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1. Introduction

　The size and shape of coal particles influence their 
heat and mass transfer characteristics, behavior in 
fluids, erosion potential, and inhalation-related health 
risks1-4). Unfortunately, the exiguous information that 
is available on the shape of coal particles has often 
been inferred from indirect techniques5). Coal is a 
complex organic solid. The chemical and physical 
composition is influenced by the organic and inor-
ganic precursors, deposition environment, and burial 
history. The macerals (those components of coals 
identifiable under the microscope as organic and 
identified based upon morphology and reflectance), 
which emanate from diverse biomass precursors 
also possess characteristic sizes, shapes and friabili-
ties and thus tend to concentrate in dif ferent size 
fractions6-11). Hence, maceral composition has the 
potential to affect shape parameters of size fractions. 

Advanced separation techniques can produce high 
purity maceral concentrates12) but only in particle siz-
es far smaller than those found in conventional  pul-
verized coal.  In addition, extensive milling is likely to 
produce increasingly spherical particles. 
　North American coals tend to be rich in vitrinite.  
The average vitrinite content of the 878 samples in 
the Penn State Coal Sample Bank is 75% (based on an 
ASTM point counting technique)13). In this work the 
influence of other macerals was minimized by sam-
pling obvious coalified trees that were monomaceral 
(telocollinite) in composition. Digital image analysis 
of reflectance microscopy images (along with SEM 
micrographs) provided direct observation of particle 
shape and allowed mineral matter to be excluded 
from the statistical analysis.

2. Experimental

　The vitrain samples were collected from Sigillaria 
(a type of Lycopod) tree remains in the ceilings of 
coal mines in the Upper Freeport (UF) and Lewiston-
Stockton (LS) seams. Samples were crushed in an 
adjustable plate mill to reduce the topsize to nominal-
ly 2mm, then comminuted in a (Holmes 501XLS) pul-
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verizer. Particle were separated by wet sieving. The 
mean maximum vitrinite reflectance was determined 
by the ASTM procedure14). For shape analysis, pol-
ished pellets were prepared using a modified ASTM 
method. Approximately 0.5g of vitrinite was mixed 
with epoxy in a small vial, centrifuged to remove air 
bubbles and placed in a vacuum oven to aid epoxy 
impregnation. After setting, the vial was removed and 
the sample cut in half lengthways. The sample was 
cast in a standard optical microscopy pellet and pol-
ished. Size and shape analyses were performed us-
ing a digital image analysis system (IMAGIST, PGT, 
Princeton, NJ) interfaced with a (Nikon Microphot-
FXA) microscope and a workstation. Oil-immersion 
objective lenses of 20× , 40× and 100× magnifica-
tions were used for 100×200, 200×400 and -400 
mesh (U.S. Standard Sieve) size cuts. Over 500 par-
ticles were evaluated in each cut, with approximately 
20-30 particles in each micrograph.
　Oil-immersion objective lenses were used to in-
crease the contrast between mineral matter and 
vitrinite particles to aid in excluding mineral matter 
from the shape analyses. Computational editing of 
the particle outlines removed any holes in the face of 
the particle silhouette (emanating from mineral mat-
ter removal during polishing or from optics contami-
nation). Particle segmentation was used to separate 
particles that were so closely located as to be errone-
ously classified as a single particle. Epoxy features, 
mineral matter (identifiable from reflectance levels), 
scratched particles, incorrectly segmented particles, 
particles with greater than 5% of the perimeter off 
the field of view, and particles with outlines altered 
by mineral matter inclusions were excluded from the 
analysis (based on a comparison between the image 
captured digital silhouette view and microscopy ob-
servations). More than 500 particles were analyzed 
for size and shape in each size cut. 
　The particle size distributions were also deter-
mined by laser light scattering (Malvern Instru-
ments). A monochromatic collimated beam of light 
was passed through a sample cell containing the sam-
ple (several mg) in an ethanol medium with agitation 
supplied by a spinning bar magnet. The scattered 
light was brought to focus at the detector and the 
particle size distribution calculated assuming spheri-
cal particles. The assumption of spherical particles is 
commonly applied in coal science, despite the knowl-
edge that coal particles are not spherical. The lack of 
quantified shape parameters hinders a more accurate 
description. To enable the impact of mineral matter 
to be determined, one sample was demineralized by 

treatment with 10% HCl overnight followed by con-
centrated 52% HF for 100 hours with occasional stir-
ring. Any remaining fine clays were removed with the 
aid of a dispersant. Following demineralization the 
samples were washed thoroughly with distilled water 
and air-dried.

3. Results & Discussion

　Maceral identification confirmed the vitrain 
samples collected from obvious coalified trees were 
monomaceral (telocollinite) in composition. The 
mean maximum vitrinite reflectance values were 0.97 
(sd 0.04) and 0.93 (sd 0.08) for the UF and LS sam-
ples, respectively. These reflectance levels indicate 
the samples were high volatile bituminous A in rank. 
Particle diameters were measured with an optical mi-
croscope approach and via laser light scattering. Im-
age analysis of micrographs was used to determine 
individual particle diameters from the average of 12 
diameters separated by 15°. The elongation ratio was 
defined as the smallest of the ratios obtained from 
these diameters to its perpendicular diameter (the 
width and the breadth in rectangles.) The aspect ratio 
was defined as the reciprocal of the elongation ratio. 
Circularity (O) was calculated from the largest diam-
eter of the particle (dm) and the particle area using 
Equation 1. The area (A) was determined from the 
number of (calibrated) pixels in the particle silhou-
ette. A sphere has a circularity of unity and elongated 
shapes have higher values. 

　Circularity O = (dm)2(π) / (4A) (1)

　An example of the particle shapes observed from 
a polished surface of a pellet is presented in Fig. 1. 
The unnumbered features were excluded from the 
analysis based on the exclusion criteria discussed 
earlier. The 12 diameters are drawn manually on 
the particle labeled number 5 to illustrate diameter 
placement. The size and shape parameters of the 
numbered particles are listed in Table 1 to illustrate 
the relationship between shape and numerical char-
acterization of the shape. As the field of view is from 
a polished surface, the particles are expected to have 
different orientations or may expose only a portion of 
the particle.
　As indicated in Table 1 and Fig. 1 the UF vitrinite 
had a variety of shapes. Particle size (determined 
by microscopy and by light scattering) and shape 
parameters (determined by microscopy) are shown 
in Table 2 for various size cuts. The laser light scat-
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tering technique measures particle diameters using 
a median volume-weighted diameter (D[v,50]). The 
microscopy technique measures the median length-
weighted diameter (D[l,50]). The average aspect 
ratios were 1.66 and 1.64 for the UF and LS vitrinites, 
respectively. For the UF size cuts the average aspect 
ratio and circularity decreased slightly with decreas-
ing particle size cut, indicating that the smaller par-
ticles were slightly less elongated. The -400 mesh 
(US Standard Sieve) cut had an average circularity of 
2.36 (Table 2), indicating significant non-sphericity 
(see examples in Fig. 1 and Table 1). There was 
little change in the average shape parameters among 
the size cuts and the LS and UF samples had similar 
values for the same size cut. In contrast to the vi-
trinite particles, the highly reflecting mineral matter 

particles were almost spherical, in agreement with 
previous observations15). 
　There was good agreement between the length-
weighted diameters (microscopy) and the volume-
weighted diameters (light scattering) for the smaller 
size cuts (Table 2). This is unexpected, as the volu-
metric weighted diameter is an indication that 50 % 
of the total volume of the particles is in particles of 
greater diameter, while the length-weighted diameter 
indicates that 50 % of the total length of the particles 
is in those particles of greater diameter. Thus, larger 
particle sizes contribute disproportionately to the vol-
ume-weighted diameter than to the length-weighted 
diameter. For the LS 200×400 cut the volume-weight-

Fig. 1   Silhouette Image of Polished Face the UF 200×400 Cut Embed-
ded in Resin.

Table 1.  Size and Shape Parameters for UF 200x400 Mesh Size Cut 
Shown in Fig. 1

Particle 
Number

Mean 
Diameter, µm

Circularity 
O

Elongation 
Ratio

Aspect 
Ratio

1 27.3 3.21 0.37 2.70
2 102.8 2.87 0.43 2.33
3 61.9 1.74 0.77 1.30
4 58.0 7.83 0.19 5.26
5 105.2 1.83 0.62 1.61
6 61.8 1.78 0.85 1.18
7 70.6 1.52 0.90 1.11
8 69.3 1.74 0.64 1.56
9 91.3 4.90 0.28 3.57

10 57.5 2.08 0.65 1.54
11 85.5 2.94 0.50 2.00
12 89.5 2.11 0.55 1.82
13 16.1 2.83 0.43 2.33
14 87.0 1.42 0.82 1.22
15 56.8 2.07 0.64 1.56
16 169.6 4.64 0.27 3.70

Table 2. Size and Shape Parameters for UF and LS Vitrinite Size Cuts 

Sample D[v,50]/μm D[l,50]/μm Circularity 
O

Elongation 
Ratio

Aspect 
Ratio

UF100×200 131 77 (40) 2.57 (1.09) 0.57 (0.18) 1.75 (0.77)
UF200×400  65 66 (37) 2.47 (0.96) 0.59 (0.17) 1.69 (0.69)
UF200×400‡  63
UF-400  26 25 (29) 2.36 (0.90) 0.65 (0.16) 1.54 (0.59)

LS100×200 102 82 (40) 2.48 (0.97) 0.60 (0.16) 1.67 (0.64)
LS200×400  61 73 2.49 0.58 1.72
LS-400  20 24 (26) 2.30 (0.81) 0.66 (0.16) 1.52 (0.54)

D[l,50] is the length weighted mean diameter. D[v,50] is the volumetric weighted average diameter. 
Other parameters as defined in the text. Values in parentheses are standard deviations.
‡ demineralized sample.
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ed (light scattering), surface-weighted (calculated), 
and length-weighted (calculated) median diameters 
were 61, 55, and 47µm, respectively. It is not clear 
why the volume-weighted and length-weighted me-
dian diameters agree so well for the smaller size cuts. 
One possible explanation is the inclusion of discrete 
particles of mineral matter in the light scattering 
data, however demineralization did not significantly 
alter the volume-weighted diameter of the 200×400 
UF cut (Table 2). The deviation from sphericity con-
tributes to the significant difference between the cal-
culated (47µm from light scattering) and measured 
(73µm from microscopy) length-weighted diameters 
for the LS 200×400 cut.
　To establish the shape of the coal particles, it was 
necessary to obtain information on the third dimen-
sion. An SEM micrograph conveniently permitted an 
estimation of the depth of the particle. From Fig. 2 
and other micrographs (not shown), it was concluded 
that the depth was of the same magnitude as the 
width. The shape was generally “blocky” with angular 
transitions. Thus, as a first approximation, the par-
ticle can be represented by a square-ended rectangu-
lar brick of length and width a and depth b = a/1.7 as 
shown is in Fig. 3. 

　Assuming that a vitrinite particle is adequately 
represented by a square-ended rectangular brick, 
then equating the diameter of a sphere (dp), of the 
same volume as the brick, to the length (a) and width 
(b=1/1.7)) yields equation 2.

　V ol =
a

b2

3
=

πd3p
6

 or dp = 0.87a  (2)

　Sphericity (φs), the ratio of the surface area of a 
sphere to the surface area of the particle (of the same 
volume), yields equation 3, and substituting for dp in 
equation 3 

　φs =
πd3p�

2
b2 +

4
b


a2

 (3)

　yields a sphericity φs of 0.78. Constant sphericity 
values of 0.73 for pulverized coal dusts have been 
reported16, 17) based on microscopic and sieve analysis 
of 80, 65 and 50 % of the particles passing 200 mesh 
British Standard sieve18). A sphericity of 0.38 has also 
being reported for fusain fibers16, 17). Unfortunately 
the coal classification was not reported with these 
data. A consistent shape factor (using surface areas 
as determined by liquid permeability and sieve sizes) 
has also been reported for various size cuts (11 frac-
tions between 16 to 325 US mesh), although particle 
shape was found to be rank dependent5). Aspect 
ratios of 1.39 to 1.55 have been determined for Pitts-
burgh seam coal dusts (less than 75µm diameter) 
generated within the mine and by a variety of pulver-
izers4). These aspect ratios are consistent with those 
reported here for the smallest particle size cuts. 
　When coals are comminuted, the particles break 
first at the weakest junctures, which are the organic-
inorganic, maceral-maceral inter faces and along 
the pores19). Thus, at least initially, macerals tend 
to retain their characteristic shape19). Macerals also 
concentrate in different size fractions because of the 
dif ferent friabilities and/or heterogeneity among 
maceral groups6-11). Thus, coals are expected to have 
different shape parameters in different size fractions. 
With increasing pulverization residence time (of 
an hour or more), however, the shapes of the par-
ticles are altered towards more spherical or “blocky 
type” shapes19). Also, there is evidence that different 
methods of pulverization produce different particle 
shapes4, 5, 20), although one study found little influence 
of pulverizer type upon shape21). Extended comminu-
tion time has also been shown to influence particle 
shape20) for most of the devices used, the exception 

Fig. 2. SEM Micrograph of the UF 200×400 Cut.

a

b

b

Fig. 3. Shape Descriptors for a Square-Ended House Brick Shape.
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was a high-energy mill. Lithotypes also have different 
friabilities, with the monomaceral microlithotypes 
of vitrinite and inertinite being the easiest to grind 
under Hardgrove grindability conditions, thus, in-
creasing the concentration of trimaceral lithotypes in 
the coarser grinds22). Caution must therefore be exer-
cised in comparing the results of different studies, as 
rank, maceral content and pulverization method influ-
ence the shape4, 5). 
　Having established the deviation from a sphere, 
the question arises: what is the impact? As stated 
earlier, the size and shape of coal particles influence 
their heat and mass transfer characteristics, behavior 
in fluids, erosion characteristics and inhalation-relat-
ed health risks1-4). A simple heat transfer calculation 
will show if the impact is significant on convective 
heating where spheres are commonly assumed. 
Equation 4 shows the commonly used convective 
heat transfer calculation, Nu is the Nusselt Number 
(a dimensionless heat transfer coefficient), λ is the 
thermal conductivity of the gas, and Tg and Tp are 
the temperature of the gas and particle, respectively.

　dQ

dt
=

Nuλ

dp
(Tg − Tp)

πd2p
Φs

 (4)

　The sphericity is used as a corrective term for non-
spherical particles. Addition of the energy gradient 
term in equation 4 yields equation 5, where Cp is the 
specific heat of the particle and ρp is the particle 
density. Rearrangement of equation 5 generates equa-
tion 6.

　πd3pρpCp
dTp
dt

=
Nuλ

dp
(Tg − Tp)π

d2p
Φs

 (5)

　
dTp
dt

=
6Nuλ

d2pΦsρpCp
(Tg − Tp)  (6)

　Defining a characteristic heating time (τ) enables 
simplification and calculation of the role of sphericity 
in the heating time. The characteristic heating time is 
shown in equation 7.

　τ =
d2pΦsρpCp

6Nuλ
 (7)

　Making the assumption that the Nusselt Number is 
2 and that the sphericity φs=0.78, then τ becomes 
22% greater than in the case of a sphere. A more ac-
curate comparison would include the influence of 
the house brick shape on the characteristic length 

component of the Nusselt Number. While this is po-
tentially a significant decrease in effective particle 
heating rate it is important to note that under rapid 
heating conditions, occurring during pulverized coal 
combustion, that most bituminous coals will deform 
and alter shape. In earlier work these samples were 
exposed to rapid-heating pyrolysis in a drop-tube 
reactor23). A range of time-temperature histories was 
predicted for particles, depending on path and prox-
imity to the hot walls, utilizing computational fluid 
dynamics. SEM observations showed that at center 
line gas temperatures around 841 K (approximately 
0.06 s residence time) that rounding of sharp edges 
was evident in some particles and the occasional par-
ticle had formed a swollen spherical particle with an 
empty interior, known as a cenosphere24), however 
most particles were unchanged23). At around 1,000 K 
center line gas temperatures (0.15-0.17 s center line 
residence times for UF and LS particles, respectively) 
many spheres were evident with slightly larger size 
than the raw feed (a 10-15 µm increase in D[v,0.5])23). 
By 1600 K gas temperature and 0.2-0.3 s residence 
time spectacular swelling (tripling in D[v,0.5] in com-
parison to the feed) was observed for UF with large 
cenospheres dominating the particle distribution23). 
The LS sample doubled in size on average23). Particle 
size influences the heating rate and release of vola-
tiles25), it is demonstrated that the shape influence 
heating rate and is thus expected to influence volatile 
transport within the particle and influence thermo-
plastic behavior and hence char physical and chemi-
cal structure26).
　To determine the impact of this shape factor on 
terminal velocity, a petroleum-based modeling mate-
rial was weighed and shaped into 3 spheres and 3 
appropriately sized square ended rectangular bricks. 
The same mass was used in each sample. The sam-
ples were placed in oil and dropped one at a time into 
a graduated cylinder filled with the same viscous oil. 
Time measurements and velocity calculations (timing 
occurred after terminal velocity had been reached) 
indicated the sphere fell slower than the orientated 
house brick shaped samples, 4.0 (±0.2 s.d.) versus 
4.8 (±0.3) seconds for the sphere. Essentially, the 
velocity of the square ended brick shape, of the same 
mass, was 20% faster than the sphere. Time measure-
ments showed random scatter implying the samples 
did not gain mass after exposure to oil. Thus aerody-
namic calculations assuming spheres (of the same 
mass) will overestimate the suspension of particles in 
the air or coal-water slurry suspensions. 
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4. Conclusion

　The shapes of two pulverized vitrinite samples in 
the bituminous rank range were found to be similar 
among and between the size cuts, in agreement with 
previous work. A slight decrease in aspect ratio and a 
slight increase in circularity accompanied decreasing 
particle size. The -400 mesh US Standard Sieve size 
cut for each vitrinite had the lowest aspect ratio and 
the lowest circularity value. The particles had a dis-
tribution of shapes but the average particle was ap-
proximately 1.7 times as long as it was broad. It was 
concluded that on average a square-ended rectangu-
lar block (house brick shape) of length a and depth 
and width of b=a/1.7 was a more realistic representa-
tion of a vitrinite particle than a sphere of the same 
volume. The two bituminous coals and different size 
cuts of each coal had essentially the same shape pa-
rameters. A sphericity value of 0.78 was determined 
for the pulverized bituminous vitrinites in agreement 
with a previously reported value of 0.73 for coals in 
general. Characteristic heating times  and terminal 
velocities were higher by 22 and 20%,  respectively 
compared to spherical particles.
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Symbols

 A particle area [m2]
 a particle width [m]
 b particle breadth [m]
 Cp specific heat of the particle [JK-1kg-1]
 D[l,50] median length-weighted diameter [m]
 D[v,50] median volume-weighted diameter [m]
 dm  largest particle diameter from 12 measure-

ments 15° apart [m]
 LS Lewiston Stockton seam coal sample [－]
 Nu Nusselt Number [－]
 ρp particle density [kgm-3]
 O circularity [－]
 Q heat [J]
 τ characteristic heating time [S]
 Tg temperature of the gas [K]
 Tp temperature of the particle [K]
 UF Upper Freeport coal seam sample [－]
 vol particle volume [m3]
 π pi [－]

 φs sphericity [－]
 λ thermal conductivity of the gas [Wm-1K-1]
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