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TARGETED TRIPLE DRUG REGIMEN FOR THE TREATMENT OF PROSTATE CANCER 
 

 
An Abstract of the Thesis by 

Tanuja Tummala 
 

 
Prostate cancer is the most common amongst men. According to ACS 2018 statistics, 

about 164,690 new cases appear and 29,430 deaths occur. Nearly 6 in 10 cases are diagnosed in 

men over 50 years of age and often there are no early symptoms. The treatment options include 

surgery, chemotherapy, hormonal therapy and/or radiation and it can often be treated successfully. 

However, the poor management and adverse effects demanded ways to find better treatment 

option. Towards the development of a personalized medicine for prostate cancer treatment, we 

proposed to design prostate cancer targeting magnetic nanoplatform. This integrates various key 

components such as combination of drugs, imaging agents, targeting ligands and targeted delivery 

of these cargos in high concentrations to tumor. A triple drug regimen of Oxaliplatin, Irinotecan and 

5-Flurouracil was used, which was already known to be effective in the treatment of colorectal 

cancer and pancreatic cancer. These three drugs were encapsulated in folate conjugated magnetic 

nanoparticles and tremendous effect of cell death via oxidative stress in LNCaP cells was observed. 

The synthesis of magnetic nanoparticles, surface conjugation with folic acid using “Click” chemistry, 

encapsulations of cargos and their characterization were discussed in detail. Having folate 

conjugated magnetic nanomedicine, the drug delivery was targeted to prostate cancer and had no 

to minimal toxic effects on the healthy cells. Individual mechanism of the drugs and their synergistic 

effect in the treatment was evaluated by performing optical microscopy, magnetic resonance 

imaging experiments as well as cell-based assays such as ROS, apoptosis and necrosis, 

cytotoxicity, migration, and comet. This study showed us that the targeted nanoformulation which 

we designed was successful in exhibiting the toxic effects on a tumor cell. 
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CHAPTER I 
 
 

IRON OXIDE NANOPARTICLES IN NANOMEDICINE FOR THE DIAGNOSIS AND 

TREATMNENT OF CANCER: A BRIEF OVERVIEW 

                                                                               
                                                                               
1 INTRODUCTION:  

Cancer is the most frightful disease in the world characterized by assemblage of many 

diseases. According to the American Cancer Society Cancer facts and figures 2018, it was reported 

that 87% of the cancer cases diagnosed in United States are in people of age 50 or older.1 There are 

many known causes like smoking, unhealthy diet, lack of physical exercise, family history which may 

lead to the development of cancer. It was stated in a study by the American cancer society 

epidemiologists that 42% of the newly diagnosed cancer cases in 2018 are potentially avoidable.1 Early 

detection and treatment, as well as a decline in smoking habits showed a drop of 26% of cancer cases 

for lung, colorectal, breast and prostate cancers from the years 1991-2015.1 Cancer staging defines 

the degree of cancer at the time of diagnosis, which is essential for optimizing therapy and measuring 

prognosis. Several kinds of conventional treatment routes including chemotherapy, immunotherapy, 

hormone therapy, stem cell transplant, precision medicine, surgery, radiation therapy are available. The 

major draw backs of these conventional treatment approaches include harmful radiation use of 

hydrophobic anti-cancer drugs which have poor solubility, biocompatibility, and their effect on healthy 

cells finds difficulty in providing a better therapeutic effect.2 Many studies are going all over the world 

to treat the cancer by minimizing the toxic effects to non-cancerous cells. In this respect, the 

nanomedicine plays a key role in enhancing the therapeutic efficacy of the anti-cancer drugs. The 

development of targeted drug delivery paved the path for cancer treatment with low toxicity to the 

healthy cells, targetability, improved bioavailability, specificity etc. Sechi et.al., conducted a study and 

the results presented that 43% people consider using nanotechnology for biomedical applications.3 
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There are many nanoplatforms for the cancer theranostics. Amongst all, iron oxide nanoparticles are 

used by many researchers because of their improved theranostic approach, magnetic properties, and 

biodegradability.  

1.1 Iron oxide nanoparticles: Iron oxide nanoparticles fall under the category of magnetic 

nanoparticles, which are the chief class of nanoscale materials in current theranostics.4 The capability 

of the iron oxide nanoparticles to work together at both cellular and molecular levels and their unique 

physical properties made perfect for use in several biomedical applications such as MRI contrast 

agents,5 carriers for targeted drug delivery,6,7 tissue repair, and immunoassay, detoxification of 

biological fluids, hyperthermia,8 and in bio-separation, biosensors.9-14 There are many synthetic 

protocols for iron oxide nanoparticles like the co-precipitation method,15 thermal decomposition method, 

16 hydrothermal method,17 microemulsion method,18 Sonochemical method,19 and microwave assisted 

synthesis20 with their own merits and demerits which were previously reported.21 The average 

hydrodynamic diameter of these nanoparticles needs to be less than 100 nm to achieve targeted drug 

delivery and any other biomedical applications. On the other hand, there should also be a special 

surface coating which needs to be non-toxic and biocompatible and allows targeted drug delivery with 

a specific localization in the area. It was stated in a study that hydrophobic iron oxide nanoparticles, 

when entered the blood stream, are fenced by the hydrophobic plasma proteins through a process 

called as opsonization.22 After entering the physiological environment, there will be formation of a clump 

due to the contacts of hydrophobic-hydrophilic surfaces. This tends to clear the hydrophobic iron oxide 

nanoparticles through the process of mononuclear phagocytic system. In order to avoid this fast 

clearance from the system and to increase the stability, in vivo circulation, and functionality there is a 

need of hydrophilic coating on the surface of iron oxide nanoparticles. This makes the iron oxide 

nanoparticles a multifunctional theranostic agent by serving the purpose of both diagnosis and targeted 

therapy.  

1.2 Coating materials: There are several studies which used different kinds of coating 

materials on the surface of iron oxide nanoparticles. A) Chitosan, a natural polymer obtained from sea 

sources which is bio-compatible, hydrophilic, bio-degradable, non-antigenic and non-toxic coating on 

the iron oxide nanoparticles (IONPs) surface has shown that it was used to provide better contrast 
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agent for MR imaging and in therapeutic gene delivery.23-30 B) Polyethylene Glycol (PEG), a water 

soluble polymer which is reported to increase the aqueous solubility of hydrophobic drugs 31-34 and 

increases the circulation time by minimizing the uptake by the mononuclear phagocytic system. 35,36  It 

was also reported that PEG acts as a good spacer for the attachment of different biomolecules.37-42 C) 

Dextran, a polysaccharide which is known to be widely used in many biomedical applications, like MR 

imaging and commercially available contrast agents, and has been shown to process cancer nodal 

staging capabilities.43 Introducing a carboxy methyl group to the dextran coating improves the stability 

and functionality. A study was conducted on Porcine aortic endothelial cells in both 2D and 3D cell 

culture tests in which the cells were treated with 5 nm and 30 nm diameter IONPs coated with Dextran 

or PEG. The results showed that the cell viability was deceased upon treating with undecorated 

nanoparticles, whereas there was no reduction in cell viability when treated with Dextran and PEG 

coated IONPs. It was also stated that the undecorated nanoparticles induced significant formation of 

reactive oxidative species (ROS) and the IONPs coated with dextran or PEG did not increase the ROS 

levels. On the other hand, dextran and PEG coatings decreased the fluorescence intensity by 35.2% 

and 62.6% respectively.44 D) Poly (vinyl alcohol) which is a water soluble synthetic polymer has been 

successfully utilized for the drug delivery and other biomedical applications like tendon repair, 

ophthalmic materials, contact lenses etc. Because of having the properties of resisting protein 

adsorption and cell adhesion and high biocompatibility, it was reported to be used as an excellent 

coating material on the surface of IONPs. Different percentages of PVA coating on the IONPs surface 

using the anti-cancer drug Doxorubicin for drug delivery was studied by Kayal et.al.45 It was concluded 

that carboxy-PVA coating had excellent thermal stability and the amino-PVA had higher cellular uptake 

because of the negative charge of carboxylic acids and positive charge of amine groups respectively. 

E) Poly (vinyl pyrrolidone), a water-soluble polymer having neutral charge, aqueous solubility and 

biocompatibility has been coated on the surface of IONPs for use in different biomedical applications. 

The results from many studies showed there is an increase in the stability of IONPs in physiological 

media.46 It was stated that the PVP coated IONPs will be very encouraging for clinical applications 

because of their monodispersity and solubility. F) Poly (acrylic acid), synthetic high molecular weight 

polymer of acrylic acid is known to enhance the biocompatibility, stability of the nanoparticles and 



 

4 
 

facilitates the bioadhesion.47 G) Poly (Lactic-co-glycolic acid), PLGA, a co-polymer with biocompatibility 

and biodegradability, approved by Food and Drug Administration was used as a coating on the surface 

of iron oxide nanoparticles.48-50 

           1.3 Targeting ligands: Using the different nanoparticle systems for biomedical applications, 

there is a need of targeting ligands or specific proteins in derivatizing the IONPs. A) Transferrin, which 

is an iron-binding blood plasma glycoprotein, regulates the level of free iron in biological fluids. It is 

extensively used as a targeting ligand in the active pointing of anti-cancer agents, proteins, genes to 

mainly multiplying cells through transferrin receptors.51-54 B) TAT peptide derived from the Trans-

activator of transcription (TAT) of human immunodeficiency virus is a cell membrane-penetrating 

peptide which enhances the intracellular delivery.55,56 C) Folic acid, a water soluble B9 vitamin obtained 

from many sources like green leafy vegetables, liver, yeast etc. is used in treating megaloblastic 

anemia. In cancer therapy, folic acid acts as a common targeting ligand because of its poor 

immunogenic property and facilitates the internalization of particles due to the over expression of folate 

receptors on the cancerous cells.57 

  

         1.4 Cancer statistics:  According to the American Cancer Society, there are many estimated 

new cases and deaths in 2018 due to different types of cancer which is mentioned below in the tabular 

form, table 1. It was seen in the results that there were more number of new cases for prostate cancer 

compared to other cancer types, so nanoformulation was designed targeting the  prostate cancer. The 

most common type of cancer among men is the prostate cancer. The risk of prostate cancer is about 

6 in 10 men of age 65 or older are diagnosed with prostate cancer. According to the American cancer 

statistics, it was said that the average age of a person to be diagnosed with prostate cancer is about 

66 and very few people were diagnosed before the age of 40. After lung cancer, prostate cancer is the 

second leading cause of death in men.58 
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Table 1: Leading sites of new cancer cases and deaths- American Cancer Society facts and Figures 

2018 Estimates. 

            

             1.5 Nanotechnology in cancer:   A wide variety of nanotechnology-based approaches 

are available for the diagnosis and drug delivery. Different nanoplatforms including iron oxide 

nanoparticles (IONPs), gold nanoparticles (AuNPs), cerium oxide nanoparticles or nanoceria 

(CeONPs/NC), polymeric nanoparticles (PNPs), carbon nanotubes (CNTs) and quantum dots 

(QDs) play a vital role in biomedical applications.59-64 In addition, iron oxide nanoparticles have dual 

modalities of both MR detection and targeted drug delivery when conjugated with receptor targeting 

molecules or antibodies. These features prompted us to formulate magnetic nanomedicine (MnM) 

containing three drugs combination including irinotecan, oxaliplatin, and 5-fluorouracil to combat 

prostate cancer (Figure 1) 

Sites of cancer Estimated new cases 

in 2018 

Estimated deaths 

in 2018 

 

Prostate 

Lung & Bronchus 

Colon & Rectum 

Urinary bladder 

Kidney & Renal pelvis 

Liver & Intrahepatic bile duct 

Non-Hodgkin Lymphoma 

Leukemia 

 

164,690 

121,680 

75,610 

62,380 

42,680 

30,610 

41,730 

35,030 

 

29,430 

83,550 

27,390 

12,520 

10,010 

20,540 

11,510 

14,270 
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. 

Figure 1. Schematic representation of mechanism of action of combination of three drugs for 

prostate cancer treatment. 

 

1.6 Triple Drug Regimen : Many studies have shown that the combination of three drug 

regimen of irinotecan, 5-Fluorouracil, oxaliplatin was well known to be effective in treating metastatic 

colorectal cancer65 and pancreatic cancer.66 The synergistic or additive interaction between SN-38 

(active metabolite of irinotecan) with oxaliplatin and 5-FU was reported in several studies.67-70 Having 

the dose limiting toxic effects and different mechanism of actions, the combination of irinotecan and 5-

FU, oxaliplatin and 5-FU, irinotecan and oxaliplatin have been broadly used in the clinical trials.71 

Several phase III studies indicated that the combinations of irinotecan and 5-FU/Leucovorin (FOLFIRI), 

oxaliplatin and 5-FU/Leucovorin (FOLFOX) have an increased therapeutic efficacy and antitumor 

activity when compared with 5-FU/Leucovorin alone.72-75 The results from phase III studies revealed 

that irinotecan when combined with 5-FU/LV has sustained the survival rates compared to 5-FU/LV 

alone.76 Also, it is reported that oxaliplatin in combination with 5-FU/LV as a first line chemotherapeutic 

regimen in a small group of unresectable metastatic colorectal cancer patients showed 30-40% survival 

without evidence of disease for more than 5 years.77,78 A randomized study on untreated metastatic 
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colorectal cancer patients indicated that patients were treated with FOLFIRI [irinotecan, leucovorin, and 

5-FU] followed by FOLFOX-6 [oxaliplatin, leucovorin, and 5-FU] on arm A and the reverse on arm B. 

The results from this study revealed there are similar therapeutic efficacies and the survival rates were 

21.5 months and 20.6 months for arm A and arm B, respectively. These suggests that the treatment of 

metastatic colorectal cancer patients with these three drugs is associated with promising survival.79 In 

another report, the FOLFOX-4 regimen [oxaliplatin, folinic acid, 5-Fluorouracil] had higher survival rates 

compared to IFL [irinotecan, 5-Fluorouracil, leucovorin], as only 24% patients on IFL were able to take 

oxaliplatin as a second line treatment, whereas 60% of the patients were able to receive irinotecan as 

the second line treatment on FOLFOX-4.80 To develop a new chemotherapy regimen with more 

therapeutic efficacy, the combination of irinotecan, oxaliplatin,5-fluorouracil was used as first line 

treatment in 42 metastatic colorectal cancer patients and the results of phase I-II studies showed there 

is 71.4% overall response rate, median progression free survival of 10.4 months and median overall 

survival rates of 26.5 months.81 The first line treatment of 31 metastatic colorectal cancer patients with 

irinotecan, oxaliplatin,5-fluorouracil achieved 58% overall response rate and adverse effects of 

neutropenia in 45% patients, 3-4 grade diarrhea in 32% patients.82 In a study, patients with advanced 

solid tumors given increasing doses of irinotecan, oxaliplatin followed by simplified LV/5-FU showed 

78% grade 3-4 neutropenia and 27% grade 3-4 diarrhea.83 Another study showed that 26 patients 

treated with irinotecan, oxaliplatin, 5-FU and leucovorin had adverse effects of 38% patients with grade 

3-4 neutropenia and 34% patients with grade 3-4 diarrhea.84 Many other studies reported the feasibility 

of this triple drug combination.85-87 It was indicated by several studies that the best results were attained 

in patients treated with all the three active agents (irinotecan, oxaliplatin, 5-fluorouracil) and synergistic 

effect was achieved by using in the order of irinotecan-oxaliplatin-5-fluorouracil.88 Phase III trials 

revealed higher survival rates, progression free-survival when irinotecan was administered along with 

the combination of 5-FU/leucovorin in comparison to 5-FU based regimens.72,73 A study with oxaliplatin 

stated that there is high response rate, time to tumor progression and survival rate when oxaliplatin is 

combined with 5-FU/LV.89 It was stated by a trial that infusional 5-FU regimens show low response 

rates compared to combination of infusional and bolus administration of 5-FU/LV alone.75,90 A study 

stated that adding oxaliplatin to 5-FU/Leucovorin progresses the outcome of patients with colorectal 
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cancer.89 Trials were carried out on using oxaliplatin and 5-FU in combination91,92 and compared with 

administration of oxaliplatin alone74 and 5-FU alone.75,90 A study was performed on the therapeutic 

activity of irinotecan in colorectal cancer patients which showed there is a noteworthy effect of 

irinotecan.72,73,75,93-96 Irinotecan when used as a first line drug showed more therapeutic efficacy as 5-

FU/LV.73 In a randomized study, irinotecan was combined with 5-FU/LV and the results were compared 

with 5-FU/LV alone. These studies reported longer time to progression, greater response rate in the 

combination therapy.72,73 The growth inhibitory effect was observed when oxaliplatin was administered 

after irinotecan.69 They also conducted a trial on sequential administration of irinotecan prior to 5-FU 

and observed a synergistic effect.67 Preclinical trials were performed on two drug combinations of 

oxaliplatin and irinotecan69, irinotecan, and 5-FU67,97,oxaliplatin and 5-FU.98,99 Phase II studies with the 

combination of 5-FU/LV with oxaliplatin showed that this combination prolonged the progression free 

survival.90,100-102 

Conclusion: In conclusion, based on above-mentioned results from pre-clinical trials and 

clinical trials, it was proven that the three anti-cancer agents (irinotecan, oxaliplatin, 5-fluorouracil, 

Figure 1) were effective in treating metastatic colorectal and pancreatic cancers.65,66 But due to the lack 

of targeted delivery, there are many side effects to the non-cancerous cells. To overcome this, a 

nanoformulation which can deliver drugs to the targeted sites was developed. As prostate cancer is the 

second leading cause of death in men,58 the synthesized nanoparticles were treated on human prostate 

cancer cell lines to check the similar therapeutic efficacy of the combination of three drugs (irinotecan, 

oxaliplatin, 5-fluorouracil). The results from our studies showed that the nanoformulation has minimal 

side effects on healthy cells and was very effective in treating prostate cancer.  
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CHAPTER II 
    

 
2.1 RESULTS AND DISCUSSION: 

         
 
2.1.1  Synthesis and characterization of IONPs: Polyacrylic acid-coated superparamagnetic iron 

oxide nanoparticles were synthesized using a water-based precipitation method as shown in [ 4.0 

× 10 -3 M (1, Scheme 1) ]  as reported previously.103 The iron oxide nanoparticles are known in 

biomedical applications like targeted drug delivery, immunoassay, detoxification of biological fluids, 

MRI tracker, treating hyperthermia, tissue repair, bio-separation and biosensors5-14. The 

synthesized IONPs were centrifuged to remove the bigger size IONPs. To get rid of the unreacted 

drugs and dye molecules, the resulting IONPs were purified using the dialysis method in a dialysis 

bag having molecular weight cut off range (MWCO of 6-8 kDa) as previously reported by Santra 

et, al.104 In order to use the IONPs for biomedical applications, an average size of below 100 nm is 

very important. So, we characterized the IONPs for average size and surface charge (zeta 

potential) using Zetasizer ZS90. The average size of the IONP-COOH was 41 ± 3 nm (Figure 2A) 

and the zeta potential was -24.3 mV (Figure 2B). For the addition of optical modality, 2.0 μL of 5 

μM fluorescent dye DiI was encapsulated in the IONP-COOH [2ml, 3.4 × 10 -3 M (2, Scheme 1)]. 

The IONP-COOH was  propargylated and pegylated in which the pegylation plays the role in 

enhancing the aqueous solubility of the drugs and also it was reported that PEG acts as a good 

spacer for the attachment of different biomolecules37-42 and the propargylation [2 ml, 3.0 × 10 -3 M 

(3, Scheme 1)] facilitates in performing “Click” chemistry by reacting with azide functionalized folic 

acid in presence of CuI as a catalyst [2 ml, 2.2 × 10 -3 M (4, Scheme 1)], as reported earlier.105 The 

folate functionalized IONPs plays a major role in targetability to the tumor. After successful 

conjugation of the targeting ligand, folic acid on the surface of IONP, they were characterized for 

hydrodynamic diameter and surface zeta potential. The average size of the folate functionalized 

IONP was found to be 46 ± 2 nm (Figure 2C) and the zeta potential was found to be -22.6 mV 
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(Figure 2D). To provide optical modality and therapeutic efficacy, the folate functionalized IONPs 

were encapsulated with 2.0 μL of 5 μM DiI dye [2.2 × 10 -3 M (2, Scheme 1)] and 5.0 μL of 2.0 mM 

irinotecan, 5.0 μL of 2.0 mM 5-Fluorouracil and 5.0 μL of 2.0 mM oxaliplatin [2.0 × 10 -3 M (5-8, 

Scheme 1)] using the solvent diffusion method.106 To get rid of the unreacted drugs and dye 

molecules, the folate functionalized IONPs carrying the therapeutic drugs and optical dye (IONP-

DiI-drugs-FOL) was dialyzed for 2 h against DI water by periodical water change. The dialyzed 

IONP-drugs-DiI-FOL was incubated on table mixer for 2 h at room temperature. It was labelled and 

stored at room temperature for further characterizations. The IONPs carrying drugs and dye (5-8, 

Scheme 1) was characterized for average size and zeta potential. The results were found to be 48 

± 2 nm (Figure 2E) and -23.1 mV (Figure 2F).  

 

            Scheme 1: Synthesis of biocompatible IONP-COOH (1) and encapsulated fluorescent dye 

using solvent diffusion method (2). Using EDC-NHS chemistry, the IONP-COOH was propargylated 

and pegylated (3). Using “Click” chemistry, IONP surface was conjugated with folic acid (4). 
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Therapeutic drugs irinotecan, 5-Fluorouracil, oxaliplatin and fluorescent dye DiI were encapsulated 

into the folate nanoparticles to formulate a personalized nanomedicine for the treatment of prostate 

cancer (5-8). 

To check the successful encapsulation of the drugs and dye and the conjugation of the 

surface functionality, the  UV-Vis and fluorescence spectrophotometric analysis was performed 

using a Tecan i-control plate reader. The specific absorbance and fluorescence bands (Figures 

3A & 3B) indicated the presence of folic acid . The absorption spectrum of FOL, DiI dye at 

wavelengths of 335 nm, 587 nm, respectively, was shown in Figure 3C. In Figure 3D, the presence 

of DiI dye at a fluorescence emission of 585 nm was observed. Figure 3E shows the presence of 

FOL, IRI at UV-Vis absorption wavelengths of 335 nm, 635 nm, and Figure 3F indicates the 

presence of IRI at a fluorescence emission at the wavelength of 680 nm. 
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       Figure 2: Dynamic light scattering experiments represents IONP-COOH, IONP-FOL and 

IONP-DiI-drugs-FOL with an average hydrodynamic diameter of 41 ± 3 nm , 46 ± 2 nm, and 48 ± 

2 nm, respectively, and the zeta potential of IONP-COOH , IONP-FOL and IONP-DiI-drugs-FOL 

are -24.3 mV , -22.6 mV, and -23.1 mV respectively. 

 

    Figure 3: (A) UV-Visible absorption (λabs= 335 nm) and (B) Fluorescence emission spectra 

(λmax= 450 nm) indicates the presence of folic acid in IONP-FOL. (C) UV-Visible absorption 

spectrum with bands at 335 nm, 587 nm shows the presence of folic acid, DiI dye respectively in 

IONP-DiI-FOL. (D) Fluorescence emission spectrum showing band at 585 nm indicates the 

presence of DiI dye in IONP-DiI-COOH. (E) UV-Visible absorption spectrum with bands at 335 nm, 

635 nm indicates the presence of folic acid, irinotecan respectively in IONP-DiI-drugs-FOL. (F) 
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Fluorescence emission spectrum with band at 680 nm indicates the presence of irinotecan in IONP-

DiI-drugs-FOL. 

The results from DLS showed that the iron oxide nanoparticles synthesized were having 

smaller size and the negative zeta potential which are ideal for the biomedical applications. In 

addition to that, the UV-Vis and fluorescence studies indicated the successful conjugation of the 

surface groups and encapsulation of drugs , fluorescent dye.  

2.1.2 Stability studies: Before treating the cells with the nanoparticles, the stability of the 

nanoparticles in different media including 1X PBS (pH = 7.4) and 10 % FBS was checked by 

measuring the average size of the nanoparticles at different time periods on 1 day, 7 days, 30 days, 

and 60 days. The results showed there was no much change in the size of the nanoparticles which 

indicates that the nanoparticles were stable with time.  

 

          Figure 4: Determination of stability of the nanoparticles in different media including 1X PBS 

(pH = 7.4) and 10 % FBS at different time points. Figure 4 (A) shows the stability of IONP-COOH 

and Figure (B) shows the stability of IONP-DiI-drugs-FOL. 

            The results indicated that the nanoparticles are very stable with time 

             2.1.3 In-vitro Cell viability (MTT assay): To know the therapeutic efficacy and cytotoxicity 

of the nanoparticles carrying our therapeutic drugs, concentration dependent cell viability assay or 

MTT assay was performed. The theory behind MTT assay is when the yellow colored MTT is added 
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to the cells treated with nanoparticles, a purple color formazan was formed. The intensity of the 

formazan formed is directly proportional to the amount of number of live cells. To perform MTT 

assay, both the cell lines Lymph node Carcinoma of Prostate Cancer (LNCaP) and PC3 cells were 

cultured and seeded in a 96 well plate on the previous day of experiment. The cells were incubated 

for 24 h at 37 ℃ in the presence of 5% CO2. On the day of experiment, the cells were treated with 

nanoparticles carrying the drugs individually and in combination (irinotecan+5-FU+oxaliplatin). 

After 24 h of incubation, MTT solution ( 30 μL , 5 mg/ml) was added in each well and incubated for 

4-6 hrs. The formazan crystal formed were dissolved using acidic solution ( 75 μL , 10 mL 

isopropanol + 250 μL HCl ) and the absorbance of the formazan formed was read using Tecan i-

control Plate reader. Very promising results were observed. There was about 85% of cell death in 

LNCaP cells (Figure 5A) within 24 h and very less cytotoxicity was seen in the PC3 cells (Figure 

5B) on treatment with different doses of the drugs individually and in combination. This experiment 

indicated that nanoparticles can deliver therapeutic drugs only to the cancer sites, when targeted.  

 

Figure 5: Determination of cytotoxicity within 24 h of incubation in LNCaP (A) and PC3 

cells (B) using MTT assay. A) It shows the concentration dependent cell death upon treatment with 

the drugs individually and in combination. B) Minimal or no toxicity was observed in PC3 cells when 

treated with nanoparticles carrying individual drugs and in combination. 

The results from MTT assay revealed the cell death upon the treatment of the LNCaP cells 

with nanoparticles and there is minimal toxicity in the control cell line, PC3 cells. 
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2.1.4 Intracellular uptake of cargos loaded IONPs: After observing the cytotoxicity of 

our nanoparticles carrying drugs on LNCaP cells, we were interested in visualizing the cell death. 

For that, cellular uptake studies were carried out on LNCaP cells and PC3 cells using nanoparticles 

with different functionalities. The cells were grown in petri dishes by supplying nutrient media and 

treated with nanoparticles. The cells were fixed using 4% paraformaldehyde and stained the 

nucleus with DAPI. The fluorescence microscopic images were obtained using IX73 Olympus 

microscope. The results showed non-internalization upon treating LNCaP with IONP-DiI-COOH 

Figures 6A-6D). The internalization of the nanoparticles was observed when the cells were treated 

with folate functionalized IONP carrying DiI dye. (Figures 6E-6H), and the cell death was noticed 

when the cells were treated with IONP-DiI-drugs-FOL (Figures 6I-6L). Also, PC3 cells were seeded 

as a control cell line and it was observed that folate nanoparticles were not internalized into PC3 

cells due to the lack of folate receptors. (Figures 6M-6P) 

 

 

             Figure 6: Fluorescence microscopic images in bright field and corresponding blue filter, 

red filter, and merged images. (A-D) showing non-internalization, (E-H) showing internalization, 

(I-L) showing cell death in LNCaP cells and (M-P) showing non-internalization in PC3 cells. 
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2.1.5 ROS generation in LNCaP cells: The results from cellular uptake studies made us 

to explore the literature for understanding the possible reason behind cell death. For this, we 

performed an in vitro assay known as ROS. ROS plays a major role in cell signaling pathway and 

hemostasis. In this experiment, a fluorescent dye named Dihydroethidium (DHE) was used. In 

theory, DNA dye DHE which is usually blue in color by itself  is oxidized to 2-hydroxyethidium in 

presence of ROS generation. The 2-hydroxyethidium gives red fluorescence. For this study, the 

LNCaP cells were seeded in 12-well plates and grown for 24 h. When the cells were 80-90% 

confluent, the nanoparticles were added and incubated for different time points at 6 h, 12 h, 24 h 

respectively. The cells were washed, stained with 32mM DHE dye and the fluorescence 

microscopic images of the cells were captured using an Olympus IX73 microscope. Figures 7A & 

7B showed the levels of ROS generation in cells at 6 h, Figures 7C & 7D at 12 h, and Figures 7E 

& 7F at 24 h of nanoparticle treatment in the bright field, and its corresponding red filter respectively. 

 

 

             Figure 7: Measure of ROS generation in LNCaP cells at different time points 6h, 12h, and 

24 h in bright field and corresponding red filter. 
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2.1.6 Apoptotic cell death in LNCaP cells: The generation of ROS eventually leads to 

apoptosis. Apoptosis is nothing but the programmed cell death in which the protrusion of plasma 

membrane occurs. This can be initiated by either intrinsic or extrinsic pathways. Here, the intrinsic 

pathway applies as the cells kills itself by sensing the stress. The basic principle behind apoptosis 

is phosphatidylserine (phospholipid component in the inner leaflet of the cell membrane) moves 

from inner leaflet to outer leaflet of the plasma membrane when the cells undergoes apoptosis. 

This acts as a signal for the macrophages to engulf the cell and leads to the cell death. To quantify 

the apoptotic cell death, a protein known as Annexin-V which has higher affinity towards 

phosphatidylserine labelled with a fluorescent dye FITC was used. The fluorescence emitted from 

the cells quantifies the cell death. To perform the apoptosis, the LNCaP cells were seeded in a 12 

well plate and treated with nanoparticles after attaining the 80-90% confluency. The cells were 

incubated with nanoparticles at different points in time: 6 h, 12 h, and 24 h, respectively. The cells 

were washed with PBS twice and stained with Annexin V-labelled FITC (5 µL) and Ethidium 

Homodimer III (5 µL) as stated in the Biotium protocol. Cells were washed twice with annexin V 

binding buffer and were fixed using 4% paraformaldehyde and observed under fluorescence 

microscope. The change in morphology of the cells was noticed as they became apoptotic and the 

population of the cells being reduced and getting washed away with time. The fluorescence images 

were obtained using Olympus IX73 Fluorescence microscope.  
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                Figure 8: Detection of apoptotic cell death in LNCaP cells at 6 h,12 h, and 24 h in the 

 bright field and FITC filters, respectively. 

 

               2.1.7 Comet assay: The results from all the above mentionedd studies showed there is 

cell death upon treating the cells with nanopraticles carrying drugs. As mentioned earlier, two of  

the drugs used in this project acts on DNA, to measure the extent of DNA damage possible through 

each of the drugs individually and  as a combination therapy we performed an in vitro assay known 

as Comet assay. The anti-cancer drugs used in this project were known to have the synergistic 

potential of damaging the DNA through different mechanisms.The basic principle behind comet 

assay is that, head indicates undamaged DNA and tail indicates the damaged DNA where the 

compact structure of DNA breaks down and migrates onto the agarose gel. When the cells were 

treated with irinotecan, lengthy tails were formed compared with 5-fluorourcail and oxaliplatin. Upon 

the treatment with oxaliplatin, there was no formation of comets as it was already known in literature 

that oxaliplatin acts through RNA biogenesis.106 The treatment of the cells with combination of the 

drugs, showed no distinct heads and all observed was the formation of tails because of the higher 

extent of DNA damage compared to the individual drug treatments.. 
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             Figure 9: Determination of extent of DNA damage through comet assay. Figures (A-D) 

indicates the extent of DNA damage when treated with irinotecan, 5-Fluorouracil, oxaliplatin and 

three drug combination. 

 

             The DNA damage was observed visually by staining the cells with a DNA dye named SYBR 

gold and capturing the fluorescent images of the comet slides using an Olympus X73 fluorescence 

microscope. The results showed the formation of comet, indicating that cancer cell death goes 

through DNA damage. The % of DNA damage is directly propotional to the tail DNA and the tail 

moment. When the cells were treated with drugs, the extent of DNA damage was quantitatively 

represented in the form of tail DNA and  tail moment using image J software. Figure 10 shows the 
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trend in tail DNA represented in blue upon the treatment of cells with combination of drgs, 

ironotecan, 5-FU and oxaliplatin. Tail moment in green shows irinotecan formed lengthy tails 

compared to 5-FU and oxaliplatin.  

 

  

             Figure 10: Tail DNA in blue and the tail moment in green indicates the extent of DNA 

damage on different drug treatments, irinotecan, 5-FU, oxaliplatin and combination of drugs. 

 

2.1.8 Migration assay: As we know that prostate cancer is highly metastatic, an in vitro 

cell based known as migration assay/invasion assay was performed to determine the anti-

metastatic potential of the anti-cancer drugs. The migration assay kit used in this assay contains 

two chambers, upper invasion chamber and lower feeder tray. The invasion chamber is coated with 

collagen through which the cells migrates from invasion chamber to feeder tray.  This kit mimics 

the metastases process which happens in the body. The cells were treated with different drugs and 

incubated at 37 ℃ in presence of 5 % CO2. Upon incubation with drugs, the migratory cells move 

from invasion chamber into the into the feeder tray through the collagen layer. The migratory cells 

were stained with a fluorescent dye named CyUQANT. The anti-metastatic potential of the drugs 
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was determined through the fluorescence intensity measured using Tecan i-control plate reader. 

The results proved that after incubation with drug(s), migration capability of the cells tremendously 

reduced, as lesser fluorescence emission was collected from the feeder tray in the experiment. 

Taken together, the three anti-cancer drugs we used were highly anti-metastatic. 

 

             Figure 11: Determination of anti-metastatic potential using migration assay. Control cells 

in green showed the maximum invasion, whereas the cells treated with IONPs carrying combination 

of drugs in red, showed minimal invasion. The IONPs carrying individual drugs in yellow, blue, and 

grey showed more invasion compared to the combination treatment. 
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2.2 EXPERIMENTAL SECTION: 

2.2.1 Materials: Iron salts (ferric chloride hexahydrate, ferrous chloride tetrahydrate), 

hydrochloric acid and ammonium hydroxide, Phosphate buffer saline (PBS) were ordered from 

Fischer Scientific. Polyacrylic acid (PAA), propargyl amine (PA), dimethylsulfoxide (DMSO), 3-(4, 

5-dimethylthiazol-2-yl) - 2, 5-diphenyltetrazolium bromide (MTT), N-hydroxysuccinimide (NHS) 

were attained from Sigma-Aldrich. Near infrared dye (DiI-D282), and 4, 6-diamidino-2-phenylindole 

(DAPI-D1306) were ordered from Invitrogen. [1-ethyl-3- [3- (dimethyl amino) propyl] carbodiimide 

hydrochloride] (EDC) was obtained from Pierce Biotechnology. MES sodium salt was purchased 

from Acros Organics. The three anti-cancer drugs irinotecan, 5-Fluorouracil, oxaliplatin were 

acquired from Sigma Life Sciences. Dihydroethidium (DHE) was bought from Cayman 

Laboratories. Apoptosis and necrosis quantification kit was purchased from Biotium. SYBR gold 

nucleic acid gel stain was ordered from Fischer Scientific. Paraformaldehyde was purchased from 

Electron Microscopic Sciences. The human prostate cancer cell line LNCaP and (PC3) were 

obtained from ATCC. RPMI-1640 medium and Kaighn’s modification of Ham’s F12K medium were 

purchased from Corning Life Sciences. Comet assay kit, Lysis solution and LM agarose were 

acquired from Trevigen. Migration assay kit was purchased from Millipore. 

2.2.2 Instrumentations: Using Malvern Zetasizer Nano ZS90, the average size and zeta 

potential of nanoparticles were measured. A Tecan Infinite M200PRO plate reader was used to 

study UV/Vis measurements, the absorbance of MTT, and the fluorescence of Migration assay. An 

Olympus IX73 Fluorescence microscope was used to capture the images of cellular uptake studies, 

ROS, apoptotic studies and Comet assay.  

2.2.3 Synthesis of PAA coated IONPs (1): Iron oxide nanoparticles (IONPs) coated with 

PAA were synthesized using “water-based precipitation method”. To synthesize PAA coated 

IONPs, three solutions were prepared. i) Iron salts solution (0.7 g of FeCl3.6 H2O and 0.4 g of FeCl2 

.4H2O in 100 μL of 12 N HCl and 2 mL of DI H2O), ii) an alkaline solution (1.8 mL of 30% NH4OH 

solution in 15 mL of deionized water) and iii) stabilizing agent solution (2 g of PAA in 5 mL of DI 

water). The synthetic procedure was as follows: The solution of iron salts was added into alkaline 

solution. Afterwards, stabilizing agent (PAA in DI water) was added, and the reaction was continued 
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at a speed of 4000 rpm. Then, the resulting IONPs were centrifuged at 3000 rpm, 4000 rpm and 

4000 rpm for 20 min each, respectively. The supernatant obtained after the final centrifugation was 

dialyzed in a dialysis bag has a molecular weight cut off range of 6-8 kDa. The dialysis process 

was done in beaker with DI water and a magnetic stirrer. The water was changed periodically for 

24 h and the dialyzed IONPs were taken out of dialysis, labelled, and stored. 

2.2.4 Encapsulation of DiI dye into IONPs (2): Using the solvent diffusion method, 2μL 

of 5 μM DiI dye, 5 μL of 2 mM irinotecan, 5 μL of 2 mM 5-fluorouracil and 5 μL of 2 mM oxaliplatin 

were encapsulated into 2 mL of PAA coated IONPs dropwise at a vortexing speed of 2000 rpm at 

intervals of time without formation of any precipitate. The drugs and dye encapsulated IONPs were 

set aside on table mixer at room temperature for 2 h of incubation and then dialyzed to get rid of 

the unreacted drugs and dye molecule. The dialyzed IONPS carrying cargos were stored at room 

temperature.  

2.2.5 Synthesis of Propargylated IONPs (3a): Water soluble Carbodiimide chemistry 

(CDI) was used to prepare Propargylated IONPs and the synthetic protocol we used was as follows: 

i) 30 mg of EDC [1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride] in 250 μL of MES 

buffer (pH 6.0), ii) 22 mg of NHS [2-(N-morpholino) ethane sulfonic acid] in 250 μL of MES buffer 

(pH 6.0) and iii) 5 mg of propargyl amine in 500 µL of DMSO were weighed. 5 mL of IONPs were 

taken and the EDC 

 in MES buffer was added directly and mixed, NHS in MES buffer was added in 4 parts 

with proper mixing, and the resulting solution was kept on table mixer for 3 min of incubation. 

Propargyl amine in DMSO was added dropwise with proper mixing and without any precipitation. 

The resulting propargylated nanoparticles were kept on table mixer overnight and dialyzed against 

DI water for 2 h to get rid of the unreacted materials. 

2.2.6 Synthesis of azide functionalized folic acid (3b): For this synthesis, i) 22 mg EDC 

[1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride] in 250 μL MES buffer (pH 6.0), ii) 

13 mg NHS [2-(N-morpholino) ethane sulfonic acid] in 250 μL MES buffer (pH 6.0) and iii) 2.5 mg 

of amino propyl azide in a mixture of 200 μL DI water and 200 μL DMSO were weighed. 10 mg of 

folic acid was dissolved in 5 mL of 1X PBS and added EDC in MES buffer directly with proper 
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mixing. NHS in MES buffer was added in 4 parts with good mixing and the resulting solution was 

incubated for 3 min on table mixer. Amino propyl azide in the mixture of DI water and DMSO was 

added dropwise without any precipitation. The resulting solution was kept on the table mixer 

overnight.  

2.2.7 Synthesis of folate conjugated IONPs (4): Folate conjugated IONPs were 

synthesized by adding 1.5 mL azide functionalized folic acid to 4 mL of propargylated IONPs.  To 

the above liquid mixture, 50 μL of CuI was added from a solution of 1 mg CuI dissolved in 250 μL 

of DMSO. The folate conjugated IONPs were kept on table mixer overnight and dialyzed against 

DI water for 2 h. After the dialysis, the UV-Vis studies were performed. The presence of absorption 

and fluorescence peaks at 360 nm and 455 nm, respectively, which indicated the folate ligands 

were successfully conjugated on the surface of IONPs (Figure 3A & 3B). 

2.2.8 Synthesis of drugs, dye-encapsulating functional IONPs: After the successful 

conjugation of folate ligands on the IONPs surface, our therapeutic drugs and fluorescent dye 

were encapsulated into the IONP-FOL using solvent diffusion method. 2 mL of IONP-FOL was 

taken and encapsulated with 2 μL of 5 μM DiI dye (2, Scheme 1), 5 μL of 2 mM irinotecan, 5 μL 

of 2 mM 5-Fluorouracil and 5 μL of 2 mM oxaliplatin using Solvent diffusion method (5, Scheme 

1). The drugs and the optical dye were dissolved in DMSO and added dropwise at a speed of 

1500 rpm on a vortex mixer. The encapsulated nanoparticles were incubated on table mixer for 2 

h, purified by dialysis for 2 h. The successful encapsulation of the drugs and dye was confirmed 

by performing the UV-Vis studies. 

2.2.9 Cytotoxicity study (MTT assay): The Human prostate cancer cells (LNCaP) and 

(PC3) were purchased from ATCC. Both the cell lines (LNCaP and PC3) were grown in 89% RPMI 

1640 and Kaighn’s modification of Ham’s F12K medium purchased from Corning Life Sciences. 

Both the media were prepared by mixing 89% media with 10% fetal bovine serum (Corning Life 

Sciences), and 1% Penicillin-Streptomycin antibiotic solution (10000 I.U/mL Penicillin and 10000 

μg/mL Streptomycin). The cells were cultured in an incubator at 37 oC with 5% CO2. When the cells 

were confluent, they were seeded in 96-well plate (2500 cells /well) on the day before the 

experiment and incubated for 24 h. On the next day, cells were incubated with drug encapsulated 
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IONPs for 24 h at 37 oC. The cells were treated with nanoparticles carrying individual drugs and in 

combination.  After that, cells were washed twice with 1X PBS and added 30 µL MTT (5 mg/mL) 

solution to each well and incubated at 37 oC for 4-6 h. Depending on the %cell viability, Formazan 

crystals were formed within this 4-6 h. The formazan crystals formed were dissolved in acidic 

solution (10 mL isopropanol + 250 µL 12 N HCl). The absorbance was read at a wavelength of 570 

nm using an infinite M200 PRO microplate reader. Very promising results were observed. There 

was about 85% of cell death in LNCaP cells (Figure 4A) within 24 h and very less cytotoxicity was 

seen in the PC3 cells (Figure 4B). It was proved that the targeted drug delivery was achieved 

through our nanoformulation. 

2.3.0 Cellular uptake studies by fluorescence microscopy: Olympus IX73 fluorescence 

microscope was used to observe the cellular uptake using fluorescence imaging. Both the cell lines, 

LNCaP and PC3 were seeded in petri dishes on the previous day of the experiment. The cells were 

checked under the microscope for the confluency. When the cells were confluent, they were treated 

with specific functional nanoparticles for internalization, non-internalization, cell death studies and 

incubated at 37 oC for 24 h. Then, the cells were washed with 1X PBS twice and fixed with 4% 

formaldehyde for 10 min. The cell nuclei were stained with DAPI dye for 15 min away from the light. 

The non-internalization (Figures 5A-5D), internalization (Figures 5E-5H) and cell death (Figures 

5I-5L) in LNCaP and non-internalization in PC3 cells (Figures 5M-5P) were seen by capturing the 

images of the dishes in bright field, blue filter, red filter and merged images. 

2.3.1 Assessing the levels of ROS generation in LNCaP cells: To study the measure 

of reactive oxidative species generation in LNCaP cells, the LNCaP cells were seeded in a 12 well 

plate and incubated for 24 h. After the cells were 80-90% confluent, the nanoparticles and 

incubated for different time points at 6 h, 12 h, 24 h, respectively, and the cells were washed with 

1X PBS. The fluorescent dye DHE (300 μL of 32 mM) dye purchased from Cayman laboratories 

was added to the cells. The 12 well plate was kept in hood for 30 min and washed twice with 1X 

PBS after staining.  Then 4% paraformaldehyde was added for fixation and placed in hood for 10 

min. The cells were washed and covered with 1X PBS. Then the images in bright field and red filter 

were captured using fluorescence microscope (Figure 6). 
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2.3.2 Quantification of apoptotic cell death in LNCaP cells: The cell death was 

quantified by the apoptosis and necrosis quantification kit obtained from Biotium. On the previous 

day of experiment, LNCaP cells were seeded in a 12 well plate. After attaining 80-90% confluency, 

the cells were incubated with nanoparticles at different time points: 6 h, 12 h and 24 h at 37oC 

incubator with 5% CO2. The cells were washed with PBS twice and stained with Annexin V-FITC 

(5 µL) and Ethidium Homodimer III (5 µL) as stated in the Biotium protocol. Cells were washed 

twice with annexin V binding buffer and were fixed using 4% paraformaldehyde. Finally, the cells 

were washed with annexin V binding buffer twice. The images in bright field and green filter at 

different time points 6 h, 12 h and 24 h were captured using Olympus IX73 fluorescence microscope 

(Figure 7). 

2.3.3 Measure of DNA damage (Comet assay): The mixture of 50 μL LNCaP cells 

(1×105/ml) and 500 μL of molten LM agarose was taken. From this, 100 μL was placed on each 

well of the pretreated comet slides. The slides were placed at in dark for 30 min. The slides were 

then immersed in lysis solution purchased from Trevigen, overnight at 4 ℃ and the excess buffer 

was drained out from the slides. The slides were now placed in freshly prepared alkaline unwinding 

solution (pH>13), followed by alkaline electrophoresis by placing slide tray adjacent to black 

cathode at 21 Volts for 30 min. The excess electrophoresis solution was taken out from the slides 

and the slides were immersed gently twice in deionized water for 5 min each and then in 70% 

ethanol for 5 min. The slides were placed on thermo mixer at 37 ℃ for 10-15 min and stained with 

100 μL of diluted SYBR gold onto each well. Then the slides were taken from thermo mixer and 

rinsed in deionized water to get rid of excess dye; the slides were dried and fluorescent images 

were captured using IX73 Olympus fluorescence microscope. 

2.3.4 Detection of anti-metastatic potential (Migration assay): The mixture of 6 mL 

0.5% FBS (0.5 mL FBS+42.5 mL RPMI 1640 media + 2 mL ABAM) with 1/4th of the cell pellet was 

resuspended well and incubated for 24 h in a 70 mL flask. The next day, the cells were checked 

and found to be healthy. The cells were washed with 1X PBS twice and 5 mL of harvesting buffer 

was added. This was incubated for 5 min and 5 mL of quenching media was added to stop the 

action of trypsin. The entire solution was taken into a centrifuge tube and centrifuged at 1000 rpm 
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for 6 min. The quenching media was then added to the cell pellet and resuspended well. From this 

suspension, 100 μL was added to 30 μL of nanoparticles. The invasion chamber of the migration 

assay kit was rehydrated with 100 μL of 0% FBS media. After the rehydration time, 75 μL of the 

media was taken out of each well without touching the collagen layer. In the feeder tray, 150 μL of 

10% FBS was added and the 100 μL of the samples (cell suspension with nanoparticles) were 

added in the invasion chamber and incubated for 24 h. On the next day, 150 μL of cell detachment 

buffer was added in each well of the invasion chamber with samples. The samples were taken out 

of the invasion chamber and placed in the wells of a 96 well plate and incubated for 30 min at 37 

℃. The feeder tray was taken out and cleaned the wells with DI water. After 30 min of incubation, 

50 μL of lysis buffer and dye solution (1:75 ratio of dye and Lysis solution) was added and kept in 

hood for 15 min away from light. Then, 100 μL of the sample was transferred to a new well of the 

96 well plate and measured the fluorescence intensity at a wavelength of 480/520 nm using Tecan-

i control plate reader. 
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                                                                 CHAPTER III 
 
 
                                          CONCLUSION AND FUTURE DIRECTION 
 
 

In conclusion, it is known that prostate cancer is highly metastatic and the conventional 

treatment routes were not effective in showing the positive results. Because nanotechnology-based 

drug delivery systems have been very successful in cancer therapy, nanoformulations were 

designed, which has the capability of both targeting and treating prostate cancer. There were 

several reasons for the failure of numerous treatment options, including toxicity of drugs to the non-

cancerous cells, multi-drug resistance etc. The use of the nanotechnology-based drug delivery 

systems in cancer therapies has been very efficacious due to their small hydrodynamic diameter 

(10-100 nm), which facilitates the targeted drug delivery and many other biomedical applications 

possible. Altogether, drug delivery through nanoformulation keeps the drug safe from degradation 

outside the target site.   

In this study, we have formulated new nanotheranostic drug delivery system in the targeted 

treatment only to prostate cancer cells to enhance the effectiveness of conventional anti-cancer 

agents and to improve their toxic effects. We have synthesized iron oxide nanoparticles coated with 

PAA using water-based precipitation method. The surface of synthesized IONPs was decorated 

with folic acid (targeting ligand for folate receptor) and the anti-cancer drugs and optical dye were 

encapsulated via solvent diffusion method. The resulting drugs and dye carrying nanoparticles were 

purified using dialysis and characterized. The three drugs irinotecan, oxaliplatin, 5-Fluorouracil 

were used in this study to assess the therapeutic potential of their combination. 

Different cell-based assays were performed. The prostate cancer cell line (LNCaP) was 

treated with this nanoparticle and the % cell viability was observed through MTT assay. The results 

showed about 85% of cell death within 24 h upon treatment of nanoparticle carrying three drug 

combination.  Minimal toxicity was observed on the PC3 cell line when treated with nanoparticles 
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carrying drugs. This result specified that the functionalized nanoparticle was successful in 

accomplishing targeted drug delivery. The results from cellular uptake studies showed the 

nanoparticles achieved targeted drug delivery minimizing the toxic effects to the healthy cells. Also, 

the results from ROS and apoptosis showed that the nanoparticle system with anti-cancer drugs 

was capable of enhancing the oxidative stress in the cancer cells and causing cell death. The 

results from Comet assay showed these anti-cancer drugs have the capability of damaging DNA 

through different mechanisms. The migration assay results indicated these anti-cancer drugs have 

the anti-metastatic potential, which is crucial in treatment of prostate cancer. Taken together, the 

newly formulated nanomedicine would have tremendous effect in the targeted treatment of prostate 

cancer in clinical settings. 
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