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CHAPTER 1
INTRODUCTION

This thesis deals with the somewhat controversial topic
of intuitionist logic and mathematics. Siace the writerts
objective in this case is to explain this theory, the polnt
of view expressed herein will tend toward that of the intui=-
tionistts, with emphasis given to the positive aspects of
the theory.

For those who might wonder whether the material covered
in this thesis is really logic, mathematical philesophy, or
foundatiens of mathematics; there is no exact answer. These
three concepts tend to be artificlal since the boundries
between them, if any, are rather vague. The writer does feel
though, that this material sheuld be pertinent to any under=-
standing of that which 1s called "mathematics® (whatever that
may mean),

Due to the nature'of the material being considered, the
writer feels that a survey of the historical as well as the
philosophical background to the problem will give the reader
somewhat of a perspective from which to examine the intuitionist
theory. Thus, much of the material presented will be of a more
general nature with the areas of specific concentration being
mainly the logic from intuitionism and its comparison to a
classical mathematical logic. With this short introduction,

the historical problem will be presented.
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let those who come after me wonder why

i1 brilt up these mental constructions and

how they can be interpreted in some philosophy;
I am content to build them in the conviction
that in some way they will contribute to

the clarification of human thought.

-=Arend Heyting
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CHAPTER 11
HISTORICAL BACKGROUND

The nineteenth century could, for the most part, be

considered the periocd in which pure mathematics was born.

Even though its antecedents reach far back into history,

it was never really distinguishable from applisd mathematics
and science until this time. One of the great contributions

in the development of pure mathematics was that of Boole,

who in 185l developed the idea of a symbolic or formal logic,
This resulted in more abstraction and intensified formalization
of mathematics. Using this, as well as other logico~mathe-
matical methods, mathematicians began to attack the foundations
of the various flelds of mathematics 1n an attempi to eliminate
inconsistencies and secure an absolute mathematical system.

One related problem at this time was the perplexing
question concerning the comsistency of the newly developed
nen~-Euclidean geometries. In attempting to determine the
consistency of these new geometries, it was shown by certain
mathematicians that the proof of consistency of these systems
could be reduced to that of proving the consistency of
Fuclidean geometry. In other words, these non-Euclidean
geometries are consistent 1f Euclidean geometry Iis congistent,
This correspondence of coasistencies was accomplished by
devising & "model® (or interpretaltion) for the postulates so

that each postulate is shewn to be a statement holding true
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for the model. For example, the comsistency of plane Riemannian
geometry can be established by using as a model the surface of

a Euclidean sphere. Each Riemannian postulate is thus converted
into a truth of Euclid. Now the question of Riemannian consis=
tency is reduced to that of Euclidean consistency. This
procedure, used for establishing consistency, is a powerful
method. But it is still vulnerable since it is enly a relative
proof which depends upon the consistency of another system.

From advances in the field of analytic geometry, it was
shown that a strong correspondence exists between Euclidean
geometry and algebra by use of the Cartesian coordinate system.
Then, late in the nineteenth century, David Hilbert was able
to establish Fuclidean geometry in terms of algebraic ®truths.®
From this, the question of Euclidean consistency was then
reduced to that of algebraic consistency.

From further developments at this time, it was shown
that algebra as well as other filelds of mathematics could be
developed from the more fundamental theory of arithmetic,

Such was the important breakthrough of Cantor by his develop-
ment of set theory and the theory of transfinite numbers,

which enabled mathematicians to base the foundations of analysis
and calculus on that of arithmetic. From this, analysis and
caleulns could be developed from the basic concepts and
pperations used in arithmetic, At this time many mathematicians
had the exhilarating conviction that it should be possible for
one single axiomatic system to be developed which would yield

all the traditional branches of mathematics.
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Mathematiclans now bsgan to center their attention on
the foundations of elementary arithmetic. The mathematician
Peano was the first to reduce the theory of arithmetic to
the smallest number of postulates and undefined terms. His
system consisted of five basic postulates and the three
undefined terms "zero,® "number,® and "successor.® Using only
these propositions and symbolic logic, he was able to define
the natural numbers 0, 1, 2, 3, . » « from which he could
develop elementary arithmetic., The gquestion of consistency
was thus reduced to these basic assumptions,

Around this time the mathematician Frege attempled te
reduce the theory of natural numbers even further; to that
of lpgic and set theory. It was Frege's belief that all of
mathematics could be developed from logic {which included
Cantor's set theery). Thus Frege weorked for over twelve
years to develop his thesis in a two-volume treatise on the
foundations of mathematics, But even while his work was golng
to press, he received a letter from Bertrand Russell which
shattered hils dream, for Russell had found an antinomy or
paradox in the set theory which Frege had employed,

This antinomy, known as "Russell's paradox,® follows
in this way: it seems that sets can be of two kinds, those
which contain themselves as elements, and those which do not.
A set will be called ®normal® if, and only if, it does not
contaln itself as a member. If it does contain itself as a

member, it will be called "nen-normal,®™ As an example, the



5

set of all men 1s @ normal set, since the set itself 1is anot

2 man and is therefore not a member of itself, An example

of a non-normal set is the "set of all sets,™ since by defini~-
tion it is a set and therefore must be contained as a member
of itself. Let N be defined as the set of all normal sets.
The questi;n now arises as to whether N iitself 1s 2 normal
set, If it is a normal set, by definition of N it must be

an element of itself; but, in this case, N is non-normel since
any set which contains itself as a member is non-normal. On
the other hamd, if N is non-normal, it is a member of itseifl
by definition of being non-normal; but, in this case, N is
normal since N contains only normal sets, By either possible
hypothesis a contradictien is reached. Soon afterward other
such antinomies were dliscovered,

At this time there were three main schools of mathematical
thought, each with its own philoseophical interpretation of the
nature of mathematics. With the discovery of the antinomies
in set theory, each school thus developed a logico-mathematical
theory which attempted to restore consistency to mathematics.
These three scheols of thought, known as legicism, formalism,

and intuitionism will be briefly examined.



CHAPTER 111
LOGICISM

The tendency of thought known as logicism follows the
doctrine that all of the theory of mathematics is derivable
from, or can be reduced to, logic alone, Frege and Russell
were the main formulators of this view. Rather than just
being a tool of mathematics, logic becomes the foundatioens
and progenitor of mathematics. Mathematical concepts are
formulated in terms of logical concepts, and the theorems
of mathematics are developed as thecorems of logic.

The logistlic thesls arises from the effort to push down
the foundations of mathematics to as basic a level as possible,
Using Peano's theory, Frege had attempted to reduce these
axloms to axioms of logic in hls two-volume work. With the
occurrence of the set antinomies, a more detalled and rigorous
treatment was needed. This was supplied by the monumental

Principia Mathematica of Whitehead and Russell (1910~1913),

This great work purports to provide a detalled reduction of
the whole of mathematics to logic.

The Principia Mathematica (hereafter denoted P,M.) begins

its formal abstract development with certaln postulates and
undefined terms which it calls ®primitive propositions®™ and
primitive ideas.®™ These primitive propositions and ideas
are not to be subjected to interpretation, but are to be

regarded (for the most part), as hypotheses related to the real
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world, fhus, no attempt is made to prove the coasistency
of the primitive propositions since they follow from a concrete
rather than an abstract point of view.

From these primitive propositions and ideas, using e
calculus of propesitions, P,M. attempts to present a system
which proceeds up through the theory of sets and relations
to the establishment of natural numbers, from which the rest
of mathematics can be derived, By this development, it 1is
stated (by Russell)} that the natural numbers emerge with the
unique meanings which are ordinari ly associated with them,
rather than being defined nonuniquely as any things which
satisfy a certain set of abstract postulates,

To avold the paradexes of set theory, P.M. employs a
Ptheory of types.™ As a rough indication of what is meant
by a %type," it may be said that individuals, sets of individuals,
relations between individuals, relations between sets, sels of
sets, etc., are of different types. Using this theory of types,
such statements as "sets being or not being members of them=
selves® are rendered meaningless by the requirement that sets
must contain members of only one type.

To digress slightly at this point, the actual legic of
P.M, will be examined to provide a more concrete idea of the
nature of mathematical logic. Also, to be able to better
understand the logic developed by the intuitionists, an eXami~-
nation of this logic will provide a background which can be

used to contrast with the intuitionist theory. The logic from



P.M. is chosen since it is basically that which is employed

throughout classical mathematics.



CHAPTER 1V
LOGIC FROM PRINCIPIA MATHEMATICA

In what follows, a sketch will be given of the basic
program carried out in P.M, Only enough detail will be given
to {1lustrated the general procedure followed, as well as to
furnish a basis for the later discussion of intuitionist logic.
Thus, only the most pertinent ideas and concepts will be
presented,

In dealing with the axiomatic method, one starts with
certain terms left undefined, and with certain basic formal
assumptions. Hewever, in P.M., Russell and Whitehead provide
en auxiliary explanation of the "meanings® of these primitive
ideas and propositions., This is necessary, since they are
not dealing with such matters where one can usually assume
that the reader 1s already familiar with the basic ideas as
in, say, Eucllidean geometiry. These explanations do not consti-
tute definitions since they involve the ideas they explain,

The most elementary notion used in P.M, is that of "propo-
sisions.™ A proposition is a statement involving only definite
notions with no variables, Thus, "this pen is green” is a
proposition. The letters p, 4, r'; S are used to denote elementary
propositions, Statements that contain variables and which become
propositiens when specific constants are substituted for all

variables, are called propeositional functions.
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Propoesitions are assigned “truth values®; truth if it
is true, and faischood if it is false.

Another notion is that of the assertion of a proposition
or propositional function, This is indicated by the symbol
" ", Thus,

gl
asserts the truth of the proposition p., All postulates are
assertions, and therefore are preceded by the symbol . Any
proposition stated in symbols without the assertion sign " "
is merely put forward for consideration and is not asserted.

Dots on line with the symbols have two uses: one is ito
serve as parentheses and brackets; e.g., ".pvqg." instead of
%(pvg)®, For brackets enclosing parentheses, the symbol ":™®
is used, Thus, when ":" occurs in a formula, it indicates a
bracket enclosing everything to the next ":™ or te the end of
the expression. The other use of a dot is to indicate the
logical product of two propositions; e.g. "p.q", which has the
meaning "p and g%, i.e,, "p is true and q is true.”

Negation, which uses the symbol "~*, is explained as
follows: if p 1s any proposition, themn " ._p" represents the
proposition "not-p" or "p is false," Thus, if p is true,
~p is false; and if p is false, ~-p is true. 1In this paper,
the representation "pt" will be used for "not-p", This will
be the only symbol of major use differing from P.M.

Disjunction is as follows: If p and g are two prope-

sitions, the propesitien "p or q", i.e., "either p is true
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or q is true,” where the "or" is the inclusive, Mand/or® will
be represented by

PVq
This is called the "disjunction™ eor "logical sum® of p and q.
simllarily, Pptvq™ will mean "p is false or g is true.®

P.M. employs three basic formal definitions. Symbolically

they employ the sign "=" along with the letters "R,Df®™ which
together indicate a definitlion.:

The three deflinitions are as follows:

R.Df.1 POq.=.pYV]
ReDfoz peqt=0(p|vq')t
R,Df.3 =q.=.P2>J.d>P

R.Df.1 is the definitlion of implication, which uses Rz
as its basic symbol. It is stated that p implies g when the
proposition g follows from a proposition p, so that if pis
true, q must be true. This property does not determine what
ig implied by & false proposition though. What it does deter-
mine is that if p implies q, then 1t is impossible for p to be
true and g false, i.e,, it must follow that either p is false
or q is true, Otherwlse, the system would be inconsistent.
Thus, the definition is interpreted to mean: "Either p is false
or q is true,"” This type of implication i1s sometlmes called
"material! implication,™ since the truth-value of pmq is deter~-

mined solely by the constituent propositions p and g, and there

#The "R® will be used to emphasize that the definition
is from P.M., The R will also be used in numbering all axioms
and theorems taken from P.M,



CHAPTER IV
LOGIC FROM PRINCIPIA MATHEMATICA

In what follows, a sketch will be given of the basic
program carried out in P.M, Only encugh detail will be given
to 1llustrated the general procedure followed, as well as to
furnish a basis for the later discussion of intuitionist legic.
Thus, only the most pertinent ideas and concepts will be
presented.

In dealing with the axiomatic method, one starts with
certain terms left undefined, and with certain basic formal
assumptions., However, in P.M,, Russell and Whitehead provide
an suxiliary explanation of the ®reanings® of these primitive
ideas and propesitions. This is necessary, since they are
not dealing with such matters where one can usually assume
that the reader is already familiar with the basic ideazas as
in, say, Euclidean geometry. These explanations do not consti-
tute definitions since they involve the ideas they explain.

The most elementary notion used in P,M. is that of Horopo-
sisions.,” A proposition is a statement invelving only definite
notions with no variables. Thus, ¥this pen is green" is a
proposition, The letters p, q, T, 3 are used to denocte elementary
propositions, Statements that contain variables and which become
propositions when specific constants are substituted for all

variables, are called propositional functionmns.
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added and the resulting proposition is true,

R.Pp.3: 1f either p or g is true, then gither g or p
is true, In P.M., this is cailed the "principle of permuta-
tion.,” This is essentlially the commutativity of v,

R.Pp.lis If p is true, or either g or r is true, then g
is true, or either p or r is true, This is a special type of
associative law.

R.Pp.S: If q implies r, then (p or g) implies (p or r).
This is called the "principle of summation® in P.M.

These primitive propesitlions, from the logistic viewpoint,
are basic logical "truths," and are to be considered true
regardless of the truth values of the propositions p, q, and r,
The name given for such expressions is "tautology.® With thess
tautologies, however, certain rules are needed for determining
their own consequences.

There are two basic rules by means of which theorems can
be derived from given tautologies. These rules will be denoted
zs follows:

Sub.: (rule of substitutioa). Substitution of a propositien
or & formula for all occufrences of a proposition in a gliven
formela. (For example, substitution of pvg in R.Pp.2 for q
gives {pvqg).D.pvipvg)). Also, substitutien of any expression
which is identical to a given expression by definition.

m.p.: (modus ponens or rule of inference). If given

%#This rule is not given as a general rule in P.M., but
is employed throughout for particular cases.
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" .p" and " F.p.2D.q", then this implies " }.q".
With these rules and primitive propositions, some theorems
will now be derived. The first will be the law of the excluded

middle which will be derived through a sequence of lemmas,

R,1 F t.gDr.Dip=q.>.p>T
Proofs b t.qDr.>>i1pVq.>.PVL (R.PDp.5)
b ot.gor.Dptvg.o.pivVE (sub. p! for p)
F :.qOor.Do:p>2q.D2.p0T (R.Df.1)

This theorem is one form of the transitivity of implica-
tion, sometimes called the "principle of the syllogism.," Thus,
if propositions of the form XY and YO are asserted, and
X227 is to be proven, then the proof would be as follows:

(call this proof Syll.,)

Syll, Proof: b :1.qDr.D:pD¢..>.pDT (R, 1)
F . YDZ.DD XDV 2D.XD2Z (sub. X, Y, 2
for p, g, T
respectively)
FoYDZ (given)
F XD2Z (m.p.)
R.2 F :p.2.PVP
Proofs F :q.=2.pvq {R.Pp.2)
F :p.D.pvp (sub. p for q)
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R.3 b PP
Proof: F t.qDr.2:p2q.>.p2T (R.1}
I ::pvp. D.P: D1, P. D PVPID. PP
{sub. pvp for g and
p for r)
F .pVP.OP (R.Pp.1}
B oz.pe 2.PVPID.PDP (m.p.)
b 2P.D.PVP (R.2)
F -p>p (m.p.)
R.b F ooptvp
Proof: F -p2D (R.3)
b LptVp (R.Df.1)
R.5 }o .pvp! Law of the excluded middle.
Proofs F ipvg.2.qvp (R.Pp.3)
F ip'vp.=.pvp! (sub. pt for p and
p for q)
o .ptvp (R.L)
b .pvp? (m.p.)

The law of the excluded middle says, "gither p is true

or p is false," or, "either p is true or not-p is true."

R.6 - +p>p!. >.p!
Proofs b :pvp.>2.p (R.Pp.1)
- :ptvp!.D,p! . (sub. pt for p)
F :pop'.D.p! (R.Df.1)

This is a special case of the principle of reductio ad
absurdum. A more general form of this principle will be

stated without proof as R,7.



R.7 e
R.8 F
Proof: -
F

-

R.9 F
Proofs I
(1)t

b

(2) F

l..

F

F

R. 10 F
Proof: F
,_

b

F

2

These are some

negations.

P2 g. 2 p2gT . 0. B!

DpD(p")!?

. pvp! (R.5)

.ptv{pt}!? (sub. p' for p)
p(p")? (R.Df, 1)

pv [Tp1) ]t

1. T. D PVG. D .PVD (R.,Pp.5)

2.pt. 2. [(p1) 17 .Dipvp! . D.pv {(PI)L?'
sub. p! for ¢q and
/(p")1/1 for r)

.P.2.(p")? (R.8)

pt. 2. () 1T (sub. pt' for p)
spvpt.=>.pv [(p") 1! ( {1}, (2) and m.p,)
spvp! (R.5)

pv [Tpt) s/t (m.ps)
(pt)'op

IPVq. D.qVP (R.Pp.3)

:pv [(p1) 27t 2. [(p") 1/ vp (ggg-q pt)/*
.pv [Tpt) 17 (R.9)
AVAGIIAYA {m,p.)

. (p¥)tDp (R.DE.1)

of the basic relatlonships involved in multiple

Three more important theorems will be stated without proof,

R.11 p
R,12 -

ptez. [lpt)I/

P=. (pP)?

This is the law of double negation.



R.13 F

This is the law of contraposition,

1Y

tpODq.=. 4o pt

The complement of the principle of reductio ad absurdum

is as follows:

R. 1l F
Proof's =
b

}.

(1) F

k-

(2)

(3)

W) F

2

R. 15 F
Procf: b

f..

!.

’.

g o i 6 o P 31 &

2. gD . IPDG.D.pOT

s, p(pt)t,2ip'Dop. 2.0t (p")!

p(pt)?
:p'op..p'{p")!
:p2pt.O.p!
:p!2(pt)t. 2. ()
sptop. . {(pt )
(pt)1D¢e
spTDOpP.O.P
1p.2.PVg

$q. 2. PVq

2PVg. 2.qVDp
2, 2. QVD

1D =2.PVq

(R, 1)

(sub. p for gq, (pt)t
for r, and pt for p)
(R.8)

(m.p.)

(R.6)

(sub. pt for p)

( {1), (2), syll)

(R, 10)

( (3), (L), sy1l)

(R.Pp.2)
(R.Pp.3)
(syll)

(sub, p for g and
g for p)

The feature of material implication that a false propo-

sition implies any proposition is shown by the following

theorem.,

R, 16

Proof:

T T T T

:pte 0.9
2D 2. PVY

1pt.2.plvg
:pt.2.p2g

(R.15)
{sub. pt for p)
(R.Df.1)
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Thus, if @ is a false statement, this implies ¥ oat "
And, if b is any statement, substitution of Hat for "p" and
nyt pop "q" in R.16 glves " :a?.D.aDb"; then applying
modus ponens gives ® J.,a>b."

Another feature of material implication is that a true
proposition is implied by any proposition, This 1s given

by the following theorem,

R.17 F :1q.2.pOq
Proof: F otg.D.pvg ' {R.Pp.2)
bk o2q.D.pTVYg ' (sub. p' for p)
f :q.2.pDq {(R,Df.1)

A consequence of the definition of the logical product
(R.Df.2) in P,M., is the equivalence of the law of the excluded
middle and the law of contradiction., The law of contradiction
is given as follows:

R.18 b .{p.p")?

This states that it is false that a proposition is both
trye and false. If it should happen in a given system that
both p and not-p could be asserted, then using R.16 it would
follow that all propositions in the system would be provable,
and the system would be inconsistent. This final point is
of major importance when dealing with any formal system which
seeks to be consistent. It so happens that this is a central

problem to the second school of mathematical thought,




CHAPTER V
FORMALI SM

The second major school in the foundations of mathematics
is called formalism. It was founded around the turn of the
century by David Hilbert, The method which this school employs
is known as meta-mathematics. In the formalist thesis, the
axiomatic development of mathematics 1s pushed to its extreme.
Mathematics is considered to be a formal symbolic system whose
abstract development consists of terms which are mere symbols
and of theorems which are formulas involving these symbols.
The foundations of mathematics do not lie in logic, but rather
in the strings of symbols plus the rules of cperations for
obtaining new formulas from those previously developed. From
this point of view, mathematics is devold of concrete meaning
and contains only abstract elements.

1t so happens though, that the meta-language, i.e., the
language which does not belong to the system, but is used to
describe the system, does have meaning. Thus, from the basic
rules expressed in the meta-langtnage, can be developed meta-
theorems which constitute the essence of meta~mathematics.

The meta-theorems are statements about the marks in the system
under study, plas statements about moves which can or cannot
be made in that system according to its rules. Probably the
most importent question in meta-mathematics concerns the con-

sistency of the system of meaningless symbols, Without a proof

19 pGRTER LIBRARY
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of consistency, the whole study would be essentially sense-
less,

The success of the formallist program thus hinges on
the solution of the consistency problem, With the crisis
in classical mathematics from the paradoxes of set theory,
it becomes even more important to find a consistency proof
to save classical mathematics, Now the plder consistency
proofs, based upon models, merely shifted the question of
consistency from one mathematical system to another., The
formalists conceived a new direct approach to the consistency
probiem, This invelved preoving, by finite, constructible
methods, that a contradictory formula can never occur in the
system., This amounted to showing that if p is any theorem
of the system, then not-p must not also occur as a provable
theorem., If it can be shown that no such contradictory formulas
are posslble, then the system is consistent.

Hilbert developed a “proof theory" to deal with preofs
of consistency, With this, he was able to give proofs for
certain elementary systems; but in 1931, Kurt Godel showed by
methods acceptable to followers of any of the three main
schools of mathematical philosophy, that it is impossible
for a sufficiently complex formal system, such as the forma-

list!'s system for classical mathematics or Prianciplia Mathe~

matica, to prove consistency of the system by methods
belonging to the system., Also, Gb6del was able to demonstrate

that for systems complex enough to deduce the natural numbers
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and zlementary arithmetic, consistency is incompatible with
completeness. In other words, such systems can De consistent
only at the price of being incomplete, and can be complete

only at the price of being Inconsistent. Thus, to work with

a consistent system means that the system must fail Lo derive

as theorems all the truths about natural numbers. This result
is a decisive blow against the idea that mathematical truth

can be identified with a deductive formal system. With these
points as a background, the third school of mathematical thought

called Pintuitionism" will be examined.



CHAPTER V1
INTUI TION1SM

During the first part of this century, the school of
modersn intuitionism was founded. The Dutch mathematician
L. E. J. Brouwer is usually considered to be the foundar,
After writing his thesis in 1908 on the limitations of the
law of the excluded middle as a mathematical tool, he then
proceeded to espouse and develop a iype of mathematics in
1ine with this philosophy.

One of the fundamental convictions of the intuitionist
school is that if mathematics is properly practiced and
understood, it 1s a wholly autonomist and self-sufficient
activity, i.e., it does not need the Justification of logic
or proofs of consistency which the logicists and formalists
use for support,

The intultionists contend that the antinomies which have
originated in the foundations of mathematics are but a symptom
that mathematics has not been properly pursued. They
believe that loglicism and formalism, in attempting to secure
the foundatlions of classical mathematics, have used methods
which are not truly mathematical. Thus, the intuitionists
attempt to rebuild mathematics at all leveis using only truly
mathematical methods, "Mathematics™ for the Intuitionists
is to perform mathematical constiructions in the medium of
pure intuition and to communicate the results to others so
that they can be repeated.

22
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Before considering the intuitionists mathematical program,
the intuitionists mathematical philosophy should be examined
briefly., Brouwer acknowledges his debt to Kant for providing
certain basic tenents used in his philosophy of mathematics,
Brouwer, as Kant, regards mathematical theories as syanthetic,
in the sense that propesitions can be separated with a muutually
exclusive and jointly exhaustive classification of being either
analytic or synthetic.* Kant considered that the theorems and
axioms of arithmetic and geometry are synthetic a priori, i.e.,
they validly describe space and time and constructions therein
through pure intuition. Brouwer rejects Kant's intultion of
space, but does accept hls doctrine of the pure intuition of
time and regards this to be the substratum of mathematics.

Like Kant, Brouwer regards such intuition to be independent

of any sense-perception, Thus, the subject-matter of intuition-
ist mathematics i{s intuited non-empirical objects and constructions
which are self=egvident through introspection.

Brouwer, in presenting his program of mathematical founda-
tions, formulates two acts or insights of intuitien, To quote
Brouwer verbatim:

The first act of intuiticnism completely

separates mathematics from mathematical language,

in particular from the phenomena of language which

are described by theoretical logic, and recognizes

that intuitionist mathematics is an essentlally

languageless activity of the mind having its origin
in the perception of a move of time, i.e., of the

*For an explanation of these terms, see the appendix.
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falling apart of a life moment inte two distinct

things, one of which gives way to ihe other, but is

retalned by memory. If the two-ity thus born is

divested of all quality, there remains the empty

form of the common substratum of all two-itles.

It is this common substratum, this empty form,

which is the basic intuition of mathematics.¥

One point which Brouwer has brought out 1s that mathe-
matics is essentially languageless. Just as the experience
of, say, rowing a boat is not to be confused with its linguis-
tic description and communication to others; in a similar
manner the experience of mathematical intuitions and construc-
tions must not be confused with its linguistic description
and communication, Rowing a boat does not depend upon
language; likewise, mathematical development, with its intui-
tive insights and constructions is languageless. According
to Brouwer, the principles of classical logic are linguistic
rules which are used in description and communication, but
not in the activity itself of constructing proofs, Mathe-
matics is essentially independent of both language and logic,
which are but inessential aids,

With the distinction between the activities of mathe-
matical constructions and the linguistic activity (including
logic), an important question arises with regard to whether the
linguistic representation does not outrun the constructioen. This
follows from the fact that in everyday communication, language

sometimes outruns its subject-matter, e.,g., "unicorns."

This danger is usually regarded as very small in the use of

*L. E. J. Brouwer, MHistorical Background, Principles and
Methods of Intuitienism," South African Journal of Science,
October, November, 1952, p. 142.
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mathematical language. But, accerding to Brouwer, this does

also happen in mathematics, In the case of mathematicians

who employ the law of the excluded middle in dealing with
infinite collections of mathematical objects, Brouwer believes
that language is overrunning and misrepresenting the nature

of mathematics. Thus, in certain cases, the law of the

excluded middle must be rejected as an instrument fer discovering
new mathematical truths.

The second act of intuitien for Brouwer concerns mathe-
matics of the "polential! infinite.®™ This avoids the perceptually
and intultively empty notion of actual, pre-existing infinite
totalities employed in classical mathematics. The notion of
potential infinity consists of conceiving an indefinitely
proceeding sequence, i.e., a sequence which can be generated
step-by-step ad infinitum, but which is never complete. For
the purpose of such a sequence, that of the natural numbers
1, 2, 3, i, + . . is most basic and useful. The intuitionist
asserts that, in this manner, new mathematical entities can
be generated from those previously acquired, The terms of
an infinitely proceeding sequence can be generated either by
the free choice of the creating subject from mathematical
entities previously acquired, or by means of a defining property
which is supposable for entities previously acquired and which
holds under the relation of equality between entities,

Intuitionist mathematics has several other polnts of

difference with mathematics that is supported by a logical
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substructure or expressed by a formalization, Its program
is formulated simply enough, but it does involve some diffi-
culties for the non-intuitionist because of its unfamiliar
methods and procedurs.

One of the most important points of the intuitionist
program concerns the nature of mathematical existence. The
logicist and formalist, as well as the classical mathematician,
have allowed as legitimate pure existence~theorems which state
that "there exists" a number with certain properties even though
so far no method for constructing this number is known. This
approach is utilized, for example, in Cantor's proof that there
are more real numbers than there are natural numbers. Such
proofs the intuitionist does not allow in his mathematics.

For him, "mathematical existence™ means the same as Mactusl
constructibility,® which is performed in a finite number of
steps,

Another mathematician whe has been instrumental in deve=-
leping the intuitionist mathematics is Arend Heyting. His book

Intuitionism--An Introductien, 1s considered to be the only

comprehensive introduction to intuitionism written in English.
It was Heyting, in 1930, who first formulated the logic of
intuitionist mathematics., Thus, a conslderation of his views
should shed considerable light on the nature of intuitiomnist
mathematics_and iogic.

The distinction between coacelving the natural numbers

as an indefinitely proceeding sequence and that of classical
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mathematics, which conceives them as forming a completed,
infinite totality is illustrated by the feollowing example
from Heyting. Define two naturgl numbers ¢ and d by these
two rules: (A). c is the greatest prime such that c-1 is
also prime; if no such prime exists, let cwo. (B). d 1is

the largest prime such that d-2 is also prime; 1f no such
prime exists, let d=o. Now from rule (A), it can be deter-
mined that ¢=3 since c-! will be an even number. For (B),
the classical concept of the natural numbers N as a completed
totality would state that either there exists an infinite

series of twin primes, in which case d=o, or there does not

il

exist such a series and in which case 4 is the larger of the

o

o

greatest pair of twin primes. Thus, {B) would also define %
%

some number d. The intuitionist, on the other hand, would _%
not admit this argument since it does not give any definite ;

information concerning the sxistence of an infinity of twin
primes, and it would be impossible to generate natural numbers
such that a constrmctible existence of d could be demonstrated.
1t would make no sense to the intuitionist in this case to
use the law of the excluded middle and state that "either
the sequence of twin primes is finite or it is not finite,™
unless it is backed by a constructive proof.

Now the classical mathematician may not be interested
in any considerations outside of mathematics itself. Many
tend to view a position such as that of the intuitionist as

being "philosophical confusion," and not being concerned with
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true mathemstics, But, ironically enough, 1t is this very
same criticism which the intuitionist applies to classical
mathemaltics.

Concerning Heytingts example, the classical mathematiclan
might object that the extent of our knowledge of the existence
or non-existence of a last pair of twin primes is entirely
irrelevant in questions of mathematlical truth, Elther an
infinity of such primes exist, and d=o; or their number is
finite snd d equals the greatest prime such that d-2 is also
prime. In every conceivable case d is defined, so it should
not matter if d cannot actually be calculated.

The intuitionist rejects this argument since it is meta-
physical in nature. If "to exist" does not mean "to be
constructed,® its meaning must lie in some Beheory of reality.”
Of course, a mathematician may privately hold any metaphysical
belief he tikes, but it is not the task of the mathematician
to investigate the meaning of such theories in mathematics.,
Brouwerts program, then, entalls that mathemailics is the
study of something much simpler than metaphyslics, And, in
the study of mental mathematical comstructlons, to exist®
must be synonymous with "to be constructed.”

An obvious objection to the intuitlonist theory on the
part of the classical mathematician might be to say that as
long as it is unknown whether a last pair of twin primes
exists, (B) is not a defimition of an integer, but if this

problem should be solved, it suddenly becomes & legitimate
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definition. If, on June 1, 1980, it is proved that an infinity
of twin primes exists; from that moment d=o. The classiceal
mathematician might well ask if d=o before that date or not.
Heyting answers this question by again stating that, for
the intuitionist, a mathematical assertion affirms the fact
that a mathematical construction has been effected, Thus, 1t
would follow that before the construction was made, it had not
been made; and, therefore, before June 1, 1980, it had not been
proved that d=o. But this is not the sense in which the question
was asked., In order to clarify the classical mathematician's
question, it seems that ons must again refer to metaphyslcal
concepts: to some world of mathematical oblects existing
independently of the mathematician, where d=o is irue or
false in some absolute sense. This, of course, relates to
the question of whether mathematical "iruths® are discovered
or created. The intultionist position is that such questions
should be left to the mathematical philosopher, and such notiocns
should not be allowed in mathematics. Heyting would admit that
all mathematiclians, including intuitionists, are convinced that
in some sense mathematics bears upon eternal truths, but if
such notions are allowed to enter mathematics itself, one gets
involved in a maze of metaphysical difficulties. Thus, for the
intuitionist, the study of mathematics is the study of mathe-
matical constructions as such, and for this study, classical
logic is inadequate., Also, Heyting states that the subject

of constructive mathematical thought determines uniquely the
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intuiticnist premise and places it beside, not Interlor

to, classical mathematics, which by its metaphysical
conslderations, studies another subject, whatever that subjeci
may be.

The Intuitionists alsc have many points of difference
with the formalists., The formalisis begin with the fact that
in daily speech or non-formalized mathematical language, no
word has a perfectly fixed meaning, Thus, the only way to
achieve absolute rigour is to abstract all meaning from the
mathematical statements and to consider them only as sequences
of symbols, neglecting the sense they may convey. Then, by
using a meta-mathematical formulation of definite rules for
deducing new statements from those already known, the
gncertainty from ambiguity of language can be avaeided.

The intuitionist, on the other hand, is not interested
in the formal side of mathematics; but he is interested in
that type of reasoning which appears in meta-mathematics,
since it involves the finite, constructible proofs which the
intuitionist demands, This is developed te the farthest
consequences, from the cenviction that this type of reasoning
results from one of the meost fundamental facultlies oflthe
human mind.

it is true that a formalization of the finished part of
intuitionist mathematics is possible. But this may only be
considered as a linguistic expression, in & particularly suit-

able language, of mathematical thought. And, since any language
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hes a fundamental ambiguity, one cannot be mathematically
sure that the formal system fully represents any domain of
mathematical thoughts this fact being verified by Godel'ls
incompleteness theorem,

A similar consideration applies to logic, The intui-
tionist does not consider logic to be the infallible criterion
to verify mathematical thought, Even though this paper centers
around intuitionist logic, logic is not the foundation for
intunitionist mathematics. TFor it would follow that logic
would need a foundation, which would involve principles more
complex and less clear than those of mathematics itself. The
intuitienist asserts that & mathematical construction should
be so clear te the mind and its result so immediate that it
needs no foundatlon whatsoever, All that is needed is what
Heyting calls a ®clear scientific conscience." By this one
evaluates the constructions, which have as their starting
point concepts clear even to young children.

To further clarify the point that intuitionist mathe-
matics does not depend upon classical legic, it can be stated
that whereas, for example, the logicist justifies his mathe-
matics by an appeal to logic, the intuitionist justifies his
logic by an appeal to mathematics. That is to say, the
intuitionist bullds his system without the use of any legic other
than what he can Justify by his mathematical constructions,
Thus, the intuitionist is not concerned with logic in general,

but rather with mathematical logic, i.e., a formulation of the
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principles employed in making mathematical constructions,

The intuitionist!s view, then, is that formal systems of
logic are essentially linguistic by-products of the language-
less activity of mathematical construction and are mainly of
pedagogical value,

From a purely formal point of view, Intuitionist logic
can be viewed as a subsystem of classical logic. Since any
intuitionist mathematical proof would be acceptable in
classical mathematics, but not all proofs of classical mathe-
matics are acceptable to the intuitionist; it follows similarly
that certain parts of classical logic are not acceptable to
the intuitionist, while all theorems deduced from intuitionist
logic are valid in the classical theory.

To clarify the above statements, the Intuitionist logic

as developed by Heyting will be examined.



CHAPTER VI1
INTUITIONIST LOGIC

Heyting, in his development, first gives some basic
distinctions and definitions which are used in the inlui=-
tionist propesitional calculus. The first concerns the
nature of prepositions.

For P.M,, a proposition was understood to be any state-
ment in which it i1s meeningful to say that its content is
either true or false, whether or not it is known which term
actually applies. Examples of prepesitions are: "6 is an
integer," "7 is an even integer,” "the sequence 0123456789
ocoures in the decimal expansion of T .™ The first proposition
is true, the second false, and even though the truth-value
of the third is not known, it is still considered meaningful
to say that it must be either true or false, Alsb, when @
proposition is stated, regardiess of its‘truthnvalue, it is
meant to imply that it is true. Upen being proven, it is then
considered to be an assertion,

Heyting, on the other hand, deals with the concept of
a2 proposition in the following way: a mathematical proposition
expresses a certain expectation. For example, a proposition
such as "the constant of proportionality ¢ in the relation-
ship A=cbh is a rational number® expresses the expectation
that two integers a and b can be found such that cé%. The

word "proposition®™ can possibly be better expressed as the
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intention which is linguistically expressed by the proposi-
tion, The intention, as in the example, refers to a
construction thought to be possible, Thus, for Heyting,
the concept of a proposition takes on a different meaning
than that in P.M. |

An assertion for Heyting is the affirmation of a proposi-
tion, i.e., the fulfillment of an intention expressed by the
proposition. The assertion "¢ is rational™ means that the
integers a and b have been found such that cé%. An assertion
is distinguished from its corresponding propesition by the
assertion sign " " as used in P,M, The affirmation of a
proposition is not itself a proposition, but rather the
fulfillment of the intention expfessed in the proposition,

It expresses the fact that.a proof has been coﬂstrucied.

To develop the intuitionist logic, certain logical
constants are introduced. 1t should be remembered that P,M.
used two logical constants, namely v {disjunction) and —~
(negation}, The symbols D> {implication) and - (conjunction)
were then defined in terms of disjunction and negation. For
example, P,M, defined p>q as ~~pvq.

Heyting initially introduces four symbols,—,>, A , and
v standing respectively for negation, implication, conjunction,
and disjunction, He makes it clear though, that for intuitionist
loglc these symbols are independent of one another.. Thus, for

example, p>q is not the same as —pvq.
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Heyting states that a logical function is a process for
constructing a propesition from previously given propositions,
Thus, p/Agq can be asserted if, and only if, both p and q can
be asserted., Also, pvq can be asserted if at least one of
the intentions p or g can be asserted. These two logical
fanctions very nearly correspond to the functions of
conjunction and disjunction in P,M,, except for the intuitionist
requirement of constructive proofs in asserting these proposi-
tions.

In considering the material implicatien p>q of P.M,,
the truth-value of the Implication depended upon the truth-
values of the éonstituent propositions p and q. Thus, p>D(q
was false only when p was true and q was false.

Comparatively, the intuitionist implication is not a
truth-function, For the intuitionist, p—>q can be asserted
if, and only if, there has been performed some construction
K which joimed to a constructlon proving p would effect a
censtruction proving gq. Or, more concisely, a proof of p,
together with X, would form a proof of q.

Concerning the concept of negation as a truth function,
the intuitionists differ sharply with the logic of P.M. From
P.M., ~~p was the denial of a proposition p., Thus, ~-p is
true if p is false, and false if p is true. -

For Heyting, negation is something thoroughly positive.
1t is the intentien of a contradiction contained in the origi-
nal intention, Hence, the proposition "B is not a2 prime®

signifies the expectation that a contradiction will be derived
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from the assumption that B is prime. It is important to
note that the intuitionist negation must refer to a construc-
tion or proof procedure which leads to the contradiction,
The symbel - is used for negation, Thus, to affirm the propo-
sition, p —ip, it is positively stated that a construction
has been effected In one's mind which deduces a contradiction
from the suppogition that a proof of p has been effected.
With this conception of negation then, the intultionist theory
diverges in certain aspects from that of the classical.

As a theorem in P,M,, it is asserted that ~~~p—op.
Using this, the logicist can assert p by showing that its
negation is Impossible and not necessarily demand a consiruc-
tien of p itself., To the intuitionist thomgh, the impossibility
of the impossibility of a property does not in zall cases give
a proof of the property itself, The following example will
iilustrate this point. Let the decimal expansion of IT
be written and under it the decimal expression r=0.6666 , ., .
which will be terminated as socon as a sequence of digits 0123156789
has appeared in 1T, Now assume that r is not rational; then
it follows that the sequence 0123456789 could not appear in TT
since thils would imply that r is a terminated decimal expression,
which 1s a rational number; but then ré§ which is also
impossible, Thus, the assumption that r is not rational has
led to a coniradiction; yet it cannot be asserted that r is
rational since this weuld mean that two integers a and b have

a
been calculated such that r=b. This of course requires that
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a sequence 0123456789 be found inTr, or demonstrate that
this cannot appear,

Also, the classical tautolegy pv—p does not hold for
the Intuitionist unless p has been proved or reduced to a
contradiction. To be more specific, the law of the excluded
niddie is guestioned by the intuitionists only when the
given proposition is not "intuitively”™ clear. This occurs
when one tries to introduce actual infinite totalities into
mathematics. For example, comsider the proposition M"there
exists a prime number in set A.® If it happens that A is a
finite set, then the intuitionist would state that it is
intuitively clear whether or not A contains the desired number
since it can be determined in a finite number of steps. But,
if A is an infinite set, the intuitionisi would not allow the
assertion of the proposition unless, either the prime number
is exhibited in A, or it is shown that such an assumption
leads to a contradiction., Thus, to state Meither A contains
a prime ntumber or it does not" is mathematically meaningless
unless a constructive proof can be determined which will
verify it. Another more concrete example of the intuitionisttis
denial of the law of the excluded middle can be illustrated
by "Goldbach's conjecture,® which states that every even number
can be expressed as the sum of two prime numbers, Despite
much effort, mathematicians have not been able to prove ner
disprove this propositien. In fact, there is no assurance

that it will ever be solved, To the intultionistts standard
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of logical rigor, it is itherefors meaningless to state that
the conjecture is either true or false, unless one can provide
a constructive proof for its verification or rejection.

As Heyting summarizes it, the formila pv-—p signifies
the expectation of a mathematical construction. And, being
a mathematical proposition, its validity 1s a mathematicsal
problem which, when stated as a general law, is unsolvable
by mathematical methods, It is in this sense that logic is
dependent upon mathematlcs.

With the intuitionist's rejection of parts of classical
logic, the next consideration should be to examine some of
the points which the intuiticnist logic does assert. For

this, Heyting's propositional calculus will be developed,

The Propositional Caleulus

For the reader who might be iInterested only in some of
the results of the intuitionist logic, a few of the more
important theorems will be listed, along with certain classi~-
cal theorems which are not valid in the intuitionist theory.
In the following statements, the assertion sign | will be
placed in front of valid theorems, while the sign * will be

placed In front of non-theorems,

(1) P, PP
#FapO R

The proposition p implies the double negation of p but

not the converse,
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(2) . (P9I (19>-P)

#(—1q>—p) = (p2q)

Cnly half of the law of contraposition holds.
(3) . —p>——p

F———1p>—p

These two statements are thus egquivalent.
() spv-p

b,—1—1 (pv—p)

Even though the law of the excluded middle is aot
derivable in the system, the falsity of the falsity of this
law is derivable,

(5) k. {pvgl>—1PAg

#—1(pAq)>1pvVIq

-.— (PA—IP)

The last of these is of course the law of contradiction,

With this short consideration of some of the results of
intuitionist logic, the formal development will now be
examined, For this, the writer will be working with Heyting'!s
original work, "Die formalen Regeln der intuitionistischen
Logik." 1In this work, Heytingt!s proofs are little more than
one or two line ®directives"; and, for the most difficult

proofs, he refers the reader to Peano'!s Formulaire de

mathematigques, The writer will, for this theslis, develop all

theorems which deo net depend upon theorems whose proofs are

from Peano, Thus, Heytingts own numbering will be employed
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for the convenience of anyone who might want to refer to his
work, With these points in mind, Heylting's logic will be
developed,

I. Rules of Operation

1.1, The symbol | will be placed in front of a valid
formula, If the formila is an axiom, the double
symbol | | will be used, (Heyting uses eleven
axioms. They will be further emphasized by placing
an "H" before them),

1.,2. If a and b are asserted formulas, then aAb can be
asserted, (This will be denoted as "conj™)

1.3, If both a2 and aD>b can be asserted, then b can be
asserted., (This will be denoted as "m.p.")

1.k. The statement "Const. a" at the beginning of a
paragraph means that the symbol a is constant,
Every symbol not introduced as a constant in this
way 1s a variable, Whenever one replaces a variable
throughout a formula by another symbol combination,
then this in turn is also a valid formula.

1.5. (i)a is the formula which results from formula a,
when the varlable X in a is replaced throughout by
the symbol combination p., ({Here, the symbol "sub™
will be used instead.)

1.6. The formula aDb designates a definition: 1t means
that to replace the symbol combination a by b
(er b by a) in a valld formula, will produce a

formula which ié alsc valid.
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Hyi2sls
H.2,11,
H,2.12.
H.2.13.
H.2. 4.
H.2:15.,
2.01,
2,2

bi

oo s Ml SOV (ORI, S DO~ W (9 CF [ T
F F.a>aa,
F F.aAb>DbAs.
F F.2aDb.D.aAcDbAcC.
b F.a>b.A.bDc..a>c,
F kb D.aDb,
F F.aA.a2>b.Db.
.a><b,D.a>b, A.ba.
F.aAb>Da.

Proofs |[F.2a>>.b>la (2.1, sub b for a,
a for b)

k.ad.bDa.>.aAbD.bDa.Ab
(2.12, sub b for c,
bo>a for b)

(1) k.aAbD.bDa.Ab (m.p.)

F.bA.bDa.>e (2.15, sub b for a,
a for b)

L.b2a.Ab.D.bA,b2a
' (2,11, sub b>a for a)

F.(bDa, Ab,>.bA.bDa). A.(bA,bDa.Da)
(conj.)

F.(boa Ab.2.bA.DD2). A (bA.DDa.>a). D
(bDa.NAb.Da) (2,13, sub (bDa.ADb)
for a, (bA.b>a} for
b, a for c}

(2) b.bma,Ab.Da (mapa)

F.(aAbD.bDa.Ab) . A.(bZa.Ab.Da)
( (1}, (2), con])

F.(aAbD.b‘:’a./\b)./\.(b::)a.Ab.:Da) 0:9-

(aAb,Da) (2,13, sub aAb for a,
. {(b>a.ADb) for b,
b for c)

F.2Ab.De (m.p.)
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The writer would like to degress at this point to statle
that the rigor employed in proof 2.2 will be reduced slightly
in the following way: consider the following example, replacing

a, b, ¢ by X, ¥, Z respectively.

Example., .X2DY {given)
F.¥YDZ (given)

(1) F.XDY.A.¥YD2 (conj)

(2) F.XDY.A.¥YD2,.2.XD2 {2wl3)

(3) }p.X22 (m.p.)

In future proofs, steps (1)}, {2), and (3) will be combined
into one step, {3), with the reason being stated as {conj,
2.13, m.p.). This may be used for relationships other than
2.13 also,

2,21 F.a>a

Proof: }p.alalAa (2.1)
b.aAalla (2.2, sub a for b)
k.ala (conj, 2.13, m.p.)
2,22, F.aA bbb
Proof: }F.aAb2bAa (2.11)
F.bAaDb (2.2, sub a for b, b for a)
.aADDD (conj, 2.13, m.p.)

The next theorem will be stated without proof.
2.27. !—-:aD.ch:DC.a/\bcc

Proof: (See Peano, Formulaire de mathematiques,

vol, 1, section 1, para. l, proocfs 37 and 38)
2.02, F.aAbAc D.aAb.Ac



H.3.1, f k.allavh
H.3.1l, F p.avbDbva
H.3.12. } F.2alc.A.bPc,D,.avboc
3424 F.avb.ve,D.av.bve
Proofs F.aDavb
L .avbDhbva
(1) F.aDbva
b .bvc.Dav.bvc
b .c2bve
(2) b.cDav,bve
(3) .aDav.bve
F.bve,Dav.bve
}.bDbve
(4) F.b>av.bve
(5) F.avbDav,bve
b.avb.vc.D.av,bve
3.01, [.avbvcD,avb.vc
3.22, |j.avala
Proof: |f.a>la
F.ala
b.avala
Hobiels b Fo7a3.a2b
Holio1l. k F.a2b.A,2a>"b, D>z
4.2, F.a2b.D ™Mb
Proof: F.T1022.2a277Db

f3ald
(3.11)
(conj, 2.13, m.p.)

(in (1) sub bvc for a,
a for b}

(In (1) sub ¢ for a)
{comj, 2.13, m.p.)
{3.1, sub bvc for b)

{in (1) sub bvc for a, a
for b)

{3.1, sub b for a,.c for b)
(conj, 2.13, m.p.)

{ (3), (L), conj, 3.12, m.p.)
{ (2), (B), conj, 3,12, m.p.)

{(2.1)
(2.1)

{conj, 3.12, m.p.)

(2.1l,, sub=Ib for b)
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F.1bD.a@mb: Db . ALaDb. 2.2 b A LaDDb
(2.12, sub—b for =,
{a>—b) for b,
a=b for c¢)

Fem1boALaDb.D.a2b.ALaDb (mep.)

F.a2Db.A.T1b.D. b, A.aDb (2.11, sub a=b for a,
-1b for b)

F.aDb. A b, 22D b, A2Db (conj, 2.13, Mm.p.)
*‘.a:ﬂboA ‘anlD.a:b.A.a:ﬂb
(2.11, suk (a—>—b) for
a, a—=b for b)
F.a2b.A . 715.22.2a2b.A.a2™ b (conj, 2.13, MmePa)
F.a2b.A.a27b. DM (ho11)
F.a2b. AmMib. D, 1a (conj, 2.13, m.p.)
F.aDb. ATboD,ma:>:adb. 2P, 1b2oa
(2.27, sub a=>b for a,
-—b for b,ma for c)
F.a2b,2,m1bD>1a (mep.)
L.21. [F.a>2mb,2.b>a
Proof: }.b22.aPb:D:bA.aD>7bh.2.a2b.A.a>b
(2.12, sub b for a, a>b
for b, {a=—b) for ¢)
F.2>2,aDb (2.14)

F.bA.a>™b.,2,a2b. A,a27b
(m.p.}

F.a>™1b.Ab.2.bA 22D
(2.11, sub (a>=-b) for a)

k‘oap—ﬂbl/\ b. DoanboA .a:-'—!b
(conj, 2.13, m.p.)

F.aDb.A.a2=1b.>.ma (4.11)
t"oa:-—-‘b./\ ba:po_—.‘a (Conj, 2913’ m‘p')
F.a2™1b,. Ab.22.™2:0:3a21b. 2. b> 2

(2,27, sub (a=>™Db) for a,

~a for c¢)

k.2a>mb, 2. b22>"a (m.p.)
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4.3, F.a>——a
Proof: fp.—1am—1a (2.21,

F.—ma>=—a.D.a>—1a (h.21,

sub~ra for a)

sub —a for a, a for b}

E.ad™™Ma (m.p.)
L.31, F.1a>" T 1a
Proof: j.ma>———a (lL.2, sub a for a)
L.32, o a> s
Proof: |f.a>m1a (4.3)

F.a> 7 1a.=2.,1"71a>a

(h.2, sub ~=—ya for b)

k.~ 1—11a-a (m.p.)
Ll F.aA—maDb

Proof: .aA-1a>a (2.2, sub —a for b)

F.aA—ma=—1a (2.22,

F.aAmaDa.A.aA—ma=>"1a
{conj)

sub —a for b)

F.an mama. AaATaD 2. 2. 1(an —a)

(.11,

sub (aA-1a)} for

a, a for b}

F.{aA—7a) (m.p.)
]—.""I(aA""!a):D.aA""ra:Db(gil, sub {(aA—a) for
F.aA—7a>b {m.p.)
L.it,¢, fk.aA=a.vb. Db
Proof: f.aA—1a>b (L.l
k220 (2.21, sub b for a)

F.aA—12.vb,2b (cenj, 3.12, m,p.)
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.53, f.—1av=Tb>—1{a Ab)
Proof: |l.aAb=a (2.2)

F.aAb>2a,>.~ma>=1{aAb)
{{4,2, sub aAb for a,

a for b)
{1} F.m1a2>—1(aAb) (m.p.)
F.aAbDb (2.22)

F.2ADbDb,2,7b>1{aAb)
(4.2, sub aAb for a)

(2) F.mbd>=3(aAb) (m.p.)
F.—mav—bD>—1{aAb) ( (1), (2), conj, 3.12,
m,P.)
.8 ko (ava)
Proof: Fk.amav—a (3.1, sub—a for b)

F.a>av—ta. 2, (ava)>a
(4.2, sub {av-a) for b)

(1) F.{av—a)>—Ta (m.p.)
F.=1a>-ava (3.1, sub a for a, a for b)
F.~—ava=av—a (3.11, sub a for =2,
a for b)
F.=—aDav-a {(conj, 2.13, m.p.}

F.maDav—a.=,(av-a)>—a
(.2, sub ==a for a,
(av-—a) for b)

(2) F.—p(avma)>—a (m.p.)
F .= (av—a) ( (1), (8), conjl, L.11,
M. P.)

This last theorem is, of course, the falsity of the falsity
of the law of the excluded middie,
To illustrate the intuitionist logic which has been devew

loped, Heyting gives the following exeimple. Let A designate the
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property of an integer being divisible by 27, B the same

by 9, C the same by 3, For 27a c¢an be written as 9x3a; by
this mathematical construction K it follows that A entails

B or {ADB). A similar construction J shows BDC, By
effecting first K, then J (juxtaposition of K and J) it follows
that 27a=3x(3x3a) showing ADC, This process remains valid

if for A, B, C other arbitrary properties are substituted:

If the construction K shows that ADB and J shows that BDC,
then the juxtapesition of K and J shows that ADC. Thus,
there results a logical theorem. The process by which it

is deduced does not differ essentially from mathematical
theoremsy it 1s only more general, e.g., in the same sense
that "multiplication of integers is commutative™ is a more
general statement that ™3x4=[ix3." Thus, every loglcal theorem
which has been developed 1s but a mathematical theorem of

extreme generallity.

Mathematical Foundations

At this point, the reader will be given a glimpse of
the actual foundations of intuitionist mathematics. This
will in no way be complete or rigorous, but it will give
some idea of how intuitionist mathematics is conceived,
Again, for the most part, this will be given in the way of
examples which will illustrate the given ideas, It should
be emphasized that it would be wrong to éonsider these examples

as an essential part of intuitionist mathematics, just as it
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would be wrong to think that the continuous non-differentiahble
function eof Weierstrass 1s an essential part of classical
integral caiculus., The actual intuitionist mathematics is
developed in a manner similar to classical mathematics except
in a more restricted and rigorous manner,

The question as to the foundations or starting point of
intultionlst mathematics is of prime importance, Heyting states
that in the perception of an objlect, one is able to conceive
the entity by abstracting from its particular qualities. Also,
one has the ability to conceive of an indefinite repetition of
entities, In these notions lies the source of the concept of
natural numbers. This elementary notien of natural numbers is
fundamental to intuitionistic mathematics. It is this notion
which 1Is assumed "intuitively." Heyting does not claim for it
any form of absolute certainty, which he feels is unrealizable,
but it is considered to be sufficiently clear to build mathe-
matics upon. In fact, consistency is found tec be a by~product
of intuitionist mathematics.

The concept of a natural aumber, for Heyting, is suitable
for three main reasons,

{1} It is easily understood by anyone with a minimum

of education,

(2) It is universally applicable in the process of

counting.

(3) It underlies the construction of analysis.

Instead of thinking in terms of axioms, Heyting thinks In terms
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of evidence, Thus, axioms are not to be arbitrarily accepted
or rejected., The natural numbers from the beginning possess
certain properties which are detectable by simple examination.
1t so happens that the properiies described by Peano's axioms
are among them,

Except for mathematical induction, Peano's axioms are
considered by the intuitionist to be intuitively-obvious
properties embodied in the generation of the natural numbers.

The first two properties, which state that 1 is a number and the
immediate successor ¢f a number is a number, can immediately

be seen to be true by carrying out the generating construction.
This same consideration applies tc the third and fourth axioms,
which state that 1 is not the successor of any number and that

no two numbers have the same immediate successor. As feor the
induction property, it can be argued as follows: Let Q{X) be

a property of natural numbers such that Q{1) holds, and Q{n)
implies Q(n+1). Then given any natural number b, the intuitlionist
observes that by starting at 1 and passing over all natural
numbers to be in a step-by-step generating process, if the properiy
Q is preserved at each step, it can be therefore verified for b

as well as its successer b+l in a finite number of steps.

Analogous remarks apply for the recursive definitions of
sum and product for natural numbers. By running over l-—»p, 1t
follows that a+p and a.p are defined for arbitrary natural
numbers a and p, Thus, from the fundamental methods of induction

and recursion, the arithmetic of natural numbers can be developed.
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One concepi needing clarification at this point is that
of Mequality.™ Heyting states that 1a reality a natural number
must be fixed by means of a material representation, e.g., &
mark on paper. For if a netural number is nothing but the
result of a mental construction, it would be impossible to
compare it with ancther natural number constructed at another
time and place, since it would not subsist after the act of
its creation., Thus, by a physical representation, one is abie
to compare by simple inspectlion natural numbers constructed
at different times.

Another difference betwsen intuitionism and classical
mathematics appears when it comes to defining real numbers.

In classical mathematics a real number can he defined by a
Cauchy sequence of rational numbers. This can be defined

as follows: The sequence of rational numbers a,, 8oy a3, % e o
or, briefily, {%A} is a Cauchy sequence if for every natural
number m there exists a natural number n, a function of m, such
that for every natural number p, Ian+p-an|<:é.

The corresponding definition of an i{ntuitionist Cauchy
sequence can be formulated in almost the same way. The only
difference consists in replacing the phrase "there exists"
by the phrase "There can effectively be constructed" or
®"There can be effectively found." The following example will
be used to illustrate,

Consider the following Cauchy sequences,
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The first sequence {?é} is defined: .%,‘%, %, i w s OF {}E}.
in this sequence each term can be effectively constructed,
e.g., the hundredth term is 2 . Consider ths second sequence
{?é} defined as follows: I%Oghe alth digit after the decimal
point in the decimal expression of TMW=3.14l5 . . . is the O of
the first sequence 01234156789 which occurs in this expanszion
of I1, bn=1: in every other case bnaéza .

Since the sequences @1’3 and @IQ differ in at most one
term, it follows that {?a} is a Cauchy sequence in the classical
sense, But, for the intuitionist, since a construction is
not known which will show whether or not the critical term
occurs in {?é}, i.e., whether a sequence 0123456789 occurs in
1T, thus it cannot be asserted that {%é} is a Cauchy sequence
in the intuitionist sense. An intuitionist Cauchy sequence is
also called a "real number generator", and like {%é} in the
example, must be constructible.

With the correspondence of existence with that of actual
constructibility of number-generators, Heyting is led to define
two equality relations between real number gemerators, that
being "identity" and "coincidence." Two number generators
{%‘n} and«@rg» are identical (symbolically a=b) if for every
n, a,=b,. They coincide {a=b) if for every naturai number
K, some integer n=n(K) can be found such that for every
natural number p, then an+p-bn+p <“%.
if the required n=n(K) cannot be found for every K,

this does not imply that a and b do not coincide, For an
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intuitionist negation, just as an intuitionist affirmatioen,
must result from a construction rather than the absence of
oneg., Thus only if a=b is contradictery can it bz stated
that a and b do not coincide, 1.e., a¥b. In other words,
agb 1f, and only 1f, a construction can be effected which
will contradict the supposition that a=b. From this, it
should be clear also that to prove a#b is contradictory does
not imply that a=b,

A final point which should be considered concerns the
more general question of solvabllity of mathematical problems,
It happens that, for the intuitionist, solvability depends
upon provability, Heyting explains this idea in the following
way. As has been previously stated, a proof of a propoesition
1s a mathematical construction. The intention of such a proof
vieids a proposition, say p. If the proposition "the propo-
sition p is provable® is symbolized by "+p," then "+" is a
logical function, viz, "provability.®™ The assertions F+p
and |-p have the same logical meaning. For, if +p is proved,
the intention of a proof of p'has been satisfied, 1.e., P has
been proved; and if p i1s proved, then the provability of p is
also proved. On the other hand, the propesitions p and +p
are not identical, i,e., the intention to prove p is not the
same as the intentlon to prove the provability of p. As an
illustration, in computing some number, say t, it might happen
that a particular rational number, say A, iIs contained for an

unusually long time within a small (epsilon) interval of a
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Cauchy sequence, within which t is being more narrowly enclosed
so that at some peoint 1t is finally suspected that t=A, i.e.,
A is expected to be found within the inierval for any given
epsilon of width., The susplicion is that t=A and the "prova-
bilityv" of this intention would be +{t=A}., But such a
suspicion is in no way a proof that 1%t will happen. Thus the
proposition +{t=A) contains more than the proposition (t=A).
If both of the propositions are negated, the result is
the two different propesitions "—p" and "—+p"; plus the
assertions " F—1p® and " p—tp," which are also different.
¥ L——+p® means that the assumption of a construction of +p
is contradictory, i.e., its ¥provability" is impossible;
while the simple expectation p itself may not lead to a
contradiction, Relating to the sxample, assume that the contre-
dictoriness can be asserted to the assumption that a proof
of t=A can be constructed, i.e., { p—+p). But at the same
time, it may still seem to be possible by further computatien
that t=A, i,e., it may not be possible to reach a contra-
diction of the proposition itself. In fact, it is concelvable
that it might be possible to prove that the proposition could
never be centradictory, { k-q9—p), and thus could be asserted
both ® p—+p" and " p=y—p.® 1In this case, t=A would be
unsolvable. Thus, one is able to gain some insight into the
general nature of essentially unsolvable problems.
The distinction between p and +p vanishes if & construc-

tion is intended for p itself, since the possibility of a
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construction can be proved only by the actual construction
itself., Thus, if the domain of consideration is limited to
only those propositions which require a construction, a
consideration of provability is not needed., This restriction
can be imposed by regarding every proposition as having the
intention of a construction for its proof added to it. It
is in this sense that intultionist logic must be understood.*
To a classical mathematician, parts of intuitlionist
mathematics may secem unnecessarily complicated and tedious,
But this may be due mostly to unfamiliarity. It sometimes
happens that the most seemingly lucid and common-sensical
theories are inconsistent, and thus it may be with classical
mathematics. Indeed no antinomies have as yet been discovered

in intultionist mathematics.

#P, Benacerraf and H., Pulnam, Philosophy of Mathematics,
(selected readings) Prentice-Hall, Englewood ClifTs, Na. J.,

196h-: PP. L|.8-L|.9.



CHAPTER VIIi

CONCLUSION

From the above development it can be seen that intuitionist
mathematics contains very few arbitrary assumptions. And from
this follows the fact that Intuitionist mathematics is not
plagued with inconsistencies. But, on the other hand, not
everyone wants to concede the existence of some faculty of
Intuition. Also, the strongest objection to the Intuitionist
mathematics results from the fact that parts of classical
mathematics are sacrificed because of the intuitionist demand
for constructive proofs, as well as their rejection of axioms
not felt to be intuitively obvious, Such is their rejection
of Zermelots axlom of choice which can be stated as follows:
1f 2 set A 1s divided intc a collection of mutually disjeint
nonempty subsets Q, R, S, . . . there exists at least one setl
% which has as its elements exactly one element from each of the
subsets Q, R, 8, ., . .

Another way of expressing this axiom is to state that,
for any set of nonempty sets, there always exists a selector-
function which selects one member from each of these sets,

It is obviously possible to exhibit a selector-function for a
set consisting of a finlite number of finite sets. But when it
comes to selecting one member from each of an infinite number of
sets, the exhibition of the selector=function, as a2 feature of

perceivable or constructible objects, 1s net pessible,

g5



56

With the publication of papers by Zermelo concerning
the axiom of choice, sharp differences of opinion were
expressed by many eminent mathematiclans, These differences
were partially philosophical in nature, but were also related
to the various fields of study. For example, ressarchers in
topology apparently accept the axiom with no hesitation, for
there seems little evidence that any significant part of
topology can be defiVGd without its use. In algebra, the
situation is quite different, Though certain developments in
algebra are quite awkward without the axiom of cholice, so
much can be accomplished without it that algebraists tend to
proceed as far as possible avoiding its use, Much of analysis
can be established without assuming the axiom of choice, but
when one reaches measure theory and those portions of modern
analysis which are founded in topological ideas, ite evasion
is nearly impossible.

The intuitionist objection to the axiom of choice lies
in their conception of mathematical existence, The axiom
asserts the existence of a certain set X, but does not state
any way for finding X, or even that it is possible to find
it; the assertion is merely that set X exists, The intuitionist,
of course, denies the mathematical existence of a set if there
is no way of ascertaining the members of the set.

From the intuitionist rejection of the axiom of choice,
auch of topology and analysis is lost. This situation may

change in the future though, since new insights and different
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approaches may be found which will lead to proofs of classical
theorems previously thought unconstructibile,

Final ly, even thotgh most mathematicians would not give
intuitionist mathematics a privileged status, it should be
remembered that it is no longer possible to deduce mathematics
from logic in the manner of Frege and Russell; or to prove
that classical mathematics Is consistent by Hilbert's finite
methods., It is still possible to practice intuitionist

mathematlcs as originally conceived.
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To give the unfamiliar reader an idea of the "analytic~
synthetic™ distinction employed, the following simplified
definitions of the terms used by Kant are cutlined:

A priori knowledge--Knowledge that does not need to

be justified by experlence or sense
data.

Empirical (or a posteriori) knowledge--Knowledge that
requires justification by experience
or sense data.

Baslc statements are considered in the follewing manner:

Analytic statements-~Statements whose truth-value depends

upor its logical form or definitions,
411 analytic statements are a priori.
Synthetic statements-~Statements whose verification ls
non-analytic. They are of two types:
{1) Synthetic and empirical--State-
ments verified by sense data.
(2) Synthetic and a priori--State-
ments about the physical world
which are not dependent upon

sense data.
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