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INTRODUCTION

Ships carry ballast water for vessel stability and trim,
and it is well established that ballast water can contain
a diversity of metazoan (e.g. Medcof 1975, Carlton
1985, Williams et al. 1988, Carlton & Geller 1993, Chu
et al. 1997, Gollasch et al. 1998, Lavoie et al. 1999) and
protozoan taxa (e.g. Galil & Hülsmann 1997, Pierce et
al. 1997), as well as other microorganisms (e.g. Subba

Rao et al. 1994, Gollasch et al. 1998, McCarthy &
Crowder 2000, Ruiz et al. 2000, Drake et al. 2001) and
their resting stages (e.g. Hallegraeff & Bolch 1991,
1992, Macdonald 1998, Hamer et al. 2000). Some of
these forms are pathogenic (e.g. McCarthy et al. 1992,
McCarthy & Khambaty 1994, Gosselin et al. 1995, Hal-
legraeff 1998, Ruiz et al. 2000). Several highly visible
(and oft-cited) instances of likely ballast-water intro-
ductions, including the zebra mussel’s arrival to the
Great Lakes (e.g. Hebert et al. 1989, 1991, Griffiths et
al. 1991) and the introduction of toxic dinoflagellates to
Australian waters (Hallegraeff et al. 1988, Hallegraeff
& Bolch 1991) have brought to bear international
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attention on ballast-mediated introductions (Interna-
tional Maritime Organization 1991).

Microorganisms possess a great capacity to invade
new environments. Bacteria and viruses, for example,
are numerically dominant in seawater (e.g. Ducklow &
Shiah 1993) and occur typically in densities of 106 to
1011 l–1 (Ducklow & Shiah 1993, Wommack & Colwell
2000), many times greater than the abundance of macro-
organisms. Further, many microorganisms employ sur-
vival strategies, such as the formation of cysts (e.g.
Hallegraeff & Bolch 1991, 1992) and the ability to
undergo morphological changes (Wai et al. 1999), that
enable them to withstand prolonged periods of inhos-
pitable conditions, such as confinement in darkened
ballast-water tanks. The sheer number of microorgan-
isms in coastal waters, combined with the great vol-
umes of ballast water delivered annually to ports—an
estimated 79 million tonnes to the USA alone (Carlton
et al. 1995)—suggest that inoculation of coastal waters
by microorganisms proceeds globally on a staggering
scale. In support of that hypothesis, Ruiz et al. (2000)
quantified microorganisms in ballast water of vessels
arriving to Chesapeake Bay from foreign ports and
reported mean abundances of 8.3 × 108 bacteria and
7.4 × 109 virus-like particles l–1. 

The only method now in widespread use to reduce
the spread of nonindigenous species via ballast-water
discharge is open-ocean ballast-water exchange (Fed-
eral Register 1999, Australian Quarantine and Inspec-
tion Service 2001). In this procedure, coastal water is
removed from ballast-water tanks and replaced with
oceanic water. Open-ocean exchange theoretically re-
duces the threat of invasion by jettisoning nonindige-
nous propagules into the open ocean, where they will
presumably not survive. Subsequently, the survival of
organisms in exchanged, oceanic ballast water may be
low due to temperature or salinity mismatch between
the oceanic ballast water and the coastal water into
which it is discharged (Smith et al. 1999).

The purpose of this work was 2-fold. First, we quan-
tified changes in the marine microbial community dur-
ing sequestration in ballast-water tanks throughout a
transoceanic voyage. Second, we evaluated differ-
ences in the microbial communities in exchanged and
unexchanged ballast water.

MATERIALS AND METHODS

Motor Bulk Carrier ‘Hadera’. MBC ‘Hadera’ is
290 m long, with a gross tonnage of 93 052. In
July/August 1999, we rode the vessel from Hadera,
Israel to Baltimore USA on a 19 d voyage. Of the 9
cargo holds on ‘Hadera’, 4 are configured to carry bal-
last water, each with a capacity of 21 560 to 21 780 t.

Two were designated as ‘exchange’ and were subse-
quently exchanged in the open ocean; 2 were desig-
nated as ‘control’ and were not exchanged in the open
ocean during the course of sampling (Fig. 1). The 4
holds were filled with ballast water at the berth in
Israel: the 2 control holds were filled 1 to 2 d before
sailing; the 2 exchange holds were filled 2 to 3 d before
sailing. Three days prior to sailing, we added floures-
cent red FWT50 dye (Forestry Suppliers, Jackson, MS)
to Exchange Hold 1 to measure the efficacy of
exchange (dye data are not presented in this paper).
Although holds were filled on different days and dye
was added to Exchange Hold 1, there were no signifi-
cant differences between control and exchange holds
in any of the microbial measures on Day 0 of sampling
(Table 1). On Day 10 of the voyage, the ballast water in
both exchange holds was replaced in the North
Atlantic Ocean by overflowing the holds with oceanic
water for 13 h (theoretically, a 149% exchange), end-
ing at 35° 57’ N, 030° 30’ W.

Because it took an entire day to collect and process
samples from 2 holds, we sampled Control Hold 1 and
Exchange Hold 1 at each of the following time points
throughout the voyage: Days 0, 6, 12, 15 (for all met-
rics, with additional sampling on Days 3 and 9 for pig-
ment analyses and hydrographic properties). Samples
for Control Hold 2 and Exchange Hold 2 were col-
lected 1 d after the samples from Control Hold 1 and
Exchange Hold 1 were collected. For clarity of presen-
tation in this paper, data from replicate holds were
considered as if they were collected on the same day.

Sample collection. A Niskin bottle was cleaned in
bleach and rinsed with tap water, then lowered
through a vent on top of the hold cover to collect water
samples. Two or 3 samples were taken from the surface
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Fig. 1. Summary of the experimental design expressed in a 
plan view of the cargo holds on MBC ‘Hadera’
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and 10 m below the water surface from each hold at
each time point. Samples were transferred to bottles
that had been surface sterilized with ethyl alcohol,
rinsed with tap and deionized water, then rinsed twice
with ballast water immediately before collection. Sam-
ple bottles were protected from light and transported
to the shipboard laboratory.

Bacteria enumeration. Samples were fixed in form-
aldehyde solution (final concentration 2.7%) and stored
in the dark at 4°C until they were enumerated via flow
cytometry. Analyses were done using a Becton Dickin-
son FACScan flow cytometer equipped with a 15 mW,
488 nm, air-cooled Argon ion laser. Simultaneous mea-
surements of forward light scatter, 90 degree light
scatter, and green fluorescence were made on all sam-
ples. PicoGreen (Molecular Probes, Eugene, OR), a
DNA-specific probe that emits in the green wave-
lengths when excited with 488 nm light, was used to
detect and enumerate bacteria. Detectors (photomulti-
plier tubes) were in log mode and signal peak integrals
were measured. The volume of sample analyzed by the
FACScan was determined gravimetrically using an A-
160 electronic balance (Denver Instrument, Arvada,
CO) whereby each sample was weighed prior to analy-
sis and immediately after the analysis was terminated.
All samples were run at a low flow rate setting
(approximately 20 µl min–1).

Virus-like particle enumeration. Virus-like particles
(VLPs) were counted using the method of Hennes &
Suttle (1995). Upon return to the ship’s laboratory,

unfixed, duplicate samples were diluted with 0.1 µm
filtered distilled, deionized water. Next, diluted sam-
ples were filtered onto 0.02 µm pore size Anodisc fil-
ters (Whatman International, Maidstone, UK) and
stained in the dark for 2 d at room temperature with a
cyanide-based working solution of the nucleic acid
stain Yo-ProTM-1 iodide (491/509) (Quinolinium,4-
[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(tri-
methylammonio)propyl]-,diiodide) (Molecular Probes).
Filters were rinsed twice with 0.02 µm filtered distilled,
deionized water, placed on microscope slides, and
stored in the dark at –20°C on board the ship. Upon
return to the laboratory, slides were stored in the dark
at –85°C until the VLPs were counted. Filters were ran-
domly chosen (in groups of 2), thawed in the dark at
room temperature for ca. 5 min, and VLPs were
counted using an Olympus BX50 System Microscope
with an Olympus BX-FLA epifluorescence attachment.
For each set of filters prepared, 2 control filters were
prepared using only 0.02 µm filtered distilled, deion-
ized water and their average VLP count was sub-
tracted from values determined in field samples.

Microbial biomass. Under a vacuum pressure of
100 mm Hg, 900 ml of seawater was filtered onto 47 mm
diameter glass fiber filters (GF/F Whatman). Filters were
wrapped in foil and stored in liquid nitrogen on the ship;
upon return to the laboratory, filters were stored at –85°C
until they were placed into a modified (White et al. 1979)
Bligh & Dyer (1959) solution (methanol-chloroform-
buffer) to extract lipids. From an aliquot of the extracted

bulk lipid, microbial biomass was deter-
mined by oxidizing the phosphorus-con-
taining cell-membrane lipids, thus
releasing inorganic phosphate, then
performing an inorganic phosphate
determination (Dobbs & Findlay 1993).
Finally, phosphate concentrations were
converted to carbon equivalents assum-
ing 100 µmolPgC–1 (Dobbs & Findlay
1993).

Chlorophyll a and phaeopigment
determination. Chl a samples were
collected by filtering 500 ml of seawa-
ter onto 47 mm diameter glass fiber fil-
ters (GF/F Whatman) at a vacuum
pressure of 100 mm Hg. Filters were
wrapped in foil and stored in liquid
nitrogen for the duration of the voyage;
upon return to the laboratory, filters
were stored at –85°C until the chl a on
the filters was extracted in acetone and
measured fluorometrically (Parsons et
al. 1992). Phaeopigment concentration
(phaeophytin and phaeophorbide) was
quantified by acidifying the chl a sam-

15

Table 1. Changes in microbial metrics throughout the voyage. For each treat-
ment, n = 2 replicates with 3 to 6 subsamples per replicate. All comparisons are
2-level, mixed model, nested ANOVAs on ranked data. Significant differences
(p-values < 0.05) are indicated in bold type, and the relationship between the
groups compared is presented in subscripted text. Column labels: Bacteria =
abundance of bacteria; VLP = abundance of virus-like particles; Chl a = concen-
tration of chl a; Phaeo = concentration of phaeopigments; Biomass = microbial
biomass. Comparisons between values on Days 9 and 12 were possible only for 

pigment data, as samples for other metrics were not collected on Day 9

p-values
Bacteria VLP Chl a Phaeo Biomass

Day 0
Control vs 0.669 0.705 0.370 0.830 0.356

exchange holds

Day 15
Control vs 0.264 0.676 0.114 0.161 0.665

exchange holds

Control holds
Day 0 vs 15 0.0130>15 0.0460>15 <0.0010>15 0.0020>15 0.0620>15

Exchange holds
Day 0 vs 15 0.355 0.0110>15 0.0080>15 0.0090>15 0.0370>15

Day 6 vs 12 0.355 0.0336>12 0.135 0.0666>12 0.706
Day 9 vs 12 .– .– 0.424 0.222 .–
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ples with 5% hydrochloric acid and again determining
the sample’s fluorescence.

Hydrographic data. Temperature and dissolved oxy-
gen (percent saturation) were measured using a YSI
Model 58 Dissolved Oxygen Meter (YSI, Yellow
Springs, OH) at the following depths within each hold:
0, 1, 2, 5, 10 and 23 m (bottom). Salinity of samples col-
lected from 0 and 10 m depth was measured using a
hand-held refractometer (ATAGO Model S-28E).

Data analysis. All statistics were calculated using
SPSS Base 9.0.0 (SPSS, Chicago, IL). Each hold was
designated a sampling unit. From each hold at each
sampling time point, 4 to 6 subsamples were collected,
i.e. 2 or 3 from the surface, and 2 or 3 from bottom. Pre-
liminary analyses showed it was reasonable to pool
surface and bottom samples collected within holds;
among 16 comparisons of surface versus bottom sam-
ples of bacteria and VLP abundances, no significant
differences emerged.

Data were analyzed as 2-level, mixed-model nested
ANOVAs on rank-transformed data, with n = 2 (i.e. 2
control holds and 2 exchange holds) and 2 to 6 sub-
samples per replicate hold. We did not treat the sub-
samples as independent samples, that is, as deliberate
pseudoreplicates, but we instead treated them as sub-
samples to estimate the mean of a given metric within
a specific hold.

RESULTS

Hydrographic characteristics

Temperature in the ballast water ranged from 26.2 to
29.4°C (Fig. 2). In control holds, mean temperature
decreased from 29.3°C on Day 0 to 28.1°C on Day 15.
Following exchange on Day 10, mean temperature in
the exchange holds decreased on Day 12 to 26.4°C,
then increased on Day 15 to 26.8°C. On Day 15, the
mean temperature in the control holds was signifi-
cantly greater than in the exchange holds (n = 2 with 6
subsamples per replicate; p = 0.048). Within the water
columns, temperature decreased with depth in 21 of 24
profiles; in the remaining 3 profiles, temperature
remained constant with depth. Among all profiles, the
average temperature difference between surface and
bottom was 0.4°C.

Salinity ranged from 38.0 to 42.0 ppt (data not
shown). In the control holds, mean salinity increased
from 40.2 ppt on Day 0 to 40.4 ppt on Day 15. Follow-
ing exchange, mean salinity in the exchange holds
decreased to 38.5 ppt on Day 12, then increased to
39.0 ppt on Day 15. Salinity was not significantly dif-
ferent between control and exchange holds on Day 15
(n = 2 with 2 subsamples per replicate; p = 0.057).

Within holds, salinity remained constant with depth in
16 of 24 profiles; in 2 profiles, salinity increased with
depth; in the remaining 6 profiles, salinity decreased
with depth. The mean difference between salinity
measurements taken at 0 and 10 m was 0.2 ppt.

Dissolved oxygen (DO, measured as percent satura-
tion) in the ballast water ranged from 77.6 to 99.7%
(data not shown). In the control holds, mean DO
decreased during the voyage, from 92.2% on Day 0 to
85.2% on Day 15. Following exchange, mean DO in
the exchange holds increased to 91.7% on Day 12 and
to 96.3% on Day 15. On Day 15, the mean DO value
was not significantly different between the control and
exchange holds (n = 2 with 6 subsamples per replicate;
p = 0.106). In depth profiles, DO decreased with depth
in 21 of 24 profiles; in the remaining 3 profiles, it
increased with depth. The average difference in DO
between surface and bottom was 2.6%.

Bacterial density

Mean bacteria concentrations ranged from 9.2 to
22 × 107 l–1 and decreased by a factor of 2.3 (control
holds) and 1.6 (exchange holds) throughout the voy-
age (Fig. 3A). Bacteria concentrations were signifi-
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Fig. 2. Temperature profiles in control holds (upper panel)
and exchange holds (lower panel) on Day 0 (d), Day 3 (y),
Day 6 (■ ), Day 9 (E), Day 12 (m) and Day 15 ( ). Data are 

mean values (n = 2)
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cantly higher on Day 0 than on Day 15 in the control
holds (p = 0.013), but not in the exchange holds
(Table 1). In the exchange holds, there was no signifi-
cant difference in bacteria abundance before (Day 6)
and after (Day 12) the exchange on Day 10 (Table 1).
On Day 15, the mean bacteria concentration did not
differ significantly between control and exchange
holds (Table 1).

Virus-like particle abundance

Average VLP densities varied from 0.7 to 3.8 × 1010 l–1

and decreased by a factor of 5.2 (control holds) and 3.8
(exchange holds) throughout the voyage (Fig. 3B). VLP
densities were significantly higher on Day 0 than on
Day 15 in both control holds (p = 0.046) and exchange
holds (p = 0.011; Table 1). Within exchange holds, the
mean VLP density was significantly greater before
exchange than after exchange (Day 6 vs 12; p = 0.033;
Table 1). On Day 15, the mean VLP concentration did

not differ significantly between the exchange and con-
trol holds (Table 1).

VLP-to-bacteria ratio

The VLP-to-bacteria ratio ranged from 81 to 184 and
decreased during the voyage by 2.1- and 2.2-fold (con-
trol and exchange holds, respectively; Fig. 3C). Within
exchange holds, the VLP-to-bacteria ratio showed a
1.4-fold decrease from measurements taken before
(Day 6) and after (Day 12) exchange.

Microbial biomass

The mean microbial biomass fluctuated from 60 to
141 µgC l–1 and decreased 2.3- and 1.8-fold (control
and exchange holds, respectively) over the course of
sampling (Fig. 3D). Biomass on Day 0 was not signifi-
cantly higher than on Day 15 in control holds (although

17

Fig. 3. Microbial metrics in ballast water. Black bars represent samples from control holds; gray bars represent samples from
exchange holds. (A) Bacterial abundance; (B) virus-like particle abundance; (C) VLP-to-bacteria ratio; (D) microbial biomass. In
all plots, the arrow indicates Day 10, when exchange holds were exchanged in the open ocean. Data are mean values (n = 2, with 

3 to 6 subsamples per replicate); error bars represent +1 SD
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p = 0.062), but it was in exchange holds (p = 0.037).
There was no significant difference in the mean micro-
bial biomass in samples collected from exchange holds
before and after the exchange (Day 6 vs 12; Table 1).
Finally, there was no significant difference between
the mean microbial biomass in samples collected from
control and exchange holds 5 d following exchange
(Day 15).

Phytoplankton pigments

Mean chl a values ranged from 0.01 to 0.34 µg l–1,
with decreases of 34- and 21-fold (control and
exchange holds, respectively) during the crossing
(Fig. 4). Chl a concentrations were significantly higher
on Day 0 than on Day 15 in both types of holds (control
p < 0.001; exchange p = 0.008; Table 1). Samples col-
lected from exchange holds on Days 6 and 9, prior to
exchange, did not have significantly different chl a
concentrations from samples collected after exchange
on Day 12 (Table 1). On Day 15, the mean chl a con-
centration did not differ statistically between the con-
trol and exchange holds (Table 1).

Average phaeopigment concentrations varied be-
tween 0.02 to 0.14 µg l–1 (Fig. 4). Phaeopigment values
decreased by a factor of 4.7- and 7.0-fold (control and
exchange holds, respectively) throughout the voyage.
Phaeopigment values were significantly greater on
Day 0 than on Day 15 in both control (p = 0.002) and
exchange holds (p = 0.009; Table 1). Data collected on
Days 6 and 9 show large variability, presumably
related to particle-associated phaeopigment, given the

notable amount of particles in some of those samples
(Fig. 4). The mean phaeopigment concentration in the
exchange holds was not significantly different before
open-ocean exchange (Days 6 and 9) than after the
procedure (Day 12; although p = 0.066 for the Day 6 vs
12 comparison; Table 1). On Day 15, as with the chl a
samples, the mean phaeopigment concentration did
not differ statistically between hold types (Table 1).

The ratio of chl a to phaeopigment ranged from 0.45
to 2.3 and decreased during most of the trip, as the
phaeopigments became an increasingly large part of
the pigment pool through Day 9 (data not shown).
There was an increase in the ratio in both control and
exchange holds on Day 12 relative to Day 9, then a
decrease on Day 15. The overall decrease from Day 0
to 15 was 5.2- and 2.9-fold (control and exchange
holds, respectively).

DISCUSSION

Although ballast-water research has grown greatly
in the past decades, most studies—with the exception
of those on dinoflagellates—have centered on meta-
zoans. Furthermore, sample collection has largely oc-
curred at the termination of voyages, with little
research on the processes leading to end-point condi-
tions (although see Rigby & Hallegraeff 1994, Yoshida
et al. 1996, Gollasch et al. 2000). Bacterio- and virio-
plankton are becoming a focus of ballast-water studies
(Ruiz et al. 2000, Drake et al. 2001), and here we pre-
sent the first data tracking microbial communities
throughout a transoceanic voyage and a comparison of
microorganismal abundance in paired exchanged and
unexchanged ballast-water samples.

What happens to a parcel of water when it is se-
questered in a darkened ballast-water tank? One hypo-
thesis is that ballast-water tanks and holds act as incu-
bators for microorganisms: in the darkness, photo-
synthesis ceases, phytoplankton die, and, in turn,
zooplankton starve and die. Concentrations of dis-
solved organic matter (DOM) increase as these plank-
tonic constituents decompose. The augmented DOM
pool subsequently fuels bacteria production, and viral
production proceeds via viral infection and lysis of
plentiful bacteria hosts. The outcome of such a sce-
nario is that concentrations of microorganisms in bal-
last water could exceed those in coastal waters prior to
their uptake by ships.

Data gathered from sampling ballast water at the
end points of voyages, however, do not support the
‘incubator’ hypothesis, because microbial abundances
are generally lower in ballast-water samples than in
coastal-water samples (Ruiz et al. 2000, Drake et al.
2001). An alternative scenario for microbes transported
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Fig. 4. Chl a and phaeopigment concentrations. Format is the
same as in Fig. 3. Data are mean values (n = 2, with 3 to 4 

subsamples per replicate). Error bars represent +1 SD
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via ballast water, therefore, is that their abundance
decays over time. The decrease is possibly due to a
number of reasons, which are not necessarily mutually
exclusive: (1) an uncoupling of the microbial loop
occurs, specifically, there is a lower-than-expected uti-
lization of DOM resulting from phyto- and zooplankton
die-offs; (2) bacteria are removed by microzooplankton
and there is a subsequent accumulation of microzoo-
plankton biomass; or (3) the pulse of DOM from phyto-
and zooplankton die-offs is respired by bacteria in the
beginning of the voyage, and the remaining, small
amount of DOM in the holds leads to a steady state of
low microbial biomass throughout the voyage.
Although we did not collect samples of ship-side water
in Israel before the voyage, our data lend support to
the ‘decay’ hypothesis because: (1) microbial metrics
showed decay, not stimulation, throughout the voyage;
(2) VLP abundance, bacteria concentration, and the
VLP-to-bacteria ratio decreased over time
(Fig. 3A,B,C), suggesting that VLP abundance
declined faster than bacteria, rather than being
increased by viral lysis of abundant bacterial hosts;
and (3) microbial metrics on Day 15 were low, espe-
cially for the algal pigments (Figs. 3 & 4). 

In this study, all microbial variables decreased over
time in the control holds. Likewise, Williams et al.
(1988) documented a decrease in planktonic species
and taxa with increasing voyage length between
Japan and Australia; Yoshida et al. (1996) noted a
decrease in phytoplankton species on a voyage from
Japan to the USA; and Lavoie et al. (1999) showed a
decrease in taxa richness in plankton tows and ballast-
water samples before and after intracoastal voyages
along the US East Coast. Gollasch et al. (2000) docu-
mented a similar pattern of decreasing biomass and
diversity of zooplankton and phytoplankton during a
23 d voyage from Singapore to Germany, with the
notable exception of the harpacticoid copepod Tisbe
graciloides , which increased in abundance 100-fold
during the voyage. The present study showed that bal-
last-water holds did not act as incubators to stimulate
general microorganism growth during the course of a
journey from Israel to the USA, and, in fact, microbial
constituents decreased throughout the voyage.

The efficacy of exchanging ballast water in the open
ocean to decrease abundances and biomass of
microorganisms can be evaluated by comparing values
in control and exchange samples collected on Day 15
(Table 1). In all 5 metrics tested, there was no signifi-
cant difference between treatment means. We stress,
however, that the efficacy of open-ocean exchange to
reduce invasion by non-indigenous microorganisms
cannot be based solely on microbial abundances and
biomass. First, it is likely that species composition
shifted following exchange (Hülsmann et al. 2000),

resulting in a decline in coastal constituents and an
increase in oceanic species. Second, the likelihood of
microorganisms surviving in a new environment fol-
lowing their discharge with ballast water, in part a
function of their species composition, is an element
critical to evaluating the risk of microbial invasion.
Composition and survivorship, therefore, represent
important yet uninvestigated facets of ballast-water
microbiology and will provide future direction for the
field.
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