.94- or a

1.02-m2 bucket was used. In years in which a smaller ;0.68-m2

bucket was used, four rather than two grabs were obtained from
each station so the amount of bottom sampled remained

approximately the same. Duplicate samples at each station
were sieved through a 6.4 mm square mesh sieve. This was
changed in 1985 when the use of a sieve with round perforated
stainless steel holes 3.2 mm in diameter was instituted. For all

samples, the numbers were adjusted to a 1-m2 basis for analysis.
All live and dead clams were enumerated, and all live and dead
clams were measured with a caliper to the nearest mm. From the

thickness measurements clams were separated into seed (ages 0,
1, and 2), submarket, and various commercial size classes that
correspond to littleneck (48–66 mm shell length), cherrystone

(67–76 mm SL) and chowder >76 mm SL). From time to time
specimens have been set aside for shell sectioning and aging of
the animals (Buckner 1984 [Islip], Wallace 1991 [Brookhaven],
Laetz 2002 [Islip]). The Islip data clearly show a decline in hard

clam stocks beginning at the time of the initiation of the survey
(Fig. 3).

The Model

Details of the bioenergetic-based numerical model (Fig. 4)

developed for hard clams are given in Hofmann et al. (2006).
Only a summary is given here. The model is based on the
assumption that changes in shell size are related to animal

condition (dry meat biomass/length). Soft tissue weight and

length were calculated independently over time, which allowed
a clam to increase in weight without a corresponding increase in
length. The simulated weight was compared with an average
weight for a given length derived from empirical data. This

estimate of animal condition was then used to indicate the
condition of the modeled animal. An increase in length could
only occur for positive condition.

The hard clam model includes the physiological processes
affecting growth and development of an individual clam, and
these are modified by environmental conditions of temperature,

salinity, food (chlorophyll a), total suspended solids and brown
tide concentration. The environmental condition affected fil-
tration, which increased with clam size and temperature but

was reduced outside optimum temperature and salinity ranges.
Physiological rates were based on clam age and condition.
Respiration was the primary metabolic loss and net production
was apportioned into reproductive and somatic tissue with the

relative allocation being a function of temperature and clam
size. For clams <30 mm all production was allocated to somatic
tissue.

Daily specific natural mortality rates included in the model
were specified to give high, low and moderate levels for small,
early adult and older clams, respectively. Reproductive tissue

was produced when net production and condition were positive
and ambient temperatures were favorable. Spawning occurred
when reproductive tissue reached a specified fraction of body
weight and condition was positive. The parameterizations for

each of these processes are detailed in Hofmann et al. (2006).
The model was initialized with a clam of average size (for

GSB) on January 1 of the clam’s second year. Early in life,

condition; net growth efficiency; and somatic growth were high
(Fig. 5), and by year 3 some animals reproduced. As animals
aged, condition and reproduction began to decline because

more energy was required to maintain the larger biomass. This
relationship caused a reduction in the egg production per unit
of biomass. The coupling of this reduced egg production per

individual with the increased mortality of older clams (see

Figure 2. Hard clam (Mercenaria mercenaria) commercial and personal licenses issued by the town of Islip, NY.
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below) resulted in a decrease in their contribution to recruit-
ment (Hofmann et al. 2006, Fig. 14, see later).

Results from the individual-based model were scaled to the
level of cohorts and populations using probability distributions,

based on a Gaussian distribution, that were based on the range
of variability in hard clam respiration rate and assimilation
efficiency. This process is introduced into the population via the

observed variability in size at age. Clams varied in their growth

efficiency as determined by variations in assimilation and
respiration so that the cohort comprised a range of 64 phe-

noytpes (8 assimilation 3 8 respiration types). The scaling to
cohort and population level used a basic stock recruitment
function that was based on information derived from the Islip
population parameters (Kraeuter et al. 2005).

Hard Clam Population Statistics

License sales and fishery-independent hard clam population
surveys indicate a decline in clam populations along with
landings (Figs. 2 and 3). Harvest data from Islip included the

numbers of clams in various market categories (e.g., littleneck,
cherrystone, and chowder). The Islip survey data were recorded
as the size of individual clams, but bracketed into the various

market categories as well as prefishery-recruits. This allows
direct comparisons to be made between the two data sets.

The Islip survey data (Fig. 3) show that hard clam total

abundance has declined from the earliest period (7.76 m–2 in
1978) to present (1.04 m–2) and that littleneck and larger clams
have declined from 4.1 m–2 in 1978–1.04 m–2 at present and
recruits have declined from 3.66–0.24 (47% vs. 23% of the

total). Since the earliest period, and until the late 1990s, the
numbers of smaller size clams declined, whereas cherrystone
and chowder sizes have remained relatively constant. Little-

necks comprised the most abundant adult size class (40% to
76% of adults) until the late 1990s. Starting in the mid 1980s
the rate of decline of age 1 and 2 clams increased relative to the

other size classes. This decline continued, but mortality on the
age 2–4 clams increased in the mid to late 1990s. An appreciable
decline in larger clam sizes became apparent in the mid-
1990s and continues to the present. The hard clam abundance

data consistently suggest (although often not statistically
significant) that more age 2 clams exist in the population
than age 1 clams even though the sieve size used retains all

clams age 1 and greater (and some fraction of age 0 individuals).
Inadequate survey density or survey bias does not explain
this trend (unpublished data) which remains perplexingly

unexplained.
Fishery data on hard clams typically under-report actual

landings andGSB is no exception (Mirchel 1980, Buckner 1984,

TABLE 1.

Historic record of number of stations and grab size used
in obtaining hard clam (Mercenaria mercenaria) data

for the Town of Islip, NY.

Year Number of Stations Grab size m
2

1978 402 1.03

1979 392 1.03

1980 305 0.68

1981 336 0.68

1982 288 1.02

1983 309 0.84

1984 295 1.02

1985 313 1.02

1986 311 1.02

1987 311 1.02

1988 314 1.02

1989 305 1.02

1990 308 1.02

1991 305 1.02

1992 303 1.02

1993 337 0.94

1994 340 0.94

1995 335 0.94

1996 333 0.94

1997 339 0.94

1998 353 0.94

1999 340 0.94

2000 341 0.94

2001 382 0.94

2002 341 1.51

2003 381 1.51

2004 337 0.929

Figure 3. Survey abundance of hard clam (Mercenaria mercenaria) size classes in Islip town waters of Great South Bay, NY.
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Kassner & Squires 1991, McHugh 1991). Fox (1978) evaluated
the recreational landings in GSB and found that they were >1%
of the commercial production. Because recreational harvest
data are less affected by effort than commercial landings it is

probable that this percentage increased as commercial landings
declined. Mirchel (1980) found that managers and enforcement

personnel believed that 25% to 50% of landings in GSB were
from prohibited waters (those not meeting bacteriological
standards for harvesting shellfish for human consumption).

Based on these dataMirchel (1980) estimated that between 25%
and 35% of GSB landings were from illegal harvests. Buckner
(1984) estimated that the illegal harvest from prohibited waters
amounted to 16% of the commercial landings. What is not

evident from these data is what percentage of the harvest from
prohibited areas is included in the landings data, and what
percentage of the recreational harvest is from prohibited waters.

In addition, there is still a significant recreational fishery, and
under low population abundance, the number of licenses may
not reflect the actual numbers of recreational fishers. What is

clear is that a significant percentage of the harvest may not have
been or may not be reported.

Recruitment overfishing in hard clam populations has been

reported in North Carolina (Peterson 2002) and in GSB
(Buckner 1984). In spite of the high potential for substantial
under-reporting of commercial harvest and the lack of recrea-
tional harvest data, the possibility that recruitment overfishing

was taking place in GSB was evaluated by dividing the numbers
of prerecruits for both ages 2 and 3 by the numbers of clams
harvested (Fig. 6). Recruitment overfishing of GSB hard clam

populations was prevalent from the late 1970s to at least the
early 1990s (Fig. 6). From 1978 until 1988, in only one year were
fewer clams removed thanwere supported by sufficient numbers

of 1 y-old recruits to replace them. For 2-y-old clams the 100%

Figure 4. Schematic of the processes and transfers included in the individual-based hard clammodel. TSS$ total suspended solids, The allocation of net

production is determined by temperature, animal weight and animal condition. Positive net production (+) results in formation of reproductive and

somatic tissue. Negative production (–) results in the resorption of somatic tissue.

Figure 5. Five-year simulation of clam condition relative to the mean

value of 0.00. Condition was estimated by comparing the model length-

soft tissue dry weight output with an average length-weight relationship

based on literature values. Positive condition (above the 0 line) indicates

accumulation of somatic and/or gonadal tissue. Negative values (below the

line) indicate resorption or loss of gametes primarily in winter. Spawning

is indicated by the sharp vertical transgressions.
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threshold was reached in 6 of the 11 y. Fishing pressure did not
decrease to below 25% of recruitment until 1994 (2-y-olds) and
1996 (3-y-olds). Although overfishing seems to be respon-

sible for the declines in the 1970s and 1980s, reduction in
recruitment success seems to have exacerbated the decline
beginning in the mid1990s (Fig. 7). Even though the numbers

of small clams are declining in this population, because it was
already being heavily overfished at the beginning of the time
series, they make up a high proportion of the total stock. This

skewed size distribution is additional evidence for overfishing
(Rice et al. 1989, Fegley 2001). In unexploited populations of
long-lived animals the age structure is typically shifted towards
older organisms (Johnson 1994), and evidence suggests that this

is also true for hard clams (Fegley 2001).

Model Simulations

The effects of the severe overfishing on GSB hard clam
populations suggested by the landings and survey data were
evaluated with the hard clam model. Specifically, simulations

were done to focus on the response of the three commercial size
classes (littleneck, cherrystone and chowder) and to assess the
effects of a fishery closure versus some continued level of fishing

on the recovery of the population. Model output is in terms of
biomass or numbers m–2, and in both cases these represent only
the standing stock of clams >30-mm shell length. Before
assessing the effect of fishing it was necessary to establish base

simulations that provide a reference to which the fishing
simulations can be compared.

Figure 6. Harvest as a percentage of potential recruits. Recruits are defined as clams that have reached their first (2 y old) or second (3 y old) year

in the field.

Figure 7. Recruits per adult. Horizontal line is the 1979–2003 average for recruits per adult. Adult clams$ all animals 2 y old and older.
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Base Cases

The environmental conditions chosen for the three base

cases correspond to: (1) average food conditions measured in
1985 (Quaglietta 1987) and ‘‘typical’’ temperature condition
measured in 1978, a year with a typical cool winter (Bricelj
1979), (2) low food condition measured in 1986 (Quaglietta

1987), and temperature measured in 1998 (Nuzzi & Waters
1999) a year with a typical warmwinter, and (3) an average food
year (1985) and a warm winter (1998). Salinity and total

suspended solids (TSS) were not altered because there were
either limited data or the data do not indicate substantial
change from the middle 1970s to present. Effects of brown tide

on hard clam populations from GSB were excluded from the
fishing simulations but are the subject of a companion study
(Bricelj et al. in prep).

The simulated hard clam population, as individuals m–2 and
biomass m–2, was more sensitive to low food conditions than
to warm winters (Fig. 8). Warmer conditions increased pop-
ulations even with the same food levels. Continuous low food

conditions, such as those in 1986, decreased the numbers and
biomass to the point that fishing would become uneconomical.
It is important to emphasize that correspondence, or lack

thereof, between temperature and food supply can magnify or
reduce these responses. It is also important to emphasize that
the simulations of low food or other conditions represent an

unusually severe case as the model simulates a continuous series
of years under these conditions. Typical temperature and food
conditions vary considerably from year to year and thus the

poor conditions would only represent a minor deviation from
the long term average.

The average food level (1985) and ‘‘typical’’ cool winter
(1978) combinations were selected as the base conditions for the

fishing simulations presented in the following sections. Mod-
ifications to fishing mortality were begun in year 10 of the
simulation. This ensured that the simulated adult hard clam

population had reached a stable distribution (Hofmann et al.

2006) and thus changes from the base conditions for the
next 40 y result from model dynamics and conditions being

investigated.

Fishing Simulations

The modeling of fishing on the model clam populations can
be done using a wide range of approaches. In this study, the

effects of continuous removal of various segments of the
population were first simulated. Additional simulations consid-
ered the effects of heavy fishing for 10 y followed by 30 y of

recovery, with either complete or partial cessation of the fishery,
on the population. To achieve stability the fishing simulations
were run for 50 y and the results, as population numbers and
biomass, are compared with those from the equivalent base case

that does not include fishing effects.

Proportional Fishing

The effect of proportional fishing, in which each hard clam

size class is harvested in proportion to its abundance was
simulated with 10% to 75% removal of harvestable stocks
beginning in year 10 (Fig. 9 a,b). In the late 1970s and early
1980s, littleneck clams were themost abundant size class inGSB

and this fishing strategy would have yielded a high proportion
of littlenecks (the prime market size) (Fig. 1). If the environ-
mental conditions remained constantly favorable as in this

simulation, and 25% of the adult population was removed
annually, the standing stock would show an immediate decline
from 3.9–2.6 clamsm–2 (biomass 7.9–3.3 gm–2) and then remain

relatively stable. Fishing at 37.5% caused a continuing drop in
the population and biomass for each of the 40 y simulated.

Size Class-Based Fisheries

The effects of four other potential fisheries in which harvest-

ing was applied only to littleneck, topneck (an intermediate size
class formed from large littleneck sizes), cherrystone and

Figure 8. Simulated model output for numbers of individuals or biomass (grams dry weight of meat) m–2 under various combinations of temperature

and food levels. See text for source of the food level and temperature data.
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chowder sized clams were simulated. A littleneck-only fishery
was similar to the proportional fishery in its effects on the clam
population at 25% fishing, with numbers and biomass declining

from 3.9 clams m–2 and 7.9 g m–2 to 3.0 clamsm–2 and 6.0 g m–2,
respectively (Fig. 9 c,d). In contrast to the proportional fishery,
fishing on littleneck clams at 37.5%did not force the population

into a long-term decline.
Simulated fishing on topneck clams (not illustrated), not

surprisingly, yielded a reduction in the numbers of clams m–2

intermediate between that of littleneck and cherrystone fisher-
ies. Removal of more than 50% of the topneck standing stock
per annum began to reduce yields to the fishery and resulted in a

continuing reduction in the clam population.

Simulations of fishing only for cherrystone or chowder size
clams (Fig. 9 e, f) caused an immediate small reduction in the
clam population. Removal of 100% of the cherrystone clams

caused only a 25% decline in clam numbers, but a 68% decline
in standing stock biomass. Removal of 50% to 100% of the
chowders caused a slight increase in numbers above the base

population. Biomass changes, whereas not as severe as those
caused by proportional or littleneck fisheries, were more sub-
stantial than the decline in numbers. A 100% fishery on

chowder size clams caused a 31% decline in biomass. Under
the simulated conditions, fisheries focusing on either of the
larger size classes could remove nearly all clams in the size class

and continue indefinitely.

Figure 9. Simulated effects of fishing on clam populations in the waters of Islip town, NY. Base $ base conditions with no harvest. Percentages

indicate the percent of the stock removed annually for the number of years indicated. Graph pairs are for numbers and dry meat weight m–2 remaining.

The left column (A,C,E)$ numbers and the right column (B,D,F)$ biomass. (A) and (B)$ a fishery removing clams in proportion to their size

abundance. (C) and (D)$ a fishery removing only littleneck sized clams. (E) and (F)$ a fishery removing only cherrystone size clams. Percentage

symbols apply to figures A, B, C, and D. Symbols for E and F (circle, triangle and diamond$ 50, 75, and 100% cherrystone), (star, cross, and two-color

box$ 50, 75, and 100% chowder), and the base remains the same. Legend: n Base, d 10%, : 25%, ¤ 37.5%, w 50%, # 75%, / 100%.
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Population Recovery

The time required for a heavily fished population to recover

to its base level was evaluated for different fishing strategies.
The base case remained the same as under the other simulations.
In the first simulations, adult clam populations were exposed to
a 50% proportional, or a 50%, 75%, or 99% littleneck fishery

for 10 y andwere then allowed to recover without further fishing
(Fig. 10a). Stocks reduced from nearly 4 clams m–2 to 1 or
2 clams m–2 under the 50 and 75% littleneck fishing rates,

respectively required approximately 10 y to recover. Fishing at
the 99% littleneck rate reduced the population to <0.5 clams
m–2, and recovery took nearly 15 y.

Recovery from a similar 50% littleneck or proportional
reduction, but with a continued fishery removal of 10% per

annum, requires 10–15 y (Fig. 10b). The decline from a 50%
littleneck fishery followed by a continuing 25% fishery also

reached a stable point in 10 y, but at a population level that is
about 1 clam m–2 less than the base population (Fig. 10b).
Removal of littleneck clams at 99% for 10 y resulted in a very
low simulated adult population, and recovery times of 20–25 y

under continued 10% or 25% littleneck fishing (Fig. 10b),
respectively.

Effects of Broodstock-Recruitment Curve and Recovery Times

The development of populations from the simulations was
dependent on the broodstock-recruitment relationship. Thus,

sensitivity of the population that developed using a constrained
relationship (C) that decreased recruit output per unit biomass

Figure 10. Simulated recovery curves for a hard clam population fished at 50, 75 or 99%of the littleneck sized clams for 10 y and then allowed to recover.

Base$ base conditions with no fishery. Recovery under conditions of no fishing (Fig. 10 a) for the time of recovery, and continued fishing (Fig. 10 b). Fig.

10 a symbols are 0-50-0$ no fishing for 10 y, 50% fishing for 10 y, 0 no fishing for recovery period. Fig. 10 b symbols are 0-50-10$ no fishing for 10 y,

50% fishing for 10 y, 10% fishing for recovery period. In Fig. 10 b, effects on both a littleneck and proportional (prop) fishery are depicted. The type of

fishery did not change during the simulation.
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by approximately 25%, and a relaxed relationship (R), that
increased recruits by a like amount was investigated. Clam

populations were subject to 99% littleneck fishing for 10 y and
then allowed to recover under the relaxed and constrained
conditions with a continuing 25% littleneck fishery (Fig. 11).
Simulated recovery rates to the new stability point took

approximately 25 y, and the relaxed or constrained brood-
stock-recruitment relationship had no effect on the rate of
recovery (Fig. 11). Relaxing the broodstock-recruitment rela-

tionship allowed the population to reach an average density
approximately 0.6 clams m–2 higher than the 25% fishing base
case, whereas constraining this relationship reduced the pop-

ulation by a like amount (Fig. 11). These results suggest
that shifts in the location of the population stable point of
±0.6 clams m–2 may be caused by errors associated with esti-
mates of the broodstock-recruitment relationship but that

larger changes can be interpreted as characteristic of other
factors such as changes in environmental conditions or pop-
ulation characteristics.

DISCUSSION

Little doubt remains that the decline in the GSB hard clam
populations in the 1970s to at least the late 1980s was the result
of overfishing (Buckner 1984, Kraeuter et al. 2005). From 1978–

1998 the littleneck and larger sized hard clam population in the
Islip part of GSB declined from 4.1 m–2 to 1.24 m–2 (approx-
imately a 45% decline in each decade), whereas the landings
fell nearly 98% (from 251 3 103 bu. in 1978–3.5 3 103 bu. in

1998). The decline in landings was approximately 76% for the
first decade but accelerated to 94% during 1988–1998. Com-
mercial and personal licenses fell by 69% and 62%, respectively,

for the first decade and then dropped an additional 80% and

64%, respectively during the second decade. Reduction in the
commercial (94%) and personal (86%) licenses issued by the

town suggests that fishing pressure has been greatly reduced.
The percentage of the clam stock harvested (Fig. 12) also
suggests that currently fishing is much less important, but we
cannot exclude the potential for significant illegal harvests.

If a proportional fishery is assumed to have existed through-
out the time represented by these data, over the first 15 y,
simulating removals at a 37.5% per annum suggests that fishing

can account for most if not all of the observed decline in
numbers (Fig. 13). After this initial decline, fishing rates would
have to exceed 50% to account for the precipitous decline in the

last 10 y of the time series. This rate is not supported by the data
(Fig. 12) for this time period. The model suggests that fishing
rates on littlenecks at >50% would be required to account for
observed landings (Fig. 12). The time series suggest that some

factor(s) other than fishing is responsible for the continuing
decline in the hard clam population in the 1990s. This is
particularly evident in the reduced contribution of the smallest

size clams to the overall population numbers (Fig. 3). A cursory
analysis of the data by comparing the change in average
numbers from 1978–85–1996–2003 periods shows that the

smallest size class collected (age 1) has dropped 40%. For age
2, 3, littleneck, cherrystone and chowder sizes the drop has been
79%, 72%, 56%, 39%, and 12% respectively. This suggests that

it is not the abundance of chowders or the smallest size that is
the factor limiting recovery, but something that reduces the
intermediate sizes.

Anecdotal evidence indicated that hard clam growth rates

have declined in recent times. Studies by Laetz (2002) using
experimental plantings of seed and archived shells suggest a
slight drop in average growth after 1992, possibly causing a

6-mo longer period to harvest, but the differences were not

Figure 11. Simulated recovery curves for a hard clam populations fished at a rate of 99% removal per annum of littleneck size-class clams with a

recovery starting in year 20. Base$ base conditions with no fishery. Neck ($ littleneck). Neck 25% base$ base conditions under a 25% continuing

harvest of littleneck sized clams. Recovery curves are: R – model broodstock/recruitment curve relaxed (more recruits than average) by 10%, and C –

model broostock/recruitment curve constrained (fewer recruits than average) by 10%. Symbols are 0–99–25$ no fishing for 10 y, 99% fishing for 10 y,

25% fishing for recovery period.
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statistically significant. The drop in either growth and/or clam
populations were believed to have been severe enough to cause
the Bluepoints Company (who had historic rights to about
13,000 acres of bay bottom) to announce and abandonment of

their hard clam aquaculture business, and in 2002 the parent
company donated all but about 1,500 acres of land to The
Nature Conservancy. Evidence for a significant decline in

growth is lacking (Laetz 2002).
The importance of the recruit-per-adult production curve

(Fig. 7), and the relatively low recruitment success of hard clams

cannot be overemphasized in the interpretation of recent
results. Whereas based on data from GSB, the data on egg
production of larger clams are limited (Eversole 2001). In the
GSB population, an average of 30% of the total population

(60% of adults) was in the littleneck size range. Based on the
biomass-egg production curve, and their abundance, these
individuals collectively were responsible for a significant por-

tion of the egg production. This relationship is important for
management of hard clam populations. Harvest concentrated
on cherrystone and chowder sizes may have little net effect on

Figure 12. Percentage of market clams removed from the Town of Islip population based on harvest data and fishery independent survey data.

Figure 13. Simulated effects of a fishery removing clams in proportion (Prop) to their size abundance in the population at various percentages of fishing

intensity. Base$ base conditions with no fishery. Islip landings data (Islip adjusted) for the 1978–2003 period were adjusted to the base model case

of 4 market sized clams per square meter to facilitate comparisons.
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reproductive output. They are a relatively small fraction of the
population and they require high levels of food to produce

significant quantities of gametes. This is why proportional
fishing creates greater declines in numbers and biomass at lower
percentage levels of exploitation. Through time, the relative
abundance of the smaller individuals tends to increase, and if

these individuals are over-exploited the fishery is not only
reducing the population, but it is greatly reducing the repro-
ductive potential. Because the population of larger animals is

small, and their reproductive output, on a biomass basis, in
years of poor food conditions is low. A population modeled
with sequential years of poor environmental can collapse,

particularly if there is continued heavy fishing mortality.
Whereas the population is now at a low level, the decline is

not unprecedented. Kellogg (1901) indicates that: ‘‘In many
localities where it [hard clam] has been taken most abundantly,

the failure has become alarming.’’ For Islip in particular he
notes that the hard clam ‘‘has always been the center of the
industry in the bay,’’ that five years previously the supply to the

canning factory (using 400 bu d–1) began to decrease, and that
‘‘2 years ago it became impossible to obtain clams.’’ ‘‘The

markets at Babylon, Amityville, Massapequa, and Freeport
had also been quite extensive, but all report the same very recent

failure of the little-neck in the Great South Bay.’’
To investigate the potential for harvest from the Islip portion

of GSB under base conditions the results from year 50 of the
simulations (40 y after the initial 10 y model stabilization) were

combined with market prices. Both numbers of adults m–2 and
dry meat weight m–2 had stabilized or showed a consistent
downward trend by simulated year 50. The effects of the various

percentage removals on standing stock, standing stock biomass,
given per m–2, and Islip revenue illustrate the differences with
the varying fishing simulations (Fig. 14). A simulated 25%

proportional fishery yielded the greatest monetary return per
square meter and for the bay. This fishery also created the
largest drop in population numbers and biomass for any fishery
at a 25% exploitation level. Monetary yields for littleneck

fisheries were nearly the same at both 37.5% and 50%
exploitation levels because the higher level fishery caused such
a great drop in numbers and biomass that it required fishing

a larger area of the bay for the same yield. It is immediately
apparent that a proportional fishery above 25%, or a littleneck

Figure 14. Simulated effects of fishing on various parts of the hard clam populations after 50 y. Percentages$ the percent of population removed per

year under various fishing scenarios. Prop$ fishery removing clams in proportion to their size abundance in the population. Neck$ fishery removing

only littleneck sized clams. Cherry$ fishery removing only cherrystone sized clams. Chowder$ fishery removing only chowder sized clams. (A) number

of clams m–2 remaining, (B) Biomass (g dry wt meat m–2) remaining, (C) Monetary yield m–2, and (D). Monetary yield for certified Islip town waters.

Note that lines connecting data are to ease comparisons across fishing rates and do not imply a linear change in abundance, yield or value.

KRAEUTER ET AL.664

JOBNAME: jsr 27#4 2008 PAGE: 12 OUTPUT: Thursday July 17 03:08:17 2008

tsp/jsr/165574/27-4-6



fishery above 37.5% begins to dramatically lower both numbers
(Fig. 14a) and biomass (Fig. 14b) for little or no economic gain

(Fig. 14c and d). The revenue from a topneck only fishery was
not computed because of the difficulty in establishing a price for
this size category, but it would probably lie somewhere between
a littleneck and cherrystone only fishery.

The values per square meter for both cherrystone and
chowder simulations continued to rise as a greater percentage
of the size class was harvested. This implies harvesting 75% to

100% of the bay bottom to obtain a smaller monetary return
than a 25% removal of a proportional fishery or a 37.5%
littleneck fishery (Fig. 14c). These figures do not include costs,

and it is unlikely that any clam fishery could profitably harvest
at these levels.

The only way to harvest a high proportion of littleneck clams
and maintain biomass is to remove 37.5% or less of the adult

standing stock (Fig. 14b), and this would yield approximately
$0.095 annual revenue m–2 of bay bottom harvested. The Islip
region covers approximately 56,000,000 m–2 of waters certified

for harvesting. This area could yield nearly $5.3 million in
annual revenue under the simulated conditions. Even a 10%
littleneck fishery would produce $1.88 million in annual value

(Fig. 14d). Proportional fisheries increase the pressure on the

stocks, but at 25% harvest, this fishery could yield nearly $6.1
million per year. It is important to remember that these

simulations represent constant equitable conditions for hard
clam stocks and thus harvest levels would have to be somewhat
lower than suggested above to provide the population resilience
in a single or a series of poor years. Augmentation of the stocks

by aquaculture, particularly on leased ground might greatly
increase the potential return. For example, aquaculture yields of
25 littlenecks m–2 at $0.15 each would yield $3.75 in revenue. It

would take nearly 40 m–2 of natural harvest to reach the same
level of revenue. Costs, of course would be higher with the
aquaculture option.
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