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ABSTRACT Today, populations of eastern oysters, Crassostrea virginica, are commonly limited by disease mortality. Resistance

toMSX disease has developed in a number of cases, but the development of resistance toDermo disease would appear to be limited,

despite the high mortality rates and frequency of epizootics. Can aspects of the host’s genetics or population dynamics limit the

response to the disease despite the apparent opportunity afforded by alleles conferring disease resistance or tolerance? To answer this

question, we use a gene-based population dynamics model, configured for C. virginica, to simulate the development of disease

resistance usingmortality as the agent of selection. Simulated populations were exposed to 4 levels ofmortality covering the range in

mortality observed in Delaware Bay in the 1990s. In each case, disease resistance increased in the simulated population over time,

normally proportional to the increase in mortality rate imposed by the disease. However, simulations show that the population

responds even at its most rapid rate onmultidecadal to half-century timescales. As the mortality rate declines with increasing disease

resistance, the rate of further improvement in disease resistance likewise declines. Thus, disease resistance develops over decadal

timescales at a 40%-per-year mortality rate, but, as mortality rate falls to 25% per year, the rate of further development of disease

resistance extends to half-century timescales. The discouraging profundity is that a mortality rate of 25% per year, yielding a rate of

selection profoundly slow, is still very high. In northern climes, significant decrements in oyster abundance will occur. Evidence from

fisheries retrospectives suggests that oysters cannot withstand a constant removal at this scale without compromising population

integrity noticeably. So, a mortality rate that grievously limits the development of disease resistance still sorely strains the species�
ability to maintain a vibrant population necessary to its long-term survival.

KEY WORDS: oyster, resistance, Dermo, model

INTRODUCTION

Populations of eastern oysters, Crassostrea virginica, are
commonly limited by disease mortality (Mann et al. 2009b,
Powell et al. 2009a, Powell et al. 2009b). Two diseases are most

significant, MSX and Dermo caused, respectively, by the pro-
tistans Haplosporidium nelsoni and Perkinsus marinus (e.g.,
Andrews 1979, Ford & Haskin 1982, Andrews 1988, Ford &
Tripp 1996). Of the two, Dermo is by far the most geographically

widespread and, thus, a dominant factor in the population
dynamics of the oyster over much of its latitudinal range (e.g.,
Wilson et al. 1990, Ray 1996, Cook et al. 1998, Ford&Smolowitz

2007, Gullian-Klanian et al. 2008, Pecher et al. 2008, but see
Ulrich et al. 2007). Dermo is routinely epizootic throughout
much of the Gulf of Mexico (e.g., Powell et al. 1992, Kim &

Powell 1998, Soniat et al. 2009), the southeastern coast of the
United States (e.g., Burrell et al. 1984, White et al. 1998, Kim &
Powell 2006), and north ofCapeHatteras at least toDelawareBay
(Jordan 1995, Ragone Calvo et al. 2001, Powell et al. 2008), with

sporadic outbreaks farther north (Brousseau 1996, Brousseau
et al. 1998, Ford & Smolowitz 2007). Perkinsus marinus was first
observed in the Gulf of Mexico during the late 1940s (Mackin

1953, Ray 1954, Mackin & Hopkins 1962) and soon thereafter in
Chesapeake Bay (Andrews 1954, Andrews 1996). The parasite is
limited by winter temperatures, thus its northern range limit

remained the Chesapeake Bay for some decades thereafter.
However, warming of the Mid-Atlantic Bight has permitted

P. marinus to expand its range rapidly northward during the
past two decades (Ford 1996, Cook et al. 1998).

Whether P. marinus has always been present in the Gulf of

Mexico and southern United States is an open question (Ray
1996). What is clear is that the parasite has been an important
contributor to the mortality rate1 of adult oysters in this region

since its first observation (e.g., Mackin et al. 1950,Mackin 1959,
Soniat & Brody 1988, Soniat et al. 1989, Soniat et al. 2006).
Farther north, in Delaware Bay, the mortality rate is lessened;

however, even here, Dermo disease at least doubles the natural
mortality rate of the adult animals in epizootic years (Powell
et al. 2008, Powell et al. 2009a). Mortality rates of this order

should result in rapid development of disease resistance in the
naı̈ve population (e.g., Duffy & Sivars-Becker 2007, Zbinden
et al. 2008, Duffy et al. 2009). A similar challenge byMSXduring
the late 1950s through early 1960s resulted in documented

increases in disease resistance over a few generations (Haskin &
Ford 1979, Ford & Haskin 1982, Ford 1988, Burreson 1991).
Nevertheless, for Dermo, the increase in disease resistance, if

anything, has been extremely limited (Encomio et al. 2005, but
see Brown et al. 2005a, Brown et al. 2005b), if the continuing
high infection intensities andmortalities throughout much of its

range can be inferred as an affirmation (e.g., Soniat & Gauthier
1989, Crosby & Roberts 1990, Hofmann et al. 1995, Volety et al.
2000, and others heretofore referenced). Directed breeding pro-

grams anecdotally have produced marginally better results,
although published affirmations are few, but even here the
differential betweenMSXandDermowould seem tobe dramatic,
as intensive breeding programs have successfully developed oyster

strains that are substantiallyMSX resistant (Haskin&Ford 1979,
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Ford & Haskin 1987, Allen et al. 1993). The conundrum we
address in this contribution is the incongruity between the impact

of the parasite Perkinsus marinus on the population dynamics of
the hostC. virginica relative to the trifling response of the host to
this challenge.

Some resolutions to this enigma may be postulated. First, the

oyster’s immune system is limited in its response or easily
compromised by the environment (e.g., Ford & Tripp 1996,
Hégaret et al. 2004). Although the development of disease resis-

tance has been documented for a number of pathogens (Ford &
Tripp 1996, Barber et al. 1998, Oliver et al. 2003, Gómez León
et al. 2008), in the case ofP.marinus, although immune responses

have been documented (e.g., Anderson et al. 1992, Chu &
LaPeyre 1993, Volety & Fisher 2000; Gauthier & Vasta 2002,
Earnhart et al. 2005), these simply may be inadequate (e.g., Chu
et al. 1993, Anderson & Beaven 2001, Earnhart & Kaattari 2003,

Villalba et al. 2004). P. marinus can reside intracellularly in
hemocytes (Mackin 1951, Mackin 1962, Goedken et al. 2005) as
well as extracellularly and throughout the tissues (Bushek et al.

1994, Anderson 1996, Gauthier & Vasta 2002, Nickens et al.
2002), and the cell coat may contain antigens unrecognized by
the oyster’s immune system (see Choi et al. 1991, Dungan &

Roberson 1993, Montes et al. 2005). Second, development of
resistance or tolerance toDermodiseasemay be countered rapidly
by changing virulence. Competition between the development

of host resistance or tolerance and the progression of parasite
virulence is a well-documented component of host–parasite evo-
lutionary models (e.g., Lenski & May 1994, Frank 1996, Boots
et al. 2004, Schneider & Ayres 2008, Duffy & Forde 2009). Dif-

ferent strains of P. marinus have been observed (Bushek & Allen
1996, Gaffney & Bushek 1996, Reece et al. 2001, Panko et al.
2008), and they may be associated with a range of virulence

(Brown et al. 2005a, Brown et al. 2005b, Earnhart et al. 2004),
although confirmatory data remain limited. Nevertheless, some
evidence suggests that P. marinus can circumvent part of the

oyster’s immune capacity (e.g., Winstead & Couch 1988,
Anderson et al. 1992, Cheng & Manzi 1996, Goedken et al.
2005), and virulence is known to be lost rapidly during in vitro
culture (Ford et al. 2002). Third, P. marinus is a disease that

dominantly kills mature animals, typically after at least one
spawning cycle. Impact on oyster reproduction does not occur
until infections are near lethal levels (Choi et al. 1989, Paynter

1996, Dittman et al. 2001). Normally, spawning occurs prior to
disease intensification (Ford & Tripp 1996). The timing of
reproduction and the tendency for a number of reproductive

events to occur prior to death should limit the effectiveness of
selection for disease resistance or increased tolerance in the
population. Fourth, other aspects of the population dynamics

may limit the host response as well, including rapid growth in the
southern portion of the range (e.g., Butler 1952, Ingle & Dawson
1952, Hayes & Menzel 1981), the density dependency of P.
marinus doubling times at higher infection levels (Saunders

et al. 1993), and the apparently limited physiological impact on
the oyster except at the highest infection intensities (e.g., Paynter
& Burreson 1991, Paynter 1996, Dittman et al. 2001).

The potential for the development of disease resistance would
appear to exist, however. Oyster strains are observed to vary in
their response toDermo disease (Ray&Chandler 1955, Andrews

& Hewatt 1957, Bushek & Allen 1996, Gaffney & Bushek 1996,
Brown et al. 2005a, Brown et al. 2005b), suggesting a potential
for disease resistance, although associations with environmental

variables that might degrade the immune response (Craig et al.
1989, Chu & Hale 1994, Lenihan et al. 1999, Bushek et al. 2007,

Gray et al. 2009), also well documented, limit the inference based
on currently available data. Ofmore significance, perhaps, alleles
associated with resistance or tolerance are known, so that an
inherent capability would seem present. In what follows, we

conflate the concepts of resistance and tolerance, although they
are distinctive (Schneider & Ayres 2008, Hasu et al. 2009), be-
cause information currently available does not distinguish a re-

duction in mortality resulting from limitation in the proliferation
of the disease from a reduction in mortality resulting from a
lessoning of the systemic impact of that proliferation. We also

discount the concept of immunity (e.g., Hoshen et al. 2000,
Harding et al. 2005, Duffy & Sivars-Becker 2007, Duffy et al.
2009) and the importance of susceptibility limiting transmission.
No evidence exists that oysters can divest themselves completely

of the pathogen once infected, and essentially all oysters in areas
down-estuary of the lowest salinity reaches, at latitudes where
winter temperatures are not limiting, are infectedwithin their first

1–2 y of life. Although slowing the rate of infection may offer an
explanation for the low infection intensities in other oyster species
(Meyers et al. 1991, Chu et al. 1996), for C. virginica, it is more

likely that a decrease in the rate of parasite proliferation or the
ability to tolerate a given infection level better will be responsible
for any improvement in survival.

It is the incongruity of the potential for the development of
disease resistance contrasted to the ostensible minimality of the
result that we seek to investigate in this contribution. Can aspects
of the host population dynamics limit the response to the disease

despite the apparent opportunity afforded by alleles conferring
disease resistance? To examine this question, we configure a gene-
based population dynamics model for the genetic structure of C.

virginica, imbuing the simulated animals with the known com-
plement of loci with alleles conferring disease resistance and the
relative selective advantage thought to be conferred through

dominance. Then we ask a series of questions concerning the
interaction of genotype, pathogen virulence, host population
abundance, and host population dynamics to evaluate potential
impediments to the development of disease resistance that might

be present.

METHODS

The Model DyPoGEn: Model Structure and Flow

The Dynamic Population Genetics Engine (DyPoGen) is a
numerical model configured for this implementation to simulate
the genetic structure and population dynamics of C. virginica.

Themodel simulates a population composed ofmultiple cohorts,
each composed of multiple individuals. However, the age, sex,
and genotype of each individual is stored independently. The
genetic structure of each oyster is defined by 10 pairs of chro-

mosomes (Wang et al. 1999,Wang et al. 2005), each with 4 genes,
each with 2 alleles. Thus, each animal is specified by 40 genes and
80 alleles, and the genotypes permitted are AA, AB, and BB.

To initiate a simulation, an initial population numbering
NewAnimals

2 is created with a biased random genetic struc-
ture. Alleles on loci not involved in disease resistance are

assigned to the A or B genotype randomly. Alleles identified
as conferring Dermo disease resistance were assigned to a 1:9
A:B probability. Thus, initial allelic frequency for alleles
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conferring disease resistance, all given the A genotype, approx-
imates 10%. This initially low allelic frequency invokes the

assumption that alleles conferring disease resistance are rare in
naı̈ve populations because such alleles are likely to be deleterious
if the disease is not present (e.g., Cotter et al. 2004, Zbinden
et al. 2008, Hasu et al. 2009, Duffy & Forde 2009). The allelic

frequency at initialization, however, is relatively high in compar-
ison with some other models simulating the onset of disease in
naive populations (e.g., Wilhoit 1991, MacKenzie & Bishop

1999, Galvani & Slatkin 2004, Abell et al. 2005).
Each simulated mating season creates a cohort of individ-

uals. For simplicity, most simulations were run under the

assumption that animals born in one year do not spawn in the
same year, a reproductive pattern typical of all but the most
southern climes (Stauber 1950, Hayes &Menzel 1981, Kennedy
&Krantz 1982, Barber et al. 1991). Each year, after increment-

ing the age of all individuals by 1, the population suffers age-
dependent mortality, and the functional sex changes for some.
Then potential parents are chosen and reproduction occurs.

Recombination is implemented during the formation of each new
offspring by the random choice of a location for each chromo-
some pair for each parent, and the genetic information is crossed

over at this point. Gametes are formed through the process of
meiosis, and each set of haploid chromosomes is obtained by
randomly choosing one strand from each pair of chromosomes.

Last, one gamete is chosen at random from each parent for each
offspring. The fate of each offspring is controlled by random
larvalmortality at a rate set to permit establishment of a relatively
stable population.

Many of the processes in the model depend on a random
draw. Unless otherwise indicated, a number is drawn from a uni-
form distribution with a range from 0–1. These uniform deviates

(R) are obtained from the pseudo-random generator function
ran3 described by Press et al. (1986).Whenever a normal deviate
(N) is required, the gasdev routine of Press et al. (1986) is used

to obtain a random deviate from a 0 mean, unit variance normal
distribution. Repeat simulations using different sequences of
random numbers returned results with only modest variations
in scale and trend in initial trials. Consequently, results are

provided only for single simulations for each set of parameter
values.

The model can be described as the marriage of three compo-

nents: a postsettlement population dynamics submodel that
contains parameterizations for growth, mortality, and repro-
duction; a larval submodel that contains parameterizations

for larval mortality; and a gene submodel that describes each
animal in terms of its genetic structure and that tracks genotype
through time from one cohort to the next. Alleles can be lost

through drift and, for some, through selection. A genotype–
phenotype interface interprets genotype in terms of fitness that
then influences the larval and postsettlement submodels. This
permits the feedback between genotype and phenotype that

drives selection.

Postsettlement Population Dynamics

Sex Determination

Oysters are protandric (Kennedy 1983, Morton 1990, Guo

et al. 1998). Gender is specified by a recessive protandric allele (P)
and a dominant male allele (M) (Guo et al. 1998). The homozy-
gous male animal (MM) is not allowed. The heterozygote male

(PM) acts only as a male. The protandric individual (PP) is male
at an early age and converts to female at some later age.

TheM allele is inherently unstable over a range of population
dynamics (Powell et al. 2011a). Short generation times, equivalent
to high mortality rates or small population sizes, promote loss of
theM allele. Alternative hypotheses for the genetic determination

of sex provide protandry under conditions in which permanent
males must persist, a characteristic possibly evolutionarily pre-
ferred (Powell et al. 2011a). These hypotheses necessarily also

include permanent females, the presence of which has not been
demonstrated, however. Regardless, the outcome of simulations
in this study depend little on the specifics of sex determination, as

simulated populations composed solely of protandric individ-
uals return results illustrative of those with the more complex
mixture of protandric animals and permanent males.

Each generation, a protandric male is given the chance to

convert to a functional female. A conversion probability was
obtained from empirical data from Delaware Bay (Powell,
unpubl. data) using age–length relationships recorded by

Kraeuter et al. (2007). This relationship between the fraction
female, Ff, and age can be modeled as a Gompertz curve:

Ff ¼ a eb e
ðg �AgeÞ

(1)

where Age is the age of the animal in years. Eq 1 can be used to
estimate a probability for any animal changing from male to

female based on its derivative:

Df ¼ d Ff

d Age
¼ abg eððg �AgeÞ+ðb e

ðg �AgeÞÞÞ (2)

The probability is then calculated as

P ¼ min 1;
Df

1� Ff

� �
(3)

For the simulations used here, the parameter values for the
high-mortality beds in Delaware Bay (for descriptions of bed

region, see Fig. 1 in Powell et al. 2008) have been used: a ¼ 0.79,
b ¼ –3.9, and g ¼ –0.653. Because of the age dependency of the
probability of sex change, all long-lived protandric individuals
eventually become functional females. All oysters that are

protandric begin life as male. Hence, all recruits are male. How-
ever, some recruits convert to female prior to first spawning, as
appears to be the case in the field (Powell, unpubl. data).

Reproduction

The fraction of the population parenting each generation is
derived from a predefined fraction of parents reproducing each
mating season (FracParents), based on estimates of

effective population number for oysters (Hedgecock et al. 1992,
Hedgecock 1994):

FrParents ¼ FracParents10ðN �FracParentsVarÞ (4)

FracParentsVar permits variability to exist in the fraction of
parents reproducing. FrParents is used to determine the number
of parental pairs as

nParents ¼ maxð0:5 �FrParents � LastAnimal; minParentÞ
(5)

where LastAnimal is the count of adult animals in the popula-

tion. A minimal number of parents, minParents, is allowed
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to reproduce, thus guaranteeing some, albeit low, level of
reproduction when abundance becomes low.

Potential parents are drawn randomly, without replacement,
from a list of all animals. Drawing stops when enough males and
females accrue to provide nParents, or until the list of animals
is exhausted. Each pair of parents, taken randomly, without re-

placement, from the parents list, produces a number of offspring,
MaxOffspring, decreed at the beginning of the simulation.
However, oyster fecundity varies with size (Choi et al. 1993,

Hofmann et al. 1994, Kobayashi et al. 1997). Consequently, the
number of offspring is affected by parental age through
a weight-based von Bertalanffy process (Fabens 1965, Vakily

1992, Mancera & Mendo 1996, Jensen 1997) relating size and
fecundity to age:

W ¼ W‘ ð1� e�ktÞb (6)

where k and LN are the von Bertalanffy parameters, andWN is
obtained fromLN by the allometric equationW¼ aLb, with a¼
0.0003 and b ¼ 2. We note that for oysters, weight scales more
nearly to the square of the length rather than the more typical
cube (Yoo&Yoo 1973, Powell & Stanton 1985, Powell, unpubl.

data).
In the simulations presented here, three von Bertalanffy

curves have been used (Fig. 1), covering a range of growth rates
typical of oysters in temperate latitudes. The von Bertalanffy

parameters are as follows: for fast growth, parameters were fit
from data obtained from oysters in Snail Bay and Hackberry
Bay, LA (Addison 2006) (k ¼ 1.2, LN ¼ 100); for intermediate

growth, parameters were obtained forC. virginica in Chesapeake
Bay (Mann, pers. comm.) (k ¼ 0.4, LN ¼ 100 mm). For slower
growth, parameters for the high-mortality beds of Delaware Bay

were obtained from Kraeuter et al. (2007) (k ¼ 0.23, LN ¼ 140).

We recognize that the values of LN are likely biased low relative
to the prehistoric populations little affected by fishing or disease.

These 3 cases are representative of literature values that cover
a relatively wide range of growth dynamics (e.g., Rothschild et al.
1994, Arizpa 1996, Mancera & Mendo, 1996, Mann & Evans
2004). Slower growth rates are known from these latitudes (e.g.,

the low-mortality region ofDelaware Bay (Kraeuter et al. 2007));
however, these populations typically live under conditions not
conducive to Dermo disease proliferation and so are not

considered further in this study.
Eq 6 is applied to fecundity by assuming that oyster spawn is

a standard fraction of biomass (Hofmann et al. 1992, Hofmann

et al. 1994, Powell et al. 2011b). Hence, the fecundity equivalent
of WN, MaxOffspring, is scaled to animal size by a von
Bertalanffy correction factor, AgeFactor, defined as

AgeFactor ¼ 1� e�kðage�age
0
Þ

� �b

(7)

The age factor for reproduction is the same for males and
females of the same age. The number of eggs produced is

nOff ¼ 1 + 2 2N hð Þ � AgeFactorF � MaxOffspring
� �

(8)

and the number of sperm produced is

nOffM ¼ 1 + 2 2N hð Þ � AgeFactorM
�

� MaxOffspring � 211
� �Þ (9)

where h takes the value 0 or 1 so that variability can be imposed
when desired, and the factor 211 represents the greater number

of sperm made from a given amount of gonadal mass (compare
Dong (2005) and Gallager and Mann (1986)). The value of 2

Figure 1. The 3 von Bertalanffy curves used. The rapid-growth curve is from Addison (2006) for oysters from Hackberry Bay and Snail Bay, LA. The

intermediate-growth and slow-growth curves come from Chesapeake Bay and Delaware Bay populations, respectively.
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multiplyingN approximates the factor of 2 difference in spawning
potential observed in the genusCrassostrea between, for example,

C. virginica and Crassostrea gigas (Héral & Deslous-Paoli 1983,
Choi et al. 1993, Choi et al. 1994, Kang et al. 2003, Ngo et al.
2006). The partner producing the fewest gametes determines the
total number of fertilized eggs per mating pair. This is usually the

female. Fertilization is assumed never to be sperm-concentration
limited.

Adult Mortality

Adult mortality is specified as age dependent. Although
juvenile mortality is high in bivalves, this portion of mortality
is subsumed into larval mortality, as the purpose of the

simulations was to examine the influence of mortality factors
acting on sexually mature animals. Age-dependent mortality
is an inherent attribute of oyster populations impacted by
Dermo disease (Hofmann et al. 1995, Powell et al. 1996) and is

characteristic of some other bivalves such as hard clams,
Mercenaria mercenaria (Hofmann et al. 2006, Kraeuter et al.
2008). Whether mortality in oyster populations existing prior

to the onset of disease or human exploitation was age de-
pendent is unknown. However, the mismatch in life expec-
tancy based on observed adult mortality rates prior to disease

onset of 10–13% per year (Powell et al. 2008, Powell et al.
2009a) inferred from an assumption of constant mortality
(e.g., Hoenig 1983) and the few pertinent direct estimates of

adult age frequency (e.g., Harding et al. 2008) supports such
a formulation, as the former would predict the observation of
older animals than is observed.

The probability of dying is derived from the age of the

animal according to the formulas

AM ¼ AvgAgeMort� ðð1� FitFacÞ � dAvgAgeMortÞ
(10)

ASM ¼ AvgSpreadMort� ðð1� FitFacÞ
� dAvgSpreadMortÞ (11)

P ¼ 0:5 1 + tanh
Age� AM

ASM

� �� 	
(12)

where P is the probability of death, AvgAgeMort is the average

age of mortality (P is 0.5 at this age), and AvgSpreadMort

controls how rapidly the mortality approaches 1. FitFac, a
fitness factor to be described later, permitsmortality to increase by

reducing the average age of mortality by the factors dAvgAge-
Mort and dAvgSpreadMort.

Larval Mortality

Larval survival is controlled by an estimated population
reproductive capacity that depends on MaxOffspring, nParents

(the number of parent pairs), and LastAnimal. The estimated re-
productive capacity, standardized to the number of individuals is

ReprPerAdult ¼ MaxOffspring � nParents
4 � LastAnimal (13)

where the factor of 4 includes the average of the uniform
random deviates (0.5) and the fact that the number of offspring

per parent is one-half the number of offspring per female.

The probability of a larva surviving is

LarvalSurv ¼ 0:5 + 1:5Rð Þ CarryCapacity

4 � ReprPerAdult � LastAnimal (14)

where CarryCapacity regulates the number of animals in the
population. This relationship incorporates a logistic process
in which average recruitment per adult declines as population
abundance increases with respect to the environmental carrying

capacity. A compensatory relationship between broodstock and
recruitment has been identified in a number of molluscan stocks
(e.g., Hancock 1973, Peterson & Summerson 1992, McGarvey

et al. 1993, Kraeuter et al. 2005), including oysters (Powell et al.
2009b) and the ability of oysters to filterwatermore rapidly than its
resupply generating food limitation downstream (Wilson-Ormond

et al. 1997) provides a theoretical basis for this expectation.
The probability of death for each larva is calculated as

P ¼ 1� LarvalSurv (15)

For a random draw, if R < P, then the larva dies. If the larva
recruits to the population, it is given an identifying number, a birth

date, and an age of 0.All protandric individuals become functional
males at age 1 and pass into the postsettlement population as
potentially reproductively active animals.

Genetic Structure and Fitness

Definition of Fitness

Ultimately, fitness of any potential parent is established by the
number of progeny that live to reproduce. Because the fraction of
the population successfully spawning is small, many recruits fail

to spawn successfully before they die. Discounting the probabi-
listic aspects of the model, the factors that control the number of
progeny that reproduce include the growth rate that controls
lifetime spawning potential by influencing size at age and the

mortality rate that is age dependent. The first is imputed to the
model bymeans of a von Bertalanffy process. The second, in this
study, is influenced by selection. For simplicity, we use adjectival

modifiers to the term ‘‘fitness’’ to refer to 3 subsets of this overall
process. The term ‘‘adult fitness’’ will be applied to the genetic
complement of any adult that influences the probability of death

at age.3 The term ‘‘population fitness’’ will refer to the arithmetic
average of the adult fitness values for the individuals in the pop-
ulation. The term ‘‘allele fitness’’ will be applied to the contribu-
tion of any individual locus to adult fitness.

Guo (unpubl. data) identified 14 loci with alleles that may
confer some degree of resistance tomortality fromDermodisease.
These loci were identified as having significant shifts in genotype

frequency within families after disease caused mortality. The
exact mechanisms are unknown. Certain of these alleles may
confer a greater increment in survival than others; however, the

data currently available are insufficient to provide more than
a crude and relatively uncertain ranking. For the purposes of this
study, the importance of this information is to establish (1) that

a rather large number of alleles may be involved in the selection
process and (2) that these loci are distributed among the majority
of the chromosomes (Table 1). Most models of genetically based
disease resistance rely on 1-locus (e.g., Wilhoit 1991, MacKenzie

& Bishop 1999, Abell et al. 2005) or 2-loci (e.g., Galvani &
Slatkin 2004) configurations. For Dermo disease, a multilocus
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model is clearly required. For these simulations, DyPoGEn is
configured with 14 loci undergoing selection with one allele,
A, conferring increased disease resistance; 1 locus handling the
animal’s sex; and 25 loci with neutral alleles.

Implementation of Allele Fitness and Adult Fitness

The value for allele fitness for each genotype potentially

present at a locus, AA, AB, or BB, is provided by the first,
second, or third value, respectively, of PhysioFuncWeight

(Table 1). Each locus on a chromosome pair is assigned a set of

allele fitnesses through the array PhysioFuncClass. Thus,
one locus may be characterized by dominance and another by
underdominance, for example. For these simulations, the 14 loci

have been assigned allele fitnesses as described in Table 1, based
on the designation ofA for the allele conferring disease resistance
and the designation ofB for the remaining alleles. Note that each
is given a weight relative to 1.0, which is assigned to the AA

homozygote, in keeping with the earlier caveat that only the
relative ranking of effect on disease resistance among genotypes
can now be assigned with any degree of confidence. Note that

most of these loci are characterized by some degree of domi-
nance; however, 2 are characterized by underdominance (loci 8
and 11) and several are characterized by a limited differential

between the BB and the AB genotypes (e.g., loci 13 and 14). The
array FitnessClass then determines which of the genes
influences adult fitness. Positions of each such gene on each
chromosome are reported in Table 1.

Thus, adult fitness is determined for each individual as
follows. Each allele pair at a locus is identified as AA, AB, or

BB. The entry for that locus in FitnessClass identifies
whether it is among those potentially conferring disease re-
sistance, and the entry in PhysioFuncClass identifies which
set of allele fitnesses to use; the PhysioFuncWeight for the

allele pair gives the value contributing to adult fitness by that
locus. The adult fitness for the animal is determined as the average
of the 14 values from each of the 14 loci conferring disease

resistance. Most oyster loci have more than 2 alleles (Launey &
Hedgecock 2001, Wang & Guo 2007). For these simulations, we
assume that only one of these alleles is associated with disease

resistance, so that a 2-allele configuration can be used, with the
second allele representing the host of alleles having no influence
on disease resistance. We assume no epistasis, having limited
information to the contrary (e.g., Sokolova et al. 2006), although

epistasis is a commonoccurrence inCrassostrea (Hedgecock et al.
1995, Hedgecock et al. 1996). In some cases, the simple average
of the maximum or minimum values of allele fitness for the

designated loci may define a range more narrow than 0 to 1,
inclusive. FromTable 1, an animalwith allBB genotypes at the 14
loci would have an adult fitness value well above 0, for example.

This is an inherent outcome of the relative rankings provided by
genetic analyses (Guo, unpubl. data). To retain the important
distinction between the most and least fit animals within this

specified 0-to-1 range for adult fitness, the minimal and maximal
fitness values obtained from sums of the individual fitness values
for each of the designated alleles are standardized to values of 0
and 1, respectively, and any value between 0 and 1 is standardized

within the 0-to-1 continuum by interpolation. The final adult fit-
ness for each animal, then, has a value between 0 and 1, inclusive.
We recognize that an animal with AB genotype at the 2 loci

showing underdominance and otherwiseBBwould have an adult
fitness value less than 0.0; such rare animals are redefined with an
adult fitness of 0.0 for convenience.

Genotype–Phenotype Interface

Selection is controlled by a variation in the probability of
death at age based on an individual’s value of adult fitness,

FitFac, as specified in Eqs 10–12. Each simulation is referenced
against a base case configured for a mortality rate thought to be
characteristic of oyster populations before the onset of significant

mortality byDermo disease. This value is of the order of 10–15%
of the adult population per year (Powell et al. 2008, Powell et al.
2009a). Base cases were run for 200 generations to permit drift to

modify allelic frequencies from the initial random, for neutral
loci, or biased random, for loci with alleles conferring disease
resistance, state. The population after 200 generations is defined

as the naı̈ve population. Dermo disease is introduced in gener-
ation 201 by increasing the value of dAvgAgeMort and dAvg-

SpreadMort in Eqs 10 and 11 from 0 to some value between
0 and the value of AvgAgeMort and AvgSpreadMort. This

increases the rate of adult mortality to the degree permitted by
the fitness value of the individual as determined by FitFac. An
example is shown in Figure 2, in which a naı̈ve population with

a yearly mortality of about 13% of the stock without the disease
(labeled F¼ 1 in Fig. 2) is exposed to a yearly mortality of about
24% of the stock at FitFac¼ 0 (labeled F ¼ 0 in Fig. 2). After

developing complete resistance to the disease at FitFac¼ 1, the
stock attains the natural mortality rate of the unexposed naı̈ve
population (labeled F ¼ 1 in Fig. 2).

TABLE 1.

The allele fitnesses (PhysioFuncWeight) for each of the
14 loci associated with resistance to Dermo disease.

Locus Chromosome

Assigned

Position on

Chromosome

Relative Fitness

AA AB BB

1 1 1 1.0 0.424 0.152

2 2 1 1.0 0.726 0.506

3 3 1 1.0 0.556 0.162

4 4 1 1.0 0.554 0.390

5 4 3 1.0 0.561 0.325

6 7 1 1.0 0.584 0.289

7 7 2 1.0 0.596 0.289

8 7 4 1.0 0.390 0.628

9 8 1 1.0 0.579 0.335

10 8 3 1.0 0.566 0.089

11 9 1 1.0 0.141 0.339

12 9 3 1.0 0.385 0.179

13 9 2 1.0 0.531 0.439

14 10 1 1.0 0.528 0.504

In each case, the AA genotype is given a value of 1.0 and the remaining

genotypes are valued relative to that ranking (Guo, unpubl. data).

Chromosomes are numbered according to Wang et al. (2005). Locus

number is simply an ordinal assignment. Position on the chromosome

was assigned for convenience to site 1 for a single locus contributing to

disease resistance; positions 1 and 3 for dual loci; and positions 1, 2, and 3

or 1, 2, and 4 for a triplex of loci. Adult fitness is defined between 0 and 1,

inclusive, by standardizing themaximal adult fitness, all participating loci

homozygous AA, to 1.0, and the minimal adult fitness, all participating

loci homozygous BB, ignoring underdominance, to 0.0. Thus, some rare

and unlucky individuals might have an adult fitness less than 0.0.
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Simulation Constraints

Preliminary simulations indicated that simulations of 200
generations in lengthwere adequate to reveal how adult mortality
influenced the final distribution of genotypes in the population. In

some cases, a stable ending genotype frequency was obtained; in
other cases, the trajectory for future selection was well estab-
lished. Simulations of more than 200 generations in length were

deemed unnecessary as a consequence. Carrying capacity was set
so that population abundance remained high enough that genetic
drift never resulted in the loss of neutral alleles during the 200-

generation base-case simulations. Parameterizations varying by
simulation are summarized in Table 2.

RESULTS

Influence of Mortality Level at the Onset of Disease

Except where noted, simulations were configured to approx-

imate the population dynamics of oysters in the Chesapeake and
Delaware bays. A case for Delaware Bay shows a stable pop-
ulation of about 400,000 individuals with a mortality rate for
populations unencumbered by disease of about 13%, consistent

with observations reported by Powell et al. (2008, 2009a) (Fig. 3).
No alleles are lost over 200 generations. Some alleles conferring
disease resistance increase in frequency; others decrease (Fig. 4).

The female-to-male ratio is about 0.75, with a ratio nearing 1.5
for the older adults (Fig. 5). These ratios are somewhat higher
than observed today in Delaware Bay (Powell, unpubl. data),

probably because of the shorter generation time in the present-
day population relative to this simulation.However, a simulation
with a mortality rate near the present day returns female-to-male

ratios near 0.5, as observed, and for older adults near 1.3, also as
observed (Fig. 5). Spat-to-adult ratios vary from 0.2–0.5, lower

than observed on average. However, once again, the higher adult

mortality rate generates higher spat-to-adult ratios greater than
0.5, consistent with observations. Thus, the simulated population
dynamics are representative of observed populations at defined

mortality rates.
The naı̈ve population at generation 200 contains animals in

a range of low values of adult fitness with the expected mode of

0.1 based on the initial frequency of alleles conferring disease
resistance of 10% and with very few animals with values more
than 0.3 (Fig. 6; generations 1, 91, and 191). Such a population

would be expected to be susceptible to epizootic mortality on
onset of a new disease challenge. Dermo-induced epizootic
mortality is inherently modulated by the local environment,
particularly temperature and salinity (Andrews 1988, Powell

et al. 1996, Ragone Calvo et al. 2001). Thus, we considered 4
levels of mortality at the onset of disease, interpretable as relative
measures of the virulence of the pathogen or conduciveness of the

environment: ;40% of the population yearly, ;25%, ;22%,
and;17% (Fig. 7), referred to as mortality levels 4, 3, 2, and 1,
hereafter. Levels 2 and 3 are representative of epizootic mortality

rates often observed inDelawareBay andChesapeake Bay. Level
4 is a minimal value for the Gulf of Mexico (Mackin & Sparks
1962,Mackin &Hopkins 1962) and a level observed in the initial
epizootics after onset of Dermo disease in the highest mortality

regions of Delaware Bay. Each of these simulations shows
a decline in oyster abundance on onset of the disease, with the
expected greater declines at ever higher mortality rates (Fig. 7).

Note that the higher mortality rates result in much increased
mortality for the older adults (Fig. 8), which then leads to
a decline in population average age and generation time (Fig. 7).

Fitness of the population increased over 200 generations for
each of the levels of initial pathogen virulence (Fig. 9). An
example shift in population fitness frequency shows that the

Figure 2. An example of the mortality trends with age for adult fitness varying by 0.2 units from aminimal value of 0 to a maximal value of 1. The adult-

fitness-of-0 case (F$ 0, or naı̈ve exposed) yields a populationmortality rate of about 25% for this parameterization of Eqs 8 and 9. The adult-fitness-of-1

case (F$ 1, or naı̈ve unexposed) yields a population mortality rate of about 13%.
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population achieves a modal fitness of 0.4 200 generations after
disease onset, withmost of the population falling between 0.3 and

0.55 (Fig. 6). In each case, population mortality rate declined
commensurately (Fig. 7). For the highest mortality level (level 4),
with an initial mortality rate of ;40% per year, however,
population fitness reached an asymptote at a level lower than

observed for the 2 intermediate initialmortality rates (levels 2 and
3, Fig. 7) (Fig. 9). Perusal of allele trajectories shows that some
alleles conferring disease resistance were lost from the population

through drift during the initial epizootic, when population
abundance strongly declined, and their loss thwarts the return
to historically low mortality rates through selection by limiting

the number of loci undergoing selection for disease resistance
(Fig. 10, Table 3).

The Influence of Oyster Growth Rate

Oyster growth rate varies with latitude as a function of the
degree and duration of warm temperatures. Comparison of the

analogous set of simulations for the moderately more rapid
growth rates of Chesapeake Bay (Fig. 1) shows that increasing
disease pressure results in increasing disease resistance in both

cases (Fig. 9). Moreover, in both cases, at the highest level of
disease pressure, the increase in disease resistance is truncated in
later years by the unfortunate loss of rare alleles during the

initial epizootic. The Delaware Bay and Chesapeake Bay cases
differ in minor details; however, minor changes in growth rate
andmaximum size (WN, Eq 6) result in limited differences in the
outcome of selection after disease onset.

In comparison, the much higher growth rates characteristic
of the Gulf of Mexico result in substantially improved levels of
disease resistance, most evident at the highest disease pressure

(level 4, Fig. 9). This differential results from reduced allele loss
through drift in the Gulf simulation where oyster abundance
remains substantially higher at a given mortality rate (Fig. 11).

The higher growth rate increases fecundity and recruitment at
a givenmortality rate, and the higher abundance thusmaintained
provides increased opportunity for alleles conferring disease
resistance to increase in frequency through selection, rather than

decrease in frequency through drift (Table 3).

The Influence of Variability in Fecundity or Recruitment

Considerable variability can occur in egg quantity and egg
quality for females of a given size (e.g., Davis & Chanley 1955,

Gallager & Mann 1986, Mann et al. 1994). Variations in egg
quality influence larval survival (e.g., Thompson & Harrison
1992, Powell et al. 2002, Powell et al. 2011b). Increased egg

quality and enhanced egg production both result in increased
recruitment per female. Except at the highest level of mortality,
varying egg production by a factor of 2 had little influence on
the trajectory of increasing population fitness over time (Fig.

12). The improvement noted at the highest mortality level
(Offspring Variation, level 4, Fig. 12) occurred because fewer
alleles conferring disease resistance were lost through drift

(Table 3). Thus, increased variability in the quantity or quality
of eggs produced had little impact on the development of
disease resistance as long as population dynamics minimized

allele loss through drift. When drift endangered retention of
rare alleles, increased recruitment in some years increased the
probability that they would be retained in the population.
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The Influence of Variations in Effective Population Size

Previous simulations assumed a constant fraction of the

stock successfully spawning, consistent with measures of effec-
tive population size in oyster populations (Hedgecock et al.
1992, Hedgecock 1994). Increased variability in the fraction of

the population spawning impacted the outcome little when

disease pressure wasmoderate (Fecundity Variance, level 2, Fig.

12), but resulted in enhanced disease resistance after 200

generations when disease pressure was high (level 4, Fig. 12).

Fewer alleles conferring disease resistance were lost through

drift when year-to-year variation occurred in the fraction of the

population spawning successfully (Table 3).

Figure 3. The time series of abundance and mortality rate, represented as the fraction dying each year, for the Delaware Bay base case (Table 2).

Figure 4. Trajectories for 5 representative alleles conferring disease resistance for the Delaware Bay base case (Table 2). Dermo disease was not present;

thus, these alleles drifted over time as neutral alleles. Initial allelic frequency was near 10%.
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A factor of 10 reduction in the fraction of the stock
reproducing successfully each year reduced significantly the
ability of the stock to develop resistance to the disease (Fig.

12). Amore limited cadre of parents each year results in increased

drift. More of the alleles conferring disease resistance were lost
before the advantages of selection could be realized (Table 3). A
factor of 10 increase in the fraction of the stock reproducing

successfully enhanced significantly the ability of the stock to

Figure 6. The frequency of adult fitness over a suite of selected generations for the Delaware Bay base case. In this simulation, Dermo disease entered the

population at generation 201with a disease intensity set at level 3 (Fig. 8). The trajectory for adult fitness improvement is shown in Figure 9. The distribution of

adult fitness values for the naı̈ve population is shown for generations 1, 91, and 191. During this time, alleles conferring disease resistance were allowed to drift

without selective advantage for 200 generations. The resulting frequency shifts by drift only modestly in comparison with generations greater than 200.

Figure 5. Female-to-male ratio for the entire population and for animals 3 y or more of age for the Delaware Bay base case and for a case influenced by

an increment of mortality to level 3 (about 25% per year).
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develop resistance to the disease (Fig. 12). The effect was most
pronounced at the highest disease pressure (level 4, Fig. 12). A

greater cadre of parents resulted in decreased drift.More of the
alleles conferring disease resistance were retained in the popula-
tion so that the advantages of selection couldbe realized (Table 3).

The Influence of Oyster Abundance

A factor of 10 increase in oyster abundance varies the
outcome of the two lowest levels of disease pressure very little

(Fig. 12). However, disease resistance develops more completely
with higher population abundance when the disease intensity is
high (level 4, Fig. 12). Higher abundance reduces the loss of

alleles conferring disease resistance by drift, thus permitting
selection to favor more of the inherent capacity of the animal to
resist the disease.

The Influence of Increased Spawning Frequency

In some areas of the Gulf of Mexico, growth rates are suf-
ficiently fast that two generations per year may occur, yet most of

themortality fromDermo disease remains concentrated in the late
summer and early fall. Parameterization of these simulations takes
into account the likelihood that the second generation, having

individuals of smaller size, is also likely to escape some mortality
during its first late summer of life as a result of late-season infection
limiting the time for proliferation. Two generations per year

moderately decrease the rate of development of disease resistance
at all mortality levels (compare the 1-generation case in Fig. 12
with Fig. 13). Two generations per year permit alleles conferring
vulnerability to be passed from one generation to the next before

selection occurs. Thus, selection acts less efficiently and the
per-year rate of development of disease resistance is appreciably
slowed.

The Influence of Genetic Contribution

Most simulations were run with 14 loci having alleles
conferring disease resistance. However, the degree of importance
of these loci in establishing the phenotype enhancing survival

significantly is unknown. Some smaller fraction may be of
primary importance. We examined two of many possible cases,
one in which the number of important loci was halved and one in

which only 2 loci played a preeminent role (Table 2). Note that
particular outcomes of the 2-loci case are strongly dependent on
the specific loci chosen from the suite in Table 1. Choosing

genotypes showing underdominance, for example, would very
likely produce strongly divergent results. Reported simulations
are for loci characterized by relatively classic additive dominance

(Tables 1 and 2).
Reducing the number of alleles conferring disease resistance

by half, to 7, accelerated substantially the rate of acquisition of
disease resistance, and this effect was enhanced at the higher

disease intensities (e.g., level 4, Fig. 14). Reducing the number
of alleles to 2 further enhanced this effect, regardless of compar-
ison with the 14-loci or 7-loci case (Fig. 14). For the 2-loci case,

simulated oyster populations become completely or nearly
completely disease resistant at the three highest disease pressures,
with the outcome being achieved within 100 generations at the

highest disease pressure (level 4, Fig. 14). In both the 2-loci
and 7-loci cases, one of the primary outcomes was a reduction
in the likelihood that the alleles conferring disease resistance

Figure 7. Comparison of population abundance (top), populationmortality

rate (middle), and population average age (bottom) after the onset of disease

at generation 201 for the 4 degrees of pathogen virulence and commensurate

increases in natural mortality rate. Abundance and average age slowly

increase over the last 200 generations in some cases because the population

develops a degree of disease resistance and, thus, survival increases.
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would be lost by drift (Table 3). For the 2-loci case, one or both
of the alleles conferring disease resistance became fixed in the
population at the three highest disease pressures, with both loci
having frequencies for the allele conferring disease resistance

exceeding 99%.

DISCUSSION

Perspective

Perhaps the paramount obstacle to the investigation of the
development of disease resistance in marine populations is the

inability to deduce the vulnerability of the naı̈ve population to
the disease. Often, the disease agent has been present for some
time prior to initial characterization, so that the population

available to the investigator has already survived at least the
initial phases of epizootic disease. Few cases are so fully
documented as the case for MSX disease outbreaks that began

during the mid-1950s (e.g., Andrews 1968, Farley 1975, Ford &
Haskin 1982; see also Burreson 1991, Burreson et al. 2000,
Burreson & Ford 2004). P. marinus has a particularly abstruse
time history. Over much of its original range, many (and

possibly untold numbers of) generations likely passed between
its initial onset and the first series of investigations during the
late 1940s to early 1950s. A compounding difficulty is the

absence or limited availability of time series describing the host
population dynamics, particularly the mortality rate prior to,
during, and after onset of the disease. Few long-term time series

exist (e.g., Elston et al. 1987, Powell et al. 2008, Mann et al.
2009b), and the data are extremely limited for P. marinus.
Delaware Bay presents an opportunity in this context because

detailed time series data exist prior to Dermo becoming a
significant source ofmortality in the bay, and this time series has
carried through to the present day. Furthermore, the popula-
tion was almost certainly truly naı̈ve circa 1989 to 1990 when

P. marinus first became epizootic in Delaware Bay (Ford 1996).
Last, adequate data exist to deduce the mortality rate prior to
any significant influence of disease and during times of in-

significant disease pressure, as good time series data exist back
to 1953 (Powell et al. 2008).

Some impediments exist to modeling the development of
disease resistance in C. virginica populations after the onset of
disease. Chief among them is the likelihood that larvae from

naı̈ve populations will continually insert susceptible alleles into
the population so that the assumption that recruits are derived
from the local population is somewhat to substantively invalid

(but see Dekshenieks et al. 2000, Powell et al. 2003, Powell et al.
2009a). This impediment poses a constraint that limits
reconstruction of genetic response to the onset of disease even

when adequate time series data on population dynamics are
available, as the development of disease resistance will likely be
slowed to some poorly defined extent by down-estuary insertion
of alleles from susceptible larvae. Our study is not immune to

this constraint; the rate of development of disease resistance in
our simulations is likely biased high accordingly. The remaining
impediments are more easily overcome, or at least addressed.

Chief among these is the specification of the population
dynamics of the naı̈ve population. Time series analyses from
Delaware Bay (e.g., Powell et al. 2009a), corroborated in the

main for the James River in Chesapeake Bay (Mann et al.
2009b), identify a predisease mortality rate for the older adult
population of about 10–15% per year. This is consistent with

Figure 8. The range of age-dependent mortality rates used in simulations described in Table 2. Level 0 represents the predisease mortality rate for oyster

populations in the Mid-Atlantic region. Levels 2 and 3 are consistent with whole-stock Dermo mortality rates observed in Delaware Bay, as well as the

mortality rate observed on the medium-mortality beds in Delaware Bay and for the third epizootic on the high-mortality beds of Delaware Bay. Level 4 is

a representative mortality rate for the Gulf of Mexico and for the 2 initial epizootics in the high-mortality region of Delaware Bay. Bed allocation to bed

groups is defined in Powell et al. (2008) (see also Fig. 15).
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inferences about the life span of Crassostrea virginica, which

very likely is on the order of 10–20 y.4 We have used a mortality
function that includes a moderate increase of mortality rate
with age (Fig. 2). Insufficient information is available for

oysters regarding the age dependency of mortality prior to the

onset of disease; however, the relationship is consistent with
inferences forM. mercenaria (Kraeuter et al. 2008) and with the
tendency for longer lived animals to have a ‘‘plateau of adult

Figure 9. Population fitnesses for the Delaware Bay case (DB), the Chesapeake Bay case (CB), and the Gulf coast (GC) for various levels of initial

pathogen virulence and commensurate population mortality (Table 2). The naı̈ve, unexposed case is shown for generations 50–200. The 4 levels of disease

pressure begin in generation 201. Fitness ranges from 0–1. Note that the y-axis scale reaches only 0.7.

Figure 10. Trajectories of allelic frequencies for alleles conferring disease resistance that were lost through drift in the Delaware Bay case with high disease

pressure (level 4). Exposure to disease in the naı̈ve population commenced in generation 201. The depicted alleles were lost between generations 201 and 250.
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vigor’’ in their survivorship curves (e.g., Schmidt & Warme
1969, Stanton et al. 1981, Vetter 1987). The inference of mor-
tality rate from the finding of animals of oldest age remains

a thorny proposition (Hoenig 1983, Hewitt & Hoenig 2005).
Nevertheless, simulations of average age from our implementa-
tion of mortality at age, age distribution estimated from von

Bertalanffy curves (e.g., Kraeuter et al. 2007), and mortality
rates inferred from time series data (Powell et al. 2009a) dovetail
sufficiently to provide some confidence in the parameterization.

The remaining descriptors of the population dynamics perti-
nent to this modeling exercises are better known. These include

the growth rate (Kraeuter et al. 2007), the influence of size on
functional sex (Kennedy 1983), population abundance (Powell
et al. 2009a), and effective population size (Guo, unpubl. data).
Simulations of the naı̈ve population without disease returned

results consistent with time series observations and expectations
from published sources, suggesting that the population dynamics
of the species is adequately characterized.

An additional set of obstacles is posed by the need tomodel the
population dynamics of the naı̈ve population at the onset of the
disease. Chief among these is the initial epizootic mortality rate.

Here, time series data have proved invaluable (Fig. 15). The initial
epizootics in Delaware Bay produced mortality rates for the adult
populations of 30–50%per year. The epidemiology of the disease is
relatively well-known and has been modeled (e.g., Hofmann et al.

1995, Powell et al. 1996, Ragone Calvo et al. 2001). Comparison
with the demographics observed in populations at the onset of
Dermo disease suggests again that the population dynamics of the

species in its most vulnerable state has been described adequately.
The investigation of the development of disease resistance

also requires specification of the number and nature of alleles

conferring resistance. Here, some information is also available.
Guo (unpubl. data) identified 14 loci with alleles associated with
lower mortality in conditions where Dermo challenge was high.

Sufficient information is available to apportion a relative degree
of influence to themore resistant homozygote, the heterozygote,
and the more sensitive homozygote. The phenotypic expression
of these alleles, however, is unknown, so that the relative impor-

tance of each locus in determining the outcome of selection is
undefined.Weassume equivalency but not additivity nor epistasis
(e.g., Grosholz 1994, Nath et al. 2008, see also Sokolova et al.

2006, Hallander &Waldmann 2007). We also assume that alleles
conferring disease resistance are neutrally selected in populations
unaffected by P. marinus. Many studies have identified negative

effects of alleles conferring disease resistance in naı̈ve, undiseased
populations (Cotter et al. 2004, Feng & Costillo-Chavez 2006,
Duffy & Forde 2009, Zbinden et al. 2008, Hasu et al. 2009).

The appropriateness of these assumptions can only be

addressed by comparison of simulations with observed develop-
ment of disease resistance; a verification that, to some extent,
may be possible. Figure 15 documents the time series trends in

mortality for selected components of the Delaware Bay oyster
stock. The time series is only 20 y long following the 1989/1990
onset of Dermo disease as a contributing influence to mortality

in Delaware Bay, and this length of time is troublesomely short.
Moreover, the dramatic modulation of epizootic intensity of
Dermo by temperature, salinity, and the history of temperature

and salinity change (e.g., Soniat & Gauthier 1989, Paynter &
Burreson 1991, Burreson & Ragone Calvo 1996, Powell et al.
1996, Soniat et al. 1998, Ford & Smolowitz 2007) restrict simple
inferences about disease resistance from time series information.

Nevertheless, two aspects of the Delaware Bay time series are
noteworthy. The first is the drop in the epizootic mortality rate
for the down-estuary regions (the high-mortality and very-high-

mortality beds) from about 30–50% per year from 1994 to 2003
to about 25% per year in the epizootic ongoing during 2009 and
2010 (except for the offshore high-mortality beds). The second is

the more constant value for the mid-estuary (medium-mortality)
population at about 20–25% per year. One interpretation of
these trends is that the environmental conditions during the late

TABLE 3.

The number of loci in which alleles conferring disease re-
sistance were lost through drift or fixed over 200 generations

(400 for the Gulf coast case of 2 generations per year) through

selection for disease resistance.

Simulation Series Mortality Level No. Lost No. Fixed

Delaware Bay 1 1 0

2 2 0

3 5 0

4 10 4

Chesapeake Bay 1 0 0

2 2 0

3 3 0

4 10 4

Gulf Coast, 1 generation 1 0 0

2 1 0

3 2 0

4 2 0

Gulf Coast, 2

generations

1 0 0

2 0 0

3 0 0

4 0 0

Increased variance in

fecundity

1 3 0

2 5 0

3 5 1

4 8 5

Reduced fecundity 1 11 0

2 11 2

3 12 1

4 12 2

Increased fecundity 1 0 0

2 0 0

3 0 0

4 0 0

Increased population

abundance

1 0 0

2 0 0

3 0 0

4 0 0

Increased variance in

spawning

1 7 0

2 6 0

3 7 2

4 6 3

Seven-loci case 1 1 0

2 1 0

3 2 0

4 1 1

Two-Loci case 1 0 0

2 0 1

3 0 1

4 0 2

Note that all simulation series are based on 14 total alleles except for

the 7-loci and 2-loci cases.
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2000s remained conducive to epizootic development, and this
maintained an equivalency of effect up-estuary, where selection
is less effective; however, the vulnerability of the down-estuary

populations to epizootic mortality is muted during the last
epizootic, when the highest selection pressure had existed prior
to that time. In a later section, we compare this time series with

model simulations.

Response of the Na ı̈ve Population to Disease Onset

Simulated populations were exposed to 4 levels of mortality
covering the range in mortality observed in Delaware Bay
during the 1990s (Figs. 7 and 8). In each case, disease resistance
increased over time (Fig. 9). Up to a point, higher mortality

rates resulted in more rapid development of disease resistance.
Commensurately, the mortality rate declined, as the opposing
trends must co-occur. However, at the highest disease pressure

(40%-per-year mortality), the expected outcome did not mate-
rialize, as the development of disease resistance was short-
circuited by the loss of alleles through drift, which restricted the

genetic ambit of the population’s response.
During the initial epizootic, mortality rate increases rapidly.

Commensurate with this is a decline in population abundance.

The population dynamics of the species is inadequate to this
population decline fully, and, indeed, the demise of oyster
populations with Dermo disease is not unexpected (Southworth

&Mann 2004, Powell et al. 2008). In any period of declining
abundance, the loss of alleles by drift is a risk. By definition,
alleles contributing to disease resistance normally must be rare

initially (e.g., Galvani & Slatkin 2004, Harding et al. 2005,
Duffy & Forde 2009) and therefore more prone to loss (Wilhoit
1991). In the case of a simulated Delaware Bay population

exposed to an incremental increase in mortality rate to about
40% per year, the influence of drift strongly limits the outcome,
but this is true only if the number of successful parents is initially
relatively low. It is the scale of the change in mortality rate that

exerts the primary influence on the rate of development of
resistance to the disease.

Modulation of Response of the Na ı̈ve Population

The population dynamics is an important modulator of the
outcome of disease challenge. Certain aspects minimize loss of

alleles by drift. Initially large population size is an effective
protectant. Factors that facilitate the ability of the population
to maintain abundance at increased mortality are another,

Figure 11. Comparison between population abundance in populations exposed to 3 disease pressures for oysters parameterized for Chesapeake Bay (CB)

and the Gulf coast (GC; Table 2). The naı̈ve, unexposed case is shown for generations 150–200. The 3 levels of disease exposure begin in generation 201.

Population fitness trajectories are shown in Figure 9.
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including faster growth rates and higher population fecundity
either by a larger fraction of the population being reproduc-

tively successful or, to a lesser degree, increased variability in
individual spawning potential. All of these permit the popula-
tion to withstand a greater increment in mortality rate without

the loss of rare alleles, thus facilitating the response of the
population to disease challenge.

The Rate of Development of Disease Resistance

The aforementioned aspects of population dynamics con-
tribute significantly to the rate of development of disease
resistance. However, the simulations as a whole show that

a significant population response occurs at its most rapid rate
on decadal to vicennial timescales, with a half century being the
more likely time span. Improvement in disease resistance comes

slowly with respect to the patience of human observation, and
ponderously slow in the context of the demands of fisheries
management and ecological restoration (Mann 2000, Brumbaugh
et al. 2006, Mann & Powell 2007, Beck et al. 2009).

Although a number of processes modulate what apparently
may be a ploddingly protracted affair, the primary restraint on
the rate of development of disease resistance, on which these

modulators build, is the number of loci potentially conferring
disease resistance (see also Hallander & Waldmann 2007).
Lacking information to the contrary, each of the 14 potential

loci was weighted equally in the valuation of adult fitness. Thus,
each locus can contribute only in small measure to the outcome.
Because the alleles are rare initially, few naı̈ve animals will have

more than 1 or 2 (Fig. 6); thus, the range of predisposition to
disease will be restricted, and the response of the naı̈ve

population limited. Simulations restricting the development of
disease resistance to a few controlling alleles consistently predict
much more rapid development of disease resistance, although

the degree is strongly dependent on the specific loci chosen. That
such a rapid development in disease resistance is not observed in
the Delaware or Chesapeake Bays offers the strongest evidence
against the presence of a few governing alleles.

The Case of the Gulf of Mexico

In extensive areas of the Gulf of Mexico, temperatures rarely

drop below 10�C in the winter and often rise above 30�C in the
summer, whereas salinities frequently exceed 15& for much of
the time. (e.g., Copeland & Hoese 1966, Hofmann et al. 1994,

Soniat et al. 1998, Gullian-Klanian et al. 2008). Rates of pro-
liferation of Dermo in vivomust be near maximal in these regions
(Soniat 1985, Fisher et al. 1992, Powell et al. 1996). Nevertheless,
recorded mortality rates are not unduly different from those

observed in more northern climes, although they may average
higher (e.g., Mackin & Hopkins 1962, Mackin & Sparks 1962).
The more rapid growth rates of Gulf coast oysters minimize the

decline in abundance that necessarily follows a significant in-
crement inmortality rate, thereby insulating the population from
collapse during epizootic times (Fig. 16). The degree of disease

resistance is only moderately increased, if at all, however, by the
more rapid rate of growth (e.g., Brown et al. 2005a, Brown et al.
2005b, Encomio et al. 2005). In some regions, growth rates and

Figure 12. Comparison between population fitness for 4 disease pressures for oysters parameterized for Chesapeake Bay with variation in the number of

offspring produced per mating pair (Offspring Variation) with a variable proportion of the population mating (Fecundity Variance), and with reduced

fecundity resulting from smaller effective population size (Reduced Fecundity) relative to the Chesapeake Bay case without these effects (Table 2). The

naı̈ve, unexposed case is shown for generations 1–200. The 4 levels of disease exposure begin in generation 201. Population fitness ranges from 0–1. Note

that the y-axis scale only reaches 0.55.
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maturity are sufficiently rapid that two generations per year
might occur. Multiple generations per year may further insulate
the population from a reduction in abundance that should

accompany an increment in mortality; but here, too, the rate
of development of disease resistance is little changed if not
slowed. The mortality rate drives selection and, thus, the rate of

increase in disease resistance and the mortality rate are in-
dependent of abundance and other abetting processes main-
taining abundance (discounting the possible contribution of
density to transmission (Andrews 1988, White et al. 1998, Ford

1992, Gray et al. 2009)).

Rationale for the Apparent Absence of Disease Resistance

Epizootics by Dermo routinely produce mortality rates on
the order of 20–30% of the adult stock, and sometimes higher.

Mortality rates in the Gulf of Mexico often exceed 50% per year
(Owen 1953, Mackin 1959, Mackin & Hopkins 1962, Mackin &
Sparks 1962). On the onset of Dermo, mortality rate inDelaware
Bay was initially upward of 40% in a stock that numbered 300

million–500 million animals in the high-mortality reach of the
estuary (Powell et al. 2008). This is an increment in mortality of
about 15–25% yearly. Arguably, abundance in this region was

sufficient to minimize the loss of alleles by drift, thus permitting
the full range of genetic response. The population response
would appear to be a lessoning of mortality rate to about 25%

over 1 to 2 decades (Fig. 15). This is consistent with simulations
(Fig. 17). Figure 17 shows a case in which the initial mortality
rate approached 50% per year. The time trend shows a decline in

mortality rate to about 30% per year, somewhat faster than
observed in Delaware Bay (Fig. 15), and a further decline to
about 25% per year 25 years after disease onset, somewhat

slower than observed in Delaware Bay (Fig. 15). However, the
simulation does not include insertion of susceptible alleles from
larvae originating up-estuary early during the epizootic that

would have maintained the mortality rate after disease onset
higher than simulated. Overall, the time trends in Figure 17
support the inference that model parameterization provides
simulated outcomes consistent with observation, that disease

resistance is a process dependent on many loci, and that the rate
of development of disease resistance will slowmarkedly when the
population mortality rate declines from its initially high level.

So, the interdependence of mortality rate and selection
cannot be denied its obfuscatory role. As the mortality rate
declines with increased disease resistance, the rate of improve-

ment in disease resistance must likewise decline. Rates of
development of disease resistance at a 22% mortality per year
are little influenced by variations in population dynamics (Fig.
18) relative to a higher mortality rate of 40% per year (Fig. 19).

The modulatory effects of abundance, growth rate, fecundity,
and so forth, are no longer critical to the outcome, and the rate
of development of further disease resistance becomes increas-

ingly slow. Incremental improvement occurs on half-century
timescales (Fig. 17). To the observer, increments in disease
resistance have ceased.

The disheartening profundity is that a mortality rate of 25%
per year, yielding a rate of selection profoundly slow, is still very
high. In northern climes, significant decrements in abundance

Figure 13. Comparison between population fitness for 4 disease pressures for oysters parameterized for Chesapeake Bay, but with increased population

abundance generated by increased carrying capacity (High Abundance) and increased fecundity produced by an increase in the number of successful

mating pairs (Increased Fecundity), relative to Chesapeake Bay without these effects (Table 2). Also included is the case of a Gulf of Mexico population

with 2 generations per year. The naı̈ve, unexposed case is shown for simulation years 0–200. The 4 levels of disease exposure begin in year 201. Population

fitness ranges from 0–1. Note that the y-axis scale only reaches 0.7.
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will occur. Evidence from fisheries data sets and retrospectives
suggests that oysters cannot withstand a constant removal at

this scale without compromising population integrity notice-
ably (e.g., Rothschild et al. 1994, Powell et al. 2008, Powell et al.

2009b). C. virginica evolved at natural mortality rates on the
order of half this level. Sustaining the reef itself requires high

abundance (Powell & Klinck 2007, Mann et al. 2009a, Powell
et al. submitted a). The ambit of response in reproduction to

Figure 15. Trends in box-count mortality for a series of bay regions in Delaware Bay during the Dermo era, 1989 to 2010. Bed locations are shown in Figure

1 of Powell et al. (2009a). The method of calculation is provided in Powell et al. (2008, 2009a). Bay regions are defined by the following bed groupings: low

salinity (Fishing Creek, Liston Range, Hope Creek, Arnolds, Upper Arnolds, Round Island), medium mortality (Upper Middle, Middle, Sea Breeze,

Cohansey, Ship John, Shell Rock), northern high mortality (Bennies Sand, Nantuxent Point), offshore high mortality (Bennies, New Beds), inshore high

mortality (Hog Shoal, Strawberry, Vexton, Beadons, Hawk’s Nest), and very high mortality (Egg Island, Ledge). The low-salinity beds are not significantly

impacted by Dermo disease. Epizootics, including the one ongoing during 2009 and 2010, have occurred 3 times since 1989 in the remaining bed regions.

Figure 14. Comparison between population fitness for 4 disease pressures for oysters parameterized for Chesapeake Bay with 2 (2-Loci), 7 (7-Loci), or

14 (Chesapeake Bay) loci contributing to disease resistance (Table 2). The naı̈ve, unexposed case is shown for generations 0–200. The 4 levels of disease

pressure begin in generation 201. Population fitness ranges from 0–1.
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offset mortality is not large (Powell et al. 2009a). So, a mortality
rate that sorely limits the development of disease resistance still
strains grievously the species� ability to maintain a vibrant

population dynamics necessary to its long-term survival. Is it
for this reason that oysters andDermo have been so intertwined
in the internecine battle for so long?

CONCLUSIONS

It is the manager’s fate to deal with the quasi-perpetual

challenge of a natural mortality rate in C. virginica populations
that is nearly too high to withstand a commercial harvest and
possibly too high to sustain the reef structure itself in regions

Figure 17. Trends in population mortality rate for the case of high disease pressure (level 4) and a high population abundance (Table 2, Fig. 13) for the

50-y period immediately after the onset of disease. Dotted lines record the approximatemortality rate at disease onset for disease pressures at level 4 (0.4)

and level 3 (0.25).

Figure 16. Comparison between population abundance after onset of Dermo disease in year 201 for slow (Delaware Bay) and fast (Gulf Coast) growth

rates and for the Gulf coast case with 2, rather than 1, generations per year.
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susceptible to epizootic Dermo disease (e.g., Mann & Powell

2007). The simulations provided here support the most
pessimistic of long-term predictions. An internecine equilib-
rium perhaps does not exist. Barring insertion of susceptible

alleles from up-estuary sources, slow progress toward further
disease resistance may yet be achieved, assuming of course
that Dermo is inordinately incapable of responding geneti-

cally to the challenge of selection. But only a limited infusion

of susceptible lavae might be sufficient to offset any selective
advantage realized from an epizootic mortality rate of 20–25%.
Thus, very likely, a quasi-equilibrium exists between the genetics

of the oyster and the disease agent P. marinus that is quasi-
permanent on any tractable scale of years afforded the re-
sponsive manager.

Figure 18. Comparison between a range of cases in which Dermo disease reached epizootic mortality rates of about 22% per year at its onset in

generation 201. Legend titles refer back to earlier figures (Figs. 9, 12, 13, and 14).

Figure 19. Comparison between a range of cases in which Dermo disease reached epizootic mortality rates of about 40% per year at its onset in

generation 201. Legend titles refer back to earlier figures (Figs. 9, 12, 13, and 14).
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Of course, what would be useful would be to remove
selectively the susceptible individuals. A fishery removing

15% of the stock annually, if targeting the individuals
predisposed to disease, would substantively augment the
natural process of selection. Alas, currently the recognition
of such animals is not feasible, even if it were ever possible.

Much of the recent literature has focused on adaptive
management consistent with the demands of the disease
(e.g., Andrews & Ray 1988, Krantz & Jordan 1996, Mann &

Powell 2007). Refinement of this option should be the
imperative in sustaining populations wherein epizootic mor-
talities routinely occur.
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NOTES

1. Throughout, the term ‘‘mortality rate’’ applies to the

fraction dying per year. Values given are not true rates; rather,
they are equivalent to 1� e�mt in the equation Nt ¼ N �e

�mt,
where m is measured in units per year and t is 1 y.
2. Model parameters are shown in typewriter font

whereas variables are shown in italics font.
3. Larval fitness, an available option in DyPoGEn (Powell

et al. 2011b), was not invoked in the set of simulations presented

here, based on the assumption that Dermo disease does not
influence larval mortality significantly.
4. Galtsoff (1964) maintained C. virginica for at least 9 years,

so Crassostrea likely can live for a decade or longer, consider-
ably beyond the conservative estimates provided by Comfort
(1957) and Custer and Doms (1990), but consistent with

estimates for fossil species (Kirby 2000), and recent estimates
reported in Berrigan et al. (1991) (but see Harding et al. (2008)
and inferences from Kraeuter et al. (2007)).
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