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Abstract. Dinitrogen (N2) fixation rates were measured dur-
ing early spring across the different provinces of Mediter-
ranean Sea surface waters. N2 fixation rates, measured using
15N2 enriched seawater, were lowest in the eastern basin and
increased westward with a maximum at the Strait of Gibral-
tar (0.10 to 2.35 nmol N L−1 d−1, respectively). These rates
were 3–7 fold higher than N2 fixation rates measured pre-
viously in the Mediterranean Sea during summertime and
we estimated that methodological differences alone did not
account for the seasonal changes we observed. Higher con-
tribution of N2 fixation to primary production (4–8 %) was
measured in the western basin compared to the eastern basin
(∼ 2 %). Our data indicates that these differences between
basins may be attributed to changes in N2-fixing planktonic
communities and that heterotrophic diazotrophy may play
a significant role in the eastern Mediterranean while au-
totrophic diazotrophy has a more dominant role in the west-
ern basin.

1 Introduction

The Mediterranean Sea (MS) is frequently described as a
“blue desert” with low phytoplankton biomass and primary
production (Berman et al., 1984; Bosc et al., 2004; Ignatiades
et al., 2009; Siokou-Frangou et al., 2010). The low primary
production is due to the low concentration and supply of dis-
solved nutrients in surface waters during most of the year and
this is exacerbated during spring through late fall when the
water column is thermally stratified. Compounding the prob-

lem, is the export of underlying, nutrient-rich intermediate-
depth water to the North Atlantic Ocean through the Strait of
Gibraltar (Moutin and Raimbault, 2002; Krom et al., 2010).

Dissolved inorganic nitrogen (NO−3 , NO−

2 , NH+

4 ) is con-
sidered the proximate limiting nutrient for primary produc-
tivity in many oceanic regions (Falkowski, 1998), espe-
cially in low nutrient, low chlorophyll (LNLC) environments.
While traditionally the MS has been considered phosphorus
(P) limited (Krom et al., 1991; Thingstad et al., 1998), more
recent publications demonstrate nitrogen (N) limitation or N
and P co-limitation across the two sub-basins within the MS
(Thingstad et al., 2005, Tanaka et al., 2011). Diazotrophs (i.e.
N2 fixers) are likely to have an advantage in N-limited envi-
ronments because they are able to utilize the abundant dis-
solved N2, unavailable to most organisms, as an N source for
growth (Capone and Montoya, 2001; Zehr and Ward, 2002).

Prokaryotic dinitrogen (N2) fixation is now recognized
as a globally important input of new oceanic N (reviewed
in Gruber, 2008) that can be subsequently transferred to
other planktonic groups (Mulholland et al., 2004; Mulhol-
land and Capone, 2009). However, reported rates of N2
fixation from the MS are limited to a few studies from
the last six years and most are restricted to surface wa-
ters and the summer season. Typical rates of N2 fixation
during summer from both the eastern and western basins
of the MS are generally low, ranging from undetectable
to ∼ 0.15 nmol N L−1 d−1 (Ibello et al., 2010; Ridame et
al., 2011; Yogev et al., 2011; Rahav et al., 2013); how-
ever, N2 fixation rates at the central zone of the Ligurian
Sea station in the NW Mediterranean (DYnamique des

Published by Copernicus Publications on behalf of the European Geosciences Union.



490 E. Rahav et al.: Springtime contribution of dinitrogen fixation to primary production

Fig. 1.Map of the sampling locations (triangles): NW Levantine basin (St. 290), anticyclonic Shikmona eddy (St. 294), Ionian Sea (St. 304),
Adriatic Sea (St. 312), Tyrannian Sea (St. 316), Alboran Sea (St. 333), Strait of Gibraltar (St. 338) and Gulf of Cadiz (St. 339). Background
(circle): spatial distribution of chlorophylla concentrations in surface waters (6–8 m) along the R/VMeteorM84/3 cruise track (n = 94).

Flux de mAtíere en MEDiterrańee- DYFAMED) are higher
ranging from 2–17 nmol N L−1 d−1 (Garcia et al., 2006;
Sandroni et al., 2007).

Diazotrophs contributing to N2 fixation in the MS have
been partially characterized (Man-Aharonovich et al., 2007;
Bar Zeev et al., 2008; Le Moal and Biegala, 2009; Le Moal
et al., 2011; Yogev et al., 2011). In the MS organisms ex-
pressingnifH, a gene encoding part of the nitrogenase com-
plex, include unicellular cyanobacteria, diatom-diazotroph
assemblages, proteobacteria, methanogenic archaea, anaer-
obic bacteria, and purple sulfur bacteria. (Man-Aharonovich
et al., 2007; Yogev et al., 2011). The filamentous cyanobac-
teriumTrichodesmiumhas been sporadically observed in ex-
tremely low abundances (Yogev et al., 2011); one bloom of
this genus was recorded from the Aegean Sea near Lesvos
Island (Spatharis et al., 2012).

The contribution of N2 fixation to new primary productiv-
ity in the MS was mostly examined during the stratified pe-
riod in summer and appears to vary between the eastern and
western basins. In the western basin, N2 fixation was shown
to contribute up to 35 % to new primary production during
the stratified period (Bonnet et al., 2011), while in the Lev-
antine basin and the eastern Mediterranean Sea (EMS), N2
fixation contributed only∼ 0.5–2 % to the new production
(Yogev et al., 2011, Rahav et al., 2013). Yearly variability in
the contribution of N2 fixation to new primary productivity
was also observed in the DYFAMED station ranging from
1 % to 28 % (Sandroni et al., 2007).

Here we present N2 fixation and carbon uptake rate mea-
surements from surface waters collected from a transect
across the Mediterranean Sea during spring (before summer
stratification). We calculate the contribution of diazotrophy
to primary production in spring and compare these with sim-
ilar measurements made during the stratified summer period
to provide a more comprehensive seasonal assessment of N2
fixation in the Mediterranean Sea. Additionally, we assessed

the relative contribution of heterotrophic versus autotrophic
diazotrophy during springtime across the MS.

2 Material and methods

2.1 Sampling locations

This research was carried out aboard the R/VMeteor(cruise
M84/3) between 4 and 28 April 2011. Eight stations were
sampled along an east to west transect across the Mediter-
ranean Sea, each representing a different water mass with
associated mesoscale characteristics. Stations included: the
NW Levantine basin (St. 290), the anti-cyclonic Shikmona
eddy (St. 294), the Ionian Sea (St. 304), the Adriatic Sea
(St. 312), the Tyrrhenian Sea (St.316), the Alboran Sea
(St. 333), Strait of Gibraltar (St. 338), and the Gulf of Cadiz
(St. 339) (Fig. 1 and Table 1). Seawater samples collected
east of the Sicily strait were defined as eastern Mediterranean
(EMS) stations, whereas samples collected to the west of
Sicily strait were defined as western Mediterranean (WMS)
stations. More details on the physical, chemical and bio-
geochemical characteristics of the water column during the
cruise can be found in Tanhua et al. (2013a, b).

2.2 Experimental design

Subsurface seawater (6–8 m depth) was collected using a
low pressure pump and placed in triplicate 4.6 L polycar-
bonate Nalgene bottles. NaH13CO3 (Sigma) was added to
obtain an enrichment of approximately 1 % of the ambi-
ent dissolved inorganic carbon (460 µL of 200 mmol L−1

NaH13CO3) (Mulholland and Bernhardt, 2005).15N2 uptake
measurements were measured using a newly developed15N-
enriched seawater protocol (Mohr et al., 2010). Enriched sea-
water was prepared by first degassing filtered (0.2 µm) nat-
ural seawater collected at the same site and depth using a

Ocean Sci., 9, 489–498, 2013 www.ocean-sci.net/9/489/2013/



E. Rahav et al.: Springtime contribution of dinitrogen fixation to primary production 491

Table 1. Physical and chemical characteristics of the surface seawater (6–8 m) of the MS stations sampled during April 2011. BD- below
detection limit; MLD- mixed layer depth.

Station number 290 294 304 312 316 333 338 339

Location Levantine Shikmona Ionian Adriatic Tyrrhenian Alboran Strait of Gulf of
basin Eddy Sea Sea Sea Sea Gibraltar Cadiz

Position 34◦20′ N, 34◦00′ N, 35◦36′ N, 41◦15′ N, 38◦36′ N, 36◦06′ N, 35◦57′ N, 35◦54′ N,
27◦30′ E 34◦25′ E 17◦15′ E 18◦00′ E 11◦30′ E 2◦48′ E 4◦45′ W 7◦00’′ W

Temperature (◦C) 17.0 18.1 17.1 14.7 16.2 16.7 17.8 17.7
Salinity 39.0 39.0 38.3 38.5 37.2 36.3 36.3 36.4
MLD (m) 46 49 30 28 21 45 44 38
NO2+NO3 (µM) 0.86± 0.05 0.07± 0.01 BD 0.39± 0.09 0.54± 0.16 0.63± 0 0.56± 0.23 1.39± 0.84
PO4 (µM) 0.05± 0.01 0.05 0.01 0.02± 0.02 0.02± 0.01 0.24± 0.18 0.07± 0.02 0.06± 0.03
Si(OH)4 (µM) 1.10± 0.18 0.97± 0.06 0.79 0.95± 0.17 0.81± 0.32 0.61± 0.08 0.48± 0.13 0.44± 0.04

vacuum (250 mbar) applied to continuously stirred seawa-
ter for ∼ 1 h. The degassed water was transferred into sep-
tum capped Nalgene bottles with no headspace, and 1 ml of
15N2 gas (99 %) was injected per 100 mL of seawater. The
bottles were shaken vigorously until the bubble disappeared.
Aliquots of this15N2-sea enriched water were then added to
the incubation bottles. The enriched water constituting 5 %
of the total sample volume (i.e. 230 mL). Similar enriched
seawater additions from the oligotrophic North Pacific Sub-
tropical Gyre (NPSG) resulted in a final15N2 enrichment of
1.5 atom % after adding 50 mL of15N2-enriched water to a
4.5 L bottle (Wilson et al., 2012).

After the enriched seawater and13C were added (i.e. dou-
ble labeling), the bottles were well shaken, and incubated on
deck at ambient surface seawater temperatures, maintained
with running surface water pumped on board. Incubations
began early in the morning (∼ 7 a.m. local time) and the in-
cubators were covered with either neutral density screening
to simulate ambient light, or under complete darkness for
48 h incubations. We also compared the obtained rates with
24 h incubations (conducted in parallel) and obtained no sig-
nificant difference between the rates (R2

= 0.91n = 24P <

0.05, see Supplement Fig. S1). The incubations under ambi-
ent irradiance (representative of a full diel cycle) record the
activities of both autotrophic and heterotrophic diazotrophs.
Whereas, we assume that the 48 h dark incubations reflected
the activity of mainly heterotrophic diazotrophs who do not
require light energy for dinitrogen fixation. We estimated het-
erotrophic contribution to N2 fixation by comparing the dark
incubations versus the bottles incubated under ambient diel
irradiance.

Incubations were terminated by filtering water onto pre-
combusted 25 mm GF / F filters (nominal pore size of
0.7 µm). Filters were then dried in an oven at 60◦C and stored
in a dessicator until analysis. In the laboratory, samples for
15N and13C analyses were pelletized in tin disks and then an-
alyzed on a Europa 20/20 mass spectrometer equipped with
an automated nitrogen and carbon analyzer. For isotope ra-
tio mass spectrometry, standard curves to determine N and

C mass were done with each sample run. Samples were run
only when standard curves hadR2 values> 0.99. At masses
> 4.7 µg N, the precision for the atom percent15N measure-
ment was 0.0001 % based on daily calibrations made in asso-
ciation with sample runs and calibrations averaged over runs
made over several years. For most of the results reported
here, the masses were> 4.7 µg N. However, samples with
< 4.7 µg N were only used if the precision was 0.0001 % for
that sample run. Standard masses ranged from 1.2 to 100 µg
N and from 9.4 to 800 µg C. In addition to daily standard
curves, reference standards and standards run as samples
were run every six to eight samples.

The percent contribution of N2 fixation to primary pro-
ductivity was calculated based on the measured particu-
late carbon (POC) and nitrogen (PON) in each sample. Al-
though the measured POC and PON are representative of
the whole planktonic community and are not specific to
diazotrophs, our previous experience in the EMS suggests
higher POC : PON ratio than the conventional 106: 16 Red-
field ratio (Yogev et al., 2011, Rahav et al., 2013) and thus
were used to calculate the % contribution.

2.3 Physical measurements

Measurements of temperature and salinity were taken at each
station along the cruise track using an in situ conductivity,
temperature and depth (CTD) sensor (Seabird 19 Plus).

2.4 Inorganic nutrients

Nutrient concentrations were determined for the same seawa-
ter used for the N2 fixation measurements. Duplicate water
samples were collected in 15 mL acid-washed plastic scintil-
lation vials from surface (6–8 m) using a low pressure pump
(see Sect. 2.1) and immediately frozen at−20◦C. Nutri-
ents were determined in the laboratory∼ 4 months after the
cruise using a segmented flow Skalar SANplus System In-
strument as detailed in Kress and Herut (2001). The preci-
sion of the nitrate+ nitrite, orthophosphate and silicic acid
measurements were 0.02, 0.003 and 0.06 µM, respectively.

www.ocean-sci.net/9/489/2013/ Ocean Sci., 9, 489–498, 2013



492 E. Rahav et al.: Springtime contribution of dinitrogen fixation to primary production

Table 2.Biological characteristics of the surface seawater (6–8 m) of the MS stations sampled during April 2011.

Parameter/station number 290 294 304 312 316 333 338 339

Chlorophyll 0.04± 0.01 0.03± 0 0.02± 0.01 0.11± 0.03 0.04± 0 0.18± 0.01 0.31± 0.01 0.07± 0.02
(µg L−1)

Synechococcus 1.33× 107 2.26× 106 3.86× 106 1.78× 107 1.16× 107 2.68× 107 3.27× 107 4.94× 106

(cell L1)

Prochlorococcus 1.17× 106 8.32× 104 3.17× 105 1.14× 106 1.24× 106 2.60× 106 1.60× 106 3.57× 106

(cell L−1)

picoeukaryotes 4.36× 105 2.08× 104 7.53× 104 2.23× 105 7.35× 105 2.53× 106 3.69× 106 1.46× 106

(cell L−1)

Synechococcus 2328 396 676 3115 2030 4690 5723 865
(ng C L−1)

Prochlorococcus 62 4 17 60 66 138 85 19
(ng C L−1)

pico-eukaryotes 916 44 158 468 1544 5313 7749 3066
(ng C L−1)

POC : PON 9.3± 2.5 9.2± 0.8 8.3± 0.7 7.6± 0.7 7.4± 0.5 8.2± 1.7 8.6± 1.6 6.4± 0.3
Primary 0.74± 0.01 0.53± 0.02 0.21± 0.01 1.39± 0.87 0.76± 0.13 0.78± 0.26 15.04± 1.61 8.01± 1.79
productivity
(µg C L−1 d−1)

N2 fixation 0.15± 0.01 0.12± 0.02 0.10± 0.02 0.29± 0.02 0.22± 0.03 0.86± 0.17 2.35± 1.12 0.39± 0.14
(nmol N L−1 d−1)

The limits of quantification were 0.075 µM, 0.008 µM and
0.07 µM for nitrate+ nitrite, orthophosphate and silicic acid,
respectively (note that for silicic acid the limit of quantifi-
cation is similar to the precision). For full nutrients pro-
files of samples collected from Niskin bottles see Tanhua et
al. (2013b).

2.5 Chlorophyll a extraction

Duplicate seawater samples (500 mL) taken twice a day
across the MS (n = 94) were filtered onto glass fiber fil-
ters. The filters were stored at−20 0C in a dark box until
analysis within 2–3 days. Samples were extracted in 5 mL
90 % acetone overnight, at 4◦C in dark. Chlorophylla
(Chl a) concentrations were determined with a Turner De-
signs (TD-700) fluorometer, using a 436 nm excitation fil-
ter and a 680 nm emission filter (Holm-Hansen, 1965). A
blank filter was also stored in 90 % acetone under the
same conditions as the samples.

2.6 Picophytoplankton abundance

The abundance of picophytoplankton was determined by
flow cytometry. Taxonomic discrimination was based on the
following parameters: cell side scatter – a proxy of cell vol-
ume; forward scatter – a proxy of cell size; and orange
and red fluorescence of phycoerythrin and of chlorophylla

(585 nm and 630 nm, respectively). Samples of 1.8 mL were
fixed immediately at room temperature with 23 µL of 25 %
gluteraldehyde (Sigma G-5882) retained at room temperature
for 10 min, subsequently frozen in liquid nitrogen, and kept

at−80◦C until analyzed. Samples were fast thawed at 37◦C,
and counted using a FACScan Becton Dickinson flow cy-
tometer, fitted with an Argon laser (488 nm) for 10 to 15 min
or until 30 000 cells were counted (Vaulot et al., 1989).
Pico/nano phytoplankton carbon (C) biomass was calculated
from cell counts assuming 175 fg C cell−1 for Synechococcus
cells 53 fg C cell−1 for Prochlorococcuscells, and 2100 fg
C cell−1 for pico-eukaryotes (Campbell and Yentsch, 1989).

3 Results

3.1 East–west distribution of physical, chemical and
phytoplankton parameters

The physical, chemical and biological parameters of the sur-
face waters at each station are provided in Tables 1 and 2.
Overall, surface temperatures and salinities increased from
west to east from 14.7 to 18.1◦C and 36.3 to 39, respectively.
NO−

2 +NO−

3 (DIN) increased from east to west from below
detection in the Ionian Sea to 1.39 µM at the Gulf of Cadiz
station (Table 1). In contrast, Station 290 (NW Levantine
Basin) had high surface concentrations of DIN (0.86 µM),
probably due to upwelling of deeper waters within the cy-
clonic Rhodes Gyre. Dissolved inorganic phosphorus (DIP)
ranged from 0.01 to 0.24 µM in surface waters across the en-
tire Mediterranean Sea (MS) (Table 1). Silicic acid (Si(OH)4)

concentration was lowest in the westernmost stations – at
the entrance to the MS (0.44 µM), and increased toward the
east with highest concentration observed at the easternmost
station (1.10 µM) (Table 1).

Ocean Sci., 9, 489–498, 2013 www.ocean-sci.net/9/489/2013/
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Fig. 2.Picophytoplankton distribution ofSynechococcus(A), Prochlorococcus(B) and pico-eukaryotes(C) in the surface waters (6–8 m) of
the eastern (black circle) and western (white circle) Mediterranean Sea.n = 21 andn = 12 for the eastern and western basins, respectively.

Chlorophyll (Chl a) concentrations increased from east to
west across the MS. Surface Chla concentrations were
∼ 0.03 µg L−1 at the eastern basin stations and up to
0.31 µg L−1 at the Strait of Gibraltar – the westernmost
station (Fig. 1).Synechococcusdominated the picophyto-
plankton ranging from as low as 2.26× 106 cells L−1 to
3.27× 107 cells L−1 in the eastern and western basin, respec-
tively (Fig. 2, Table 2). Using a cell : carbon conversion ratio
of 175 fg C cell−1 (see methods), this represents a range of
396 ng C L−1 to 5723 ng C L−1. In the eastern basin, the pi-
coeukaryote abundances (∼ 2.1× 104 to 7.5× 104 cell L−1)

and biomass (44 to 158 ng C L−1) were low except in
the Levantine basin (Station 290) where higher abundances
(4.36× 105 cell L−1) and biomass (916 ng C L−1) were mea-
sured (Fig. 2, Table 2).Prochlorococcusabundances and
biomass from the surface waters were generally low through-
out the whole MS, especially at the Shikmona Eddy (Station
294) and the Ionian Sea (station 304) (Fig. 2, Table 2).

3.2 Primary productivity and N 2 fixation rates

Photosynthetic carbon fixation rates ranged from 0.21 to
0.74 µg C L−1 d−1 in the eastern basin, and 0.76 to 1.39 µg
C L−1 d−1 at the western Mediterranean stations. Much
higher rates were measured at the Strait of Gibraltar
(15.04± 1.6 µg C L−1 d−1) and in the Gulf of Cadiz (8.22 µg
C L−1 d−1) (Table 2).

N2 fixation rates obtained across the MS exhibited a strong
zonal gradient from the eastern to western basins (Fig. 3a
and Table 2). The lowest N2 fixation rates were measured in
the eastern basin, ranging from 0.10± 0.02 nmol N L−1 d−1

in the Ionian Sea, to 0.15± 0.01 nmol N L−1 d−1 at Station
290 (affected by the Rhodes Gyre) (Fig. 3a and Table 2).
N2 fixation rates increased gradually toward the west ranging
from 0.22 ± 0.03 in the Tyhrranean Sea to 2.35± 1.12 nmol
N L−1 d−1 at the westernmost station at the Strait of Gibral-
tar (Fig. 3a and Table 2). The springtime rates of N2 fixation
at all stations were 3–7 fold higher than measurements pub-
lished previously during summertime (Fig. 3b).

In addition to total N2 fixation (measured in light bot-
tles under ambient diel irradiance), we examined N2 fixation
rates in bottles incubated for 48 h in the dark. While some
unicellular cyanobacteria fix N2 during the dark hours, they
require light energy to fuel the process. We assumed that af-
ter 48 h in the dark, the contribution by these diazotrophs
will be negligible and most N2 fixation would be due to het-
erotrophic diazotrophs that do not require light for the N2
fixing process (Postage, 1979). The N2 fixation rates from
48 h dark incubations showed a similar east-west trend as ob-
served in light bottle incubations (Fig. 4a); within the eastern
basin, N2 fixation in dark incubations were lowest at the east-
ernmost Station 290 (0.11± 0.02 nmol N L−1 d−1) and high-
est at Station 294 in the Shikmona Eddy (0.16± 0.01 nmol
N L−1 d−1) (Figure 4A). In the western basin N2 fixation
rates in dark incubation bottles rates ranged from 0.20± 0.05
to 0.40± 0.11 nmol N L−1 d−1 (Fig. 4a).

We compared rates of light and dark N2 fixation (Fig. 4b)
to estimate the relative contribution of autotrophic versus het-
erotrophic N2 fixation. In the western basin, light : dark esti-
mates of N2 fixation were always> 1, suggesting the pre-
dominance of autotrophic N2 fixation. In the eastern basin
light : dark N2 fixation rates were< 1 suggesting a prepon-
derance of heterotrophic diazotrophs (Fig. 4).

3.3 The contribution of N2 fixation to primary produc-
tivity

We calculated the percent contribution of N2 fixation to total
primary productivity during springtime based on rates of N2
fixation measured in the light bottle incubations and the as-
sociated C fixation estimated using an the average particulate
C : N ratio obtained at each station (Table 2, and see Yogev
et al., 2011; Rahav et al., 2013). New production due to N2
fixation was∼ 2 % of the total primary productivity at the
EMS stations and increased by a factor of 2 to 4 in the west-
ern Mediterranean Sea (WMS), ranging from 3.5 % in the
Adriatic Sea to 8.5 % in the Alboran Sea. The percent con-
tribution of N2 fixation to primary production in the Gulf of
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Fig. 3. Seasonal variations of N2 fixation in the surface waters of
the Mediterranean Sea.(A) Springtime rates measured in this study.
(B) Summer data compiled from Rahav et al., 2013; Yogev et al.,
2011; Ibello et al., 2010; Bonnet et al., 2011.

Cadiz, near the Strait of Gibraltar that connects the Mediter-
ranean Sea with the Atlantic Ocean, was 2.3 % (Fig. 5).

4 Discussion

This study provides the first springtime measurements of N2
fixation in surface waters along an east–west transect across
the Mediterranean Sea (MS). We focused sampling at repre-
sentative stations from different water provinces in the MS
(Fig. 1, Table 1). Our results yielded N2 fixation rates in sur-
face waters that are 3–7 fold higher (Fig. 3a, Table 2) than
published rates from two summertime basin-wide N2 fixa-
tion studies (Ibello et al., 2010; Bonnet et al., 2011), rou-
tine stations off the Israeli coast (Yogev et al., 2011), and a
Levantine Basin transect (Rahav et al., 2013). Moreover, the
gradient of increasing N2 fixation rates from east to west co-
incide with the east-west gradient in surface Chla (Fig. 1)
and primary productivity (Table 2).

Seasonal measurements of N2 fixation rates in the MS
have been made at two monitoring stations, one located west
of the Israeli coastline (Levantine Basin) (Yogev et al., 2011)
and the other off the coast of France, the DYFAMED sta-
tion (Ligurian Sea) (Garcia et al., 2006; Sandroni et al.,
2007). Rates of N2 fixation in surface waters from the Levan-
tine Basin were uniformly low (∼ 0.01 nmol N L−1 d−1) and
did not show any seasonality (Yogev et al., 2011). In con-
trast, at the WMS time series station (DYFAMED), higher
rates of N2 fixation were measured during April and Au-
gust (4–7.5 nmol N L−1 d−1, 10 m) relative to other months

(< 2 nmol N L−1 d−1, 10 m), which were associated with
higher primary productivity rates (Sandroni et al., 2007).

The Shikmona Eddy (Station 294) and the Ionian Sea
(Station 304), representing ultraoligotrophic conditions, had
lower nutrient and Chla concentrations than the more
productive cyclonic Rhodes Gyre station (Station 290).
Yet similar N2 fixation rates were measured at all three
stations (Fig. 3a, Table 2) and there was no correlation
between N2 fixation and primary production (R2

= 0.18,
n = 9, t test, P > 0.05). This suggests that N2 fixation
is attributed mainly to heterotrophic bacteria or that dia-
zotrophs and nondiazotrophic phytoplankton are limited or
co-limited by different nutrients. Heterotrophic bacteria are
known to compete for N with autotrophs in the nutrient-
depleted surface waters of the EMS (Thingstad et al., 2005;
Tanaka et al., 2007) and molecular fingerprinting suggests a
highly diverse heterotrophic community ofnifH phylotypes
(Man-Aharonovich et al., 2007; Yogev et al., 2011). Het-
erotrophic diazotrophs may outcompete other bacteria in an
N-impoverished system because they can acquire N from the
abundant N2 pool. Evidence for heterotrophic diazotrophy
was found in both surface and aphotic depths in the EMS
(Rahav et al., 2013).

Higher DIN (Table 1) and Chla concentrations were mea-
sured in the more productive WMS compared to the EMS
(Fig. 1, Table 2). Concurrently, N2 fixation rates in the WMS
were also higher (ANOVA,P < 0.05) ranging from 0.22
to 0.86 nmol N L−1 d−1 (Fig. 3a, Table 2) and correlated
with PP (R2

= 0.82, n = 12, t test, P < 0.05), suggesting
photoautotrophic associated N2 fixation. Indeed, relatively
high diatom abundances were detected in surface waters of
the WMS (> 100 cells L−1) associated with a small spring
bloom (A. Oviedo, personal communication, 2013).Richelia
intracellularis, a symbiotic N2 fixing cyanobacterium, has
been found associated with diatoms in the EMS previously
(Bar-Zeev et al., 2008) and may have contributed to N2 fixa-
tion in the WMS.

The highest N2 fixation rates during this spring tran-
sect were observed at the westernmost station in the Strait
of Gibraltar (Fig. 3a, Table 2). Moreover, these spring-
time N2 fixation rates were 7-fold higher than those mea-
sured previously during summer by Ibello et al. (2010)
(2.35 nmol N L−1 d−1 vs. 0.3 nmol N L−1 d−1, respectively).
These differences suggest seasonality of N2 fixation and/or
the abundance or activity of diazotrophic populations, or
seasonal exchange of water and resident planktonic popula-
tions between the eastern Atlantic Ocean and the MS through
the Strait of Gibraltar.

During this study N2 fixation rates were only measured in
surface waters (upper 6–8 m) and therefore depth-integrated
N2 fixation rates could not be calculated. It is therefore
conceivable that many autotrophic and heterotrophic dia-
zotrophic groups populating other depths, such as the deep
Chl a maximum (DCM), were not accounted for in our rate
measurements. In addition, seasonal changes in the vertical
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Fig. 4. (A) N2 fixation rates of surface waters from stations across the Mediterranean Sea for bottles incubated under ambient lighting (white
bars) and in complete darkness (dark bars). The asterisk above the columns represents statistically significant differences (one-way ANOVA,
P < 0.05) for mean values of N2 fixation rates in each station, and(B) the resulting ratio between rates of N2 fixation from ambient lighting
and dark incubations.n = 3 for each incubation type at each station.

Fig. 5.The percent contribution of N2 fixation to primary productiv-
ity (PP) of surface waters sampled across the MS during the spring
period. The letters above the columns represent statistically signif-
icant differences (one-way ANOVA and a Fisher LSD means com-
parison test,P < 0.05) for mean values of % contribution between
stations.

distribution of diazotrophic microbes were not considered
here. For example, a recent study from the eastern basin
found no statistical difference in N2 fixation rates measured
in water collected from below the pycnocline at the DCM
compared to surface waters during the stratified period, while
during the winter mixing period, when the water column was
mixed up to 150 m, the N2 fixation rates were 2–3 fold higher
at the DCM than in surface waters (Yogev et al., 2011).

Another methodological contribution to the higher N2 fix-
ation rates during spring throughout the MS was our use of
the newly enriched (15N2) seawater addition method (Mohr

et al., 2010) rather than the gas bubble15N2 addition method
(Montoya et al., 1996). The gas bubble enrichment method
may underestimate N2 fixation rates by a factor of 2 or more
in some circumstances (Großkopf et al., 2012; Wilson et al.,
2012). Our preliminary comparison of both methods in MS
waters demonstrated a 2–3 fold increase in rates using the
enriched seawater method (n = 18). However, in long incu-
bations (> 24 h), the underestimate of N2 fixation using the
bubble method was reduced because the gas bubble should
have equilibrated within the first several hours of the incu-
bation (Mohr et al., 2010; Mulholland et al., 2012). While it
is impossible to convert from one method to another using a
constant conversion factor, if we assume a two-fold underes-
timate of previously reported summer N2 fixation rates, we
still observe significant seasonal differences in N2 fixation
rates between the early spring and fully stratified summer
periods. This suggests that methodological differences alone
cannot account for the seasonal changes we observed.

We examined the relative contribution of autotrophic and
heterotrophic diazotrophs to the measured N2 fixation rates
using parallel natural light and dark bottle incubations. It has
generally been assumed that diazotrophy in surface waters is
dominated by photoautotrophic cyanobacteria that use light
energy to satisfy the energetic demands of N2 fixation and
to acquire carbon (Karl et al., 2002). Yet, research demon-
strates that the abundant and widely distributed unicellular
group A cyanobacteria are photoheterotrophs (Zehr et al.,
2008; Tripp et al., 2010). Further, many heterotrophic dia-
zotrophs are present in surface waters (Riemann et al., 2010;
Zehr and Kudela, 2011; Mulholland et al., 2012). Our re-
sults show that in the eastern basin stations, the ratio of
light : dark bottle N2 fixation was usually< 1 (Fig. 4b) sug-
gesting that heterotrophic diazotrophs may be the dominant
N2 fixers, although we cannot exclude that some of the
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dark N2 fixation was performed by unicellular cyanobacte-
ria. In the western basin, this ratio was generally> 1 sug-
gesting that autotrophic diazotrophs predominated (Fig. 4b).
We acknowledge that some phototrophic diazotrophs fix N2
during the dark, to avoid the inhibitory effects of oxygen,
but we assume that our long incubation time in the dark
(48 h) would have diminished their impact as they require
light energy to fix N2.

Phylogenetic characterizations of diazotrophs in surface
waters across this Mediterranean transect are currently un-
available. However, a diverse group of auto- and het-
erotrophic diazotrophs have been reported from the east-
ern basin with∼ 40 % of thenifH transcripts attributed to
heterotrophic bacteria (Man-Aharonovich et al., 2007; Bar-
Zeev et al., 2008; Yogev et al., 2011). In the WMS, unicel-
lular cyanobacteria (including UCYN-A) are present in low
abundances year round and short blooms of 2000–5000 cells
mL−1 have been reported from a coastal station off Marseille
during June and July (Le Moal and Biegala, 2009). Another
recent study suggested that cells< 0.7 µm in size, usually ig-
nored during routine sampling, can contribute 50 % of the
N2 fixation (Konno et al., 2010). In this study we used GF/F
filters to measure planktonic N2 fixation (nominal pore size
of ∼ 0.7 µm, see methods), as is a common practice. Thus, it
is possible we could have missed N2 fixation by very small
bacteria diazotrophs and thereby underestimated total plank-
tonic N2 fixation.

Based on results from studies conducted during summer
in the EMS, N2 fixation accounted for only 0.7–2 % of pri-
mary productivity at stations in the Levantine basin (Yogev
et al., 2011, Rahav et al., 2013), but increased to∼ 6 % in
the more productive Rhodes Gyre and Cyprus Eddy (Rahav
et al., 2013). Consistent with these results, during a sum-
mer transect across the Mediterranean (BOUM campaign),
N2 fixation accounted for 6 to 35 % of new production at sta-
tions in the more productive western basin but only 0 to 0.3 %
at the more oligotrophic eastern basin (Bonnet et al., 2011).
Our springtime results show higher N2 fixation rates (2–4
fold) at both basins and a similar spatial trend. A higher con-
tribution of N2 fixation to primary production (4–8 %) was
measured in the western basin compared to the eastern basin
(∼ 2 %, Fig. 5). These differences between the two basins are
probably attributed to changes in N2-fixing planktonic com-
munities and other environmental aspects. Summertime data
from the EMS demonstrated a significant positive correlation
between N2 fixation rates and bacterial production suggest-
ing a higher involvement of heterotrophic diazotrophs in the
ultraoligotrophic EMS (Rahav et al., 2013).

5 Conclusions

This study provides the first direct measurements of N2 fixa-
tion rates in surface waters across the MS during springtime.
N2 fixation rates were measured using the newly modified

15N2-uptake method (Mohr et al., 2010) during a spring tran-
sect and were 3–7 fold higher than measurements made in
surface waters during the stratified summer period. Method-
ological differences cannot fully account for the higher rates
of N2 fixation observed during this cruise and we suggest that
the higher rates are due to seasonal variability in primary pro-
ductivity and environmental factors. N2 fixation was higher
and contributed more to total primary production in the west-
ern basin than in the eastern basin. While our data suggests
that N2 fixation rates across the MS are higher during spring
than in the summer stratified period, our measurements were
constrained to surface waters and thus we cannot provide
depth integrated estimates of N2 fixation during spring. We
suggest that future investigations should include N2 fixation
rate measurements and phylogenetic identity of diazotrophs
at both photic and aphotic depths to better constrain the con-
tribution of N2 fixation to N budgets as well as the total and
new production within the Mediterranean Sea.

Supplementary material related to this article is
available online at:http://www.ocean-sci.net/9/489/2013/
os-9-489-2013-supplement.pdf.
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