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A REPRODUCTIVE-RESTING STAGE IN AN HARPACTICOID
COPEPOD, AND THE SIGNIFICANCE OF GENETICALLY

BASED DIFFERENCES AMONG POPULATIONS

D. J. Lonsdale, P, Weissman and F. C. Dobbs

ABSTRACT

Dormancy is an important life-history strategy which allows copepods to increase their
fitness by delaying growth and reproduction until harsh environmental conditions have ame-
liorated. For marine species, the primary strategies identified to date include the production
of dormant eggs by shallow-water species, and copepodite overwintering in deep-water species.
Herein, we describe a third strategy in which fertilized adult females enter a "reproductive-
resting" stage: during the late fall that allows them to overwinter and provide a first source
of spring naupliar recruitment. This strategy has been observed in the estuarine copepod
Coullana canadensis, but may also occur in other species. Laboratory studies indicate that
daylength and temperature are the environmental cues that induce the developing female
copepodite to switch between active reproduction and reproductive-resting stage. In Maine
populations, daylengths equal to 14 h induce >90% of the females to reduce development
rate and accumulaKe lipid before maturation and mating. The resulting females, however, do
not develop ova re:gardless of food level. A similar reproductive-resting stage is triggered at
daylengths < 14 h in animals collected from Maryland. Transition from reproductive-resting
stage to active ova production may be triggered in both populations by increased photoperiod
and/or dramatically increased temperature. Cross breeding experiments indicate that the
daylength triggered switch to reproductive-resting is under tight genetic control. Daylength
likely serves as a critical cue for all populations in differentiating between the onset of harsh
(i.e., winter) and favorable (i.e., spring) environmental conditions. At these times water
temperatures are similar, but daylengths are different. Population differences in the daylength
necessary to trigger the reproductive-resting strategy likely reflect latitudinal variation in the
period over which environmental conditions are conducive to population growth.

Resting and diapause stages are common life-history attributes among plank-
tonic copepods, particularly the Calanoida and Cyclopoida (e.g., Labidocera aes-
tiva, Acartia hudsonica and Mesocyclops edax; Marcus, 1979; Sullivan and
McManus, 1986; Wyngaard, 1988), and likely are adaptive responses to avoid
harsh environmental conditions such as desiccation, low food availability, and
high predation pressure (Hairston and Olds, 1987). A seasonal pattern in adult
encystment has been reported in one species of marine and several species of
freshwater Harpacticoida, but in general, little is known about diapause or resting
strategies in this order of copepods and benthic species in general (Coull and
Grant, 1981; Williams-Howze and Coull, 1992; reviewed in Williams-Howze,
1992).

Cou/lana canadensis [i.e., Scotto/ana canadensis (Willey); Por, 1984] is a brack-
ish-water, harpacticoid copepod which occurs over a wide geographic range on
the east coast of North America (Willey, 1923; Coull, 1972; Lonsdale and Lev-
inton, 1985), and populations are interfertile from at least Maine to South Carolina
(Lonsdale et al., 1988). Cou/lana also was collected on both the east and west
coasts of Florida, but they are reproductively isolated from all other northern
populations (Lonsdale et al., 1988). Coullana is usually seasonally restricted
throughout its entire range, with highest naupliar densities occurring in early spring
to early summer months, although egg production appears to be continuous
throughout much of the summer (e.g., Maryland and Maine; Lonsdale, 1981b,
this study). In Chesapeake Bay, for example, spring naupliar densities of C. cana-
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densis range from 5,000 to 15,000 m -3, but during times of unusually low sum-
mertime salinities (0 to 140/00), nauplii can persist through the summer and early
fall (Heinle et aI., 1977). Reduced salinity may favor population growth of C.
canadensis (Lonsdale, 1981a) and reduce predator densities (Heinle et aI., 1977).
Invertebrate predation by ctenophores and adult Acartia tansa may be a major
factor in regulating naupliar densities during the summer (Lonsdale, 1981b). Co-
pepodites and adults are likely prey for fish because they inhabit muddy substrata,
a preferred feeding site for bottom- feeders such as juvenile spot (Coull and Dudley,
1985; Smith and Coull, 1987; S. Bell, pers. comm.).

Previous studies of Caul/ana canadensis indicated puzzling differences in thl~
frequency of reproduction in newly matured and mated females. For example,
the frequency of reproduction was considerably lower in Maine copepods com-
pared to Maryland copepods (18.2% vs. 100%, respectively) when reared in the
laboratory at 15°C under high food conditions (Lonsdale and Levinton, 1986).
Also, lipid accumulation in the form of droplets was pronounced in the oviducts
and other cavities (e.g., leg segments) of nonreproductive females (microscopic
observations made using Oil Red 0; methods from Gallager and Mann, 1981).
In the field, however, naupliar recruitment occurs in Maine at 13°to 15°C(Lons·-
dale and Levinton, 1985). A similar lack of concordance in growth rates between
laboratory-reared and field populations of Maryland C. canadensis at 15°C was
also found by Lonsdale (1981b). This led us to hypothesize that the condition
was induced by a pathogenic organism (Lonsdale and Levinton, 1986), or alter·-
natively, that it was a critical part of the life-history strategy of the species which
allowed it to succeed in diverse environments. Our histological investigations of
females using light and transmission electron microscopy minimized the possi··
bility of pathogens as the cause for the lack of reproduction. Thus, our objectives
in this study were to test the alternative hypothesis that the life-history variation
observed among C. canadensis populations was genetically based, and to elucidat{:
its adaptive significance.

MATERIALS AND METHODS

Batch-culturing of Copepods. - The life-cycle of Coul/ana canadensis includes planktonic naupliar
molt-stages (6) and benthic copepodite (5) and adult (I) molt-stages. Females carry eggs in two external
sacs, and can produce multiple clutches in a lifetime without remating (Lonsdale, 198Ia). To obtain
C. canadensis for laboratory experiments, 100 to 200 planktonic nauplii were obtained with a 63-/-tm
mesh net from three sites on the east coast of North America (details in Table I). In the laboratory,
field-collected copepods were batch cultured at 20-2 1°C in 150/00seawater and under a 14:10 h light;
dark cycle (detailed in Lonsdale and Jonasdottir, 1990). Algal species for copepod rearing were grown
in f/2 enrichment medium (Guillard, 1975; also see Lonsdale and Levinton, 1985). Algal cell densities
were assessed with a hemacytometer. A mixture of two species, lsochrysis galbana (ISO; -4-6-/-tm
diameter) and Thalassiosira pseudonana (3H; -4-/-tm), was added to cultures to produce a minimum
of 2.5· lOS cells·ml-' or -2,887 /-tgCliter-I (according to the Strathmann equations; Strathmann,
1967), a density within the range found in many estuaries (e.g., 500-3,388 /-tg·C·liter-' for Narragansett
Bay; Durbin et aI., 1983). For experiments, an algal suspension was prepared by adding cells (in the
same amounts as for batch culturing) to 20-/-tm filtered, autoclaved seawater (150/00).

Environmental or maternal sources of physiological and morphological differences within or among
populations were minimized by common-rearing of copepods for several generations in batch culture.
Thus, any phenotypic differences were presumed to have a genetic basis. Hybrid crossing experiments
were performed to verify the common-rearing results.

Reproduction Experiments on Laboratory Populations. - To test the hypothesis that the previously
found difference in reproductive frequency among Maine (ME) and Maryland (MD) females (Lonsdale
and Levinton, 1986) was genetically determined, gravid copepods (N = 18 from each locale) were
taken from batch culture and isolated in separate 17-ml polystyrene wells containing 8 ml of algal
suspension, and covered to minimize evaporation. These females served as the source of offspring for
observations on the first (P,) generation. Daily observations on females were made and newly hatched
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Table 1. Location and water tl:mperature and salinity during collection (- I m water depth) of
Caul/ana canadensis nauplii

Temperature Salinity
Collection site Date ("C) (%0)

Saco River May 1988 17 10
Biddeford, ME

Saco River June/July 1990 18-20 9-12
Biddeford, ME

Quantuck Creek May 1991 16 19
Quogue, NY

Patuxent River April 1990 21 II
Lusby, MD

nauplii were equally sorted into two separate wells (up to 16 per well) for incubation at either 15 or
21DCand under a 14:I0 h light: dark cycle (as in Lonsdale and Levinton, 1986). Replicated data (N
= 2) were obtained for each copepod family by using nauplii hatched from a second clutch of eggs.
To reduce temperature shock, the initial temperature of the algal suspension to which nauplii were
added was 2 Idc. Culture wells were replenished with a concentrated algal suspension (106 cells'ml-')
three times weekly, and copepods were transferred to clean wells with 100% fresh algal suspension
weekly.

Observations on copepod survival and development were made daily. When P, females reared at
21°C reached -Copepodite IV, two to six individuals per family were removed and placed in wells
for both intra- and interpopulational crosses (control and hybrid crosses, respectively). Although
mature males may form pairs with immature females, mating does not occur until the female molts
to adult (Lonsdale et aI., 1988). Offspring from these crosses were used to obtain reproductive statistics
for the f, generation. Family replicates were not conducted. Newborns were not obtained from some
P, family lines (N = 12 to 14) to study the f, generation because of skewed sex ratios (high proportion
of males) or selected females did not reproduce. All females were monitored for mating status (i.e.,
pair formation), reproductive condition (i.e., ovum formation or presence of lipid droplets). Obser-
vations were terminated 10 days after no more pairs were observed. Usually at 15 or 2O"C, reproductive
females became gravid within 4 days following the terminal molt (Lonsdale and Levinton, 1986). This
methodology was repeated for the f, generation.

A separate experiment was conducted following the above study to better define geographic gradients
in this trait. Batch-cultured copepods collected from the south shore of Long Island, New York (NY;
Table I) were reared lor one generation (P,; N = II families), and under the same laboratory envi-
ronmental conditions as described above.

Photoperiod was a major environmental difference between life-table studies of MD Caul/ana
canadensis in which the reproductive frequency varied substantially at 15"C (Lonsdale, 1981b vs.
Lonsdale and Levinton, 1986). In the former study, a 12:12 h light: dark cycle was used. Thus, to test
the hypothesis that light cycle variation would alter the reproductive-resting response, batch-cultured
copepods from all thrl~e sites were reared in a similar manner as already described, but under a 12:
12 h light: dark cycle for one generation to obtain reproductive statistics.

For a clearer understanding of what role reproductive-resting females may play in the natural
population dynamics of Caullana canadensis, experiments were conducted to determine if they could
be induced to reproduce. Reproductive (having eggs in oviducts and/or carrying egg sacs) and repro-
ductive-resting females (N = 27 for each reproductive condition) were obtained from 1988 batch
cultures from ME held at 250 and 15"C, respectively. Females were individually placed in separate
wells ofa multi-depression dish held in an airtight, opaque plastic box. Distilled water in the bottom
of the box served to reduce evaporation from the wells. Following acclimation at 20°C for I day, nine
females of each reproductive condition were maintained for 14 days at 150

, 200
, or 25°C with the

above mentioned algal suspension. The algal suspension was completely replaced daily. The light:
dark cycle was 14:10 ]b..

Data Analyses. - The above experimental design was intended to allow detailed statistical analyses
using standard ANOVA procedures. However, in analyzing the results of the experiments, it rapidly
became apparent that the variances in the data were not normally distributed. For example, as discussed
below, 100% of the MD females were reproductive at 21dc. As a result, we have had to use non-
parametric statistics to analyze this data since a fundamental condition required to apply parametric
statistics (i.e., ANOVA) was not met (Sokal and Rohlf, 1981).
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Figure I. Percentage of reproductive-resting females within families of Caul/ana canadensis obtained
from intra- (P, and f, generations) and interpopulational (f, generation) crosses. Copepods were reared
in the laboratory at two temperatures under a 14: IO-h light: dark cycle. Mean ± I standard error are
indicated (see Table 2 for number of families). The percentage of reproductive females can be deter-
mined by subtracting the percentage of reproductive females from 100%.

RESULTS

Locale Differences in Reproduction. - The reproductive response of Coul/ana ca-
nadensis to temperature at daylengths typical oflate summer (14:10 h light: dark
cycle) varied dramatically between populations collected in Maryland (MD) and
Maine (ME) (Fig. 1). The mean percentage of reproductive females within families
was higher for MD copepods at both temperatures. These differences were largest
at 15°C with more than 96% of the females reproductively active while NY and
ME copepods were less than 5% active. At 21°C, all MD females became repro-
ductive, whereas a percentage of females from the northern locales went into a
reproductive-resting state (e.g., 16.5% and 43.7% for ME and NY, respectively,
in the P I generation).

Non-parametric analysis indicates that we must reject the null hypothesis for
both temperatures, i.e., that the frequencies of reproductive and reproductive-
resting females reared under a 14: 10 light: dark cycle (Table 2) were independent
of parentage in the first generation (PI) (Table 3a). At both water temperatures,
the frequency of reproductive females was higher in MD Caul/ana canadensis,
and no difference was found among ME and NY copepods. The P I results strongly
indicate that the reproductive-resting response at 14:10 h photoperiod is a ge-
netically controlled life-history trait. The identical responses among ME and MD
copepods in the PI and fl generations provide additional support for the hypothesis
that genetic differences among C. canadensis populations for this trait have evolved.
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Table 3. Results of a statistical test of the null hypotheses that the frequencies of reproductive and
reproductive-resting females reared under a 14: IO-h light: dark cycle were indt:pendent of parentage
in the P, and f, generations (3A and 38, respectively) (R x C tests of independence; Sokal and Rohlf,
1981). Superscripts on parentage denote non-significant differences at the 5% level within a test
temperature. Crosses are indicated as maternal x paternal parentage

Temperature
('C)

P, generation (3A)

15· 21t

f, generation (3B)

15t 21§

Parentage ME x MEa
NY X NYa
MD X MDb

ME x MEa
NY X NY·
MD X MDb

ME X ME"
ME X MDb
MD X MD'
MD X ME'

ME X MEa
ME X MDb
MD X MD'
MD X MEa,b

·df- 2, G - 305.3. P < 0.001.
tdf= 2, G = 54.9, P < 0.001.
tdf= 3, G = 101.4,P < 0.001.
§df~ 3, G ~ 32.1, P < 0.001.

In the f) generation, statistical analysis of the crosses (Table 2) indicates tha.t
the null hypothesis that the frequencies of reproductive and reproductive-resting
females were independent of parentage must be rejected at 15° and 21°C (Table
3b). At 15°C, hybrid crosses between MD and ME PI copepods dramatically
increase the percentage of reproductive females compared to ME fls (Fig. 1).

Frequency distributions of the percentage of reproductive-resting females within
families suggest that the reproductive-resting trait may be genetically controlled
by only a small number of loci with a low level of additivity. If the trait were
under polygenic control, a normal distribution in percentages would have been
expected in the fl hybrids (Fig. 2).
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Percentage of reproductive-resting females

Figure 2. Frequency distribution of the percentage of reproductive-resting females of Caul/ana cana·
densis from intra- and interpopulational crosses, reared in the laboratory at 15°C. Crosses are indicated
as maternal X paternal parentage.
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Table 4. Number of reproductive and reproductive-resting females of Coullana canadensis reared at
two temperatures and a 12:12-h light: dark cycle

Temperature ("cl
15 21

Maternal source locale ME NY MD ME NY MD
Paternal source locale ME NY MD ME NY MD
No. families 14 15 10 10 10 II
No. reproductive females I 4 0 14 16 23
No. reproductive-resting females 34 57 13 " 14 4

Light Cycle Variation. - The reduction in photoperiod to a 12:12 h light: dark
cycle dramatically altered the life-history response ofMD copepods at 15°C (Table
4). All females entered the reproductive-resting stage, and exhibited visually de-
tectable lipid accumulation. The null hypothesis that the frequencies of repro-
ductive and reproductive-resting stages were independent of parentage could not
be rejected at 15°C, but was rejected at 21°C (Table 5). New York copepods had
a significantly lower frequency of reproductive females compared to MD cope-
pods.
Reproductive Recovery. - These results supported our hypothesis that the trait in
question was a reproductive-resting response. When exposed to the highest water
temperature (i.e., 25°C), 67% of the reproductive-resting females began ova and
egg sac production during the 14 day interval, but there was no apparent repro-
ductive recovery 1ur ME resting females maintained at 20° or 15°C (Fig. 3). A
switch to the reproductive-resting strategy by active females was not apparent
because most maintained egg production even at the lower temperatures.

DISCUSSION

Coullana canadensis nauplii are numerically important in estuarine plankton
during spring (Heinle et aI., 1977). The first source of their yearly recruitment is
most likely overwintering females, a hypothesis supported by the observation that
the reproductive-resting stage can be overridden by increasing water temperature.
Moreover, reproductive-resting females accumulate more wax esters, triglycerides,
and sterols, compared to reproductive females that have more polar lipids (un-
pub!.). Storage of wax esters in particular may fuel females during the nutritionally

Table 5. Results of a statistical test of the null hypothesis that the frequencies of reproductive and
reproductive-resting females reared under a 12: 12-h light: dark cycle were independent of parentage
(R x C tests of independence). Superscripts on parentage denote non-significant differences at the 5%
level within a test temperature. Crosses are indicated as maternal x paternal parentage

Temperature
('C) df G P Parentage

15° 2 2.0 >0.1 ME x ME'
NY X NY'
MD x MD'

21° 2 8.1 <0.025 ME X ME"b
NY X NYb
MD X MOO
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dilute winter, and ultimately, support egg production in the early spring (e.g., as
found in marine calanoid copepods; Ohman et al., 1989; also see Sargent and
Henderson, 1986 for review). Thus, in addition to providing a refuge from harsh
environmental conditions, female overwintering could be advantageous if egg
production preceded the spring bloom, a food resource which hatched nauplii
subsequently could utilize (e.g., as found for Neoca/anus spp.; Frost et al., 1983).
This advantage would be similar to that for nauplii hatched from dormant eggs
in other shallow-water copepod species (see Donaghay, 1988 for discussion), and
may be operative at least for MD C. canadensis. Mean chlorophyll a levels are
highest around mid-April (ranging from mid-March to mid-May depending on
location and year; Malom~ et al., 1988) when nauplii first recruit into the Ches-
apeake Bay plankllon (Heinle et al., 1977; Lonsdale, 1981b). Apparently in ME,
however, naupliar recruitment occurs 2 months after the late February to mid-
March spring bloom (Townsend, 1984; as discussed in Lonsdale and Jonasdottir,
1990). In the northern locale, lipid accumulation may fuel female survival over
the winter, but initial egg production may be more dependent on spring bloom
resources. Teasing out the physical constraints to reproduction (e.g., temperature),
and how they may dictate the relative importance of maternal and environmental
food resources at various latitudes will shed light on the adaptive significance of
this overwintering strategy.

The potential life span of reproductive-resting females of Coullana canadensis
should allow overwintering as a recruitment strategy. Reproductive-resting fe-
males from MD maintained at l5°C under a 12:12 h light: dark cycle survived
for over 90 days in the laboratory, and some subsequently reproduced when moved
to 20-25°C. Whether or not mature males enter a similar reproductive-resting
stage or store energy reserves for overwintering remains to be determined, but we
have occasionally observed in the laboratory males with "lipid-like" droplets.
Spring naupliar re:cruitment, however, could occur without males present because
reproductive-resting females are already mated, and produce viable clutches with-
out remating (as also found in a cyclopoid copepod; Naess and Nilssen, 1991).

Resting or diapause eggs are an important recruitment mechanism in other
shallow-water copepod species. This may, however, not be the case for Coullana
canadensis as no nauplii hatched from sediment taken from two sites in Stony
Brook Harbor during January and March 1990, although other species did hatch
(e.g., Acartia spp.). We incubated sediment under nine different conditions, 5, 12,
or 20°C and 5, 12:,or 25%0, for 12 days. At 20°C, C. canadensis eggs take only 3-
4 d to hatch (Lonsdale and Levinton, 1985). The lack of evidence for resting eggs
points to the importance of overwintering adult copepods as the source of spring
naupliar recruitment for C. canadensis.

Re-analyzed data from published work (Lonsdale and Levinton, 1986) suggest
that by CI, the fI~productive-resting trait has been cued, and copepodite devel-
opmental rates are altered (Fig. 4). For ME females which eventually entered the
reproductive-resting stage, mean stage-specific development time at l5°C was
significantly slower for copepodites, but not for nauplii compared to those which
became reproductive (Table 6). The timing of the developmental "switch" by CI
may be adaptive for several reasons. First, the slower development rate of cued
copepodites may allow energy diversion away from growth and into lipid accu-
mulation essential for overwintering. A similar change in copepodite growth and
lipid accumulation was also found in a diapausing freshwater harpacticoid, Can-
thocampus staphylinus (Sarvala 1979, cited by Williams-Howze and Coull, 1992).
Second, the very shallow light compensation depths of most estuarine and coastal
waters during th(~spring and summer may preclude photoperiod as an effective
environmental cue for benthic animals. This latter hypothesis is supported by
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findings that photoperiod manipulation could not induce summer encystment in
another shallow-water, marine harpacticoid Heteropsyllus nunni (Williams-Howze
and Coull, 1992). This species, like most harpacticoids, does not possess a plank-
tonic stage.

The adaptive significance of the light: dark cycle as a proximate cue for the
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Table 6. Results of a statistical test of the null hypothesis that development rates of copepods (stages
d-1) are independent of life-hist.ory (i.e., reproductive versus reproductive-resting strategy) (paired
t-test; Sokal and RohU; 1981)

Life-stage

Naupliar
Copepodite/ Adult

N

5
6

r.

1.519
3.438

p

>0.2
<0.02

induction of the rl~productive-resting response is suggested from monthly records
of daylength (Fig. 5). Daylength may be important to cope pods in differentiating
between the onset of favorable (spring) and harsh (winter) environmental con-
ditions when watl~r temperatures are similar, ~ l3°C and 15°C (open water), re-
spectively, for MD, and ~ l3°C and 18(?)OCfor ME populations, respectively
(Heinle et aI., 1977; Lonsdale, 1981b). We are uncertain about the timing of the
seasonal decline in ME Coullana canadensis, but found large numbers of cope-
podites and adults in mid-July 1990 in Saco Bay. Although the reproductive
response of ME C. canadensis under daylengths > 14 h at 15°C was not tested,
we predict that developing copepodites and reproductive-resting females would
become reproductive as found for MD copepodites under longer daylengths (> 12
h). These findings would explain the lack of concordance between ME naupliar
recruitment found in the field and our laboratory results at 15°C. The result
showing that reproduction in MD C. canadensis at 15°C is tightly linked to light
regime explains a similar lack of concordance previously found by Lonsdale
(1981 b). It may alisobe possible that reproductive-resting females break this stage
after a given period of time without changes in environmental cues (e.g., as found
in Mesocyc!ops edax diapausing individuals; Wyngaard, 1988), although after 90
days, reproductive-resting females maintained at 15°C did not begin reproduction.

Population diflerences in the absolute period of daylength related to the in-
duction of the reproductive-resting response may reflect a shorter period when
environmental conditions are conducive for growth and reproduction in ME
copepods compared to MD. Latitudinal variation in the length of the growing
season may be the selective force driving genetically based differences in growth
rate among fish populations (Conover and Present, 1990; Conover, 1991), and
diapause egg production in Labidocera aestiva populations (Marcus, 1984). Coul-
lana canadensis nauplii first appear in appreciable numbers in April in Chesapeake
Bay and May in the Saco River when day length periods exceed 12 hand 14 h,
respectively (Fig. 5; Heinle et aI., 1977; Lonsdale, 1981b; Lonsdale and Levinton,
1985). It is also likely that the demise of growing conditions occurs earlier in ME,
and is suggested Ibythe observation that at 21°C and a 14:10 h light: dark cycle,
a percentage of ME females entered the reproductive-resting state, whereas all
MD females became reproductive. A similar trend regarding temperature and
photoperiod influences on diapause egg production was found in populations of
L. aestiva collected from Massachusetts to North Carolina (Marcus, 1984). More-
over, copepods collected from Florida, which exhibit a year-round pattern of
abundance, had lost the genetic capacity to produce diapause eggs. Our result
suggesting more genetic similarity of NY and ME copepods compared to MD is
similar to that found for Fundulus heteroc!itus in which mtDNA analyses revealed
a northern and :>outhern genetic assemblage, and that the transition occurred
between northern and southern New Jersey. In this example, temperature adap-
tation and past geological events may explain this pattern (Gonzalez-Villasenor
and Powers, 1990).
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Figure 5. Hours of daylight for ME and MD locations (solid and dashed lines, respectively), and
probable reproductive periods of Coull ana canadensis (dotted line, 14-h y-intercept and dashed-dotted
line, 12-h y-intercept, respectively). Mid-month daylengths were obtained from 1989 Tide Tables,
NOAA.

Resting states may also occur in response to predation (Hairston and Munns,
1984), and as previously stated, invertebrate predation is important in regulating
Caul/ana canadensis populations in Chesapeake Bay during summer, especially
in August and September. Why then do copepods continue to reproduce at higher
summer temperatures (25-28°C; Lonsdale, 1981b; Lonsdale and Levinton, 1986)?
Selection for a resting stage earlier in the season in MD or other locales may not
be strong because of unpredictable summer salinities, which when reduced will
favor reproductive females of C. canadensis (Heinle et al., 1977). Continued
summer reproduction may also be a consequence of physiological or chemical
constraints at higher water temperatures which preclude a reproductive-resting
state. Chemical analyses ofa summer, encysted harpacticoid, however, also showed
wax ester accumulation (Williams-Howze, 1992), and thus, this latter constraint
is less probable.

We have established that the reproductive-resting trait in Caullana canadensis
has a genetic basis, and that differences in its expression exist among populations.
Seasonal changes in genotypic frequencies within a population cannot explain the
geographic differences. Caullana canadensis was collected from 1983-1990 (except
1989) in ME over several months (May to July), under a variety of environmental
conditions (l3-20°C and 9-180/(0), and a high percentage of copepods from all
collections have expressed the reproductive-resting trait at 15°Cand a 14:10 light:
dark cycle (e.g., for the 1983 collection, the percentage of reproductive females
ranged from 0-18%; Lonsdale and Levinton, 1986, 1989, this study). Prior to
1983 (1981 and 1982), the same temperature and light regime presented no prob-
lems for obtaining sufficient gravid ME females for experimentation (Lonsdale
and Levinton, 1985), but reproductive percentage data are not available. For MD
cope pods, longer-term changes in genotypic frequencies have not adequately been
documented, but the same life-history response of no reproduction at 15°C and
a 12:12 h light: dark cycle was also observed in collections made from - 1976-
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1978 (Lonsdale, 1981a). Overall, however, these findings suggest both short- and
longer-term evolutionary stability regarding the expression of the reproductive-
resting stage in C. canadensis.

Modulation of the reproductive response in Caul/ana canadensis by environ-
mental factors has been shown in this study. The physiological control mecha-
nisms of reproduction, however, remain unknown. In polychaetes at least, the
endocrine system may control reproduction in several ways, including the regu-
lation of gametocyte development and energy flow for reproduction (see Olive,
1985 for review). It is likely that the trait we studied in C. canadensis controls
the sensitivity of the neuroendocrine system to daylength and temperature, which
in tum regulates energy usage and ova production. Knowledge of the nature of
the biochemical linkage between the genetic and physiological variation found
among C. canadensis populations, and the relationship to individual fitness would
contribute to our understanding of evolutionary processes in marine invertebrates
(Koehn, 1987; Powers, 1987).
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