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A new technique called the Opportunistic Multiple Spacecraft Per Antenna (OMSPA) is being 

developed by scientists at the Deep Space Network (DSN), and at the Jet Propulsion Laboratory 

(JPL). This technique is key to allow communication with many spacecrafts from a single 

antenna simultaneously. Currently, this is not possible with the existing JPL-DSN infrastructure. 

In a historic alliance, Morehead State has been invited to be part of the DSN as the first ever 

external organization outside of NASA to do so. As part of this, the MSU 21 Meter Space 

Tracking Antenna will be used as a communications asset and to allow experimentation with 

new techniques like OMSPA. These techniques are possible when two or more spacecraft are 

along the line of sight of the antenna and within its main beam. Frequencies in a broadband are 

collected, digitized, and later individual spacecraft carriers are decomposed using digital signal 

processing techniques. Currently, using the DSN antenna assets for experimentation is difficult, 

as all existing assets are fully scheduled. The Space Science Center is proud to be able to 



 
 

contribute to the DSN by providing an experimental platform for the development of new and 

exciting technologies. This project is designed to construct the experimental platforms in 

hardware and software, as well as to document the effort so that this experiment can continue 

across the next several years. 

   

  

Accepted by:   ______________________________, Chair  

Jeffrey A. Kruth  

  

______________________________  

Dr. Benjamin K. Malphrus  

  

______________________________  

Dr. Charles D. Connor 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table of Contents 

1.0 Executive Summary ………………………………………………………………………….1 

2.0 Introduction…………………………………………………………………….……………. 3 

   2.1 Morehead State Ground Station/ DSS-1……………………………………….3 

2.2 Deep Space Network Partnership…………………………………………….. 5 

2.3 Implementing the OMSPA Design at Morehead State ………………………..6 

3.0 Materials …………………………………………………………..…………………………7 

3.1 Hardware ………………………………………………………………………….....7 

3.1.1 B210 Ettus Research Receiver …………………………………………….7 

3.1.2 Hack RF One……………………………………………………………….7 

3.1.3 Ground Station Equipment and Testing Equipment ……………………….8 

3.2 Software ……………………………………………………………………………...9 

3.2.1 GNU Radio Companion  ……………  ……………………………………...9 

3.2.2 Software Defined Radio  …...………………………………………………10 

4.0 Testing Challenges and Solutions  …………………………………………………………11 

4.1 Setup for Testing the OMSPA system ……………...……………………………….11 

4.2 ASTERIA Pass Testing ……………………………………………………………...12 

4.3 Transmitting Simulated Signals with the Hack RF ………………………………….13 

4.4 Transmitting Simulated Signals with multiple Hack RFs …………………………...14 

4.5 End-to-end Testing with JPL ………………………………………………………..15 

4.6 Measurement Testing …… ………………………………………………………….17 

 



 
 

5.0 Mars Cube One and InSight Demonstration ………………………………………………..18 

5.1 MarCO Mission Day 1 ………………………………………………………………19 

5.2 MarCO Mission Day 2 ………………………………………………………………20 

5.3 MarCO Mission Day 3 ………………………………………………………………21 

5.4 MarCO Mission Day 4 ………………………………………………………………22 

5.5 MarCO Mission Day 5 ………………………………………………………………23 

5.6 MarCO Mission Summary …………………………………………………………..24 

6.0 Conclusion and Recommendations ………...……………………………………………….24 

7.0 Bibliography ……  ………………………………………………………………………….26 

8.0 Appendices ………………………………………………………………………………….27 

Appendix A – Block Diagrams …………………………………………………………27 

Appendix B - Testing Results  …………………………………………………………..29 

Appendix C - MarCO/InSight Demonstration Results ………..………………………..40 

Appendix D – Hardware ….…………………………………………………………….49 

Appendix E – Bill of Materials …..……………………………………………………..52 

Appendix F – Project Timeline …...…………………………………………………….53 

9.0 Resume ………… ………………………………………………………………………….54 

 

 

 

 



 
 

1.0 Executive Summary 

The opportunistic multiple spacecraft per antenna (OMSPA) theory offers a solution for 

the Deep Space Network's capacity drawbacks. Due to the DSN being over-subscribed with high 

profile missions, they are too busy to take on small-time, unfunded, yet innovative, projects. 

Morehead State University is an ideal fit for this project due to our ground station and 21-meter 

antenna being the newest node on the Deep Space Network. Our facilities and university status 

are the perfect combination for legitimate experimentation. Working closely with the DSN as a 

partner also gives valuable experience to all students involved.   

 The Morehead State 21-meter antenna has a relatively smaller diameter, but with a larger 

beam width. This allows the DSN to capitalize by listening to multiple spacecraft at once by 

receiving the whole receive band in one piece and tuning the receivers to any DSN channel in the 

band, allowing only one spacecraft to transmit at a time. The band is received by the 21- meter at 

8.4-8.5 Gigahertz by the Calisto cryogenic local noise amplifier and the signal is down-converted 

to a 100 MHz bandwidth from the Hydrogen MASER (microwave amplification by stimulated 

emission of radiation). The intermediate frequency (IF) from the received signal is at 300-400 

MHz and the signal is then translated over a fiber link where it is received by our mission control 

center.   

Once received by the mission control center, the fiber link is converted to a radio 

frequency (RF) signal and sent to the IF panel. Here, the data is split between the Data Tracking 

and Telemetry (DTT) and the B210 Ettus Research receivers. Each spacecraft frequency will be 

received on an individual B210 receiver. Power dividers allow us to connect multiple receivers at 

one point and each receiver will connect to an integrated circuit that will send the data stream
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 over a secure internet site. From here, spacecraft operators and users can access their 

received data. 

The OMSPA solution also incorporates a great deal of software. A Linux operating 

system is required to run the GNU Radio Companion software, which allows us to experiment 

and test our theories without hardware. Software-defined radio is also required for testing how 

we retrieve data. Using these software programs and the C language, we can set up our software 

so that it receives data, time stamps it accurately, and stores it with correct header files.   

The OMSPA system underwent numerous tests before being successfully demonstrated 

during the tracking of the MarCO/InSight spacecraft by Morehead State University. This was the 

first OMSPA demonstration with CubeSats, making it a historic event! This paper will further 

describe the materials, testing, and design of the OMSPA concept. 

To summarize, this project greatly helps the Deep Space Network, while also giving 

notoriety to Morehead State University. Due to Morehead’s advanced ground station capabilities 

and close relationship with the DSN, the partnership seems to be a perfect fit.  This project seeks 

to capture all the work that has already been done and set groundwork for future students who 

work on this design.  

  



3 
 

2.0 Introduction 

2.1 Morehead State Ground Station/ DSS-17 

A new technique called the Opportunistic Multiple Spacecraft Per Antenna (OMSPA) is being 

developed by scientists at the Deep Space Network (DSN), and at the Jet Propulsion Laboratory 

(JPL). This technique is key to allow communication with many spacecrafts from a single 

antenna simultaneously. Currently, this is not possible with the existing JPL-DSN infrastructure. 

In a historic alliance, Morehead State has been invited to be part of the DSN as the first ever 

external organization outside of NASA to do so. As part of this, the MSU 21 Meter Space 

Tracking Antenna will be used as a communications asset and to allow experimentation with 

new techniques like OMSPA. These techniques are possible when two or more spacecraft are 

along the line of sight of the antenna and within its main beam. Frequencies in a broadband are 

collected, digitized, and later individual spacecraft carriers are decomposed using digital signal 

processing techniques. Currently, using the DSN antenna assets for experimentation is difficult, 

as all existing assets are fully scheduled. The Space Science Center is proud to be able to 

contribute to the DSN by providing an experimental platform for the development of new and 

exciting technologies. This project is designed to construct the experimental platforms in 

hardware and software, as well as to document the effort so that this experiment can continue 

across the next several years. 

The affordability of CubeSats allows more teams around the world to create their own missions 

from design to launch. It allows students at universities to learn how to build hardware and 

allows small companies to hitch their payload to rockets and put their ideas into space. At 

Morehead State University, students design, test, integrate, fabricate hardware all in-house. 

Without the relative cheapness of these CubeSat missions, many students and engineers would 
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miss out on learning these important processes and skills. The development of these small 

payloads allows more science to be done for a lower price. The Space Launch System, the most 

powerful rocket built by NASA to date, will carry thirteen small satellites as secondary payloads 

on its maiden voyage. These CubeSats will provide valuable data and continue to become more 

valuable as small sensor technology advances.  

When a CubeSat mission is underway, it is easy to see how the price and size of the spacecraft 

are correlated. However, the ground operations of these missions are not simple, even if they are 

manned by smaller teams. CubeSats have significant tradeoffs, their small form factors make it 

cheaper to fly newly developing technologies, but the small size also reduces the transmission 

power from the spacecraft, as well as space for telecommunication hardware (Abraham, 

MacNeal, & Heckman, 2016). This forces the ground station sizes to increase to see the same 

data rates as larger spacecraft, even at the same distances. Missions that go beyond 

geosynchronous orbit need even larger ground stations due to the inverse relationship between 

signal power and the square of the distance between the satellite and the ground station 

(Abraham, MacNeal, & Heckman, 2016). According to the paper “Enabling Affordable 

Communications for the Burgeoning Deep Space CubeSat Fleet”, written by Douglas Abraham, 

“A CubeSat in geosynchronous orbit receiving the same signal from the Earth’s surface as a 

CubeSat in low Earth orbit, will receive that signal with roughly one ten-thousandth the power 

that the low Earth orbit CubeSat does. A CubeSat at the Moon will receive that same signal with 

roughly one-millionth the power. And, a CubeSat at Mars will receive that same signal with 

roughly three trillionths the power.”.  The capabilities needed to support missions that go far 

beyond GEO orbits are normally handled by NASA's Deep Space Network, however, the 

popularity of CubeSats are greatly increasing, which causes the DSN to become oversubscribed. 
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2.2 Deep Space Network Partnership 

The partnership between Morehead State University and NASA’s Deep Space Network was an 

ideal match for this project. The knowledge and experience from JPL combined with Morehead 

State’s ground station facilities provide minimal risk development at a low cost. The DSN has 

four sites across the globe, Canberra, Australia; Madrid, Spain; Goldstone, California; and now, 

Morehead State University, Kentucky. The DSN can support a wide range communication needs 

due to 70 m and 34 m antennas being available at each site, except Morehead State University, 

where a 21 m antenna is used. Each antenna uses X-band (sometimes S-band) transmitters, along 

with cryogenically cooled low noise amplifiers.   

Due to the DSN now running at near- capacity due to the increase of deep space CubeSat 

missions, they have started looking into new ways to ease help ease the load. Their approach is 

to (1) develop simultaneously, shared beam "multi-spacecraft" communications, (2) develop a 

network of support with other agencies and universities, and (3) to develop less uplink-intensive 

navigation technologies (Abraham, MacNeal, & Heckman, 2016). Morehead State is primarily 

interested in the first two ideas. The idea of multiple spacecraft in a cluster sharing one beam 

from the ground station antenna and downlinking simultaneously involves a great amount of 

experimentation, much of which was conducted at Morehead State University. Currently, there 

are only two receivers at each antenna (2-MSPA), meaning only two satellites can be seen at an 

instance at different frequencies. Downlink experiments have also been run for 4 satellites in a 

single beam width (4-MSPA) and for an indefinite number of spacecraft (OMSPA). These 

technologies would not only lessen the DSN's mission load but also provide more affordable 

communications for the DSN and mission partners. 
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2.3 Implementing the OMSPA Design at Morehead State 

To run a successful OMSPA experiment at Morehead State, it was necessary to plan out testing 

methods and create materials lists. The hardware used for testing and demo work for this project 

was substantial and, without loaned hardware from the Space Science Center, this would have 

been a very expensive project to produce. Multiple computers were needed, along with a USRP 

receiver for each. This also includes all the test equipment needed (power amplifier, spectrum 

analyzer, antennas) and the hardware used in ground operations. The software used for this 

project was GNU Radio Companion, which is an operating system that deals with radio 

functionality. GNU Radio Companion (GRC) only runs on the Linux OS and is extremely useful 

in experimenting with the specific hardware used for the OMSPA design.  

The experiments designed for this project test the functionality, range, and performance of the 

hardware. The first “milestone” test was verifying that we could see the down-converted 

ASTERIA signal on each computer. The second test was to verify that we could send a simulated 

signal to each receiver via a separate testbed computer. The third test was to see if multiple, 

distinct, signals could be simulated and transmitted from the testbed to the OMSPA computer 

cluster. Here, each radio is tuned to its corresponding, incoming signal. Once each test was 

verified and complete, the system was ready for the MarCO demonstration. The MarCO (Mars 

Cube One) demonstration was an enormous success for the OMSPA experiment, as data was 

recorded successfully from each spacecraft (3) launched. 
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3.0 Materials 

3.1 Hardware 

The complete bill of materials (BOM) can be found in Appendix E. Images of all hardware and 

hardware setups can be found in Appendix D.  

3.1.1 B210 Ettus Research Receiver 

The B210 uses a universal software radio peripheral (USRP) platform and continuously covers 

the frequency range 70 MHz to 6 GHz, which fits perfectly within the parameters of this project. 

Low cost experimentation is the main use of the B210 and the USRP Hardware Driver is fully 

supported, meaning development with GNU Radio is simple and seamless. This USRP makes 

use of a radio frequency integrated circuit (RFIC) direct conversion transceiver which can 

provide about 56 MHz of bandwidth. Four B210 USRP radios were used in experimentation (one 

for each computer). The B210s were connected to the fiber intermediate frequency (IF) panel in 

the Mission Operations Center (MOC) via a four-way power divider. A block diagram of the 

system can be seen in Appendix A.  

3.1.2 Hack RF One 

The Hack RF is an inexpensive software defined radio peripheral created by Great Scott 

Gadgets. The Hack RF can transmit and receive radio signals from 1 MHz to 6 GHz and is 

designed to allow the testing and development of experimental radio systems. During OMSPA 

testing, three Hack RFs were used to simulate radio signals at different frequencies using the 

GNU radio companion software.  
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3.1.3 Ground Station Equipment and Testing Equipment 

Morehead State’s 21 Meter system is a dual-purpose instrument, used as a ground station for 

small satellites and a radio telescope for astronomy research. Students who work with the ground 

operations team gain valuable experience in research, instrumentation, engineering design, and 

systems level engineering experience. The 21-meter system also acts as a test-bed for 

experimental systems for small satellite hardware. Currently, MSU’s ground station is 

undergoing an upgrade to become compatible with NASA’s Deep Space Network (DSN). The 

transition requires performance upgrades from certain instruments such as the low noise 

amplifier, local oscillator, down converter, etc. These instruments can be found in the lower 

equipment room of the 21 meter and can be controlled remotely from the mission operations 

center.  

While performing the various system tests needed to validate the OMSPA solution, multiple 

instruments were used for validating the simulated signals being produced by the Hack RF(s).  

The equipment used is listed below: 

• HP 8349B Microwave Amplifier: This power amplifier provided power to be effective 

against RF losses and provides a frequency output range from 2 to 20 GHz. At 2 GHz, 

the amp produces an output of about 25 dBm of gain. The simulated signals transmitted 

from the Hack RF(s) were initially very weak and were not being picked up by the 

software-defined radio (SDR) in the mission operations center, so the power amplifier 

was added into the design.  

• HP 8560E Spectrum Analyzer: This analyzer was used in verifying that specific 

frequencies were being successfully transmitted by the Hack RFs and received by the 



9 
 

B210s. The HP8560E has a continuous frequency sweep from 30 Hz to 2.9 GHz and 1 

Hz resolution bandwidths.  

• Horn antenna, SMA adapters, and cables: The horn antenna was used to blast the 

simulated signals from the Hack RFs to the 21 meter, where the signals were down 

converted and sent back down to the MOC over the fiber line. The cables and adapters 

were needed for hooking up equipment for testing and the MarCO demonstration. 

3.2 Software 

3.2.1 GNU Radio Companion 

GNU Radio Companion (GRC) is an operating system that considers radio functionality. 

Incredibly useful in experimenting and testing, GRC allows one to program hardware or 

implement certain features of hardware into code. This software development tool provides users 

with a large library of signal processing blocks that can be used to create software-defined radios 

with cheap, available, external RF equipment. GNU radio only runs on Windows or Linux OS, 

however for this project the Linux OS was used. The OS ran on a VirtualBox virtual machine 

(VM). GNU Radio is also very handy in creating detailed flow graphs for system design. 

Another useful feature of GNU radio is that the user has access to various data types, including: 

• Byte: 1 byte of data (8 bits per element) 

• Float: 4-byte floating point 

• Short: 2-byte integer 

• Int: 4-byte integer 

• Complex: 8 bytes (a pair of floats) 



10 
 

The blocks in GRC connect through data streams that have a specific data type. GNU radio will 

not allow a flow graph to compile at runtime if two connecting blocks do not have matching data 

types.  

Gnu Radio Companion was used for creating different flow graphs that would transmit signals 

through the Hack RFs, receive signals by the B210s, create spectrum plots (fast Fourier 

transform or ‘FFT’ plots) that would show the transmitted and received signals, and oscilloscope 

plots that showed the sample rate of the received signals. Examples of the GRC flow graphs can 

be seen in Appendix B. The “blocks” are blocks of code that can be manipulated. New blocks 

can also be created. These custom blocks are called “out of tree modules” (OOTM) and are 

created according to specific testing parameters. They are called OOTM because they do not live 

within the GRC source tree. The custom OOTMs allow the user to implement their own 

functions and maintain the code themselves. For OMSPA, several OOTMs were created to 

receive data and write it to an output file. The specific functions of the OMSPA OOTMs 

includes; reading from the data files received by the B210s and convert them to proper GRC 

format (file.dat), sending GRC data files to the USRP B210, receiving data from the USRP 

(receive) and outputs the files to ‘output.dat’, and writing a generated ‘. wvsr’ file from the 

received, sampled data from the output.dat file. The “wvsr” file is specific to NASA JPL’s Very-

long-baseline interferometry (VLBI) science recorder (VSR). The Wideband VSR, or WVSR, 

makes use of a digital baseband converter which records data straight to a hard drive with 

significant storage capability. From here data is sent to JPL via the ‘wvsr’ format.  

3.2.2 Software Defined Radio 

The software-defined radios that are used in Morehead's mission control center are very sensitive 

and are used primarily for the tracking of spacecraft. For this project, these SDR's were used in 
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testing the system with the Hack RF(s) by verifying that a signal was being transmitted and seen. 

They were also used in the tracking of ASTERIA, MarCO A and B, and InSight, where OMSPA 

was tested, and subsequently demonstrated successfully. Figures and images of the software 

defined radio used in testing can be seen in Appendix B.   

4.0 Testing Challenges and Solutions 

4.1 Setup for Testing the OMSPA system 

The equipment that was setup includes an OMSPA computer cluster of four, however, by 

making use of a KVM switch (keyboard, video, and mouse) users can easily switch between 

whichever OMSPA computer they need during testing or tracking. Each computer is equipped 

with its own B210 recorder, and each recorder will be connected to a four-way power divider. 

The power divider is connected to the IF panel, where the signal comes in from the 21-meter, 

which was operating with an S-band feed at the time. The 21-meter began operating with an X-

band feed the day before the launch of MarCO, which was launched May 5th, 2018 (with 

InSight). Each OMSPA computer had identically cloned hard drives, where GNU radio 

companion was already loaded onto the Linux OS. The flow graphs that were used in GRC on 

each computer were, for the most part, the same. They differed in that each would be tuned to 

record a specific frequency from the receive band. For most of the testing, only three of the 

OMSPA computers were used. For the MarCO demonstration, the first three OMSPA computers 

were for each of the satellites being tracked, respectively. While the fourth OMSPA computer 

was used for reading and writing the data files. This computer cluster lived in MSU’s MOC.  

On the other side of the MOC, lived the testbed computer. Here, signals were simulated using 

GRC and the Hack RFs, along with the power amplifier and horn antenna. A block diagram 
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showing the overall testbed/cluster design can be seen in Appendix A. Each Hack RF plugs into 

the testbed computer, which runs the Linux OS, and are connected on the other end with another 

four-way power divider. Only three Hack RFs were used in testing, so the fourth terminal on the 

divider was secured with a dummy load. The other end of the power divider was connected to the 

HP power amplifier, which was connected to the horn antenna. Here the signal is blasted at the 

21-meter, a down-converted signal is converted from RF to fiber and sent over the fiber line to 

the MOC. The signal is converted back to RF and connected to the IF panel, where the received 

IF sample is split between the B210 USRPs.  

4.2 ASTERIA Pass Testing 

ASTERIA, which stands for Arcsecond Space Telescope Enabling Research in Astrophysics, is a 

6U CubeSat created by NASA JPL and deployed on November 20th, 2017 from the International 

Space Station (ISS). The ASTERIA mission seeks to demonstrate technology that can make 

astrophysical measurements on board a CubeSat, but mainly the mission is to train upcoming 

engineers. ASTERIA is being tracked by Morehead’s 21 meter and offers training for the 

students here as well.  

Since MSU tracks ASTERIA multiple times a day, it made sense to take advantage of these 

passes to test whether each B210 could receive the down-converted ASTERIA signal at 70 MHz. 

the test was a complete success, it was verified that each of the four B210 USRPs, when tuned to 

the 70 MHz center frequency, picked up the ASTERIA signal. Appendix B shows the 

oscilloscope plot and spectrum plot from this test, and a very strong signal can be seen at the 70 

MHz center frequency. This test was a milestone in that it was verified that the system worked 

and could receive data from an actual spacecraft. It also demonstrated the sensitivity and higher 



13 
 

noise levels of the B210s. From here, it was agreed that the next test would be to see whether we 

could simulate three distinct signals within a close frequency range using the Hack RFs. 

4.3 Transmitting Simulated Signals with the Hack RF 

Getting the Hack RF to transmit posed a few challenges. The GRC on the testbed computer 

needed hardware drivers installed for the Hack RFs. These drivers add new signal processing 

blocks to the source tree that are specific to the Hack RF. Before building the block in Linux, it 

needed to be determined that the testbed computer recognized the Hack RF device. The 

command “$ hackrf_info”, when entered in to the terminal tells the user whether a device is seen. 

If everything goes well the user will see the devices’ serial number, board ID, part ID number, 

etc. displayed in the terminal. When performed, the computer recognized the Hack RF that was 

plugged in. With the device verified, the user can download the drivers that allow for use of the 

OsmoSDR block which is necessary for transmitting and receiving signals with the Hack RF. 

The build system of the gr-osmosdr will not compile in GRC if certain dependencies are not 

properly installed. When the gr-osmosdr builds successfully in Linux, source and sink osmocom 

components will be visible and usable in the GRC library. Once the osmocom drivers were 

installed successfully the flow graph could be compiled. 

The GRC flow graph used to transmit simulated signals from the Hack RF contains a file source. 

This file source is specifically chosen to be the IRIS emulator feedback playback on loop. The 

IRIS emulator is a device that emulates the IRIS transponder, an instrument developed by NASA 

JPL is the main form of communication on the Lunar IceCube mission. However, since MSU 

does not own an actual IRIS transponder, an emulator was created for testing purposes. The file 

source is a playback loop from the emulator and can be used to simulate a signal at a unique 

frequency. In Appendix B the flow graph and spectrum plot of the transmitted signal can be seen. 
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To verify that the B210s will see the down-converted signal, the Hack RF was connected to the 

spectrum analyzer and tuned to the transmit frequency, which was set at 2.271 GHz. The signal 

was seen on the spectrum analyzer, so the Hack RF was then connected to the horn antenna. An 

issue arose in that the signal was not seen by the SDRs in the MOC. It was assumed that the 

signal was too weak to be seen. The power amplifier was then brought into the system and 

connected between the Hack RF and the horn antenna. It provided about +20 dB of gain. This 

successfully produced a strong enough signal and the downconverted frequency was seen at 75 

MHz. It was verified that each B210 picked up the signal when tuned to 75 MHz center 

frequency. The emulated signal was transmitted with +20 dB RF gain, +20 dB IF gain, 20 dB of 

baseband gain, and a 20 MHz sample rate. Since, getting one Hack RF was a proved success, the 

next step was to get three of them transmitting at once. 

4.4 Transmitting Simulated Signals with multiple Hack RFs  

There was a real challenge in getting each Hack RF to transmit a different frequency at the same 

time. The first step was to plug each Hack RF into the computer and connect them using a power 

divider. Then the “$ hackrf_info” command was typed into the terminal. The serial number, 

board ID, and part ID number for each device was displayed in the terminal. The terminal also 

numbered each board (0-2).  

GNU radio allows the ability to go into a block and change its properties accordingly. For the 

osmocom sink blocks, the user must enter the specific serial number of the Hack RF for the 

block to connect with the device and transmit the signal. In one flow graph, there can be three 

osmocom sinks for each of the Hack RF devices, and each sink can be tuned to transmit a 

different signal. It was challenging to discover that this was the way to connect the devices with 

the flow graph because with just one Hack RF the computer automatically knows which device 
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you're using. Specifically, it was a challenge because once it was discovered that the serial ID 

was needed to be entered in “device arguments”, which is a section of the osmocom sink block 

that syncs the devices to the flow graph, it still did not work. It took much further research and 

frustration to realize that only the last eight digits of the serial ID were needed. Once the last 8 

digits were tried and entered for each osmocom sink block, the test became a success. To verify 

that the system would recognize these signals, the power divider connected to the Hack RFs was 

connected again to the spectrum analyzer. Images of the spectrum analyzer showing all three 

signals, the block diagram of the system, and the signals seen on the SDRs are seen in Appendix 

B.  

The frequencies that were manually set for each Hack RF were 2.271 GHz, 2.273 GHz, and 

2.275 GHz and their associated down converted signals were seen at 72 MHz, 74 MHz, and 76 

MHz, respectively. The frequencies were being transmitted at an RF gain of 10 dB and an IF 

gain of 50 dB. The baseband gain was set to 20 dB at a bandwidth of 10 MHz. For this test, only 

OMSPA 1, OMSPA 2, and OMSPA 3 were used. Each B210 at the OMSPA computers were 

tuned to its correlated, down-converted frequency with a receive gain of 20 dB and IF frequency 

of 10 MHz. In appendix B, an image of each signal on the generated oscilloscopes and spectrum 

plots from each B210 can be seen. The success of this test was crucial in that it was verified the 

OMSPA system could receive a band with prominent signals and record the data on receivers 

tuned to the down-converted frequencies.    

4.5 End-to-end Testing with JPL 

End to end testing consisted of running the three Hack RFs at the same three frequencies as 

before and recording the associated IF on all three channels of the B210s (72, 74, 76 MHz). 

Unfortunately, the power going into the USRPs at the time of the end to end testing was 
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unknown. The NASA JPL team, who consists of Doug Abraham, Sue Finley, and Zaid Towfic, 

could remotely SSH into each of the OMSPA computers using their IP addresses and passwords. 

By remotely logging in to the computers, the JPL team could verify that there was signal 

visibility.   

During the actual test, the JPL team was only able to see the signal being recorded on the 

OMSPA 2 computer and therefore most of their tests were done on this computer. They also 

could not compile and run the flow graphs to see the generated spectrum plot, believed to be 

because of the dated OS on the computer. This caused significant issues during testing. While 

JPL was testing remotely, they sought to sample the signal at a few MHz and record the received 

data in the WVSR format and GNU radio complex floating-point format, where the computer 

splits and quantizes the data. However, OMSPA 2 was too slow to record the data at that rate and 

ended up dropping frames. In GRC, at runtime, if the user sees repeating “O’s” or “U’s” it means 

frames are being dropped and the computer is unable to save data fast enough to the disk. The 

data coming in from the USRP over USB 3.0 at 32 bits is saved to byte data type. As the data 

rate was decreased from MHz to kHz, less repeating “O’s and U’s” were seen. The highest data 

rate used by JPL was sampled at 400 kHz and the samples were saved in byte to a GNU radio 

file named “b200_zaid.grc”, which was created by JPL team partner Zaid Towfic.  

Another problem that arose was the bandwidth going into the USRPs was too broad to modulate. 

The signals that were being transmitted were about 2 MHz too wide (Appendix B). However, on 

the day of the demo the bandwidth would be smaller and there would be more sampling done in 

the kHz range, which was plenty. To correct this, JPL asked for further testing using a different 

source file than the IRIS emulator playback loop with the flow graph “b200_zaid.grc”. They also 
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asked for a measurement of the signal level going into the USRPs. These tests are described in 

further detail in the next section. 

4.6 Measurement Testing 

The goal of running these measurement tests was to find the signal power (in dBm) going into 

the B210s and to repeat the same test with a new file source. The file “b200_zaid.grc” was edited 

to include a new source file and the osmocom sink blocks for each Hack RF device and renamed 

“transmit_msu.grc” on the testbed computer, which is seen in Appendix B. This new file had the 

file source replaced so that filtered noise at 100 kHz would be transmitted at a bandwidth of 200 

kHz. The frequencies for this test were changed to 2.273, 2.275, and 2.277 GHz, respectively, 

with a sampling rate of 200 kHz. To make sure the signal was being correctly transmitted, the 

spectrum analyzer was hooked up to the power amplifier. Each signal was being transmitted 

clearly, so the power amplifier was reconnected to the horn antenna. The received, down-

converted signal was picked up by the more sensitive SDRs in the MOC and the bandwidth was 

much narrower (seen in Appendix B). Each OMSPA computer ran the “b200_zaid.grc” script 

and each B210 was tuned to 72, 74, and 76 MHz. On the fourth termination of the power divider, 

the fourth B210 was unconnected (as it was not used) and instead the spectrum analyzer was 

connected to measure the signal levels. On the spectrum analyzer the power of the signal going 

into the B210’s was measured at around -51 dBm. On the OMSPA computers there was no sign 

of repeating O’s or U’s, which meant there was no dropping of frames. The test results looked 

reasonable (results from JPL seen in Appendix C), however the recording was saturated due to 

the receive gain on the B210s being set to 70 dB. Another issue that arose was the spectrum 

being off by about 47 kHz (seen in Appendix B). This was noticed by Zaid and he suggested that 

it could be due to the transmitter and receiver not sharing a common local oscillator. However, 
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the issue was small, and if the offset was not more than 100 kHz during the MarCO 

demonstration, it wouldn’t be an issue. Zaid’s transmitted file spectrum plot is seen in appendix 

C and shows slight, parabolic shaping caused by the shape of the USRP filter. Increasing the 

bandwidth on the channels in the USRP source setting would help to fix this.  

Further testing was necessary before the setup could be approved for the MarCO demonstration. 

This new test consisted of running the same test as before, only now the receive gains would be 

changed to account for the saturation. In the file "b200_zaid.grc", which was on each OMSPA 

computer, there was a variable block where the receive gain could be tuned. A range of receive 

gains was tested at 0, 10, 20, 30, 40, 50, and 60 dB.  An outputted data file was created for each 

receive gain value and saved on OMSPA 2, where JPL could access them and analyze them 

further.  

Zaid Towfic further analyzed the data files from the new test and determined they looked good, 

aside from the frequency shift, and that receive gains between 20-50 dB worked best (clipping at 

50 dB, seen in appendix B). Due to the power level being at -51 dBm, a receive gain of 30 dB 

would work best on the day of the MarCO demonstration, in case RF levels were higher than 

expected. From this test, it was agreed the system was ready for the MarCO demonstration, 

which is explained further in the next section. 

5.0 Mars Cube One and InSight Demonstration 

The Mars Cube One (MarCO) spacecraft was the first CubeSat mission to journey to Mars. 

MarCO is a pair of tethered, “twin communications-relay” CubeSats named MarCO A and B 

whose mission is to monitor stationary Mars lander, InSight ("Mars Cube One (MarCO)", 2018). 

Built by NASA JPL, the MarCO spacecrafts measure at 36.6 centimeters by 24.3 centimeters by 
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11.8 centimeters, making them six-unit CubeSats (a standard one-unit CubeSat is a 10 cm x 10 

cm x 10 cm cube) ("Mars Cube One (MarCO)", 2018). InSight, accompanied by MarCO, was 

launched from Vandenberg Air Force Base, California on May 5th, 2018 aboard the Atlas V 

rocket. The success of the MarCO mission would allow for “a ‘bring-your-own’ communications 

relay option”, which would help future missions to Mars during the brief, risky atmospheric 

entry and landing ("Mars Cube One (MarCO)", 2018).  

Morehead State acted as one of the primary ground stations used for tracking MarCO/InSight. 

The feed for MSU’s 21 meter had to be swapped the day before the launch from an S-band feed 

(2 to 4 GHz) to an X-band feed (8 GHz to 12 GHz) to disrupt the ASTERIA mission as little as 

possible. The MarCO launch was the opportune time to demonstrate the OMSPA system and 

record data from multiple satellites simultaneously. The transmitting frequencies of MarCO A, 

B, and InSight were 8.414, 8.412, and 8.427 GHz, respectively. The OMSPA system would 

receive each down-converted frequency and record the associated IF, where JPL could remotely 

access said data for further analyses and manipulation. This was a historic mission and 

opportunity for Morehead State to prove the validity of OMSPA with the first Mars bound 

CubeSats. Morehead State only tracked InSight and MarCO for 5 days, where data was recorded 

from each spacecraft every day using the B210s. 

5.1 MarCO Mission Day 1 

On May 5th, 2018 Morehead State began tracking MarCO using the X-band feed in receive only 

mode. The OMSPA computers 1, 2, and 3 were all set to the corresponding, down converted 

frequencies of MarCO A, B, and InSight. InSight transmitted for the entire pass, while MarCO A 

and B transmitted one at a time. OMSPA 1 was tuned to record MarCO A at 314.160 MHz, 

OMSPA 2 was tuned to record MarCO B at 312.117 MHz, and OMSPA 3 was tuned to record 
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InSight at 326.78 MHz. For the first few days of tracking the GNU radio flowgraphs on each 

computer were only set to record the data coming in over IF and save it to an output file (ex. 

Day1_Insight.dat), so there was not a generated spectrum plot for each downlink. Instead, a 

spectrum analyzer was attached to the fourth terminal of the power divider. A receive gain of 30 

dB was used one each receiver. Here, the signals could be verified and measured. MarCO A was 

seen at about 10 dB carrier to noise (C/N), where the noise floor was at about -60 dB. InSight 

was seen about 30 dB out of the noise and the power level was at -35 dBm. MarCO B had a 

carrier to noise ratio of about 27 dB and the power level measured going into the USRP was 

about -37 dBm. MarCO B’s signal was significantly stronger than MarCO A, which was due to a 

geometry issue at the receiver in Goldstone, CA. The data files captured from the first day were 

later analyzed by the JPL team and they verified that the signals looked good and did not appear 

to be clipped, meaning the receive gain could be increased by about 3 to 5 dB for the second day 

of tracking.  

5.2 MarCO Mission Day 2 

On May 6th, 2018 InSight was seen at a center frequency of 327.100 MHz, and subcarriers were 

seen at 327.38 and 326.85 MHz. The signal appeared to be weaker at -50 dBm, as the spacecraft 

had increased in distance form Earth. The noise level was seen at -55 dBm on the spectrum 

analyzer with a resolution bandwidth of 100 kHz spanned to 10 MHz. MarCO A was seen at a 

center frequency of 314.228 MHz at a signal strength of -61 dBm (where the noise floor was at 

about -71 dBm). MarCO A had a carrier to noise ratio of 21.19 dB and a signal to noise ratio of 

about 30 dB. By this time, 71 frames were already recorded from MarCO A, which was more 

than the DSN at the time. MarCO B was later seen at 312.184 MHz with a signal strength of -54 

dBm (noise level at -52 dBm), so the carrier to noise ratio was at 15 dB.  
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Demodulated frames from MarCO can be seen in Appendix C. The first five frames were 

decoded by the JPL team from the second day of tracking. The signal to noise ratio, energy per 

bit (Eb/No), and bit error rate for each frame can be seen. A plot of the data block constellation 

can be seen in Appendix C, along with the ASM waveform. Day 2 was successful in that actual 

data was recorded and decoded from MarCO. Seeing the demodulated frames was a significant 

point in this project. 

Certain problems arose with the recording of InSight and caused the data to be incomplete. The 

subcarrier frequency used for InSight (281 kHz) was too high for the sampling rate.  Only one 

subcarrier, where telemetry is located, was seen by in the file Insight_2.dat by JPL. However, 

they could still extract telemetry. Another file for InSight was made called “InSight Day 2.dat”. 

This file was meant to replace “Insight_2.dat” with a more accurate frequency, but they were 

mislabeled, resulting in two files. From “Insight Day 2.dat”, the main carrier was seen along with 

one of the subcarriers. This ended up being enough data for JPL to work with. The best way to 

correct the issues that arose was to set the receive center frequency on one USRP to be 120 kHz 

off the carrier frequency for Day 3 passes. This way the entire signal (carrier and subcarriers) 

would be seen. 

5.3 MarCO Mission Day 3 

On May 7th, 2018 InSight ended up being recorded wrong, the frequency that was entered GNU 

Radio was a more accurate carrier and the additional 120 kHz to account for the low sampling 

rate was not included (by accident). This caused the collect for InSight to have a center 

frequency at 0 kHz offset from the carrier, and telemetry could not be collected, as only the 

carrier was seen.  



22 
 

Day 3 was successful in that data was recorded for each MarCO spacecraft. MarCO A was seen 

at 314.228 MHz at a signal strength of -65 dBm. The main carrier was a skinny, single tone with 

subcarriers. The noise floor was observed at -80 dB with a signal peak at -64 dB. The carrier to 

noise ratio was 16 dB and significant Doppler shift was seen on MarCO A as it transitioned into 

nominal mode while moving farther from Earth. On this day the 10 MHz frequency reference 

from the MASER (microwave amplification by stimulated emission by radiation) was hooked up 

to record more accurate data. MarCO B was seen late in the pass, and it was seen at 312.189 

MHz center frequency.   

5.4 MarCO Mission Day 4 

On May 8th, 2018 each spacecraft’s associated IF was recorded with file extensions “_Day 4.dat” 

on each OMSPA computer. MarCO A was seen at 314.228 MHz carrier frequency at -59 dB. 

MarCO A behaved nominally during this pass. MarCO B was seen transmitting at 312.189 MHz 

with a carrier to noise ratio of 15 dB. The signal switched from 1k, 25 kHz subcarrier to 8k direct 

modulation halfway through the pass. This made MarCO B’s signal appear to be much weaker. 

InSight was transmitting at 327.122 MHz with a carrier to noise ratio of 12 dB.  

The fourth OMSPA computer was used during these tests to record the InSight IF and test the 

WVSR conversion block in GNU Radio. The maximum sampling rate of the WVSR block was 

set at 100 kHz and the maximum sampling rate for the file sink block was set to 5 MHz. While 

successful recordings from MarCO A and B were acquired, the data file for InSight was 

accidentally erased, which explains why no carrier was seen in the file. Only one day remained 

to fix the errors and get successful data from InSight. These changes included recording InSight 

at the IF + 120 kHz on OMSPA 3 and recording InSight on OMSPA 4 to test the WVSR block at 

the IF + 280 kHz.  
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5.5 MarCO Mission Day 5 

On May 9th, 2018 the final recordings of MarCO A, B, and InSight were acquired. MarCO A and 

B were seen at their usual frequencies. InSight was transiting at with a center frequency at 

327.128 MHz and was recorded at 327.248 MHz (IF + 120 kHz). On OMSPA 4 the WVSR 

block was being tested using the InSight IF plus 280 kHz and was recorded at 327.408 MHz. 

Successful collects from each spacecraft were verified by JPL and frames from the two MarCOs 

were decoded, with certainty that frames would be collected from InSight as well.  

Although data was successfully collected for each spacecraft, the WVSR writing block for 

InSight on OMSPA 4 could not be demonstrated. The WVSR test file that was downloaded 

(test0508209.wvsr) was examined to see if any data was properly saved. The headers were easily 

readable, but the data was “identically zero”, according to an email from Zaid Towfic, who 

downloaded said test data. The reason for this was that the conversion block used “Complex to 

IShort” and only took input numbers from -1 to +1 and converted them to the short data type. 

This caused the data to be viewed as, essentially, zero.  

Unfortunately, this was the last day of tracking the spacecrafts, so the WVSR writing flow graph 

could not be verified. However, the way to correct this would have been to multiply the output of 

the WVSR source block by the following equation; (215(-1)) = 32767. This would be applied 

before the conversion due to the output of the “Complex to IShort” block being whole numbers 

from -32767 to +32767, according to Zaid Towfic’s follow-up email regarding the downloaded 

test WVSR data file. An example of the corrected WVSR flow graph is seen in Appendix C.  
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5.6 MarCO Mission Summary 

Although various challenges and errors occurred, the MarCO/InSight demonstration was 

exceedingly fruitful in validating the OMSPA concept, as at least 250 frames were decoded from 

each spacecraft since launch. The MarCO launch sought to demonstrate multiple technologies 

including: downlink using the X-band feed and DSN equipment at MSU (carrier lock, symbol 

lock), downlink using the X-band feed and MarCO receiver system, UHF uplink simulation of 

InSight for MarCO testing, and the OMSPA concept using the X-band feed and SDR-based 

multiple receiver system. This was the first ever OMSPA demonstration with a CubeSat and 

Morehead State was ecstatic to be included in such a historic demonstration. 

6.0 Conclusion and Recommendations 

Overall, the OMSPA concept was successfully verified during the MarCO/InSight 

demonstration. The Deep Space Network’s over-subscribed schedule can be lightened and 

capitalized upon due to the opportunistic tracking of multiple spacecraft during scheduled 

downlink times. Where each satellite can be heard transmitting all the time, at different 

frequencies, in the same beam. Only one satellite at a time can communicate with the ground 

station, where transmit packets are sent via uplink. Recorders set up at the ground station, one for 

each transmitting spacecraft, are tuned to the corresponding down converted frequencies.  

Morehead State University offered an experimental, legitimate test facility for the Deep Space 

Network in an efficient and cost-effective way. The 21-meter, which was used for its smaller 

diameter, yet large beam width, received the entire band from 8.4 to 8.5 GHz. The signal was 

then down converted to a 100 MHz band width and sent over a fiber link to the control center, 

where the RF signal is split at the IF panel, and the associated received IF sample is split 
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between the USRP receivers. The digitized downlink is saved for later, after the SDR’s 

channelize the band to record the spectra.  

It was a privilege to work on this project due to its innovation, success, and the benefit of 

working with the distinguished partners of the JPL team. The significance of OMSPA in the 

aerospace industry is due to the DSN’s ability to track more spacecraft at once. Many issues 

arose during testing and the MarCO demonstration. Some more significant problems included: 

not seeing signals on the SDRs, time stamping the data files, runtime/compile errors, and 

gathering all the required materials. The key to solving these were patience and focus. 

Sometimes the solutions were obvious, as others took quite a bit of troubleshooting. Although 

many problems occurred, this was still a very successful project, as it produced real proof of the 

concept goals.  

This project had another goal; to create a foundation for future students to forward the progress 

on this far-reaching project. Chronicling the work that has been done, as well as the work that is 

currently being done is extremely important. Others who replicate this work will build of this 

foundation and add their own innovations. This mission was a huge achievement for Morehead 

State University, the Jet Propulsion Laboratory’s Deep Space Network, and for all students and 

staff involved.  
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8.0 Appendices 

Appendix A – Block Diagrams 

 

Figure 1: This image shows the receive path of Morehead State’s ground station for the OMSPA 

experiment.  

 

 

 

Figure 2: This image shows the test setup for verifying the signals being transmitted from the 

Hack RFs. 
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Figure 3: This image depicts the full system test setup for simulating multiple signals using the 

Hack RFs. 

 

 

Figure 4: This block diagram, created by MSU ground station operator Chloe Hart, is slightly 

outdated, yet shows how the MASER is connected in the system. 
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Appendix B – Testing Results 

ASTERIA Pass Testing 

Figure 5: This image shows the GRC flow graph used on OMSPA 3. The UHD: USRP source 

connects to the B210 USRP and the block is tuned to receive the ASTERIA signal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: This image shows the spectrum created by the GRC flow graph. The ASTERIA signal 

can be seen at 70 MHz. 
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IRIS Emulator Testing 

Figure 7: This image shows the GRC flow graph that was on the testbed computer. The FFT plot 

shows what the raw signal being transmitted looks like. The file source was the IRIS emulator 

feedback loop and the signal transmitted was at 2.063 GHz. 
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Figure 8: This image shows the oscilloscope and spectrum plots generated by the “b200” 

flowgraph in GRC on the OMSPA 2 computer. The down converted frequency was 75 MHz. 
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IRIS Emulator Playback with three Hack RFs 

Figure 9: The three osmocom sink blocks that are connected to each Hack RF via serial number. 

The file source is the IRIS emulator feedback. Each sink is tuned to transmit a different 

frequency. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: All three signals verified on the spectrum analyzer before hooking the Hack RFs up to 

the rest of the system. 
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Figure 11: The carrier and modulation from the simulated, down converted signals. This image is 

taken from the more sensitive SDRs in Morehead State’s MOC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: An example of the receive flow graph on the OMSPA 3 computer. The same file was 

used on each computer but tuned to separate frequencies. 
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Figure 13: The simulated signal on OMSPA 1 – tuned to down converted frequency at 72 MHz. 

 

Figure 14: The simulated signal on OMSPA 2 – tuned to down converted frequency at 74 MHz. 
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Figure 15: The simulated signal on OMSPA 3 – tuned to down converted frequency at 76 MHz. 
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End- to-end and Measurement Testing 

 

Figure 16: This image shows the new file source used for simulating signals. The GRC library 

can also be seen to the right. 
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Figure 17: All three simulated signals being verified on the spectrum analyzer. From the new 100 

kHz bandwidth signal source. 

 

Figure 18: This image shows the narrower bandwidth with the new 100 kHz bandwidth signal 

source. 
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Figure 19: This image shows the saturated signal from the recording using “b200_zaid” where 

the receive gain was set too high (70 dB). This image was created by Zaid Towfic at NASA JPL. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: This image shows the signal from the new 100 kHz signal source to be off by about 

47 kHz. This image was created by Zaid Towfic at NASA JPL. 
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Figure 21: This image shows slight shaping on the received spectrum due to the shape of the 

USRP filter. 
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Appendix C – MarCO/InSight Demonstration Results 

 

Figure 22: The GRC flow graph for MarCO A on OMSPA 1. The flow graph generates a 

spectrum plot to show the signal and outputs the data to file sink. 

Figure 23: This plot was generated by the flow graph in the previous image. The carrier and 

modulation from MarCO A is seen about the center frequency. 
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Figure 24: The GRC flow graph for MarCO B on OMSPA 2. The flow graph generates a 

spectrum plot to show the signal and outputs the data to file sink. 

 

Figure 25: This plot was generated by the flow graph in the previous image. The carrier and 

modulation from MarCO B is seen about the center frequency. 
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Figure 26: The GRC flow graph for InSight on OMSPA 3 on day 4 of tracking. The flow graph 

generates a spectrum plot to show the signal and outputs the data to file sink. 

 

 

Figure 27: This plot was generated by the flow graph in the previous image. The carrier and 

modulation from InSight can be seen about the center frequency. This data was corrupted due to 

overwritten data. 
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Figure 28: The GRC flow graph for InSight on OMSPA 3 on day 5 of tracking. The flow graph 

generates a spectrum plot to show the signal and outputs the data to file sink. 

 

 

Figure 29: This plot was generated by the flow graph in the previous image. The carrier and 

modulation from InSight can be seen. This collect was successful in that both carriers were 

captured. 
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Figure 30: The spectrum analyzer, hooked up to the fourth terminal of the power divider, 

showing the signal from MarCO A. The spectrum analyzer helped verify that signals were being 

recorded when FFT plots were not yet being generated by the GRC files. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: MarCO B’s signal being verified on the spectrum analyzer. 
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Figure 32: InSight’s signal being verified by the spectrum analyzer. A peak is seen on a 

subcarrier at 326.783 MHz. 

 

Figure 33: This flow graph was used on OMSPA 4 to read and write the incoming signal from 

InSight to WVSR format. 
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Figure 34: Received data from the MarCO spacecrafts. This image was created by Zaid Towfic 

at JPL. 
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Figure 35: This image shows the ASM waveform from the MarCO spacecraft and shows the 

operations of the system compared to a standard. The data block constellation is shown on the 

bottom and displays constellations of the received data block and is demodulated. This image 

was created by Zaid Towfic at JPL. 
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Figure 36: These are the first five frames decoded from MarCO. This image was created by Zaid 

Towfic at JPL. 
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Appendix D – Hardware 

 

 

 

 

 

 

 

 

 

 

Figure 37: This image shows the OMSPA computer cluster in the MSU MOC. 

Figure 38: This image shows the testbed computer. The three Hack RFs, horn antenna, and 

power amplifier are all seen. 
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Figure 39: This spectrum plot shows the insertion loss of the four-way power divider used for 

connecting the USRPs. 
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Figure 40: This spectrum plot shows the return loss of the four-way power divider used for 

connecting the USRPs. 
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Appendix E – Bill of Materials 

Figure 41: This is the most current BOM. It differs from figure 2 (see below) in that the 

hardware section is omitted. The hardware was not included because it was not required to pay 

for the 21-meter services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: The original BOM is less precise, as it is missing testing equipment and includes 

unnecessary hardware. 
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Appendix F – Project Timeline 

Figure 43: The most up to date timeline. This timeline was created after all testing and 

demonstrations were complete. 

 

 

Figure 44: This image shows the outdated timeline for OMSPA and was created in September 

2017. This timeline is messy and out of order and many tasks were changed during the end of the 

project. 
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• Assisted in UHF tracking of launched satellites (UniSat-5, UniSat-6, Kysat-2) using 21 

meter and ground station. 

mailto:mcstratton@moreheadstate.edu
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• Developed Testing and Documentation report of the Cosmic X-ray Background 

Nanosatellite (CXBN-2) Magnetorquers. 

 

Summer Internship at Space Tango, LLC.                                                                                

Lexington, KY 

Engineering Intern                                                                                                                          

Summer 2016 

• Developed assisted in thermal modelling and analysis for the cell culturing module 

aboard the Tango Lab. 

• Collected information on various thermal insulating materials. 

• Produced a “cold call” list for the marketing/business team. 

 

Kentucky Innovation Network                                                                                                  

Morehead, KY 

Student Entrepreneurial Coordinator/Intern                                                                         

February 2014- 2015 

• Assistant instructor for SpacePREP, a space engineering workshop for young women. 

Also assisted in preparation. 

• Moderated meetups to connect students and entrepreneurs. 

• Developed and presented STEM based presentations for surrounding schools to promote 

STEM education and Morehead State University. 

• Produced electronics models to put in exhibit at Highlands Museum in Ashland, KY. 

 

 

Senior Thesis Work                                                                                                                      

Morehead, KY 

Status: Complete                                                                                                                           

Fall-Spring 2016 

Design and Implementation of a 3-Axis Magnetorquer System for CXBN-2 

Work: Testing and documentation for the three-axis magnetic torque system onboard CXBN-2. I 

provide research, designs, innovations, testing, and documentation to produce a definitive 

document proving the validity and versatility of the 3-axis system. 

 

Master’s Thesis Work                                                                                                                 

Morehead, KY 

Status: Complete                                                                                                                         

Fall-Spring 2018 

The Implementation of Opportunistic Multiple Spacecraft Per Antenna Concepts on the MSU-

STA Deep Space Station 17 

Work: Documentation and implementation of the Opportunistic Multiple Spacecraft per Antenna 

(OMSPA) solution at Morehead ground station DSS-17. This is key to allow communication 

with many spacecrafts from a single antenna simultaneously. These techniques are possible when 

two or more spacecrafts are along the line of sight of the antenna and within its main beam. 

Frequencies in a broad band are collected, digitized, and later individual spacecraft carriers are 

decomposed using digital signal processing techniques.  
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Professional Development: 

• Attended launch of Elana 4 mission aboard Minotaur rocket in Wallops Island, VA in 

2013 

• Attended Small Satellite conference in Logan, Utah in 2014 

• Presented research at the Kentucky Academy of Science in Lexington, KY in 2014 

• Presented research at the Celebration of Student Scholarships at Morehead State 

University in 2014 

• Attended Amateur Radio Convention in Dayton, Ohio in October 2015 

 

STEM Outreach/ Volunteer Experience: 

• SpaceTrek 2013 & 2014: Assisted as peer mentor/ counselor for summer camp for 

Junior/Senior high school girls to teach them basic engineering skills and simulate a 

complete space mission by building and launching CricketSat.  

• Summer Camp for Children of Migrant families 2014: Assisted as tour guide, camp 

instructor, and preparation.  

• Richardson Scholars Summer Camp 2014: Assisted students in building their own 

“Jiggy Bots” and learning basic engineering skills. 

• International Observe the Moon Night Sept. 6th, 2014: Citizens from surrounding area 

come to observe the moon through our telescopes (mainly for families with younger 

children). I volunteered to help people use the telescopes and teach them different things 

about our moon. 

• Volunteer at Gateway Helping Hands Food Bank March-April 2016: Created food 

boxes for the homeless and needy, worked food drives and assisted in outreach for the 

community. 

 

Skills/Training: 

• Licensed amateur radio operator, Thermal Vacuum Chamber training, Shaker Table 

training, Systems Toolkit Level 1 certification, GNU Radio Companion, MATLAB, 

Linux OS, Solidworks, 42, Training on Morehead State’s Ground Station, Proficient 

with laboratory equipment (spectrum analyzers, oscilloscopes, etc.), Experience in 

Altium, Express PCB, Programming experience: Core Flight Executive, Basic, C, C++, 

Python, Soldering/ Microsoldering, Microsoft Office (Word, Excel, PowerPoint, etc.) 

 

Related Courses: 

• Undergraduate: DC/ AC Circuits, Intro to Computer Science, Calculus I-IV, Satellites 

and Space Systems I/ II, Digital Control Systems- Space Application, Wireless 

Communications, Engineering Phys I/II, Differential equations, Advanced Space 

Systems, RF/Microwave Systems and Antennas, Digital Signal Processing I, Satellite 

Communications 

• Graduate: Space Mission Analysis and Design, Thermal and Structural Analysis, 

Spacecraft Design and Fabrication, Linear Systems, Advanced Processor Systems, 

Spacecraft Sensors and Remote Sensing, Advanced Digital Signal Processing, Modeling 

and Simulation, Core Flight Executive, Advanced Space Communications 

 


