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Research, assessment, and manage-
ment have traditionally focused on 
fisheries with the greatest landings 
and revenues (Scandol, 2005; Vas-
concellos and Cochrane, 2005). Such 
fisheries are generally data-rich and 
have available the funds and exper-
tise required to complete stock assess-
ments and provide state-of-the-art 
advice to management. However, that 
is not the case for the vast majority 
of fisheries worldwide, which remain 
subjected to limited (if any) assess-
ment and management (Vasconcel-
los and Cochrane, 2005). The latter 
have been collectively termed “data-
poor fisheries” and are character-
ized by a low diversity and quantity 
of data, limitations in funding and 
expertise, and an overall shortage of 
assessment methods (Mahon, 1997; 
Scandol, 2005). Among the world’s 
data-poorest fisheries are nearly all 
f isheries in developing countries, 
but also most fisheries in developed 
countries, namely the smaller-scale 
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Abstract—Research on assessment 
and monitoring methods has primar-
ily focused on f isheries with long 
multivariate data sets. Less research 
exists on methods applicable to data-
poor fisheries with univariate data 
sets with a small sample size. In this 
study, we examine the capabilities of 
seasonal autoregressive integrated 
moving average (SARIMA) models to 
fit, forecast, and monitor the landings 
of such data-poor fisheries. We use a 
European fishery on meagre (Sciaeni-
dae: Argyrosomus regius), where only 
a short time series of landings was 
available to model (n=60 months), as 
our case-study. We show that despite 
the limited sample size, a SARIMA 
model could be found that adequately 
fitted and forecasted the time series 
of meagre landings (12-month fore-
casts; mean error: 3.5 tons (t); annual 
absolute percentage error: 15.4%). We 
derive model-based prediction inter-
vals and show how they can be used 
to detect problematic situations in 
the fishery. Our results indicate that 
over the course of one year the meagre 
landings remained within the predic-
tion limits of the model and therefore 
indicated no need for urgent man-
agement intervention. We discuss 
the information that SARIMA model 
structure conveys on the meagre life-
cycle and fishery, the methodological 
requirements of SARIMA forecasting 
of data-poor fisheries landings, and 
the capabilities SARIMA models pres-
ent within current efforts to monitor 
the world’s data-poorest resources. 

or less valuable commercial and rec-
reational ones (NRC, 1998; Berkes et 
al., 2001; EEA, 2005; Vasconcellos and 
Cochrane, 2005; Worm et al., 2009; 
OSPAR, 2010; ICES1).

Assessment of data-poor fisheries 
requires a significantly different ap-
proach from their data-rich counter-
parts. For data-poor fisheries, many 
deterministic multivariate stock as-
sessment models cannot be used (e.g., 
NRC, 1998) and more pragmatic as-
sessment methods must be put in 
place, particularly when fishery-in-
dependent data are not available and 
fishing effort cannot be quantified 
(Berkes et al., 2001; Scandol, 2003; 
ICES1). In many countries, the most 
readily available fisheries data are 
commercial landings because of their 

1 ICES (International Council for the 
Exploration of the Sea). 2008. Report 
of the study group on management strat-
egies (SGMAS), 74 p. ICES CM 2008/
ACOM:24, Copenhagen, Denmark.
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connection to the economy and business (Vasconcellos 
and Cochrane, 2005). Commercial landings result from 
complex interactions between the environment, the fish-
ing fleet, and the stocks, and therefore do not directly 
reflect the status of exploited populations. However, 
landing records contain valuable information that can 
be useful to managers if routine monitoring, rather 
than stock assessment, is established as a manage-
ment objective (Scandol, 2003). In fact, even if they 
provide suboptimal indications on the status of the 
stocks, statistical analyses of landings can lead to the 
timely detection of phenomena such as sudden increases 
in fishing effort or marked population declines that 
could otherwise remain undetected (Caddy, 1999). Such 
detection is important—particularly within multispe-
cies, budget-limited, management contexts—because it 
allows the prioritization of research and management 
actions toward the subset of fisheries and stocks most 
likely to be depleted (Scandol, 2003).

Autoregressive integrated moving-average (ARIMA) 
models are simple time series models that can be used 
to fit and forecast univariate data such as fisheries 
landings. With ARIMA models data are assumed to 
be the output of a stochastic process, generated by un-
known causes, from which future values can be pre-
dicted as a linear combination of past observations and 
estimates of current and past random shocks to the 
system (Box et al., 2008). In fisheries, ARIMA models 
(and their seasonal multiplicative version, SARIMA) 
have a long record of successful application that extends 
from modeling (e.g., Hare and Francis, 1994; Fogarty 
and Miller, 2004) to short-term forecasting of a variety 
of variables and resources for both data-rich and data-
poor fisheries (Table 1). Specifically, SARIMA models, 
which are applicable to many already-available land-
ings data sets, have been found to provide both annual 
and monthly forecasts that are comparable to, or even 
better than forecasts from many multivariate models, 
including some with fishing effort among the predictors 
(Stergiou et al., 1997). 

The good record, flexibility, and simplicity of SARI-
MA models have made them natural candidates for 
the modeling of data-poor fisheries (Rothschild et al., 
1996). However, to date, SARIMA models in fisheries 
have only been applied in detail on relatively long time 
series (≥120 months) (Table 1), and a single study has 
provided a few (but not detailed) results from shorter 
series (Lloret et al., 2000). Such emphasis of previous 
SARIMA modeling on long time series finds little sup-
port in statistical literature where 50 months is gener-
ally regarded as the minimum sample size for model 
application (e.g., Pankratz, 1983; Chatfield, 1996a). Ad-
ditionally, most literature to date has focused on SARI-
MA models as tools to generate accurate forecasts of 
future landings. However, in addition to good forecast-
ing, these models also possess significant capabilities 
for monitoring landings that have remained unexplored. 
These capabilities become apparent when SARIMA 
models are approached from a statistical process-control 
perspective and it is made known that SARIMA model 

forecasts include the assumption of persistence (through 
time) of the process that generated the data (Box et al., 
2008; Mesnil and Petitgas, 2009). Briefly, good land-
ing forecasts are only attainable as long as significant 
changes do not take place in the fishery; therefore large 
forecast errors can be regarded as indications that can 
be changes in the fishery process took place that may 
require management intervention (Pajuelo and Lorenzo, 
1995; Georgakarakos et al., 2006; Box et al., 2008).

In this study, we report the first detailed applica-
tion of SARIMA models for monitoring of data-poor 
fisheries landings. We use data from a previously un-
assessed Portuguese fishery on meagre (Sciaenidae: 
Argyrosomus regius) as our example. The meagre is 
a valuable top predator from European coastal wa-
ters but its stocks have not been analytically assessed 
because of limitations in data, personnel, and fund-
ing existing at the national level. At the time of our 
analysis only a short time series of monthly landings 
(60 months) was available for this fishery, a situation 
that replicates conditions found in many other data-
poor fisheries worldwide. We show that the short time 
series was not a problem for SARIMA modeling and 
forecasting and that prediction intervals from SARI-
MA models can be used to provide this fishery with 
basic monitoring. We suggest that SARIMA models 
should be more widely considered to extend the cover-
age of monitoring to all exploited marine resources.

Materials and methods

Meagre (Argyrosomus regius) and its fisheries

Meagre is one of the world’s largest and most valuable 
sciaenids (up to 180 cm, 50 kg, and with a US$ 15 per 
kg exvessel price). It ranges from France to Senegal, and 
the largest fisheries take place off Mauritania, Morocco, 
and Egypt. In Europe, the meagre constitutes a prized 
trophy-fish for anglers and an important income for 
small-scale commercial fishermen along the Atlantic 
shores of France, Spain, and Portugal. Its biology and life 
cycle remain scarcely documented, but recent concerns 
about the overexploitation of juveniles and interests in 
aquaculture production have sparked some research. 
Currently, the fish is known to be fairly long-lived (up 
to 44 yr) (Prista et al., 2009), to present fast juvenile 
growth (Morales-Nin et al., 2010) and to spawn at 3–4 yr 
old (N. Prista, unpubl. data). Data on adult growth and 
reproduction have not been published, but preliminary 
reports indicate a life-cycle characterized by fast growth, 
high fecundity, and a long reproductive span, and that 
the estuaries of the Gironde (France), Tagus (Portugal), 
and Guadalquivir (SW Spain) rivers constitute the main 
spawning habitats (Quéméner, 2002; Prista et al.2; N. 

2 Prista, N., C. M. Jones, J. L. Costa, and M. J. Costa.  
2008. Inferring fish movements from small-scale fisheries 
data: the case of Argyrosomus regius (Sciaenidae) in Por-
tugal, 19 p. ICES CM 2008/K-19, Copenhagen, Denmark.
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Table 1
Primary fisheries literature that present seasonal autoregressive integrated moving-average models. Only studies with quan-
titative forecast results are displayed. “No.”=the number of series, “Freq”=the sampling frequency (W=weekly, M=monthly, 
A=annual), “n” is the sample size of the fitting period, “F”=number of forecasts, “models” indicates the type of models compared, 
and “PI” indicates if prediction intervals were presented (yes, no). “/” separates annual and monthly data sets when both were 
analyzed. “sp” = species, “nsp groups” = nonspecific groups, “rel.” = relative, “CPUE”=catch per unit of effort, “LPUE”=landings 
per unit of effort. 

Reference Species Variable No. Freq n F Modelsa PI

Saila et al. (1980) Jasus edwardsii  CPUE  1 M 144 12 1,5 n

Mendelssohn (1981) Katsuwonus pelamis  catch/effort  1 M 180 12 12 n

Fogarty (1988)  Homarus americanus  catch/CPUE  3/1 A/M 41–58/216 1/12 12 n

Jeffries et al. (1989) Pseudopleuronectes  rel. abundance  2/3 A/M 27/156;324 2/12 –– y 
  americanus  

Stergiou (1989) Sardina pilchardus  catch  1 M 204 12 –– n

Noakes et al. (1990) Oncorhynchus nerka  total returns  2 A 24 8 1,10,12,19,20 n

Stergiou (1990a) Engraulis encrasicolus  catch  1 M 252 24 –– n

Stergiou (1990b) Mullidae  catch  1 M 252 24 –– n

Campbell et al. (1991) Homarus americanus  catch  4 A 61–97 10 12 n

Molinet et al. (1991) Penaeus spp.,  landings/LPUE  2 M 132;180 24 –– n 
 Lutjanus synagris  

Stergiou (1991) Trachurus sp.  catch  1 M 252 12 1,8 n

Tsai and Chai (1992) Morone saxatilis  harvest  1 A 27 4 3,4,12 n

Pajuelo and Lorenzo  1 nsp group  catch  1 M 131 24 –– y 
 (1995) 

Stergiou and Christou 4 sp; 12 nsp groups  catch  16 A 24 2 1–9 n 
  (1996) 

Stergiou et al. (1997) 4 sp; 12 nsp groups  catch  16 M 288 24 1–5,7–9 n

Park (1998) Theragra chalcogramma  landings  1 M 264 24 –– n

Lloret et al. (2000)6 30 sp; 36 nsp groups  catch  66 M 51–200 12 –– y

Georgakarakos et al.  Loligo vulgaris,  landings  2 M 174 12 11,15,16 y 
 (2002, 2006) Todarodes sagittatus 

Pierce and Boyle  Loligo forbesi  LPUE  1 A/M 27/324 3/36 3, 12 y 
 (2003) 

Stergiou et al. (2003) Xiphias gladius  catch  1 M 180 12 8,13 n

Zhou (2003) Oncorhynchus tshawytscha  spawner density  2 A 11 4 1, 15 n

Hanson et al. (2006)  Brevoortia tyrannus,  landings  2 A 57;63 10 3,14,15 n 
 B. patronus  

Koutroumanidis et al.  E. encrasicolus,  landings  3 M 216;252 12 17,18 n 
 (2006) Merluccius merluccius,  
 Sarda sarda 

Czerwinski et al.  Hippoglossus stenolepis CPUE  1 W 107 31 15 n 
 (2007)    

Tsitsika et al. (2007) Total pelagic production CPUE  4 M 180 12 11 y
 E. encrasicolus,  
 S. pilchardus, T. trachurus 

a Models compared: 1=naïve, 2=linear regression (LR), 3=multiple LR, 4=multiple LR with correlated errors, 5=harmonic LR, 6=Fox surplus-
yield, 7=model combination, 8=exponential, 9=vector autoregressive, 10=periodic autoregressive, 11=multivariate ARIMA, 12= transfer 
function noise, 13=census method II (X-11), U.S. Dep. Commer., 14=state space models, 15=artificial neural networks, 16=Bayesian dynamic 
modeling, 17=genetic modeling for optimal forecasting, 18=fuzzy expected intervals, 19=stock-recruitment, 20=sibling.

b The Lloret et al. (2000) study includes 12 series with 51–64 months. 

Prista, unpubl. data). Marked seasonal variations in 
landings linked to juvenile and adult migrations have 
been identified in local fisheries (Quéro and Vayne, 1987; 

Prista et al.2). Overall, adults are thought to come inshore 
from spring to early summer to spawn but their overwin-
tering grounds are still unknown; juveniles are thought 
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to use estuaries as nursery areas during 
the warmer months and overwinter in 
adjoining coastal grounds (Quéro and 
Vayne, 1987; Quéméner, 2002; Prista et 
al.2; N. Prista, unpubl. data).

Recently, substantial conservation 
risks have been identified in European 
meagre fisheries that are related to 
the overexploitation of juvenile and 
adults schools in estuaries and nearby 
coastal areas (Quéméner, 2002; Prista 
et al.2). To protect juveniles, precau-
tionary management measures have 
been put in place (namely minimum 
landing size regulations) but the ac-
tual status of the meagre stocks was 
never assessed. This lack of assess-
ment mainly results from a lack of suf-
ficient multivariate time-series data 
and because national assessment pri-
orities, funding, and expertise are gen-
erally allocated to the largest national 
and transnational fisheries instead of 
the less-significant, albeit numerous 
and regionally important, ones. The 
fish being largely absent from routine 
fishery-independent surveys (Quéro 
and Vayne, 1987; F. Cardador, personal 
commun.3) and difficulties related to 
its sampling at port and the estima-
tion of fishing effort (Prista et al.2,4) 
further contribute to its unassessed 
status. In this type of setting, if simple 
methods are not put in place that can, 
at least, detect the most alarming sig-
nals in the landings data it is likely 

Figure 1
Time series of monthly meagre (Argyrosomus regius) landings, in tons, 
in the Lisboa region of the Portuguese coast (May 2002 to April 2008). 
The dashed vertical line is the forecast origin (April 2007) and separates 
the fitting period (May 2002 to April 2007, left) from the hold-out period 
(May 2007 to April 2008, right). (A) Raw data. (B) Log10-transformed 
mean-centered data.
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that stock collapses can occur without being detected. 

Data set and data transformations

The Lisboa region in Central West Portugal (hence-
forth termed “Lisboa region”) (38°25′N to 38°59′N lat., 
~9°15′W long.) is the main fishing area for meagre off 
the Iberian Peninsula (between 29% and 45% of annual 
landings of meagre, all gears combined, in 2001−05). 
In this region, most of the catch is associated with the 
Tagus estuary and its adjoining coastal area. The catch 
derives essentially from a small-scale artisanal fleet in 
which gillnets, trammel nets, and longlines are used to 
catch meagre during its spawning and nursery season 
(Prista et al.2). To minimize overfishing of juvenile fish, 
a minimum landing size of 42 cm was established in 
2002 that complements an array of other gear-related 

and effort-related management regulations that are not 
specific to meagre.

To test SARIMA models in the monitoring of the 
Lisboa meagre landings, we obtained a time series of 
meagre monthly landings from the Portuguese General-
Directorate for Fisheries and Aquaculture (DGPA). The 
landings data resulted from mandatory reports of fish 
sales obtained at all ports of the Lisboa region (N=14) 
from May 2002 to April 2008 (i.e., 72 monthly values) 
as part of a routine data collection program (Fig. 1). We 
used the first 60 months to fit the SARIMA models and 
the last 12 months as a hold-out period to evaluate fore-
casting performance and to monitor the fishery. Some 
previous data were available on this fishery, but those 
data were found to be unreliable because of contamina-
tion with landings from Portuguese vessels operating 
off North African waters. No significant management 
interventions occurred on the fishery during the course 
of our study.

Before fitting a SARIMA model, the time series must 
be checked for violations of the weak stationarity as-
sumption of the models (Brockwell and Davis, 2002; Box 
et al., 2008). In SARIMA models, trend and seasonal 
nonstationarities are handled directly by the model 

3 Cardador, Fátima. 2008. INRB, I.P./IPIMAR, Av. Brasília, 
1449-006 Lisboa, Portugal.

4 Prista, N., J. L. Costa, M. J. Costa, and C. M. Jones.  
2007. New methodology for studying large valuable fish in 
data poor situations: commercial mark-recapture of meagre 
Argyrosomus regius in the southern coast of Portugal, 18 p.
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Table 2
Candidate set of seasonal autoregressive integrated moving-average models. The “rule” column displays the mathematical 
expression used to determine the autoregressive components (p) and moving-average components (q) of the candidate models. 
“Max AR term” and “Max MA term” columns display the maximum autoregressive (AR) and moving-average (MA) lags included 
in the model equations, with respect to the original (xt) and 12-month differenced log10-transformed mean-centered data  
(wt=

D

1
12yt=

D

1
12 (log10xt−4.022)), respectively. 

Model structure No. of models Rule Max AR term Max MA term

(p,0,q)×(0,1,0)12 325 q<25–p; p≤24  wt−24; xt−36 zt−12

(p,0,q)×(1,1,0)12 91 q<13–p; p≤12 wt−24; xt−36 zt−12

(p,0,q)×(0,1,1)12 91 q<13–p; p≤12 wt−12; xt−24 zt−24

(p,0,q)×(1,1,1)12 1 q=0; p=0 wt−12; xt−24 zt−12

structure so that only the nonstationarity of variance 
needs to be addressed before model fitting. The meagre 
time series (xt, t=1, . . . ,60) was seasonal and exhibited 
no trend (Fig. 1A), but annual variance-mean plots in-
dicated an increase in variance with the series mean. 
To correct this, we evaluated Box-Cox transformations 
(Box and Cox, 1964) and found that a log10 transforma-
tion successfully stabilized the variance of the series. 
Accordingly, we log-transformed the data, subtracted 
its mean, and then used the mean-centered log-trans-
formed data set (yt, t=1, . . . ,60) as input to the SARIMA 
analyses (Fig. 1B).

Data modeling

We fitted SARIMA models to the meagre data using a 
semi-automated approach based on a combination of the 
Box-Jenkins method with small-sample, bias-corrected 
Akaike information criteria (AICc) model selection (Roth-
schild et al., 1996; Brockwell and Davis, 2002). This 
approach involved three major steps: 1) selection of the 
candidate model set; 2) estimation of the model and 
determination of AICc; and 3) a diagnostic check. Details 
on the notation and model selection procedures used to 
fit SARIMA models to short time series are given in 
Appendices 1 and 2.

Selection of the candidate model set was carried out 
by first analyzing sample estimates of the autocor-
relation function (ACF) and partial autocorrelation 
function (PACF) in order to select the three major 
orders of the SARIMA models: d, D, and S. In the 
meagre case, we concluded that a configuration with 
d=0, D=1, and S=12 should be adopted (see Results 
section). Consequently, a SARIMA(p,0,q)×(P,1,Q)12 was 
selected as the basic model structure of the candidate 
set, with p, q, P, and Q left to vary. There is no a 
priori method to determine the maximum value that 
p, q, P, and Q can take, but the maximum orders of 
the models are obviously restricted by sample size. 
In our analysis, we conditioned p, q, P, and Q to the 
upper boundary max(p+q+SP+SQ)=24 and p+q≤12 
(Table 2), which caused the maximum possible term 
of any SARIMA model to be xt–36 and the maximum 
possible number of parameters to be 13. We found 

this procedure to provide a good compromise between 
model complexity and the convergence of estimation 
algorithms.

Model estimation was carried out by using maximum 
likelihood methods, after conditional sum of squares 
estimation of the starting values (Brockwell and Da-
vis, 2002). Given the large number of models requiring 
estimation (Table 2), we developed a semi-automated 
software routine in R, vers. 2.5.1 (R Development Core 
Team, 2007) that estimated the models and output 
their AICc values. This routine used several functions 
incorporated in the R packages “stats” (R Development 
Core Team, 2007), “tseries” (Trapletti and Hornik, 
2007), and “FinTS” (Graves, 2008). After estimation, 
the model with the minimum AICc was selected for 
further analysis.

Diagnostic checks on the AICc-selected model involved 
the following steps: 1) verification of the resemblance 
of residuals to white noise (ACF plots, Ljung-Box test, 
cumulative periodogram test); 2) tests on the normality 
of residuals (Jarque-Bera and Shapiro-Wilks tests); and 
3) confirmation of model stationarity, invertibility, and 
parameter redundancy (Shapiro et al., 1968; Ljung and 
Box, 1978; Jarque and Bera, 1987; Box et al., 2008). All 
tests were carried out at a significance level of α=0.05. 
The variance explained by the model was determined 
as 1 2 2− ˆ /σ σ yt

 (Stergiou, 1990a).

Forecasts and model performance

We evaluated 12 months of model forecasts, using the 
last month of the fitting data set as the forecast origin 
(i.e., April 2007). Forecasts were obtained in the mean-
centered transformed scale (ŷh, h=1,...,12) and in the 
original scale of the data (x̂h, h=1,...,12), after correcting 
for back-transformation bias (Pankratz, 1983). SARIMA 
model performance was assessed by comparing h-step 
forecasts (x̂h and ŷh) with monthly landings observed 
between May 2007 and April 2008 (xh and yh). This was 
done by evaluating monthly forecast errors (e.g., eh= x̂h 
− xh) and then considering a set of accuracy measures: 
1) annual root mean-square error (RMSE); 2) mean 
error (ME); 3) absolute percent error (APEh); 4) mean 
absolute percent error (MAPE); and 5) annual percent 
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error (PE) (Mendelssohn, 1981; Hyndman and Koehler, 
2006). From these, RMSE was evaluated in the trans-
formed scale to allow its comparison to ŝ, and all others 
were computed in the more user-friendly original scale 
of the data. Additionally, we compared the forecasting 
performance of the SARIMA model against two simple 
naïve forecasting models (naïve model 1 or NM1, and 
naïve model 2 or NM2) (Noakes et al., 1990; Stergiou 
et al., 1997). The latter represented ad hoc forecasting 
models likely to be used in data-poor fisheries with short 
time series of landings: with NM1, future landings were 
assumed to be equal to the landings registered in the 
previous year; and with NM2, future landings were 
assumed to be equal to the average monthly landings 
registered in the fitting period. We also evaluated the 
Kitanidis and Bras (1980) coefficient of persistence 
(P) that summarizes forecasting results by comparing 
them with those of a naïve model where landings at 
time t+1 are assumed equal to landings at time t. This 
coefficient takes values smaller than or equal to 1, with 
P=1 representing perfect model forecasts.

Monitoring of fisheries

SARIMA models predict the future on the assumption 
that the statistical properties of the process generating 
the data remain the same over time (Box et al., 2008). 
When framed within the perspective of statistical pro-
cess control (e.g., Scandol, 2005; Box et al., 2008; Mesnil 
and Petitgas, 2009), this characteristic allows the pre-
dictions of well-developed SARIMA models to be used 
as “guidelines” to monitor future observations. When 
a SARIMA model is found that appropriately fits the 
landings data, a significant departure of its forecasts 
from future observations can be seen as an indication 
that changes in the underlying fishery process have 
occurred (=out-of-control situation). In contrast, if such 
a significant departure does not take place, then there 
is no indication for such changes (= in-control situation). 
From a data-poor fisheries perspective, such a distinction 
means that if funding is limited and multiple fisheries 
require assessment, research and management efforts 
should be allocated to fisheries displaying out-of-control 
decreasing trends in production rather than to fisher-
ies that remain stable or display in-control increasing 
trends (Scandol, 2003, 2005).

The distinction between in-control and out-of-control 
landings requires a set of detection limits. To date, 
process-control detection limits for fisheries indicators 
have been derived mostly from historical reference da-
ta (Scandol, 2003; Mesnil and Petitgas 2009; Petitgas, 
2009). However, most fisheries have only a few years 
of collected data and consequently historical limits 
are difficult to estimate. In such situations, model-
based detection limits like the prediction intervals 
(PIs) of SARIMA models (Chatfield, 1993; Box et al., 
2008) provide easy-to-compute detection limits that 
explicitly take into account the correlation structure 
of the data. SARIMA PIs resemble confidence inter-
vals for model forecasts and consist of upper and lower 

boundaries that encompass a 1−α probability region 
for future forecasts (Chatfield, 1993). Their main use 
is to convey the uncertainty around forecasts (De 
Gooijer and Hyndman, 2006). However, because pre-
diction intervals encompass only future observations, 
as long as no structural changes take place in the 
underlying process (Chatfield, 1993), their boundar-
ies can be used to monitor univariate data such as 
fisheries landings.

To date, the prediction intervals (PIs) from SARIMA 
models have seldom been reported in fisheries literature 
and, when they have, with little detail and discussion 
(Table 1). To monitor the landings of the meagre fish-
ery we used two types of PIs: single step PIs (PIss,h) 
and multistep PIs (PIms,h). Single step PIs refer to a 
single monthly forecast (e.g., h=3) and are useful for 
determining whether a specific monthly observation is 
an outlier at a given significance level α. Multistep PIs 
encompass a 1−α prediction region that is a simultane-
ous PI for all observations registered up to a certain 
h-step and are useful in detecting systematic depar-
tures from historical patterns. We calculated PIss,h as 
ˆ , /y t PMSEh df h± α 2 where PMSEh is the expected mean 

squared prediction error at step h and df=N−DS−d−r 
(Chatfield, 1993; Harvey, 1989). In the calculation of 
multistep PIs, we used a conservative approach based 
on a first-order Bonferroni inequality, whereby PIms,h 
is given as ˆ , /y t PMSEh df h h± α 2 and joint prediction in-
tervals of, at least, 1−α around the point forecasts are 
obtained (Chan et al., 2004).

Results

Data modeling

Large autocorrelations were recorded for lags 1, 2, 11, 
12, 23, and 24 with values 0.68, 0.32, 0.44, 0.46, 0.28 
and 0.31, respectively (Fig. 2). The sharp decrease in 
autocorrelation values after lag 2 (0.07 at lag 3) indi-
cated no evidence of a long-term trend; consequently, 
there was no need to include a first-lag difference term 
in the SARIMA model structure (d=0). In contrast, large 
autocorrelation values were registered at annual lags 
(and its multiples) which indicated the need to include 
a 12-month difference term in the models (S=12, D=1) 
(Fig. 2). The ACF and PACF plots of the differenced 
series provided further support for these conclusions 
(Fig. 2). Accordingly, a SARIMA(p,0,q)×(P,1,Q)12 was 
selected as the basic structure of the SARIMA candi-
date set.

Out of all models in the candidate set, a SARI-
MA(0,0,5)×(1,1,0)12 was selected as the best model 
for the meagre data (−2 ln (L)=−26.32, n=48, r=7, 
AICc=−9.52). This model had the following equation:

(1+0.65{.10}B12) 

D

1
12yt= (1+0.63{.19}B+0.56{.15}B2 + 

0.51{.17}B3 + 0.93{.18}B4 + 0.60{.21}B5)zt ,

with a noise variance estimate of ŝ=0.025 and 
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Figure 2
Sample autocorrelation function (ACF) and partial autocorrelation function (PACF) of the transformed meagre (Argyro-
somus regius) landings. ACF/PACF plots for log10-transformed mean-centered data (yt, far left), lag-1 differenced series  
(

D

1
1yt), lag-12 differenced series (

D

1
12yt), and lag-1 and lag-12 differenced series (

D

1
1

D

1
12 yt, far right) are displayed. Horizontal 

dashed lines represent the 95% confidence limits valid under the null hypothesis of white noise error structure.
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where yt =  the mean-centered log-transformed meagre 
series (i.e., yt=log10xt−4.022) and the values 
in { } are the standard errors of the estimates.

Diagnostic checks indicated that the SARIMA model 
was stationary and invertible and did not have redun-
dant parameters. The residuals were white noise 
(Ljung-Box Q=3.35, P-value>0.05) and passed asymp-
totic normality tests (Shapiro-Wilk W=0.97, P-value 
>0.05; Jarque-Bera LM=4.91, P-value >0.05) indicating 

the model fitted the data and errors were normally 
distributed. The model explained 78.2% of the variance 
of the series.

The final process equation selected for the meagre 
data was

log10Xt= 0.35log10Xt−12+0.65log10Xt−24+Zt+0.63Zt−1

+0.56Zt−2+ 0.51Zt−3+0.93Zt−4+0.60Zt−5,

where Zt ~ N (0, 0.025).
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Figure 3
Forecasts and forecast prediction intervals (PIs) of meagre (Argyrosomus regius) landings. The 
dashed vertical line is the forecast origin (“Fo”, April 2007). The gray circles and line represent 
the monthly forecasts. The black circles and line represent observed monthly landings. The dashed 
gray lines represent the upper and lower 75%, 95%, and 99% prediction intervals. (A and B) Single 
step prediction intervals (PIss,h) of transformed centered landings and back-transformed landings, 
respectively in C and D. Multistep prediction intervals (PIms,h) of transformed centered landings 
and back-transformed landings, respectively.
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Model forecasts and performance

The model forecasts presented two local maxima (May 
2007 and September 2007) followed by a four-month 
period of low landings (December 2007 through March 
2008) and an increase in the last month (April 2008) 
(Fig. 3, Table 3). This pattern in forecasts matched the 
one in observed landings and the only deviations were 
that the actual maxima took place one to two months 
later and the winter trough was sharper than that pre-
dicted by the model (Fig. 3). RMSE during the hold-out 

period (0.234) was ≈1.5 times the RMSE of the fitting 
period. Eight of the 12 forecasts registered negative 
errors, but the low ME and PE indicated that under-
estimation was minor in global terms. APE was large 
in August, September, December, and April, reflecting 
the delay in cessation of the 2007 fishing season and 
the hastening of the 2008 fishing season. Maximum 
APE coincided with the lowest landings (February), 
and the minimum APE with the first month forecasted 
(May) (Table 3). MAPE was 40.3%, reflecting the lagged 
seasonality and the low landings observed during the 
winter period.
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As with SARIMA forecasts, naïve model predictions 
also lagged observed values by one or two months. How-
ever, the SARIMA forecasts registered the best perfor-
mance in all accuracy measures, resulting in a 10% to 
18% reduction in RMSE, 49% to 60% reduction in ME, 
6% to 10% reduction in MAPE, and ≈15% reduction 
in PE (Table 3). The coefficient of persistence of the 
SARIMA model was also better (P=0.46) than the one 
registered by NM1 (P=0.23) and NM2 (P=0.03).

Monitoring of fisheries

During the hold-out period, observed landings remained 
entirely within the 95% prediction intervals of the 
SARIMA forecasts (Fig. 3), indicating that the observed 
forecast errors were within the range of values expected 
from random variability. Consequently the time series for 
meagre landings may be described as having remained 
in-control during the forecasting period. The PIs were 
symmetrical in the log-transformed scale (Fig. 3, A and 
C), but asymmetrical in the original scale of the data 
(Fig. 3, B and D). This pattern was expected from predic-
tions of log-transformed data and indicates that sudden 
increases in monthly landings (positive forecast errors) 
are considered “more acceptable” than sudden decreases 
(negative forecast errors). Individual forecast errors that 
could have signaled an alarm ranged from 4.3 to 23.0 
t (negative errors) to 13.5–68.3 t (positive errors). In 
relative terms, alarms would have been triggered by a 
higher than 54–75% drop, or by a higher than 105–238% 
increase, in monthly landings (Table 4). Compared to 

monthly PIs, multistep PIs were wider as a result of the 
increasing number of comparisons performed (Table 4). 
Even so, it is noticeable that such widening took place 
mainly on their upper boundary, and only a 12% increase 
was observed on their lower boundary.

Discussion

Interpretation of the models

Univariate SARIMA models based on landings do not 
have explanatory variables, but several studies have 
found the mathematical formulation in the models to 
correlate well with fish life history and fleet dynamics 
(Stergiou, 1990b; Stergiou et al., 1997; Lloret et al., 
2000). In Europe, adult and juvenile meagre are thought 
to perform spring–summer migrations to major estuar-
ies, remaining there until mid-summer (adults) and 
autumn (juveniles). These migrations are well known to 
local fishermen that actively target the meagre schools 
while they reside in estuarine grounds (Quéro and 
Vayne, 1987; Prista et al.2). Such interactions between 
fish migrations and directed fishing effort are likely the 
cause of the strong seasonal component of the SARIMA 
model because target effort tends to intensify the natu-
ral seasonal signal generated by fish migrating through 
a fishery (Lloret et al., 2000; Prista et al. 2008). In the 
case of central Portugal, such intensification is likely 
modulated at an interannual level by the expectations 
created for local fishermen by catches obtained in pre-

Table 3
Forecasts of meagre (Argyrosomus regius) landings (May 2007 to April 2008). Observed landings (xh), forecasted landings (x̂h), 
monthly forecast errors (eh), monthly absolute percent error (APEh), mean error (ME), and mean absolute percent error (MAPE) 
are displayed for the two naïve models (NM1 and NM2) and the seasonal autoregressive integrated moving-average model 
(SAR). Annual root mean-square error of the mean-centered transformed data (RMSE) and annual percent error (PE) for NM1, 
NM2 and SAR were 0.261 and 30.2%, 0.285 and 38.9%, and 0.234 and 15.4%, respectively.

 Forecasts (x̂h) Forecast errors (eh) APEh

Month Step (h) Obs (xh) NM1 NM2 SAR NM1 NM2 SAR NM1 NM2 SAR

May-07 1 37.1 29.9 21.0 36.4 –7.2 –16.1 –0.7 19.4 43.5  1.8
Jun-07 2 41.5 27.2 18.1 26.6 –14.3 –23.4 –14.9 34.4 56.5 35.8
Jul-07 3 23.0 17.9 14.7 26.1 –5.2 –8.3 +3.1 22.4 36.2 13.3
Aug-07 4 15.7 25.9 18.4 25.8 +10.2 +2.8 +10.1 65.3 17.6 64.7
Sep-07 5 20.8 24.2 26.3 31.4 +3.4 +5.5 +10.6 16.3 26.2 51.1
Oct-07 6 30.6 15.3 21.9 23.0 –15.2 –8.7 –7.6 49.8 28.5 24.9
Nov-07 7 32.9 10.2 13.3 19.0 –22.7 –19.6 –13.9 69.0 59.5 42.2
Dec-07 8 16.1 6.8 6.8 6.0 –9.3 –9.2 –10.1 57.7 57.5 62.8
Jan-08 9 7.5 5.0 4.8 5.7 –2.5 –2.7 –1.8 32.8 35.7 24.5
Feb-08 10 3.2 5.4 5.2 6.1 +2.1 +2.0 +2.9 66.6 61.9 90.7
Mar-08 11 8.0 5.8 4.1 6.5 –2.2 –3.9 –1.5 27.3 48.6 19.0
Apr-08 12 34.1 15.2 10.8 16.3 –18.9 –23.4 –17.9 55.5 68.4 52.4
Mean 1:12 22.5 15.7 13.8 19.1 –6.8 –8.8 –3.5 43.1 45.0 40.3
Sum 1:12 270.5 188.8 165.4 228.9 –81.7 –105.1 –41.6 — — —
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Table 4
Prediction intervals of meagre (Argyrosomus regius) landings (May 2007 to April 2008). Point forecasts (x̂h) and 95% boundar-
ies of the single step (PIss,h) and multistep (PIms,h) prediction intervals are displayed. The prediction boundaries are given as 
absolute errors (|eh|) and absolute percent errors (APEh) in each monthly forecast step (h). In each cell, the left and right values 
represent the lower and upper boundaries, respectively.

 PIss,h PIms,h

Month Step (h) x̂h |eh| APEh  |eh| APEh

May-07 1 36.4 19.7–38.4 54–105  19.7–38.4 54–105
Jun-07 2 26.6 16.2–35.8 61–135  17.5–45.0 66–169
Jul-07 3 26.1 16.9–40.5 65–155  18.8–58.0 72–222
Aug-07 4 25.8 17.3–43.7 67–169  19.6–68.8 76–266
Sep-07 5 31.4 23.0–68.3 73–217  25.9–120.0 82–382
Oct-07 6 23.0 17.3–54.7 75–238  19.5–103.6 85–451
Nov-07 7 19.0 14.3–45.2 75–238  16.2–89.7 85–472
Dec-07 8 6.0 4.5–14.2 75–238  5.1–29.4 86–491
Jan-08 9 5.7 4.3–13.5 75–238  4.9–28.8 86–509
Feb-08 10 6.1 4.6–14.6 75–238  5.3–32.2 87–525
Mar-08 11 6.5 4.9–15.5 75–238  5.7–35.1 87–539
Apr-08 12 16.3 12.3–38.7 75–238  14.2–89.9 87–553

ceding years (represented in the seasonal autoregressive 
term) and, at an intra-annual level, by random environ-
mental and anthropogenic perturbations occurring on 
the fishery system (represented in the set of nonseasonal 
moving-average terms).

Model fit and forecast performance

The univariate SARIMA model presented a good fit to 
the short time series of meagre landings, explaining 
most of its variance and adequately modeling the sea-
sonality and correlation structure of the data. Similar 
results were obtained in other studies of short and long 
time series: up to 68% (Lloret et al., 2000, series ≤64 
months), 75% (Saila et al., 1980), 77% (Stergiou et al., 
2003), 84–96% (Stergiou, 1989, 1991; Stergiou et al., 
1997), and 93% (Pajuelo and Lorenzo, 1995). Taken 
together, these results indicate that SARIMA models 
should be adequate for data sets of monthly landings 
in general, and not just those with larger sample sizes. 
Bearing in mind that the minimum series length usu-
ally stated for SARIMA model fitting is 50 (Pankratz, 
1983; Chatfield, 1996b), such generalized applicability 
may make SARIMA models particularly useful for fish-
eries with less reliable historical records or where only 
recently landings have been sampled.

In addition to a good fit, the SARIMA model also pro-
vided good short-term forecasts of meagre landings. The 
fact that all observed values were located within the 
predicted intervals of the model, and that naïve fore-
casts presented similarly lagged seasonality, indicates 
that the main forecast errors more likely resulted from 
natural variations in the timing of fish migrations and 
fishing seasons (Quéro and Vayne, 1987; Prista et al.2) 

or from specifics of SARIMA forecasts and accuracy 
measures (namely, correlation and APE sensitivity to 
near-zero observations) (Hyndman and Koehler, 2006; 
Box et al., 2008) than from model misspecification. At 
the annual level, the 15% error achieved is comparable 
to results previously obtained in larger data sets and 
well within the 10–20% range considered acceptable 
for market-planning and fisheries management (e.g., 
Mendelssohn, 1981; Pajuelo and Lorenzo, 1995; Hanson 
et al., 2006). Additionally, SARIMA forecasts clearly 
outperformed naïve forcasting in all accuracy metrics, 
underscoring the large benefits of using these models 
instead of simpler alternatives (Saila et al., 1980; Ster-
giou, 1991; Stergiou et al., 1997). Considered together 
with the overall good forecasting performance reported 
by Lloret et al. (2000) in their shorter series, these re-
sults build confidence that SARIMA models are useful 
for forecasting short time series of landings and thus 
can substantially contribute to the planning and man-
agement of many data-poor fisheries.

Use of SARIMA models to forecast landings  
of data-poor fisheries

SARIMA models forecast future landings by directly 
handling the seasonality and autocorrelation structure 
of the data and assuming the continuity over time of 
past time series behavior (Box et al., 2008). These 
models are known to be well adapted to forecast highly 
seasonal and autocorrelated data (Stergiou et al., 1997; 
Georgakarakos et al., 2006). Additionally, some authors 
have reported better SARIMA forecasting performances 
in fisheries with lower interannual variability, namely 
those that target benthic and demersal long-lived spe-
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cies (Lloret et al., 2000). The data for meagre are 
autocorrelated and present a relatively stable seasonal 
pattern. Also, the meagre is long-lived and a targeted 
fish in central Portugal (Prista et al., 2009; Prista et 
al.2). Therefore, it is possible such features contributed 
to the good forecasts obtained from the SARIMA model. 
However, we note that the landings of many short-lived 
pelagic species and species with variable seasonal pat-
terns have also been well forecasted with SARIMA 
models (Stergiou, 1990a; Stergiou et al., 1997; Geor-
gakarakos et al., 2006; Tsitsika et al., 2007) and that 
the meagre landings also display substantial annual 
and monthly stochasticity Therefore, such general pat-
terns should not be considered as strict limitations to 
SARIMA forecasting. More importantly, we note that 
SARIMA models can forecast well only if they have 
been adequately identified and estimated, and always 
under the assumption that the future is behaving like 
the past (Chatfield, 1993). Consequently, factors like 
data quality, presence of outliers, and model selection 
criteria are also very important for model performance. 
We discuss these next.

The quality of the input data for SARIMA models 
is determined mainly by the temporal stability of the 
statistical properties of the fisheries process and the 
consistency of its sampling over time. Consequently, 
although accuracy is required for some model appli-
cations (e.g., Zhou, 2003), data inaccuracies do not 
necessarily undermine SARIMA forecasts as long as 
factors such as fishing practices, regulatory measures, 
or data collection practices can be assumed to remain 
constant. When dealing with shorter series, a care-
ful check whether these assumptions hold becomes 
particularly important because model identification 
and estimation are very dependent on the few obser-
vations available (Hyndman and Kostenko, 2007) and 
statistical techniques used to incorporate the effects 
of process changes in the models (e.g., Fogarty and 
Miller, 2004) are difficult to implement. In the case 
of meagre, the use of a short and recent time series 
better supported the assumption that data collection 
procedures, fishing techniques, fishery regulations, 
unreported landings, discards, and law enforcement 
practices did not change over time. In contrast, it is 
probable that these assumptions were not met in some 
less successful applications of the model to longer time 
series (e.g., Park, 1998). 

Outliers are known to cause trouble in time series 
model identification, estimation, and forecasts—an ef-
fect that is amplified in shorter time series (Chatfield, 
1993; Trívez and Nievas, 1998). The effects of outliers 
on forecasting performance are most disastrous when 
they occur near the forecasting origin because there 
they not only condition model structure and parameter 
estimates but are directly incorporated into the fore-
casts (Chatfield, 1993). The meagre data set presented 
no apparent outliers and this likely contributed to the 
good fit and forecasting performance achieved. If outli-
ers were present, specific modeling techniques could 
have been used to estimate their inf luence, smooth 

them, or incorporate them into the model (e.g., Chen 
and Liu, 1993; Lloret et al., 2000). We note, however, 
that any outlier during the hold-out period could still 
have changed our perception of model performance, 
even if it did not compromise the overall adequacy of 
the SARIMA model to forecast the landings. 

In time series analysis, adequate model specification 
is considered the most important driver of forecasting 
accuracy (Chatfield, 1996b). The difficulties of specify-
ing an appropriate model increase for data sets with 
lower information content, such as those of highly vari-
able short time series from more complex processes 
(Hyndman and Kostenko, 2007; Appendix 2). To date, 
fisheries applications of SARIMA models have essen-
tially relied on Box-Jenkins (BJ) model selection pro-
cedures to specify a model, and models with p ≤2 and 
q ≤2 have generally been selected (e.g., Mendelssohn, 
1981; Pajuelo and Lorenzo, 1995; Lloret et al., 2000). 
Compared to these, the model for meagre seems over-
parameterized, but we note that all of its parameters 
are statistically significant and that the low RMSEforec. 
to RMSEfit ratio indicates an excellent correspondence 
between fit and forecasting performances (Chatfield, 
1996b). In fact, although reduced model parameteriza-
tion is considered beneficial to accuracy in forecast-
ing, the most important aspect of time series analysis 
is not the number of parameters, but the degree to 
which the model approximates the statistical process 
underlying the data and whether or not it achieves 
the forecasting objectives (Chatfield, 1996b; Burnham 
and Anderson, 2002). In the case of meagre, had Box-
Jenkins procedures been used, the selected models 
would be simpler and would still adequately fit the 
data: (1,0,0)×(1,1,0)12 or (0,0,1)×(0,1,1)12. However, they 
would have performed worse than our AICc-selected 
model in most performance metrics (RMSE: 0.245 and 
0.302, APE: 1.7–92.7% and 20.6–72.4%, MAPE: 44.1% 
and 44.0%, PE: 13.7% and 31.7%, respectively). These 
results show the impact that different model selec-
tion techniques may have on forecasting performance 
with SARIMA models and stress the importance of 
considering objective data-driven criteria like AICc for 
circumventing the subjectivities of model selection in 
smaller data sets (Hurvich and Tsai, 1989; Burnham 
and Anderson, 2002).

Conclusions

Use of SARIMA models in monitoring fisheries

From a strictly forecasting perspective, SARIMA models 
have often been criticized for the excessive reliance on 
past time series behavior and their difficulty in predict-
ing future structural changes (Georgakarakos et al., 
2002; Koutroumanidis et al., 2006). Our results show 
that these drawbacks can become major advantages 
when SARIMA models are used for monitoring fisher-
ies. At present, none of the European meagre fisheries 
is subjected to routine analytical assessment. By fitting 
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SARIMA models to already available landings data we 
were able to carry out a first baseline evaluation of one 
such fishery, using limited funds and minimal time.

Our study provides a first example of how SARIMA 
models can be used to monitor data-poor fisheries. In 
the case of meagre, the data displayed no trend and 
the 95% SARIMA prediction intervals fully encom-
passed all monthly landings, thus indicating a stable 
“in-control” fishery. Note that by stating this, at no 
point do we suggest that the meagre fishery is sustain-
able long-term because landings do not necessarily 
reflect stock abundance and our study was limited in 
time. We suggest only that, since no motive for alarm 
exists in landings data, and because funds, personnel, 
and expertise are limited at the national level, atten-
tion should be allocated to fisheries that, contrary to 
the meagre, display decreasing trends or out-of-control 
situations. Similar types of pragmatic reasoning are 
generally of great help to fisheries managers handling 
multiple data-poor fishery scenarios because they help 
them prioritize management actions for the subset of 
“problematic” resources in a statistically sound way 
(Scandol, 2003, 2005).

Underlying the usefulness of SARIMA models in 
monitoring the meagre fishery and other data-poor 
fisheries is the use of prediction intervals as refer-
ence points to signal alarming trends or sudden level 
shifts in the fisheries process (Caddy, 1999; Scandol, 
2003; Mesnil and Petitgas, 2009). SARIMA PIs have 
been previously reported in the literature (Table 1), 
but their use in monitoring was not explored or formal-
ized. These intervals are currently the focus of much 
statistical research on how to deal with their tendency 
toward “over-optimism,” i.e., the fact that nominal 95% 
prediction intervals generally contain less than 95% of 
future observations (Chatfield, 1993). Fortunately, from 
a fisheries conservation perspective such over-optimism 
does not constitute a major problem because narrower 
PIs will be more sensitive to changes in the fisheries 
process.

Statistical process control (SPC) monitoring of uni-
variate fisheries indicators has become the focus of in-
creased research attention (Scandol, 2003, 2005; Mesnil 
and Petitgas, 2009; Petitgas, 2009; ICES1). The use of 
SARIMA PIs is similar to that of SPC control-charts, 
which makes them interesting candidates for the simul-
taneous monitoring of multiple fisheries and fisheries 
indicators (Caddy, 1999; Scandol, 2005; Petitgas, 2009). 
For such cases, SARIMA PIs offer the advantage of be-
ing model-based and do not require extensive historical 
reference data. They are also free from the assumption 
of statistical independence that frequently troubles the 
estimation of SPC detection limits (Mesnil and Petitgas, 
2009). The simulation framework proposed by Scandol 
(2003, 2005) for SPC charts provides a means whereby 
SARIMA PIs can be calibrated toward specific detec-
tion rates and management goals. Such calibration 
was beyond the objectives our study but constitutes an 
interesting research route for those in charge of more 
holistic fisheries management.

SARIMA models in assessments of data-poor fisheries

Formal stock assessment has traditionally been consid-
ered as the starting point of any fisheries assessment 
(Mahon, 1997; Berkes et al., 2001). Such an approach 
is highly desirable but will not be implemented easily, 
nor quickly, in the many existing data-poor fisheries 
(Vasconcellos and Cochrane, 2005). In fact, NRC (1998) 
estimated that 16% of U.S. stocks are not subjected to 
assessment; and the European Environmental Agency 
(EEA, 2005) estimated that, depending on the region 
considered, 20–90% of commercial stocks exploited in the 
Northeast Atlantic and Mediterranean are not routinely 
assessed. These figures are much worse in developing 
countries and when discard and bycatch species are 
included in the estimates (Vasconcellos and Cochrane, 
2005). Addressing such situations requires increased 
focus on alternative stock indicators and assessment 
methods that can be used to monitor more fisheries by 
using available (or easily obtainable) data, funds, and 
human resources (e.g., Caddy, 1999; Scandol, 2005; 
Mesnil and Petitgas, 2009; OSPAR, 2010; ICES1). Uni-
variate time series models fitted to landings data may 
be, for some time longer, the best possible approach to 
extend assessment and management coverage to many 
of these unassessed resources.

SARIMA modeling and process-control schemes do 
not constitute alternatives to analytical stock assess-
ment models. Rather, whenever possible, they should 
be seen as statistical tools to support expert judgment, 
funding allocation, and management decisions in the 
most data-limited and assessment-limited settings 
(Scandol, 2003; 2005). SARIMA modeling and model-
based monitoring have a range of characteristics that 
make them worthy of future exploration in data-poor 
contexts. Among these are their appropriateness to nu-
merous resources and variables, their strong statistical 
background and ecological plausibility, their good fore-
casting performance and easy-to-estimate detection lim-
its, and their applicability to both long and short time 
series. Furthermore, SARIMA models can also be used 
to model the nonspecific groupings that dominate many 
landings data sets, or can be upgraded if multivariate 
data become available (Stergiou et al., 1997; Vascon-
cellos and Cochrane, 2005). Finally, the availability of 
SARIMA models in open-source software packages and 
their routine use in sectors other than fisheries (e.g., 
sales, economics, engineering) (Brockwell and Davis, 
2002; Box et al., 2008) may be decisive advantages in 
budget-limited and expertise-limited countries.

Acknowledgments

Funding for this work was provided by a “Fundação para 
a Ciência e a Tecnologia” (FCT) grant BD/12550/2003 to 
N. Prista and by research project CORV (DGPA–Mare: 
FEDER–22–05–01–FDR–00036). We thank Direcção 
Geral das Pescas e Aquicultura (DGPA) for providing 
the meagre data set. We thank D. S. Stoffer and D. R. 



182 Fishery Bulletin 109(2)

Anderson for suggestions on the use of the “arima” func-
tion and AICc model selection, respectively. We further 
thank M. F. Lane, J. L. Costa, J. J. Schaffler, and J. R. 
Ashford for commenting on earlier drafts of this manu-
script. We thank the three anonymous reviewers for 
their constructive comments on this manuscript.

Literature cited 

Akaike, H.
1974. A new look at the statistical model identifica-

tion. IEEE T. Autom. Contr. 19:716–723.
Berkes, F., R. Mahon, P. McConney, R. Pollnac, and R. Pomeroy.

2001. Managing small-scale fisheries: alternative direc-
tions and methods, 320 p. IDRC Books, Ottawa, Canada.

Box, G., and D. Cox.
1964. An analysis of transformations. J. R. Stat. Soc. 

Ser. B 26:211–243.
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel.

2008. Time series: forecasting and control, 4th ed., 784 
p. John Wiley & Sons, Hoboken, NJ.

Brockwell, P., and R. Davis.
2002. Introduction to time series and forecasting, 2nd 

ed., 469 p. Springer, New York.
Burnham, K. P., and D. R. Anderson.

2002. Model selection and multi-model inference: a 
practical information-theoretic approach, 2nd ed., 488 
p. Springer, New York.

Caddy, J. F.
1999. Deciding on precautionary management measures 

for a stock based on a suite of limit reference points 
(LRPs) as a basis for a multi-LRP harvest law. North-
west Atl. Fish. Org. Sci. Counc. Stud. 32:55–68.

Campbell, A., D. J. Noakes, and R. W. Elner.
1991. Temperature and lobster, Homarus americanus, 

yield relationships. Can. J. Fish. Aquat. Sci. 48:2073–
2082.

Chan, W., S. Cheung, and K. Wu.
2004. Multiple forecasts with autoregressive time series 

models: case studies. Math. Comput. Simul. 64:421–430.
Chatfield, C.

1993. Calculating interval forecasts. J. Bus. Econ. Stat. 
11:121–135.

1996a. The analysis of time series: an introduction, 5th 
ed., 283 p. Chapman & Hall/CRC, Boca Raton, FL.

1996b. Model uncertainty and forecast accuracy. J. 
Forecast. 15:495–508.

Chen, C., and L. -M. Liu.
1993. Joint estimation of model parameters and outlier 

effects in time series. J. Am. Stat. Assoc. 88:284–297.
Czerwinski, I. A., J. C. Gutiérrez-Estrada, and J. A. Hernando-

Casal.
2007. Short-term forecasting of halibut CPUE: linear 

and non-linear univariate approaches. Fish. Res. 
86:120–128.

De Gooijer, J. G., B. Abraham, A. Gould, and L. Robinson.
1985. Methods for determining the order of an autore-

gressive-moving average process: a survey. Int. Stat. 
Rev. 53:301–329.

De Gooijer, J. G., and R. J. Hyndman.
2006. 25 years of time series forecasting. Int. J. Fore-

cast. 22:442–473.
EEA (European Environmental Agency).

2005. The European environment—state and outlook 2005, 

570 p. European Environmental Agency, Copenhagen,  
Denmark.

Fogarty, M. J.
1988. Time series models of the Maine lobster fishery: 

the effect of temperature. Can. J. Fish. Aquat. Sci. 
45:1145–1153.

Fogarty, M. J., and T. J. Miller.
2004. Impact of a change in reporting systems in the 

Maryland blue crab fishery. Fish. Res. 68:37–43.
Georgakarakos, S., J. Haralabous, V. Valavanis, C. Arvanitidis, 

D. Koutsoubas, and A. Kapantagakis.
2002. Loliginid and ommastrephid stock prediction 

in Greek waters using time series analysis tech-
niques. Bull. Mar. Sci. 71:269–287.

Georgakarakos, S., D. Koutsoubas, and V. Valavanis.
2006. Time series analysis and forecasting techniques 

applied on loliginid and ommastrephid landings in Greek 
waters. Fish. Res. 78:55–71.

Graves, S.
2008. Companion to Tsay (2005) analysis of financial 

time series. R package vers. 0.10-12. URL: http://
CRAN.R-project.org., accessed October 2008.

Hanson, P. J., D. S. Vaughan, and S. Narayan.
2006. Forecasting annual harvests of Atlantic and Gulf 

menhaden. N. Am. J. Fish. Manag. 26:753–764.
Hare, S. R., and R. C. Francis.

1994. Climate change and salmon production in the 
Northeast Pacific Ocean. In Climate change and north-
ern fish populations (R. J. Beamish, ed.). Can. Spec. 
Publ. Fish. Aquat. Sci. 121:357–372.

Harvey, A. C.
1989. Forecasting, structural time series models and 

the Kalman filter, 572 p. Cambridge Univ. Press, 
Cambridge.

Hurvich, C. M., and C. -L. Tsai.
1989. Regression and time series model selection in small 

samples. Biometrika 76:297–307.
Hyndman, R. J., and A. B. Koehler.

2006. Another look at measures of forecast accuracy. Int. 
J. Forecast. 22:679–688.

Hyndman, R. J., and A. V. Kostenko.
2007. Minimum sample size requirements for seasonal 

forecasting models. Foresight 6:12–15.
Jarque, C., and A. Bera.

1987. Efficient tests for normality, homoscedascity and 
serial independence of regression residuals. Econ. Lett. 
6:255–259.

Jeffries, P., A. Keller, and S. Hale.
1989. Predicting winter f lounder (Pseudopleuronectes 

americanus) catches by time series analysis. Can. J. 
Fish. Aquat. Sci. 46:650–659.

Kitanidis, P. K., and R. L. Bras.
1980. Real-time forecasting with a conceptual hydrologic 

model 2: applications and results. Water Resour. Res. 
16:1034–1044.

Koutroumanidis, T., L. Iliadis, and G. K. Sylaios.
2006. Time-series modeling of fishery landings using 

ARIMA models and fuzzy expected intervals soft-
ware. Environ. Model. Softw. 21:1711–1721.

Ljung, G., and G. Box.
1978. On a measure of lack of f it in time series 

models. Biometrika 65:297–303.
Lloret, J., J. Lleonart, and I. Solé.

2000. Time series modeling of landings in Northwest 
Mediterranean Sea. ICES J. Mar. Sci. 57:171–184.



183Prista et al: Use of SARIMA models to assess data-poor fisheries

Mahon, R.
1997. Does fisheries science serve the needs of managers 

of small stocks in developing countries? Can. J. Fish. 
Aquat. Sci. 54:2207–2213.

Mendelssohn, R.
1981. Using Box-Jenkins models to forecast fishery dynam-

ics: identification, estimation, and checking. Fish. Bull. 
78:887–896.

Mesnil, B., and P. Petitgas.
2009. Detection of changes in time-series of indicators 

using CUSUM control charts. Aquat. Living Resour. 
22:187–192.

Molinet, R., M. T. Badaracco, and J. J. Salaya.
1991. Time series analysis for the shrimp and snapper  

fisheries in Golfo Triste, Venezuela. Sci. Mar. 55:427–
437.

Morales-Nin, B., A. Grau, S. Pérez-Mayol, and M. M. Gil.
2010. Marking otoliths, age validation and growth of 

Argyrosomus regius juveniles (Sciaenidae). Fish. Res, 
106:76–80.

Noakes, D. J., D. W. Welch, M. Henderson, and E. Mansfield.
1990. A comparison of preseason forecasting methods 

for returns of two British Columbia sockeye salmon 
stocks. N. Am. J. Fish. Manag. 10:46–57.

NRC (National Research Council).
1998. Improving fish stock assessments, 177 p. National 

Academy Press, Washington, D.C.
OSPAR (Oslo and Paris Commission). 

2010. Quality status report 2010, 176 p. OSPAR Com-
mission, London, UK.

Pajuelo, J. G., and J. M. Lorenzo.
1995. Analysis and forecasting of the demersal fishery 

of the Canary Islands using an ARIMA model. Sci. 
Mar. 59:155–164.

Pankratz, A.
1983. Forecasting with univariate Box-Jenkins models: 

concepts and cases, 576 p. John Wiley & Sons, Hobo-
ken, NJ.

Park, H. -H.
1998. Analysis and prediction of walleye pollock (Ther-

agra chalcogramma) landings in Korea by time series 
analysis. Fish. Res. 38:1–7.

Petitgas, P.
2009. The CUSUM out-of-control table to monitor changes 

in fish stock status using many indicators. Aquat. 
Living Resour. 22:201–206.

Pierce, G. J., and P. R. Boyle.
2003. Empirical modelling of interannual trends in abun-

dance of squid (Loligo forbesi in Scottish waters. Fish. 
Res. 59:305–326.

Prista, N., J. L. Costa, M. J. Costa, and C. M. Jones.
2009. Age determination in meagre Argyrosomus regius. 

Relat. Ciênt. Téc. Inst. Invest. Pescas Mar: Série Digital 
49:1–54. URL: http://ipimar-inrb.ipimar.pt/pdf/Reln49.
pdf, accessed September 2010.

Quéméner, L.
2002. Le maigre commun (Argyrosomus regius)—biologie, 

pêche, marché et potentiel aquacole, 32 p. IFREMER, 
Plouzané, France. [In French.]

Quéro, J.-C., and J. -J. Vayne.
1987. Le maigre, Argyrosomus regius (Asso, 1801) (Pisces, 

Perciformes, Sciaenidae) du Golfe de Gascogne et des 
eaux plus septentrionales. Rev. Trav. Inst. Pêches 
Marit. 49:35–66 [In French.]

R Development Core Team.
2007. R: A language and environment for statistical com-

puting. R Foundation for Statistical Computing. URL: 
http://www.R-project.org, accessed August 2007.

Rothschild, B. J., S. G. Smith, and H. Li.
1996. The application of time series analysis to fish-

eries population assessment and modeling. In Stock 
assessment: quantitative methods and applications for 
small-scale fisheries (V. F. Gallucci, S. B. Saila, D. J. 
Gustafson, and B. J. Rothschild, eds), p. 354–402. CRC 
Press, Boca Raton, FL.

Saila, S. B., M. Wigbout, and R. J. Lermit.
1980. Comparison of some time series models for the 

analysis of fisheries data. ICES J. Mar. Sci. 39:44–52.
Scandol, J.

2003. Use of cumulative sum (CUSUM) control charts 
of landed catch in the management of fisheries. Fish. 
Res. 64:19–36.

2005. Use of quality control methods to monitor the 
status of fish stocks. In Fisheries assessment and 
management in data-limited situations (G. H. Kruse, 
V. F. Gallucci, D. E. Hay, R. I. Perry, R. M. Peterman, 
T. C. Shirley, P. D. Spencer, B. Wilson, and D. Woodby, 
eds.), p. 213–233. Alaska Sea Grant College Program, 
Univ. Alaska, Fairbanks, AK.

Shapiro, S., M. Wilk, and H. Chen.
1968. A comparative study of various tests for normality. 

J. Am. Stat. Assoc. 63:1343–1372.
Shumway, R. H., and D. S. Stoffer.

2006. Time series analysis and its applications: with R 
examples, 2nd ed., 575 p. Springer, New York.

Stergiou, K. I.
1989. Modelling and forecasting the fishery for pilchard 

Sardina pilchardus in Greek waters using ARIMA time-
series models. ICES J. Mar. Sci. 46:16–23.

1990a. A seasonal autoregressive model of the anchovy 
Engraulis encrasicolus fishery in the eastern Mediter-
ranean. Fish. Bull. 88:411–414.

1990b. Prediction of the Mullidae fishery in the east-
ern Mediterranean 24 months in advance. Fish. Res. 
9:67–74.

1991. Short-term fisheries forecasting: a comparison 
of smoothing, ARIMA and regression techniques.  J. 
Appl. Ichthyol. 7:193–204.

Stergiou, K. I., and E. D. Christou.
1996. Modelling and forecasting annual fisheries catches: 

comparison of regression, univariate and multivariate 
time series methods. Fish. Res. 25:105–138.

Stergiou, K. I., E. D. Christou, and G. Petrakis.
1997. Modelling and forecasting monthly f isheries 

catches: comparison of regression, univariate and mul-
tivariate time series methods. Fish. Res. 29:55–95.

Stergiou, K. I., G. Tserpes, and P. Peristeraki.
2003. Modelling and forecasting monthly swordfish 

catches in the Eastern Mediterranean. Sci. Mar. 
67:283–290.

Trapletti, A., and K. Hornik.
2007. Tseries: time series analysis and computational 

f inance. R package vers. 0.10-12. URL: http: / /
CRAN.R-project.org, accessed December 2007.

Trívez, F. J., and J. Nievas.
1998. Analyzing the effects of level shifts and temporary 

changes on the identification of ARIMA models. J. 
Appl. Stat. 25:409–424.

Tsai, C. -F., and A. -L. Chai.
1992. Short-term forecasting of the striped bass Morone 

saxatilis commercial harvest in the Maryland portion 
of Chesapeake Bay. Fish. Res. 15:67–82.



184 Fishery Bulletin 109(2)

Tsitsika, E. V., C. D. Maravelias, and J. Haralabous.
2007. Modeling and forecasting pelagic fish production 

using univariate and multivariate ARIMA models.  
Fish. Sci. 73:979–988.

Vasconcellos, M., and K. Cochrane.
2005. Overview of world status of data-limited fisheries: 

inferences from landing statistics. In Fisheries assess-
ment and management in data-limited situations (G. 
H. Kruse, V. F. Gallucci, D. E. Hay, R. I. Perry, R. M. 
Peterman, T. C. Shirley, P. D. Spencer, B. Wilson, and 
D. Woodby, eds.), p. 1–20. Alaska Sea Grant College 
Program, Univ. Alaska, Fairbanks, AK.

Worm, K., R. Hilborn, J. K. Baum, T. A. Branch, J. S. Collie,  
C. Costello, M. J. Fogarty, E. A. Fulton, J. A. Hutchings,  
S. Jennings, O. P. Jensen, H. K. Lotze, P. M. Mace, T. R.  
McClanahan, C. Minto, S. R. Palumbi, A. M. Parma, D. Ricard, 
A. A. Rosenberg, R. Watson, and D. Zeller.

2009. Rebuilding global fisheries. Science 325:578–585.
Zhou, S.

2003. Application of artificial neural networks for fore-
casting salmon escapement. N. Am. J. Fish. Manag. 
23:48–59.

Appendix 1

ARIMA and SARIMA models

An extensive review of ARIMA and SARIMA models 
can be found in, e.g., Box et al. (2008) and Brockwell 
and Davis (2002). A mean-centered time series xt can 
be modeled as an ARIMA(p,d,q), where p, d, q are non-
negative integers, if it can be adequately fitted with the 
process equation

φ(B)(1−B)dXt= θ(B)Zt ,

where for a time interval T, (Xt) t∈T is a sequence of 
random variables, B is a backshift differencing opera-
tor BhXt=Xt−h (h nonnegative integer), (1−B)dXt=

D

d
1Xt is 

stationary, φ(B) and θ(B) are linear filters defined as 
φ(B)=1− φ1B− φ2B2−...− φpBp and θ(B)=1+ θ1B+ θ2B2+ . . . 
+ θqBq and (Zt) t∈T is a sequence of uncorrelated random 
variables with zero mean and variance s2 (termed white 
noise). In ARIMA models the orders p, q, and d define 
the structure of the model, by specifying the autoregres-
sive (AR) and moving average (MA) components of an 
autoregressive–moving average process (ARMA[p,q]). 
d is the degree of differencing (d≥1) required for Xt to 
become stationary. This differencing involves the loss 
of d observations in the series.

The SARIMA (p,d,q)×(P,D,Q)S models, where P, D, Q, 
and S are nonnegative integers, extend the modeling ca-
pabilities of ARIMA(p,d,q) models to seasonal processes. 
The SARIMA process equation is given by

φ(B)Φ(BS)(1−B)d(1−BS)DXt=θ(B)Θ(BS)Zt ,

where Xt, Zt, φ(B) and θ(B) are defined as above, (1−B)d 

(1−BS)DXt=

D

d
1

D

D
S Xt is stationary, and Φ(BS) and Θ(BS) 

are seasonal linear filters defined as Φ(BS)=1−Φ1BS−
Φ2B2S− . . . −ΦPBPS and Θ (BS)=1+Θ1BS+Θ2B2S+ . . . 

+ΘQBQS. In SARIMA, P defines the seasonal autore-
gressive component of the model (SAR) and Q the sea-
sonal moving average component of the model (SMA). S 
represents the seasonal period (e.g., 12 months) and D 
is the degree of seasonal differencing. Together, S and 
D account for seasonal nonstationarity in Xt through a 
data transformation that involves the loss of DS obser-
vations in the series.

Appendix 2

Selection of ARIMA and SARIMA models

Box-Jenkins approach ARIMA and SARIMA models 
are usually fitted by using a sequence of three gen-
eral steps collectively known as the Box-Jenkins (BJ) 
method: 1) identification of the model; 2) estimation 
of the model; and 3) a diagnostic check of the model 
(Box et al., 2008). In the identification stage, a model 
structure (p,d,q)×(P,D,Q)S is selected by comparisons 
of sample ACF and PACF with theoretical ACF/PACF 
profiles of AR, MA and ARMA processes. In the esti-
mation stage, the model structure is fitted to the data 
and its parameters are estimated, generally by using 
conditional sum of squares or maximum likelihood 
methods. In the diagnostic check stage, the goodness-
of-fit and assumptions for the model are evaluated 
and, if necessary, the BJ procedure is repeated until 
a suitable model is found. This model is then used 
to forecast future values (Box et al., 2008). In-depth 
theoretical coverage of the BJ method is given in Box 
et al. (2008) and extensive practical applications are 
provided in Pankratz (1983) and Brockwell and Davis 
(2002).

The model identification stage of the BJ method is 
widely considered its most subjective step because it 
relies primarily on graphical interpretations of ACF/
PACF estimates obtained from a single sample. This 
interpretation requires substantial analytical expertise 
and knowledge of the time series (both of which are 
problematic in data-poor scenarios) and is trouble-
some when complex ARMA processes have generated 
the data (Harvey, 1989; Shumway and Stoffer, 2006). 
Furthermore, it can also be confounded by existing 
correlations among ACF/PACF estimates (Box et al., 
2008). The minimum sample size generally advised for 
SARIMA model fitting is 50 observations (Pankratz, 
1983; Chatfield, 1996b), but see Hyndman and Kosten-
ko (2007) for an absolute lower limit. When sample 
size is large (e.g., n ≥100), ACF/PACF estimates have 
lower variability and are more likely to approximate 
the theoretical ACF/PACF estimates of the underly-
ing process. In such cases, less subjectivity exists in 
identification of the model. However, when sample size 
is small, the interpretation of ACF/PACF patterns be-
comes increasingly confounded by the large variance 
of the sample estimates, particularly at larger lags 
(≥n/4) (Box et al., 2008). This variability substantially 
increases the subjectivity of the model identification 
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stage of the BJ method and is the main issue to be 
dealt with when analyzing shorter time series.

AIC approach To circumvent the subjectivity of the 
identification of the model with the BJ method and 
to aid in the determination of the final orders of the 
ARMA processes a wide variety of model selection 
criteria have been developed (De Gooijer et al., 1985). 
The most frequently used are the Akaike information 
criteria (AIC) (Akaike, 1974) and the small-sample, 
bias-corrected equivalent, AICc (Hurvich and Tsai, 
1989). Contrary to the Box-Jenkins method, AIC/AICc 
selection of a model involves the a priori estimation by 
maximum likelihood methods of a set of model struc-
tures (here termed the candidate set). This estimation 
is followed by the determination of the AIC/AICc values 
for each individual model. The model with minimum 
AIC/AICc is then selected as the model that is closest 
to the statistical process “generating” the data. In 
SARIMA models, AIC is calculated as

AIC=−2ln(L)+2r ,

where ln(L) is the log-likelihood of the model, r=p+ 
q+P+Q+1, and the AICc is given by

AICc=−2ln(L)+2r+2r(r+1)/(n−r−1) ,

where n=N−DS−d is the number observations used to 
fit the model. AIC/AICc constitute objective methods to 
achieve model parsimony through a trade-off between 
the variance explained by the model and penalty terms 
caused by excessive model parameters. Both of them are 
well founded in the principles of information and likeli-
hood theory and have been applied extensively in time 
series, fisheries, and ecological literature (e.g., Brock-
well and Davis, 2002; Burnham and Anderson, 2002; 
Hanson et al., 2006). Burnham and Anderson (2002) 
suggest AICc is used when n/r ≤40, which prompts the 
consideration of this small-sample, bias-corrected ver-
sion of AIC in studies of short time series.
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