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Evolution of the freshwater sardinella, Sardinella tawilis 
(Clupeiformes: Clupeidae), in Taal Lake, Philippines and 
identification of its marine sister-species, Sardinella hualiensis

Demian A Willette 1 ,*

Kent E Carpenter 2

Mudjekeewis D Santos 3

Abstract.—We identify the sister species of the world’s 
only freshwater sardinella, Sardinella tawilis (Herre, 1927) of 
Taal Lake, Philippines as the morphologically-similar marine 
Taiwanese sardinella Sardinella hualiensis (Chu and Tsai, 
1958). Evidence of incomplete lineage sorting and a species 
tree derived from three mitochondrial genes and one nuclear 
gene indicate that S. tawilis diverged from S. hualiensis in 
the late Pleistocene. Neutrality tests, mismatch distribution 
analysis, sequence diversity indices, and species tree analysis 
indicate populations of both species have long been stable 
and that the divergence between these two lineages occurred 
prior to the putative 18th century formation of Taal Lake.

The freshwater sardinella Sardinella tawilis (Herre, 1927) is endemic to Taal Lake, 
Philippines, a crater lake formed by the highly active Taal Volcano (Fig. 1; Herre 
1927, Ramos 2002). The sardines and other Clupeiformes are predominantly marine 
but with many peripheral freshwater representatives (Whitehead 1985). Sardinella 
tawilis is the only freshwater representative of the 22 species in its genus. The origins 
of this species are enigmatic since Taal Lake putatively formed only as recently as the 
18th century after a series of large eruptions of Taal Volcano (Ramos 1986, Hargrove 
1991). Having erupted over 30 times since the 16th century, including several large 
and highly destructive events, Taal Volcano is one of the world’s most active volca-
noes (Torres et al. 1995, Newhall 1996). The caldera itself formed sometime from 
a few hundred thousand to a few tens of thousands of years ago (Ramos 2002), but 
Taal Lake was broadly connected to Balayan Bay until 1754 when a series of violent 
eruptions constricted and diverted the Pansipit River increasing the depth of the 
lake to its current level, 3 m above sea level (Wolfe and Self 1983, Hargrove 1991). 
The history of the hydrography of the lake is not well recorded although sailing ships 
were reported as navigating between Balayan Bay and Taal Lake prior to the 1754 
eruptions (Hargrove 1991). It is also not known if the population of S. tawilis that 
now exists in the lake was previously restricted to the lake or the vicinity of the Taal 
caldera prior to 1754.

Several studies have sought to identify the evolutionary origin of S. tawilis, the most 
important commercial fishery of Taal Lake and a valued culinary delicacy of Filipino 
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peoples (Mutia et al. 2001). Biometric and molecular evidence originally suggested 
S. tawilis was a descendant of the white sardinella, Sardinella albella (Valenciennes, 
1847), a broad ranging marine species found in the nearby South China Sea (Samonte 
et al. 2000, 2009). However, the use of a single exemplar of S. albella in the molecular 
phylogeny and the omission of diagnostic meristic and morphological features in the 
biometric assessment leave room for additional analysis. A subsequent molecular 
phylogeny based on Cytochrome c oxidase subunit I (COI) indicated S. albella as 
the sister taxon to Sardinella gibbosa (Bleeker, 1849) and did not identify a known 
Philippine Sardinella as sister to S. tawilis (Quilang et al. 2011). The study postulated 
that the descendants of the S. tawilis ancestral lineage may “still be roaming in the 
South China Sea waiting to be discovered” (Quilang et al. 2011). 

The Taiwanese sardinella, Sardinella hualiensis (Chu and Tsai, 1958), a subtropi-
cal species previously thought to be restricted to Taiwan and the adjacent mainland 
coast of China (Fig. 1), was reported as a range extension to the Philippines and as a 
potential sister species of S. tawilis (Willette et al. 2011). The original type descrip-
tions of S. tawilis and S. hualiensis describe their morphological similarity, though a 
shared ancestry was dismissed due to geographic and ecological marine-freshwater 
separation. This may be why S. hualiensis was not considered in previous phylogenies 

Figure 1. Map of species’ ranges and sampling sites. Sardinella hualiensis species range is desig-
nated by the dotted line surrounding Taiwan and along the Chinese coast per Whitehead (1985). 
Sardinella hualiensis’s known distribution is also noted by the dotted line near the northern most 
tip of the Philippine island of Luzon based on Willette et al (2011). Sardinella tawilis geographic 
range is restricted to the freshwater Taal Lake (insert). The Pansipit River connects Taal Lake 
to Balayan Bay, the nearest marine environment. Sampling sites are number: (1) Yilan County, 
Taiwan, (2) Cagayan Province, Philippines, and (3) Cuenca, Batangas Province, Philippines. 
The direction of prevailing flow for the South China Sea Gyre (a) and Kuroshio Current (b) are 
indicated along Luzon Island (Hu et al. 2000, Metzger and Hurlbert 2001). 
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(Samonte et al. 2000, Quilang et al. 2011). Chu and Tsai (1958) stated about S. hual-
iensis (both species formerly placed in the genus Harengula): “The present species is 
so closely related to Harengula tawilis that it is difficult to separate them. However, 
the former [S. hualiensis]…is found in the eastern coastal waters of Taiwan; while 
the latter [S. tawilis]…is found in the fresh waters of the Philippines.” Subsequent 
taxonomic treatments recognized S. tawilis as a distinct species (Whitehead 1985, 
Munroe et al. 1999).

The purpose of the present study was to test the potential sister-species relation-
ship of S. hualiensis and S. tawilis based on their reported morphological similarity 
and with regard to the restricted, disjunct range of these species. We are confident 
these ranges are disjunct because the identification of S. hualiensis and S. tawilis is 
straightforward based on external morphology and the distribution of members of 
this genus are well known in the Philippines because of their economic importance 
(Willette et al. 2011). In the Philippines, S. hualiensis is restricted to northern Luzon 
in isolation from S. tawilis (Fig. 1) both proximally and because of differences be-
tween marine and freshwater ecology. The disjunct nature of these ranges could be 
related to the unstable and ephemeral nature of sardine populations that go through 
sequential range expansions and contractions tied to underlying fluctuations in en-
vironmental conditions (Bowen and Grant 1997, Chavez et al. 2003, Takasuka et al. 
2007). We use several molecular genetic analyses to test if the divergence of S. tawilis 
from a previously more widely distributed S. hualiensis parent population is consis-
tent with the timing of Pleistocene environmental fluctuations. Alternatively, this 
divergence could have been caused by the isolation and divergence of S. hualiensis in 
the lake because of the 1754 eruption event that gave rise to the present-day configu-
ration of Taal Lake. 

Methods

Twenty-five S. hualiensis were obtained from fishermen near Santa Ana in Cagayan 
Province, Philippines (18°30´N, 122°8´E) and 25 S. hualiensis were sampled from 
Nantang-Ao fish market in Yilan County, Taiwan (24°34´N, 121°52´E) (Fig. 1). Forty-
eight specimens of S. tawilis were purchased from a municipal fish port in Cuenca 
in Batangas Province, Philippines (13°54´26˝N, 121°1́ 59˝E; Fig. 1). Basic measure-
ments (Table 1) and photographs were taken from each fish. Specimens of congeners 
Sardinella lemuru (Bleeker, 1853), Sardinella fimbriata (Valenciennes, 1847), S. gib-
bosa, and S. albella, and confamilial species Amblygaster sirm (Walbaum, 1792) were 
sampled from Philippine provincial fish markets and used as out-groups in the phy-
logenetic analysis. Muscle tissue samples from the right flank of each fish were taken 
and preserved in 95% ethanol. Representative whole specimens from each location 
were vouchered in 95% ethanol and are stored at the National Fisheries Research and 
Development Institute, Quezon City, Philippines.

To assess genetic relationships, DNA was extracted by placing a small amount of 
tissue (approximately 25 mg) in 300 µl of 10% Chelex solution (BioRad) in a 1.7-ml 
micro-tube, vortexing, and heating to 96 °C for 60 min, then centrifuging at 10,000 
rpm for 90 s. DNA was amplified for the following four gene regions:
•	 mtDNA control region (CRA 5'–TTCCACCTCTAACTCCCAAAGCTAG–3', 

CRE 5'–CCTGAAGTAGGAACCAGATG–3', sequence fragment size of 435 
bp), 
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•	 mtDNA Cytochrome oxidase b (Cyt b) (H 5'–GTGACTTGAAAAACCACCGTTG–3', 
L 5'–AAACTGCAGCCCCTCAGAATGATATTTGTCCTCA–3', 407 bp) (Lecomte et 
al. 2004)

•	 rRNA 16S (531 bp) (Palumbi 1996), and 
•	 nDNA S7 (16Sar 5'–CGCCTGTTTATCAAAAACAT–3', 16Sbr 			 

5'–CCGGTCTGAACTCAGATCACGT–3', 719 bp) (Chow and Hazama 1998) 
using a polymerase chain reaction (PCR). 

Amplification of the nDNA S7 gene region was initially problematic, but 
successful amplification was obtained by (1) using a 10-fold concentration 
of template DNA, and (2) applying a nested-PCR method with the primer 
pairs S7RPEX1f (5'–TGGCCTCTTCCTTGGCCGTC–3') and S7PEX2R (5'–
GCCTTCAGGTCAGAGTTCAT–3') (Chow and Hazama 1998) in the first reaction, 
and 1 µl of PCR product with the primers 1F.2 (5'–CTCTTCCTTGGCCGTCGTTG–3') 
and 2R.67 (5'–TACTGGGARATTCCAGACTC–3') (Unmack et al. 2011) in the 
second reaction. All PCR reactions consisted of 13 µl of 10× PCR Buffer, 2.0 µl of 25 
mM MgCl2, 2.5 µl of each 10mM dNTP, 1.25 µl of each primer, 1 µl of BSA (10 µg 
µl−1), 0.2 units of Taq DNA Polymerase, and 1 µl template DNA in a final volume of 25 
µl. PCR parameters were an initial denaturation at 94 °C for 10 min, 38 cycles of 94 °C 
for 30 s, 45 °C (53 °C for S7) for 30 s, 72 °C for 45 s, and a final extension of 72 °C for 10 
min. PCR product was sent to either Macrogen, Inc. (Korea) or the UC Berkeley DNA 
Sequencing Facility (United States) for purification and sequencing. Sequences were 

Table 1. Morphological features and meristic count averages for 10 specimens of each Sardinella 
tawilis Taal Lake, Sardinella hualiensis Philippines (PH), and S. hualiensis Taiwan (TW). Quan-
titative values reported as mean (SE).  Lengths are listed in millimeters and ratios are listed as 
percentages. Qualitative feature “Yes” indicates all 10 specimens possessed feature. 

Morphology/meristics/coloration S. tawilis
S. hualiensis 

PH
S. hualiensis  

TW
Standard length (SL) in mm 80.4 (1.4) 109.7 (1.1) 170.2 (1.8)
Body depth / SL 30.0 (1.0) 31.0 (1.0) 35.0 (0.3)
Pectoral-fin length / SL 18.7 (0.2) 19.1 (0.2) 18.8 (0.8)
Head length (HL) in mm 20.6 (0.4) 28.3 (0.4) 37.8 (0.6)
Snout / HL 24.2 (0.3) 28.6 (0.7) 27.8 (0.4)
Eye diameter / HL 28.7 (0.4) 27.9 (0.4) 26.5  (0.3)
Post orbital length / HL 47.1 (0.5) 44.2 (0.8) 45.8 (0.3)
Number of lower gillrakers 64.8 (2.0) 81.2 (2.9) 70.0 (1.3)
Number of scutes 28.9 (0.3) 30.4 (0.2) 31.2 (0.2)
Number of dorsal-fin rays 16.8 (0.2) 17.8 (0.1) 17.3 (0.1)
Number of pelvic-fin rays 8.0 (0.0) 8.0 (0.0) 7.9 (0.1)
Number of pectoral-fin rays 14.2 (0.2) 14.2 (0.1) 14.5 (0.2)
Number of anal-fin rays 18.8 (0.4) 18.2 (0.1) 18.6 (0.2)
The nth dorsal-fin ray parallel to the ventral fin’s origin 7.6 (0.4) No data 6.8 (0.3)
Enlarged last 2 anal-fin rays Yes Yes Yes
Scales with overlapping striae Yes Yes Yes
Few or Many perforations on scales Few Many Many
Black spot at dorsal-fin origin Yes Yes Yes
Tips of caudal fin black Yes Yes Yes
Dorsal fin blackish Yes Yes Yes
Black spot at posterior margin of operculum Yes Yes Yes
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proofread, assembled and aligned in Sequencher v4.8 (GeneCode, Ann Arbor, MI) 
and MUSCLE v3.8 (Edgar 2004). All sequences were submitted to the public domain 
database GenBank (Accession numbers KC951469–KC951538).

Phylogenetic Analysis.—A phylogeny of S. hualiensis, S. tawilis, and out-
groups were inferred using maximum likelihood analysis for the mtDNA 16S and 
Cyt b and nDNA S7 genes. Divergence was estimated using the Kimura 2-Parameter 
distance model (Kimura 1980) and support for nodes estimated with 1000 bootstrap 
replications in MEGA v5 (Tamura et al. 2011). The Kimura 2-Parameter distance 
model was identified as the best-fit model in MEGA v5. Available 16S Sardinella se-
quences (S. aurita, S. madrensis, and S. zunasi) from GenBank and unpublished S7 S. 
gibbosa sequence (R Thomas unpubl data) were included in the phylogenetic analysis.

Genetic Population Structure.—Relationships between mtDNA control 
region sequences were visualized with a maximum likelihood tree in DNasp v5.1 
(Librado and Rozas 2009). Sequences were pooled by site and calculated for nucleo-
tide diversity (π), haplotype diversity (h), and number of haplotypes in DNasp v5.1 to 
assess population level variation. Divergence among sequences between and within 
sites was estimated using Kimura 2-Parameter distance model and mean sequence 
diversity was calculated in MEGA v5. Population structure was evaluated using Phi-
statistics (ΦST) calculated from pairwise differences in Arlequin v3.5 (Excoffier et al. 
2005) with sampling locations as separate populations. To determine if sardine pop-
ulations had recently expanded, sequences were grouped by (a) location, (b) inferred 
clades in the maximum likelihood tree, and (c) globally, and assessed in a mismatch 
distribution in NETWORK v4.6.1.1 (Fluxus Technology). To estimate evolutionary 
relationships between haplotypes, an un-rooted median-joining parsimony network 
was constructed in NETWORK v4.6.1.1 using the default settings. The Tajima’s D 
and Fu and Li’s (1993) D statistical tests were also calculated in DNasp v5.1.

Timing of Population/lineage Divergence.—Divergence times between spe-
cies have frequently been estimated using a single gene region; however, a recently 
developed method, *BEAST, permits the use of multiple genes from multiple indi-
viduals per species to obtain a co-estimated divergence time between the species or 
non-interbreeding populations (Heled and Drummond 2010). The use of multiple 
loci to infer a species tree reduces uncertainty and increases confidence in the esti-
mated divergence time (Edwards and Beerli 2000). The *BEAST method outperforms 
the supermatrix method that concatenates multiple gene region sequences together 
(Heled and Drummond 2010). Population divergence time of S. tawilis and S. hual-
iensis was estimated using the species tree approach in BEAST v1.6.2 (Drummond 
and Rambaut 2007). Sequence of S7, Cyt b, 16S and control region from six represen-
tative individuals from each sampling site were prepared in BEAUti v1.62, run for 
three replicate runs in *BEAST, combined in LogCombiner v1.6.2, and annotated in 
TreeAnnotator v1.6.2. A burn-in of 10,000 trees was applied when combining runs, 
and the minimum posterior probability limit of 0.8, maximum clade credibility tree 
setting, and mean node height setting were used during annotation. A mutation rate 
of 2%/MY for the Cyt b gene region has been applied in past sardine phylogeny work 
(Grant and Bowen 1998) and was used here. Additionally, rates of 1%/MY, 3%/MY, 
5%/MY, and 10%/MY for Cyt b were applied for a broader assessment of potential 
population divergence time. Mutation rates in the other gene regions were estimated 
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by *BEAST based on the Cyt b rate and sequence data. The default settings were used, 
except for the use of the strict clock model and the following priors: LogNormal for 
kappa, Uniform for frequencies, and the coalescent constant tree size. The species 
tree was visualized in FigTree v1.4 and illustrated with error bars representing 95% 
HPD intervals. 
 

Morphological and Meristic Data.—All fish used in our study were identi-
fied to species as described in Whitehead (1985). For a robust comparison between 
the fish, twenty diagnostic morphological and meristic features were taken from 10 
representatives from each site (Table 1). Features assessed in Primer-5 (Primer-E Ltd, 
Plymouth, UK) in two ways: (1) Bray-Curtis dissimilarity indexes from combined 
morphological and meristic features were assessed in a dendogram to illustrate over-
all similarity; and (2) a principle component analysis (PCA) to assign the source of 
the observed variation. 

Results

Six to sixteen 16S rRNA, Cyt b mtDNA, and S7 nDNA sequences were obtained 
from specimens from each of the three sampling sites (Table 2). A single, domi-
nant haplotype was shared by two-thirds of individuals at all sites (S. hualiensis 
from Taiwan and Philippines and S. tawilis) for 16S and Cyt b sequence data (Fig. 
2), whereas one-third of individuals shared a common S7 haplotype across all sites. 
One to four unique haplotypes (haplotypes restricted to a single sampling site) were 
found at all sites for all markers (Table 2) and were typically separated by three or 
fewer mutational steps from shared haplotypes. Overall haplotype diversity was 0.44 
for 16S, 0.55 for Cyt b, and 0.89 for S7 sequence data. Haplotype diversity varied from 
site to site, whereas nucleotide diversity was moderate to low (Table 2). Intraspecific 
genetic distances for Taiwanese and Philippine S. hualiensis were 0.1%, 0.1%, and 
0.3% for the 16S, Cyt b, and S7 gene regions, respectively, and 0.2%, 0.1%, and 0.4% for 
S. tawilis. Nearly identical, interspecific genetic distances between S. hualiensis and 
S. tawilis were 0.1% for 16S, 0.1% for Cyt b, and 0.3% for S7. Additionally, S. tawilis 
and S. hualiensis had identical interspecific genetic distances when compared to S. 
albella for 16S (9.4%) and Cyt b (18.1%). Genetic distance between S. hualiensis and 
S. tawilis and other out-groups ranged from 9.2% to 21.9%. Similar to COI sequence 
data by Quilang et al. (2011), our study found moderate to no interspecific genetic 
distance between S. albella and S. gibbosa (5.5% for 16S, 0.0% for Cyt b). Maximum 
likelihood phylogenetic analysis inferred a single monophyletic clade consisting of 
S. hualiensis and S. tawilis supported by high bootstrap probability value for Cyt 
b (bootstrap probability of monophyletic clade = 100%), 16S (bootstrap probability 
= 94%), and S7 (bootstrap probability = 62%) sequence data (Fig. 3). Partitioning of 
sub-clades indicating the two S. hualiensis locations and sub-clades inferring the 
two species were unresolved or supported by low bootstrap probability values in the 
16S tree and S7 tree (Fig. 3). This ambiguous result was similar in the Cyt b tree (not 
shown). The 16S sequences from as many Sardinella species as we had available were 
used to identify an expanded taxonomic outgroup to the S. tawilis and S. hualiensis 
clade. The closest sister clade contained the three species S. gibbosa, S. albella, and 
S. fimbriata (Fig. 3). 
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Table 2. Sample size (n), number of unique haplotypes, haplotype diversity (h), nucleotide diversity (π%), 
and the Tajima’s D and Fu and Li’s D* neutrality tests for rRNA16S, mtDNA Cytochrome b, nDNA S7, 
and mtDNA control region for Sardinella hualiensis sample from Taiwan (TW) and the Philippines (PH), 
and Sardinella tawilis. Sardinella tawilis was subdivided into two inferred clusters from the control region 
haplotype network.  Statistically significant neutrality test values (P < 0.05) are in bold. 

Gene/species n
No. of 

haplotypes
No. of unique 

haplotypes h π% Tajima’s D Fu and Li’s D*
16S

S. hualiensis TW 10 2 1 0.20 0.04 −1.401 −1.587
S. hualiensis PH 6 2 1 0.33 0.06 −0.933 −0.950
S. tawilis 16 4 3 0.59 0.16 −0.280 −0.039

Cyt b
S. hualiensis TW 13 4 3 0.64 0.19 −1.863 −2.323
S. hualiensis PH 7 3 2 0.67 0.26 0.206 −0.059
S. tawilis 14 5 4 0.50 0.13 −1.278 −1.037

S7
S. hualiensis TW 6 4 3 0.80 0.19 −1.295 −1.325
S. hualiensis PH 7 5 3 0.91 0.47 −0.197 −0.076
S. tawilis 7 5 3 0.91 0.24 0.239 −0.069

Control region
S. hualiensis TW 21 21 21 1.00 4.33 −0.578 −0.843
S. hualiensis PH 15 14 14 0.99 3.81 −0.321 −0.438
S. tawilis 42 24 24 0.93 3.32 0.609 −0.212
S. tawilis (cluster 1 only) 29 15 12 0.88 1.04 −1.690 −2.86
S. tawilis (cluster 2 only) 13 9 7 0.91 1.23 0.476 0.068

Figure 2. Haplotype frequency diagrams for specimens from three sampling locations, Sardinella 
hualiensis Taiwan (TW), S. hualiensis Philippines (PH), and Sardinella tawilis Taal Lake for (a) 
16S gene region, and (b) control region sequences. Cyt b and S7 results are not shown, but were 
similar to 16S results. Each color represents a distinct haplotype. Shared haplotypes are the same 
color between sites. 
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MtDNA control region sequences were obtained from 15 S. hualiensis individuals 
from the Philippines (PH), 21 S. hualiensis individuals from Taiwan (TW), and 42 S. 
tawilis from Taal Lake. Fifty-nine haplotypes were identified with no shared haplo-
types between sites (Fig. 2), with high haplotype diversity (0.93–1.00) and high nucle-
otide diversity (3.32%–4.33%) at each sampling location (Table 2). The phylogenetic 
reconstruction inferred five clades (two clades each for S. tawilis and S. hualiensis 
TW, one for the S. hualiensis PH individuals) supported by low bootstrap probability 
values (<50%) from one another and indicative of a polytomy (data not shown). The 
five clades were, however, clearly distinct from the S. lemuru outgroup with a genetic 
distance of 36%–38% (SE 5.5%). The median-joining parsimony haplotype network 
showed two S. tawilis clusters, two S. hualiensis TW clusters, and one S. hualiensis 
PH cluster (Fig. 4), groupings similar to the clades described from the maximum 
likelihood analysis (data not shown). Low-frequency haplotypes were common at all 
sites with no clear dominant haplotypes. This may suggest a period of separation 
between the lineages, as the five haplotype clusters were separated by 10 or more 
single nucleotide mutations, and haplotypes within clusters were often separated by 
several mutational steps (Fig. 4). Evidence for recent population expansion, popula-
tion bottlenecks or selective sweeps would be inferred from the presence of star-like 
polytomies in the haplotype network (Grant and Bowen 1998); however, such pat-
terns were not observed. Both Tajima’s D and Fu and Li’s D* neutrality tests were 
negative for nearly all species and genes, suggesting recent population expansion 
(Grant and Bowen 1998; Table 2). However, none of these values were significant, ex-
cept for the S. hualiensis Taiwan Cyt b results. Finally, mismatch distribution results 
for control region sequence data for all three sampling sites were bi- or multi-modal 
(see Online Appendix), patterns reflecting constant population size (Schneider and 
Excoffier 1999). 

MtDNA intraspecific genetic distance from control region data was lower [S. 
tawilis 3.5% (SE 0.5%), S. hualiensis 5.5% (SE 0.7%) than interspecific distance (S. 

Figure 3. Maximum likelihood tree inferring phylogenetic relationship of Sardinella tawilis, 
Sardinella hualiensis, and other Sardinella species using (A) 16S sequence data and (B) S7 se-
quence data. Bootstrap probability (%, 1000 replicates) shown for values >40.
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hualiensis – S. tawilis = 5.9% (SE 0.7%)]. MtDNA control region interspecific dis-
tance between S. hualiensis and S. tawilis and the out-group species was 28.8% or 
greater. The mean sequence diversity within each location was 0.035 for S. tawilis, 
0.045 for S. hualiensis TW, and 0.040 for S. hualiensis PH. In examining population 
structure between the two S. hualiensis sites, significant genetic structure was found 
(ΦST 0.123, P < 0.05) suggesting a barrier to gene flow between the two S. hualiensis 
populations. Structure was also observed when S. tawilis sequences were included in 
the analysis (Global ΦST 0.149, P < 0.05). 

The species tree models all indicate two population divergence times for S. hual-
iensis and S. tawilis. For the Cyt b mutation rate of 2%/MY, population divergence 
occurred first between the ancestral S. hualiensis TW lineage and the Philippine 
populations approximately 59,950 years ago (lower boundary of HPD interval 50,400 
yrs ago), followed by a divergence between S. hualiensis PH and S. tawilis approxi-
mately 41,050 yrs ago (lower boundary of HPD interval – 30,200) (Fig. 5). For the 

Figure 4. Median-joining parsimony network based on 435 bp of mitochondrial control region 
(n = 78) from Sardinella tawilis (white circles), Sardinella hualiensis Taiwan population (black 
circles), and S. hualiensis Philippine population (grey circles) samples. Each circle represents a 
haplotype with size of the circle proportional to frequency of a given haplotype. Branch lengths 
signify one mutational step with one additional step indicated by thin bar, five additional steps 
by thick bar. Black arrow just left of center in the network indicates the approximate location of 
where Sardinella lemuru (outgroup) would join the network based on a rooted median-joining 
parsimony network. 
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rates of 1%/MY, 3%/MY, 5%/MY, and 10%/MY the first population divergence be-
tween the lineages occurred approximately 112,350, 41,350, 26,300, and 11,990 yrs 
ago, respectively; and the second population divergence, that between the marine 
S. hualiensis PH and freshwater S. tawilis, occurred approximately 76,500, 28,300, 
18,000, and 8210 yrs ago, respectively. For the 10% mutation rate, the lower boundar-
ies of HPD intervals for first and second divergence times were 10,080 and 6040 yrs 
ago (Fig. 5). All divergence times, with the exception of the fastest rate of 10%/MY, 
arise within the late Pleistocene period. 

Bray-Curtis Similarity test on morphological and meristic data produced groups 
consistent with sampling location, with S. hualiensis samples from Taiwan and the 
Philippines most similar to one another, and sister to S. tawilis samples (Fig. 6). A 
single S. tawilis outlier grouped with the S. hualiensis PH specimens and is attrib-
uted to this aberrant individual’s very high gillraker count and longer snout/head 
length proportions. The principal component analysis of all specimens revealed 30% 
of variation attributed to snout length proportion of fish and 17% of the variance 
attributed to gillraker counts. These two features are diagnostic features used to dis-
tinguish many Sardinella species (Whitehead 1985), although plasticity in gillraker 
counts has been attributed to natal origin (Kinsey et al. 1994). 

Discussion

Our phylogenetic analyses indicate the closest extant relative for the freshwater S. 
tawilis is the marine S. hualiensis. This is further supported by small genetic distanc-
es and a large proportion of shared haplotypes between the species in the S7, Cyt b, 
and 16S gene regions. Our incomplete phylogeny of Sardinella based on the 16S gene 

Figure 5. Species trees inferred from mtDNA 16S, Cyt b, and control region and nDNA S7 
sequence data representing population divergence times among Sardinella tawilis, Sardinella 
hualiensis PH, and S. hualiensis TW as estimated by *BEAST. Species tree applies a 2%/MY 
mutation rate (divergence time above node) and 10% rate (divergence time below node) for the 
Cyt b gene region; the rate for other gene regions are estimated by *BEAST (species trees for 
other mutation rates not shown). Error bars (grey horizontal bars) represent 95% HPD intervals 
on age estimates. Scale bar is in years before present, ranging from 75,000 yrs ago to present 
day (0) for the 2%/MY rate (top axis), and 15,000 yrs ago to present day for the 10%MY rate 
(bottom axis). 
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and the more complete phylogeny of the genus by Quilang et al. (2011) rule out most 
other potential sister species to S. tawilis and S. hualiensis. The only other Sardinella 
in the region not covered by these two phylogenies are S. brachysoma, S. fijiense, 
and S. richardsoni, which are all morphologically different from the morphologically 
similar S. tawilis and S. hualiensis (Whitehead 1985). This supports the sister species 
relationship of S. tawilis and S. hualiensis and what remains is an interpretation of 
their observed phylogenetic and phylogeographic patterns.

Despite unresolved gene trees (Figs. 3, 4), widely accepted species concepts 
(Hausdorf 2011) would define S. tawilis and S. hualiensis as separate species. For 
example, from the perspective of the evolutionary and biological species concepts, 
the physiological and geographic barriers between S. tawilis and S. hualiensis result 
in complete allopatry and reproductive isolation with no plausible path for natural 
interbreeding or for evolutionary reticulation. Although more similar to one another 
than any other Sardinella species, morphological differences were clearly diagnosable 
between S. tawilis and S. hualiensis (except one aberrant specimen, Fig. 6) therefore 

Figure 6. Tree based on similarity of morphological and meristic features between specimens 
of Sardinella tawilis, and Sardinella hualiensis from Taiwan (TW) and the Philippines (PH) 
obtained from a Bray-Curtis Similarity analysis. Percentage similarity between individuals and 
species is noted on the horizontal axis, individual specimens are listed along the vertical axis. 
One S. tawilis grouped with S. hualiensis PH, an outcome attributed to the individual having a 
very high gillraker count and longer snout/HL proportion which are similar to the S. hualiensis 
PH average. These features account for nearly half of the observed variance between groups in 
the PCA (not shown).
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meeting the criterion of a phylogenetic species (Hausdorf 2011). Furthermore, the 
species have also diverged physiologically, as S. tawilis has evolved the osmoregula-
tory mechanism necessary to adapt to a strictly freshwater environment. Marine to 
freshwater species transitions are relatively rare in fishes because of the stringent 
contrasting physiological requirements in these two habitats (Bloom and Lovejoy 
2012). The loss of demographic connectivity (Mayr 1963, Lowe and Allendorf 2010), 
the relatively high proportion of unique haplotypes in the mitochondrial and nuclear 
genes (Craig et al. 2009) and the statistically significant ΦST values in the mtDNA 
control region data, support recognition of S. tawilis as a distinct freshwater species 
in Taal Lake. For sister species that exist allopatrically in both marine and freshwater 
habitats, however, species distinction can be contentious because of different inter-
pretations of species concepts, and taxonomy is often left unresolved, defaulting to a 
common Latin binomial (Taylor 1999). We follow the current taxonomy (Whitehead 
1985, Munroe et al. 1999) and accept the evidence for recognition of both S. tawilis 
and S. hualiensis as separate species as consistent with our interpretation of a species.

Unraveling the history of evolutionary divergence is difficult in species like sardines 
that go through sequential population expansions and contractions and whose rang-
es may have changed multiple times in the past (Bowen and Grant 1997, Quenouille 
et al. 2011) in response to fluctuations in environmental or ecological conditions 
(Chavez et al. 2003, Takasuka et al. 2007). The polyphyletic Control Region, S7, Cyt 
b, and 16 S gene trees (Fig. 3) could be explained by incomplete lineage sorting, 
or contemporary migration or hybridization between S. tawilis and S. hualiensis. 
Contemporary migration or hybridization seem unlikely due to the species’ widely 
disjunct ranges, oceanographic currents that would prevent southward migration, 
osmoregulatory physiological differences, and no reports of either species occur-
ring outside their described ranges (Fig. 1; Bognot and Mutia, Philippine National 
Fisheries Research and Development Institute, pers comm). Instead, the data indicate 
incomplete lineage sorting and suggest recent divergence between S. tawilis and S. 
hualiensis. A late Pleistocene (McMillian and Palumbi 1997) divergence is consistent 
with the species tree results at 1%/MY, 2%/MY, 3%/MY, and 5%/MY (Fig. 5), diver-
sity indices, and neutrality test results. The very rapid 10%/MY rate suggests a more 
recent divergence, but still prior to the putative 18th century formation of Taal Lake. 
The S7, Cyt b, and 16S genes demonstrate high-to-low haplotype diversities with low 
nucleotide diversities, suggesting the populations had either experienced a bottle-
neck or were historically founded by a few lineages (Grant and Bowen 1998). Further, 
the faster-evolving control region sequences demonstrated high nucleotide and 
haplotype diversities and bi-modal mismatch distributions (see Online Appendix), 
implying large, stable populations (Table 2; Rogers and Harpending 1992). This is 
also consistent with non-significant neutrality tests across the four genes for all but 
one population and one gene (Table 2). Therefore, S. tawilis and S. hualiensis appar-
ently have had enough time to establish stable populations after having undergone a 
population bottleneck and divergence in the late Pleistocene, or just after in the case 
of the 10%/MY rate. In general, the genetic results do not support a divergence of S. 
tawilis as recent as the 18th century when a Taal Volcano eruption reconfigured the 
hydrography of Taal Lake and the Pansipit River to its present day condition (Wolfe 
and Self 1983, Hargrove 1991). 

The mtDNA control region data indicated two discrete S. tawilis haplotype clusters 
separated by approximately 20 mutational steps (Fig. 4). Several potential scenarios 
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may explain this divergence within S. tawilis. First, there may have been two inde-
pendent freshwater invasions into Taal Lake by ancestors of the S. tawilis lineage. 
Although marine-freshwater transitions are rare in fishes, they are not uncommon 
within Clupeiformes (Wilson et al. 2008, DeFaveri et al. 2011, Bloom and Lovejoy 
2012). Two invasions would be supported by separate divergence times for the two S. 
tawilis haplotype clusters; however, this is not consistent with the mean species di-
vergence data (Fig. 5) that indicate a single divergence point for S. tawilis, and a diver-
gence prior to the putative 18th century formation of the freshwater lake. Further, if 
the inferred population divergence did not co-occur with the very recent isolation of 
Taal Lake, then it may have not been caused by a freshwater invasion event. Second, 
Taal Lake may have historically been partitioned into separate lakes with allopatric 
populations of S. tawilis that diverged and subsequently coalesced into one. The ba-
thymetry of Taal Lake shows a north and south basin partitioned at Volcano Island 
east to west by a ridge only 30 m or shallower from the water surface (Ramos 2002). 
Volcanic activity or fluctuations in lake water levels may have fully separated these 
basins, and then more recently united the basins and fish populations. This scenario 
also predicts different divergence times of the two haplotypes, but this is unfound-
ed. Lastly, different haplotype clusters may have existed in the marine environment 
prior to establishment within Taal Lake, lineages that may have subsequently given 
rise to the present day Taal Lake S. tawilis. This third scenario is most supported by 
the species tree results that are indicative of a single event that caused the isolation of 
S. tawilis and the Philippine population of S. hualiensis (Fig. 5). This argues that the 
two different lineages existed in the marine environment before S. tawilis became 
isolated in Taal Lake. Neutrality tests suggest a stable population size for cluster 2, 
but significant negative Tajima’s D and Fu and Li’s D* values indicate deviation from 
neutrality in cluster 1, a result suggesting either recent population expansion or pu-
rifying selection (Table 2). 

Sardinella tawilis is both a valuable natural resource and a unique evolutionary 
lineage that requires conservation effort because of overfishing, introduction of non-
native species, and potential impacts from aquaculture (Mutia et al 2001, Cagauan 
2007, Aquilino et al. 2011, Papa and Mamaril 2011). In addition to cultural and eco-
nomic value, the study of its physiological adaptation to a freshwater environment 
may provide insights into evolutionary processes, particularly in view of recent ad-
vances in genomics (Czesny et al. 2012, Jones et al. 2012). The evolution of S. tawilis 
and identification of its subtropical sister species populations will provide ample op-
portunity for evolutionary investigation if efforts to conserve this precarious species 
are successful.
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