

SOFTWARE REQUIREMENTS SPECIFICATION

FOR LUNAR ICECUBE

A Thesis

Presented to

the Faculty of the College of Science

Morehead State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Michael R. Glaser-Garbrick

April 21, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Morehead State University

https://core.ac.uk/display/217271727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10276590

10276590

2017

Accepted by the faculty of the College of Science, Morehead State University, in partial

fulfillment of the requirements for the Master of Science degree.

Jeffrey A. Kruth

Director of Thesis

Master’s Committee: ________________________________, Chair

 Dr. Charles D. Conner

Dr. Benjamin K. Malphrus

 Kevin Z. Brown

Date

SOFTWARE REQUIREMENTS SPECIFICATION

FOR LUNAR ICECUBE

Michael R. Glaser-Garbrick

Morehead State University, 2017

Director of Thesis: __

 Jeffrey A. Kruth

 Lunar IceCube is a 6U satellite that will orbit the moon to measure water volatiles as a

function of position, altitude, and time, and measure in its various phases. Lunar IceCube, is a

collaboration between Morehead State University, Vermont Technical University, Busek, and

NASA. The Software Requirements Specification will serve as contract between the overall team

and the developers of the flight software. It will provide a system’s overview of the software that

will be developed for Lunar IceCube, in that it will detail all of the interconnects and protocols

for each subsystem’s that Lunar IceCube will utilize. The flight software will be written in

SPARK to the fullest extent, due to SPARK’s unique ability to make software free of any errors.

The LIC flight software does make use of a general purpose, reusable application framework

called CubedOS. This framework imposes some structuring requirements on the architecture and

design of the flight software, but it does not impose any high level requirements. It will also

detail the tools that we will be using for Lunar IceCube, such as why we will be utilizing

VxWorks.

Accepted by: ______________________________, Chair

 Dr. Charles D. Conner

 Dr. Benjamin K. Malphrus

 Kevin Z. Brown

To mom, dad, Danny, and Shayna.

My love for you has no bounds.

Contents

1 Introduction 1

2 Best Practice 2

3 Requirements 4

3.1 Intended Audience . 4

3.2 Scope . 4

3.3 Mission Outline . 4

3.4 Overall Description . 5

3.4.1 User Classes and Characteristics . 7

3.4.2 Operating Environment . 7

3.4.3 Design and Implementation Constraints 8

3.5 Interface Requirements . 8

3.5.1 User Interfaces . 8

3.5.2 Hardware Interfaces . 8

3.5.3 Software Interfaces . 11

3.6 System Features . 13

3.6.1 Deployment Activities . 13

3.6.2 State Manager . 14

3.6.3 Storage Manager . 15

3.6.4 Scheduler . 15

3.6.5 Telemetry Gatherer . 16

3.6.6 Publish/Subscribe Server . 17

3.6.7 Tick Generator . 18

3.7 Other Nonfunctional Requirements . 19

3.7.1 Performance Requirements . 19

3.7.2 Safety Requirements . 20

3.7.3 Security Requirements . 20

3.7.4 Software Quality Attributes . 20

3.8 Other Requirements . 21

4 Development Enviroment 22

4.1 Programming Language . 22

4.2 Tools . 24

4.2.1 SPARK . 25

4.2.2 AdaControl . 25

4.2.3 Rational Rhapsody . 26

4.2.4 GNATdoc . 26

4.2.5 Jenkins . 26

5 Architecture 28

5.1 Traceability . 28

5.2 Delta Releases . 28

5.3 Components . 28

6 Design 29

6.1 Message Manager . 29

6.2 Message Encoding . 33

7 Test Plan 36

7.1 Software-in-the-Loop Simulation . 36

7.2 Hardware-in-the-Loop Simulation . 36

8 Release Plan 38

8.1 Flight Software . 38

8.2 CubedOS . 38

9 Risk Analysis 39

10 Fault Management 40

10.1 Wrong Version of Software . 40

10.2 Sporadic Subsystem Behavior . 40

11 Verification 41

1 Introduction

This document describes the requirements for the Lunar IceCube (LIC) flight software.

Lunar IceCube is a joint project between Morehead State University (MSU), Vermont Tech-

nical College (VTC), Busek Inc., and NASA. The project entails the construction of a 6U

CubeSat that will orbit the moon and gather information about volatiles there, such as wa-

ter in its various phases. This software requirements specification focuses on only the flight

software for the LIC mission. This is the portion of the project for which Morehead State

University is responsible for. We do not consider here the software requirements of the var-

ious subsystems on the spacecraft, since those subsystems are produced by agents. In some

cases the subsystems are off-the-shelf components produced by vendors who are not directly

involved in the LIC project. Also we do not directly consider the requirements of the ground

software or ground operations, except to the extent that they impact the flight software. This

document describes, essentially, version 1.0 of the software. LIC is a specialized application

with an effective user community of one user (the LIC team). However, it is possible that

some components of this flight software will be reusable to other missions, although support

for such reusability is not a specific requirement. The LIC flight software does make use of a

general purpose, reusable application framework called CubedOS. This framework imposes

some structuring requirements on the architecture and design of the flight software, but it

does not impose any high level requirements.

1

2 Best Practice

Since there is a collaboration between Vermont Technical College and Morehead State

University to review Lunar IceCube’s efficiency, reliability, and accuracy each member will

be held responsible for their contribution of the project. Regular monthly meetings will be

required to ensure progress is being made on the development of Lunar IceCube’s software.

The responsibilities of each developer are as follows:

• Develop the requirement specification and cost estimation for the project

• Develop the design plan and test plan for testing the tool

• Implement and test the application and deliver the application along with the necessary

documentation

• Give a presentation to the team on completion of the analysis, design and testing

phases.

• Planning, coordinating, testing and assessing all aspects of quality issues.

The responsibilities of the other team members are to:

• Review the work performed by the developer

• Provide feedback and advice

Quality must be defined and measured if improvement is to be achieved, however the term

quality is ambiguous, and that it is commonly misunderstood. Quality is vastly misunder-

stood term because it is a part of the average person’s vocabulary which bleeds into the

2

workplace, and it is a multidimensional idea. An idea is that quality isnt able to be mea-

sured. It can be discussed, but it can’t be measured. According to Han “Terms such as good

quality, bad quality, and quality of life exemplify how people talk about something vague,

which they don’t intend to define.”(Martin, 2008) This view reflects the fact that people

perceive and interpret quality in different ways. The implication is that quality cannot be

controlled and managed, nor can it be quantified. This view is in vivid contrast to the

professional view held in the discipline of quality engineering that quality can, and should

be, operationally defined, measured, monitored, managed, and improved. However this is

just one view of quality, or what can be called customer satisfaction. The other view is

that the producer adheres to the software requirements to achieve quality (Martin, 2008).

This allows us to define a metric and development model to determine the overall quality of

software(Martin, 2008).

3

3 Requirements

3.1 Intended Audience

This document is intended to serve as a contract between the general LIC team and the

flight software developers at VTC and Morehead State. Its audience consists, therefor, of

three groups:

1. The engineers coordinating the construction of the spacecraft

2. The mission operations team and science team who have an interest in the behavior of

the spacecraft

3. The faculty and students at VTC and Morehead State University both of which are

writing the software for Lunar IceCube.

3.2 Scope

The scope of this document shall provide a system’s level overview of the entirety of

Lunar IceCube’s flight software. This document shall not describe the functions or routine’s

for Lunar IceCube. That shall be described in a Software Definition Document.

3.3 Mission Outline

Lunar IceCube is a joint project between Morehead State University, Vermont Technical

College (VTC), Busek Inc., and NASA. The project entails the construction of a 6U CubeSat

that will orbit the moon and gather information about water volatiles and correlate it to a

function of temperature, altitude and location.

4

3.4 Overall Description

The LIC flight software is responsible for coordinating the activity of the spacecraft to

ensure the mission’s scientific goals are realized. Specifically the software is responsible for

the following items.

1. Post-deployment initialization activities such as: stabilizing the spacecraft, deploying

and orienting the solar array, and establishing communications with Earth via the Deep

Space Network (DSN).

2. Gathering, and potentially buffering, telemetry data from the spacecraft’s subsystems

(including image and other science data from the BIRCHES instrument), and trans-

mitting that telemetry to the ground at an appropriate time.

3. Receiving scripts of timestamped commands from the ground and executing those

commands at the specified time.

4. Detecting various fault conditions and responding to those faults in an appropriate

way.

5. Accepting uploaded patches (or entire executables) from the ground and applying them

to update the software as required.

The LIC flight software is not intended to autonomously control the spacecraft except during

deployment and certain fault handling situations. Nominally the software is only intended

to gather telemetry and playback commands transmitted from the ground. Additionally

this software requirements specification does not cover any aspect of the ground software

itself except to the extent that the flight software must exchange data with the ground. The

5

flight software will gather telemetry and send commands to the various subsystems of the

spacecraft. From a flight software perspective the subsystems of interest are:

1. BIT-3 ion drive, more specifically its gimbal that will be used for pointing the drive

relative to the spacecraft orientation, and the amount thrust that will be generated.

2. The pumpkin deployable solar array which will have gimbals for pointing the solar

array toward the sun.

3. BIRCHES instrument which will be used for gathering the information about the water

volatiles on the moon.

4. Iris radio which we will interface using Deep Space Network (DSN) protocols to com-

municate to the ground station.

5. Attitude determination and control system (ADACS) based on Blue Canyon’s XACT.

Note that XACT contains both a star tracker for determining attitude and the mo-

mentum wheels for controlling attitude.

The flight software shall use the VxWorks operating system, version 6.8. It shall run on

SpaceMicro’s Proton 400k flight computer using a dual core Freescale 2020 processor. The

environment is assumed to be relatively harsh where subsystem failures are potentially com-

mon. Furthermore we assume that a subsystem that has failed may return to working order

at an arbitrary time even without the flight software taking any recovery steps. System resets

are assume to occur at any time and may be frequent. Certain elements of the system state

shall be stored non-volatilely so they will persist across resets. Furthermore the integrity

of non-volatile storage shall not be assumed. All items stored in non-volatile storage shall

6

have associated CRC checksums that are updated on writes and verified on reads. To the

greatest extent possible, the flight software shall be written in SPARK 2014.

3.4.1 User Classes and Characteristics

The main users of this product are the mission ground controllers who will be interacting

with the system via commands transmitted over the Deep Space Network. Indirect users

of the software include the science team who will be analyzing the data gathered by the

spacecraft.

3.4.2 Operating Environment

• Environment.Platform The flight software shall run on SpaceMicro’s Proton 400k

flight computer using a dual core Freescale 2020 processor.

• Environment.HardFail The environment is assumed to be relatively harsh where

sub-system failures are potentially common. In particular, we assume that a subsystem

may fail and then return to working order at an arbitrary time, even without the flight

software taking any recovery steps.

• Environment.AsyncReset Because the Proton 400k flight computer is radiation

hardened, it shall be assumed that asynchronous resets of the processor will not occur.

• Environment.FileIntegrity The VxWorks operating system detects failed I/O oper-

ations. In addition other integrity checks are in place elsewhere in the system. Thus the

flight software shall not be required to add additional integrity checks on non-volatile

storage, but it shall be required to check all file I/O operations for failure at run time.

7

• Environment.StoredCRC The CRC values on packet data from the subsystem shall

be stored in non-volatile storage and downlinked so the ground system can verify the

integrity of the data.

• Environment.Reset There shall be several restart modes: soft restart where most of

the system state is carried over, hard restart where system state is (largely) reinitialized,

and reset which simulates a cold reboot. The circumstances when these reset modes

are used is TBD.

3.4.3 Design and Implementation Constraints

Tools.SPARK To the greatest extent possible, the flight software shall be written in

SPARK 2014. Concurrency is permitted as allowed by SPARK

3.5 Interface Requirements

3.5.1 User Interfaces

The main user interface to the flight software is the testing/debugging interface. This

interface is primarly used by software developers and testers.

3.5.2 Hardware Interfaces

Access to hardware shall be primarly via the VxWorks operating system and the Ada

language runtime system (where applicable). See the subsytem ICDs for specifics about the

low level software interface to the subsystems.

8

3.5.2.1 Proton 400K The Proton 400K will serve as the Communication and Data

Handling system for Lunar IceCube. It will provide all the electrical interfaces for each

individual subsystem.

3.5.2.2 IRIS Radio Transponder The IRIS radio is the primary communication method

with the satellite. It provides the route for all information flow to the DSN ground network.

The IRIS radio software interface is described in the ICD.

3.5.2.2.1 SPI Interface The IRIS Radio SPI driver shall be:

• It shall operate at 1 MHz clock

• It shall operate full duplex

• It shall be controlled by a chip select line

3.5.2.3 Lithium-1 The Lithium-1 is the secondary communication method with the

satellite. In the event that we are not be able to talk to Lunar IceCube, it shall provide route

for communication with the satellite. The Lithium-1 radio software interface is described in

the ICD.

3.5.2.3.1 RS-422 Interface The Lithium-1 RS-422 driver shall be:

• It shall operate at 115200 bits per second

• It shall be 8 bits, no parity, 1 stop bit

9

3.5.2.4 BIRCHES The BIRCHES infrared spectrometer shall be the payload of Lunar

IceCube. It will measure water volatiles on the moon as a function of temperature, altitude,

and location.

3.5.2.4.1 SPI Driver The BIRCHES Spectrometer SPI driver shall be:

• It shall operate at 1 MHz clock

• It shall operate full duplex

• It shall use a chip select line

3.5.2.5 BIT-3 The BIT-3 shall serve as the propulsion unit on Lunar IceCube. It utilizes

iodine crystals as its source of fuel.

3.5.2.5.1 RS-422 Driver The BIT-3 RS-422 driver shall be:

• It shall operate at 115200 bits per second

• It shall be 8 bits, no parity, 1 stop bit

3.5.2.6 Electrical Power System The Electrical Power System shall handle all power

distribution. It shall interface with the solar panels and their gimbals, and all electrical

power specification for the individual subsystems.

3.5.2.6.1 GPIO To control the gimbal, we will be using GPIOs for controlling the

motors.

10

3.5.2.6.2 I2C The EPS I2C driver shall be:

• It shall operate as a slave device

• It shall operate at 400 kHz

• It shall be identified by a 7 bit address

3.5.2.7 XACT The XACT shall act as the Attitude Determination and Control System

for Lunar IceCube.

3.5.2.7.1 RS-422 Driver The XACT RS-422 driver shall be:

• It shall operate at 115200 bits per second

• It shall be 8 bits, no parity, 1 stop bit

3.5.3 Software Interfaces

Software interfaces are specified in this section. The following requirements apply:

• Interface.OS The flight software shall run on VxWorks version 6.8

• Interface.CommandDictionary The flight software shall support incoming com-

mands specified in the spacecraft telemetry dictionary.

• Interface.TelemetryDictionary The flight software shall produce all messages spec-

ified in the spacecraft telemetry dictionary.

11

3.5.3.1 Delay Tolerant Networking According to RFC 4838 Delay-tolerant and disruption-

tolerant networks, and is an evolution of the architecture originally designed for the In-

terplanetary Internet, a communication system envisioned to provide Internet-like services

across interplanetary distances in support of deep space exploration. DTN will be utilized

by the IRIS radio, and use aspects from DTN known as Bundle Protocol (BP) and Licklider

Transmission Protocol (LTP) as its main source of communication.

3.5.3.1.1 CCSDS File Delivery Protocol The science data gathered by the space-

craft will be transferred to the ground over the Deep Space Network using the Consultative

Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP). This is a gen-

eral purpose file transfer protocol designed for use with very high latency, unreliable space

links. A full CFDP implementation has many features that are not relevant to the Lunar

IceCube mission. However, there is a partial implementation of CFDP, entirely in SPARK,

to support our mission needs. We intend to make our implementation available to other

groups as open source software in the hope that it may promote the use of SPARK in other

space flight software systems. IceCube shall contain a CFDP implementation in SPARK

compliant with CCSDS specification 727.0-B-4. CFDP facilitates file transfers of arbitrary

size over a connection from two or more parties, directly or via proxies. The service is

specifically intended for use over the DSN. Features implemented to date include:

• CFDP.SPARK The CFDP implementation shall be in SPARK.

• CFDP.EncodingDecodingFull support for CFDP header encoding/decoding.

• CFDP.UnacknowledgedTransfer facilitates unacknowledged file transfer between

12

two or more entities.

• CFDP.AckNak

• CFDP.Ground

3.6 System Features

In this section we provide requirements for the various subsystems in the spacecraft as

outlined in Overall Description.

3.6.1 Deployment Activities

When Lunar IceCube is deployed from SLS there are a number of special activities that

must be executed before normal mission operations can begin. Lunar IceCube is not intended

to be highly autonomous. Most of its activity is directed from the ground in the form of

sequences of commands sent to the command scheduler. However, deployment is different

since no commands can be received until the spacecraft is able to communicate.

3.6.1.1 Functional Requirements The sequence of events during deployment, from a

flight software perspective, are as follows (starting from when power is turned on):

13

Set RTC To Zero; Initialize the real-time clock.

Delay 45 seconds; To clear the SLS deployer.

Deploy Solar Array ; Should already be done. This is a backup.

Initialize Subsystems ; Put subsystems into appropriate initial states .

Turn On XACT; Starts detumbling process automatically .

Wait For Battery; Wait until “suffcient” charge is reached (or time out).

Point Antenna To Earth;

Turn On Beacon;

We now receive commands from the ground.

All future activity is driven by commands.

3.6.2 State Manager

The state manager maintains the state machine of the spacecraft. It plays the role of

the “main” module. When the software starts it enters an initial state. Transitions between

states, due to external inputs, or due to the passage of time, stimulate the spacecraft’s

activities.

3.6.2.1 Functional Requirements

• States.Initial Upon start-up the system shall consider that it might be coming out

of various reset types.

14

3.6.3 Storage Manager

The storage manager is the interface to the non-volatile file system. This file system is

used to store telemetry and science data.

3.6.3.1 Functional Requirements

• Storage.Interface The interface to the non-volatile file storage shall be the usual Ada

library file handling subprograms.

3.6.4 Scheduler

The scheduler holds a database of commands that have been uplinked along with times-

tamps indicating when each command is to be executed. Here a “command” includes a

unique identifier (so the command can be the subject of later editing or removal), informa-

tion about which subsystem the command is for (the APID of the subsystem), the command

itself, and any arguments to the command. The scheduler includes operations for inserting a

command into its database and an internal timing loop that issues and removes commands

when appropriate. These two components of the scheduler are called the validator and the

issuer respectively.

3.6.4.1 Functional Requirements: Validator

• Validator.Buffer The command buffer shall contain space for at least 5000 com-

mands.

• Validator.Format

15

• Validator.Overflow

• Validator.Invalid

• Validator.Editor

• Validator.Telemetry

3.6.4.2 Functional Requirements: Issuer

• Issuer.Resolution The issue time of a command shall be specifable to the nearest

millisecond.

• Issuer.Accuracy The issue time of a command shall be accurate to the nearest mil-

lisecond

• Issuer.Errors

• Issuer.Delete After issuing a command successfully, that command shall be removed

from the command queue.

• Issuer.Telemetry

Some commands put the spacecraft into a new state that changes the overall action of the

system.

3.6.5 Telemetry Gatherer

In addition to executing commands sent from the ground, Lunar IceCube must also

gather telemetry from the various subsystems and transmit it to the ground. In this context

“telemetry” includes science data from the BIRCHES instrument.

16

3.6.5.1 Functional Requirements

• Telemetry.Frequency

• Telemetry.Buffer

• Telemetry.Overflow

• Telemetry.Format

• Telemetry.Invalid

• Telemetry.Errors

• Telemetry.Telemetry

• Telemetry.Async The action of the telemetry gatherer shall be asynchronous to that

of the scheduler. Telemetry can be gathered from some subsystems while commands

are being sent to other (or even the same) subsystem.

• Telemetry.FileSystem Telemetry (and science data) shall be stored in a non-volatile

file system.

• Telemetry.StorageTime

3.6.6 Publish/Subscribe Server

CubedOS has built-in support for only point-to-point message passing between modules.

However, some activities are more conveniently controled using a multicasting approach.

Accordingly the publish/subscribe server supports multiple message “channels” to which

modules can subscribe. When a message is published to a channel, that message is delivered

17

to all subscribed modules. This provides multicasting as well as decouples the sender and

receiver of a message.

3.6.6.1 Functional Requirements

• PubSub.Channels The publish/subscribe server shall support at least 16 channels.

3.6.7 Tick Generator

The tick generator provides basic real-time clock services. However, due to the latency

and overhead of message passing, modules that require high speed, real-time timing services

may need to use internal tasks instead. The tick generator is suitable for slow speed or

non-critical timing services.

3.6.7.1 Functional Requirements

• Tick.RealTime The tick generator shall use a real time clock as the basis of its timing.

Such a clock is monotonic and tracks time independently of any software activity.

• Tick.Periodic The tick generator shall provide a service whereby a module can request

the delivery of periodic tick messages with a period ranging from 1 ms to 1 hour

(3,600,000 ms). The total set of tick messages generated in response to such a request

is called a periodic series.

• Tick.Latency The time between when a request for a periodic series is received by

the tick generator and when the first tick message in that series is sent shall be not

more than one millisecond plus the latency due to message passing and processing.

18

• Tick.OneShot The tick generator shall provide a service whereby a module can re-

quest the delivery of a single tick message either after a specified delay (in the range

from 1 ms to 1 hour), or at a specified absolute time. In this case the response message

constitutes a one shot series.

• Tick.SeriesID Every request shall contain a series ID, specified by the requester, that

identifies a particular series.

• Tick.MultiSeries The tick generator shall support multiple series being delivered to

the same module. For example a periodic series and a one shot series, or multiple

periodic series with different periods, all going to the same module shall be supported.

• Tick.Message Tick messages shall contain a counter, starting at one, that indicates

which message in the series it is. Also tick messages shall contain the series ID number.

• Tick.Cancel The tick generator shall accept messages that cancel a pending or active

series. The cancellation message shall contain the series ID. If the ID is invalid, there

shall be no effect.

3.7 Other Nonfunctional Requirements

• Nonfunctional.Requirement The current demand of other nonfunctional require-

ments is unknown.

3.7.1 Performance Requirements

• Performance.Requirement The current demand of performance requirements is un-

known.

19

3.7.2 Safety Requirements

• Safety.Specs Lunar IceCube’s flight software shall adhere to The Safety Committee’s

standards.

• Safety.Review Lunar IceCube’s flight software shall be reviewed by The Safety Com-

mittee to ensure no part of Lunar IceCube’s flight software will interfere with EM-1.

3.7.3 Security Requirements

• Security.ITAR The flight software shall be assumed to be covered by ITAR.

3.7.4 Software Quality Attributes

• VandV.RTE All packages shall be free of flow errors and proven free of runtime errors

in the sense meant by SPARK.

• VandV.Specification Higher level correctness properties, as encoded by pre- and

postconditions and other SPARK assertions, shall also be proved as development re-

sources allow. It is not required to encode and prove the entire specification of the

software system.

It is understood that completely proving freedom of runtime errors may not be practical.

In that case, failing proofs shall be investigated with focused testing that exercises the code

where the proofs fail.

20

3.8 Other Requirements

• Other.Upload It shall not be required to support the ability to upload new versions

of the flight software after deployment.

• Other.Reuse The software shall be written in as portable manner as feasible, and with

an architecure that isolates mission specific components into well defined modules that

have clean, generalizable interfaces.

It is our long term objective to develop a general purpose infrastructure for flight software

called CubedOS. We intend to use the Lunar IceCube flight software as a basis for that

effort.

21

4 Development Enviroment

4.1 Programming Language

A distingusing characteristic of the IceCube flight software is that most of it is written in

SPARK. SPARK is a high integrity dialect of the Ada programming language that, together

with the SPARK tools, allows developers to construct mathematical proofs of correctness

(McCormick and Chapin, 2015). SPARK verifies correctness at four levels as outlined below.

1. The SPARK language makes certain kinds of errors impossible by virtue of the design

of the language itself. For example, SPARK forbids pointers and dynamically allocated

memory. Thus errors such as null pointer dereferences, memory leaks, and dangling

pointers are impossible in SPARK programs (McCormick and Chapin, 2015).

2. SPARK verifies that no variables are used uninitialized, and that all computed results

influence the program’s eventual output. The later check ensures full error handling:

error return values can’t be ignored (McCormick and Chapin, 2015).

3. SPARK can prove “freedom from runtime error”. This means that the program ana-

lyzed will never raise one of Ada’s predefined exceptions. In particular, SPARK shows

the program is free of the following errors (this list is not complete):

• No division by zero.

• No array access out of bounds.

• No arithmetic overflow.

• No violation of range constraints

22

4. SPARK can prove conformance to a software specification encoded in the program in

the form of pre- and postconditions and other assertions. The strength of these proofs

depends on the completeness (and correctness!) of the encoded specification.

All of SPARK’s analysis is done statically, in that runtime checks are required. In fact, after

SPARK shows a program is free from runtime error, it is reasonable to compile the program

with an option that removes all of Ada’s runtime checking. Those errors are, in theory,

no longer possible (McCormick and Chapin, 2015). However, the IceCube flight software

is built with the usual Ada runtime checks enabled anyway. There are three reasons for

this. First, not all of the flight software is in SPARK. There are certain packages written in

more expressive languages (full Ada or C). In addition, certain SPARK diagnostic messages

have been explicitly supressed. Although we use traditional testing to verify the correctness

of those sections, there is the possibility that the testing is incomplete (McCormick and

Chapin, 2015). Second, not all proofs have been successfully discharged. The current state

of the art in theorem proving technology can’t easily construct proofs for every situation,

even when the thing to be proved is true (McCormick and Chapin, 2015). Again, we use

traditional testing to verify the correctness of those sections. In fact, SPARK helps us to

focus our limited testing resources onto the areas where it is most needed. This is a major

benefit to using SPARK (McCormick and Chapin, 2015). Finally, because of the harsh

environment where IceCube will be flying, we recognize the possibilty of radition induced

failures causing “impossible” situations to arise. Ada’s normal runtime checking, along with

the exceptions those checks might produce thus give the software a “last ditch” method of

detecting and mitigating errors during the mission. It is useful to distinguish between Ada’s

runtime checks for things like range constraints and arithemtic overflow from the runtime

23

checking of SPARK assertions like pre- and postconditions(Barnes, 2014). The Ada compiler

is able to optimize its runtime checks so their overhead is normally small. However, SPARK

assertions can be very expensive to execute, even to the point of changing the asymptotic

running time of the subprograms to which they are applied. Thus we do disable the runtime

execution of SPARK assertions in the deployed flight software (but not during unit testing).

To summarize:

• During development we verify freedom from information flow issues and run unit tests

on the development platform with Ada runtime checks and SPARK assertion checks

enabled.

• We attempt to prove the program free of runtime error and prove conformance to all

SPARK assertions. Typically it is not possible to complete all of these proofs.

• We then review the failing proofs and edit the unit tests, if appropriate, to ensure they

exercise the area where the proof is failing.

• We recompile the program with SPARK assertion checking disabled for performance

reasons, and deploy the resulting executable to flight hardware.

• Testing continues on the flight hardware as described in Chapter 10.

4.2 Tools

In this section we discuss the tools we use during our software development process and

summarize our method of using them.

24

4.2.1 SPARK

SPARK is both a programming language and a tool set (McCormick and Chapin, 2015).

As a programming language, SPARK is a dialect of Ada with certain restrictions designed to

make SPARK programs easier to analyze. For example, SPARK does not allow pointer types

and exception handlers even though these things are allowed in full Ada (McCormick and

Chapin, 2015). Also SPARK supports only a subset of Ada’s tasking features (McCormick

and Chapin, 2015). The SPARK restrictions are checked by the Ada compiler when the

compiler is run in “SPARK mode”. The selection of this mode is explicitly mentioned in all

compiliation units where it is appropriate. This ensures that the compiler will not inadver-

tantly be run in normal mode on those units. The SPARK tools can be used interactively in

AdaCore’s integrated development environment, GNAT Programming Studio (GPS). This

allows the programmer to more easily switch between writing code, and working with the re-

sult of SPARK’s analysis. The tools can also be used non-interactively as part of automated

build scripts. We do this with our continuous integration server, Jenkins, described in more

detail in Section 4.2.5. This has the advantage of regularly doing a fresh, full analysis free

of the possibility of confusion from left over analysis artifacts.

4.2.2 AdaControl

AdaControl will be used for controlling proper usage of style or programming rules. It

can also be used as a tool to serach for use of various forms of progamming styles or design

patterns.

25

4.2.3 Rational Rhapsody

Rational Rhapsody will be used to create UML diagrams, to create a visual represenation

for systems engineers and the flight software developers. It natively supports reading in the

Ada language.

4.2.4 GNATdoc

GNATdoc is a documentation tool for Ada which processes source files, extracts docu-

mentation directly from the sources, and generates annotated HTML files. It is based on

the source cross-reference information (e.g. generated by GNAT for Ada files). This means

that you should ensure that cross-reference information has been generated before generat-

ing the documentation. It also relies on standard comments that it extracts from the source

code. The engine in charge of extracting them coupled with the cross-reference engine gives

GNATdoc all the flexibility needed to generate accurate documentation, and report errors

in case of wrong documentation.

4.2.5 Jenkins

The IceCube flight software is built, tested, and proved nightly using the open source

continuous integration server, Jenkins. Specifically Jenkins does the following each night:

1. Does a fresh checkout of the project’s code base from version control.

2. Compiles the project and the unit test programs.

3. Executes the unit test programs.

4. Does a SPARK flow analysis of the code base.

26

5. Does SPARK proofs of the code base.

The build is considered to have “failed” if any of the first three items fail. Jenkins does not

fail the build for the SPARK analysis items because doing so would make it prohibitively

difficult to develop the system without having Jenkins in a near-constant state of failure.

However, Jenkins does publish reports that we review regularly. In particular, the Jenkins

reports are at least reviewed before any milestone release.

27

5 Architecture

5.1 Traceability

To the greatest extent we shall use Apache Subversion (SVN), Jenkins, and Assembla to

document the links between the system’s level requirements and the flight software.

5.2 Delta Releases

A delta release is the release of software that includes only those modules which have

changed or are new since the last release of software. We shall use SVN, to trace all delta

releases for Lunar IceCube’s flight software.

5.3 Components

All components for Lunar IceCube shall be modular, in the sense that they can be

reused on future misssions. This by nature of CubedOS (the operating system lying on top

of VxWorks), and object-oriented programming in general. It is important that components

of software should be modular, because in future projects the time for developement would

be greatly reduced.

28

6 Design

In this section we describe the design of CubedOS, including various design trade-offs

made. This information is primarily of interest to developers looking to enhance the Cube-

dOS infrastructure itself. Developers interested in only using CubedOS do not need to read

this section unless they are interested in the rationale behind some of CubedOS’s design

decisions.

6.1 Message Manager

One of the central problems facing the message manager is the handling of message

mailboxes. Since SPARK does not allow dynamically allocated memory McCormick and

Chapin (2015), any method that involves dynamically allocating space for messages is not

an option. Instead mailbox space must be allocated statically. This forces users of CubedOS

to anticipate the maximum sizes of the mailboxes they require.

We considered three strategies for managing mailboxes.

• Define a Mailbox type that can hold a fixed number of pending messages.

Create a separate mailbox for each module. This approach has the advantage

of being simple. It also separates the total mailbox space by module. The value of the

separation is that should one mailbox fill due to a dead or slow module, that won’t

impact the communication between other modules using different mailboxes.

The main problem with this approach is that it tends to waste space. We assume most

modules won’t require a large number of pending messages (a large mailbox size). Yet

if even one module does require a large size, the —Mailbox— type must be adjusted

29

to accommodate it, causing unnecessarily large mailboxes in most cases.

• Define a single Mailbox object that holds pending messages for all modules

together. This approach addresses the disadvantage of the previous approach by

consolidating the free space into a single mailbox object. Modules requiring a large

number of pending messages can in effect “borrow” free mailbox space from modules

with few pending messages.

Implementing this design is more complicated, but a bigger disadvantage is that mod-

ules can interfere with each other. If one module is slow and gets backlogged, the

(one and only) mailbox could fill up with messages for that module, thus preventing

communication between other, unrelated modules. We feel this is a serious enough

problem to rule out this design choice.

• Define a Mailbox type that is discriminated on its size. Create a separate

mailbox for each module, tuned for that module’s needs. This is a variation

of the first approach except here the mailbox instances can each have a different size.

The author of a module defines the size of the mailbox needed for that module; large

mailboxes are only used where necessary and space is conserved. This approach also

maintains the freedom from interference provided by the first approach.

The third approach is appealing but unfortunately does not allow replies to arbitrary

modules in an environment where pointers are prohibited. Although a target mailbox can be

mentioned by name when sending a message, the destination of any reply must be computed

at runtime. Without pointers there is no way to create a map from module ID number to the

mailbox for that module. The first approach can work around this problem by putting all

30

mailboxes in a common array and using the module ID number as an array index. However,

that also requires all mailboxes to be the same size.

A more subtle problem with the third approach is that, in general, the author of a module

can’t know the maximum number of pending messages that are appropriate to specify for

the module. The correct number is a system-wide artifact that depends in large measure on

the number and rate of message send operations done by other modules. Setting the mailbox

sizes is something best done during system integration, and that is more easily accomplished

if all mailboxes are in their own package.

For these reasons CubedOS follows the first approach, using a generic package to supply

the mailboxes. The package can be instantiated differently for each CubedOS application

with mailbox sizes set appropriately for that application.

Selecting the most appropriate size for a the mailboxes is the one major issue remaining. If

a mailbox fills during operation, sending further messages to that mailbox will fail. Senders

do not block because doing so would require two entries on the Mailbox protected type,

a violation of Core.Ravenscar (and an invitation to deadlock). Thus failure to send a

message due to a full mailbox creates awkwardness for senders who must manually retry

the send operation. Furthermore senders will not likely want to retry sending indefinitely

and risk being tied up doing a send operation that will never succeed. This leaves open the

question of how the failed send should ultimately be handled.

It would be better if mailbox sizes were tuned so that sending could never fail. However

doing this requires high level reasoning about the flow of messages in the system. We propose

constructing a formal model of module communication that includes finite sized mailboxes,

and then use a model checker, or some other tool, to find a configuration of mailbox sizes

31

where no send operation can ever fail.

In lieu of such an analysis, human reasoning could be used to estimate appropriate

mailbox sizes followed by rigorous testing. Of course, such an approach is likely to be more

error prone than the formal approach.

If it can be formally shown that no send operation can ever fail, all calls to the Send

procedure could be replaced with calls to UncheckedSend which does not return an error

indication. Then all error handling in the modules related to failed sending could be removed.

This would be a great simplification. However, we do NOT recommend this approach.

Despite any formal modeling we might do in CubedOS’s initial design, we foresee several

possible ways mailboxes might overflow anyway:

1. Our formal model is incorrect.

2. We never get around to creating a formal model that works.

3. Users of CubedOS might not be in a position to augment the formal model to account

for their own, application-specific modules.

4. A module thread dies for reasons outside the software’s control (such as hardware fail-

ure). Although it might be possible to incorporate this scenario into the formal model,

forcing freedom from mailbox overflow in this situation might impose unreasonable

requirements on mailbox size or application architecture (or both).

For these reasons we advocate continued checking for failed send operations even if none

are expected in normal operation.

32

6.2 Message Encoding

To remain generic the messages sent between modules are essentially nothing more than

arrays of raw octets. Any structure on the information in a message is imposed by agreement

between the sender and receiver of that message. This creates a degree of type unsafety

and requires modules to defend against malformed messages at runtime. To mitigate this

problem, each module contains an API package that provides convenience subprograms that

encode and decode messages. The parameters of these subprograms are strongly typed, of

course, so as long as they are used consistently compile-time type checking is retained.

Since the problem of encoding and decoding typed data has been solved before we leverage

an existing standard, name External Data Representation (XDR). This standard defines

a “wire format” (in our case a message data format) for various types and simple data

structures. The advantage of using XDR is that it is well specified and understood. Using it

simplifies our specification needs and invites the use of third party tools to manage message

data.

We also considered using Abstract Syntax Notation One (ASN.1) as a message data for-

mat. Unlike XDR,(ITU, 2008) ASN.1 includes type information in the data stream allowing

for more flexible message structures. However, ASN.1 also has more overhead, both in terms

of space used in the message and time used to encode and decode the messages. For this

reason we elected to use the simpler XDR approach.

The encoding/decoding subprograms in the API packages must contend with the richness

of Ada’s type system. In particular they should be able to handle multiple parameters of

various types, called messageable types, where a messageable type is defined inductively as

33

follows:

• An integer type, an enumeration type, or a floating point type.

• An array of messageable types.

• A record containing only messageable type components.

Roughly a messageable type is any type allowed by the XDR standard (although we do

not aim to provide support for XDR discriminated union types at this time).

The encoding and decoding of messageable types is tedious and repetative. Supporting

subprograms to handle basic scalars and simple arrays are provided by way of a library

package CubedOS.Lib.XDR. The handling of XDR arrays and records can be done using

the lower level subprograms provided by the library.

Since the creation of the API packages is largely mechanical, CubedOS comes with a tool,

xdr2os3, that converts an textual representation of the message types into a corresponding

API package written in provable SPARK. In effect, xdr2os3 plays a role similar to that

played by rpcgen in many ONC RPC implementations. In particular, it converts a high

level interface description into code that encodes/decodes messages to/from the implementer

of that interface. However xdr2os3 differs from other similar tools in several important

respects:

• It targets CubedOS; the generated code makes use of CubedOS’s XDR library for

handling primitive types.

• It generates provable SPARK 2014 code.

34

• It contains extensions to the language that support Ada’s ability to define range con-

strained scalar subtypes.

A CubedOS application developer defines the messages she needs for a module in an

XDR file and then uses xdr2os3 to generate the API package and related materials. The

developer can then the subprograms in that package to encode messages for that module or

decode messages from that module. In addition, xdr2os3 provides subprograms the module

author can use to decode incoming messages and encode replies.

Currently it is still possible for a develper to directly access message data but doing this

is strongly not recommended.

35

7 Test Plan

To the greatest extent Vermont Technical College and Morehead State University will

test the software, using two techniques:

• Software-in-the-Loop Simulation

• Hardware-in-the-Loop Simulation

7.1 Software-in-the-Loop Simulation

Software-in-the-Loop (SIL) Simulation is the process of creating mathematical simula-

tions and models of the physical subsystems, and be allowed to execute on a host’s computer.

The purpose for SIL is defined as (Werner et al., 2015):

• Enable the inclusion of control algorithm functionality for which no model exists.

• Increase simulation speed by including compiled code in place of interpretive models.

• Verify that code generated from a model will function identically to the model.

• Guarantee that an algorithm in the modeling environment will function identically to

that same algorithm executing in a production controller.

7.2 Hardware-in-the-Loop Simulation

Hardware-in-the-Loop (HIL) Simulation is the process of integrating all of the individual

subsystems with the flight computer, execute and vent your flight software. This often

requires a high fidelity model of each subsystem, so it tends to be more expensive than SIL

36

(University College of Southeast Norway, 2016). The purpose of using HIL vs SIL is defined

as that HIL has all of the above for SIL as well as:

• Enhancing the quality of testing.

• Shortening development schedules.

37

8 Release Plan

8.1 Flight Software

The flight software deltas shall be released through Vermont Technical College’s SVN

server as they are upload and tested by Jenkins. This is to ensure that only personel who

have access to the server shall have access to the software. The flight software repository is

updated continually by Vermont Technical College’s Dr. Peter Chapin. SVN will also allow

us to traverse through previous versions in case there is a mistake (Collins-Sussman et al.,

2011).

8.2 CubedOS

Lunar IceCube’s flight software shall not be open source, due to it being under the

restrictions of ITAR, however CubedOS (Lunar IceCube’s underlying operating system) will

be released to the public, although the exact date is unknown for now. For now only a select

few shall have access to CubedOS’s repository.

38

9 Risk Analysis

All risk analysis is already taken care of by SPARK (McCormick and Chapin, 2015).

Due to it’s formal checking, it will check for static run time errors and formally prove run

time errors. All of SPARK’s analysis is done statically. No runtime checks are required. In

fact, after SPARK shows a program is free from runtime error, it is reasonable to compile

the program with an option that removes all of Ada’s runtime checking. Those errors are,

in theory, no longer possible (McCormick and Chapin, 2015).

39

10 Fault Management

Fault management will fall under three categories:

1. Run Time Errors

2. Old Software

3. Sporadic Subsystem Behavior

10.1 Wrong Version of Software

In the event that we do not get every last piece of software written, it is important that

we are able to upload new code to Lunar IceCube. To do so, we would replace the old version

of software with new software through the Lithium-1 radio as our software interface.

10.2 Sporadic Subsystem Behavior

In the event that a subsystem may act outside of normal and expected behavior, we

will implement Finite State Machines (FSMs) for each subsystem. These FSMs will have a

default state that they will go to in the event of an error for a subsystem so that they may

not cause Lunar IceCube’s flight software to become put into an unknown state.

40

11 Verification

For verifying Lunar IceCube’s flight software, we will use unit tests for all of the math

procedures, that Lunar IceCube will utilize. Unit tests are taking known quantities and

running them through a function, so that we may compare the results to the expected value.

They are a part of a paradigm of programming known as Xtreme Programming (Huizinga

and Kolawa, 2007). They are incredibly useful as they allow us to rapidly test and debug

our procedures.

41

References

AdaCore (2016). Gnatdoc 18.0w documentation. http://docs.adacore.com/

gnatdoc-docs/users_guide/_build/html/, [Accessed: 2017-27-04].

AdaLog (2016). Adacontrol user guide v1.18r9. http://www.adalog.fr/compo/

adacontrol_ug.html, [Accessed: 2017-27-04].

Barnes, J. (2014). Programming in Ada 2012. Cambridge University Press, 1st edition.

CCSDS (2007). CCSDS 727.0-B-4. https://public.ccsds.org/Pubs/727x0b4.pdf, [Ac-

cessed: 2017-27-04].

CCSDS (2015a). CCSDS 734.1-B-1. https://public.ccsds.org/Pubs/734x1b1.pdf, [Ac-

cessed: 2017-27-04].

CCSDS (2015b). CCSDS 734.2-B-1. https://public.ccsds.org/Pubs/734x2b1.pdf, [Ac-

cessed: 2017-27-04].

Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., and Weiss, H.

(2007). Delay-Tolerant Networking Architecture. Network Working Group, 4838 edition.

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M. (2011). Version Control with

Subversion For Subversion 1.7. Creative Commons License, 1st edition.

Eisler, M. (2006). XDR: External Data Representation Standard. Network Appliance, Inc.,

4506 edition.

Huizinga, D. and Kolawa, A. (2007). Automated Defect Prevention: Best Practices in Soft-

ware Management. Wiley-IEEE, 1st edition.

42

IBM (2016). The rational rhapsody family from ibm. https://www-01.ibm.com/common/

ssi/cgi-bin/ssialias?subtype=BR&infotype=PM&appname=SWGE_RA_YA_USEN&

htmlfid=RAB14010USEN&attachment=RAB14010USEN.PDF, [Accessed: 2017-27-04].

ITU (2008). Introduction to asn.1. http://www.itu.int/en/ITU-T/asn1/Pages/

introduction.aspx, [Accessed: 2017-27-04].

Jenkins (2016). Jenkins documentation. https://jenkins.io/doc/

#jenkins-documentation, [Accessed: 2017-27-04].

Kan, S. H. (2002). Metrics and Models in Software Quality Engineering. Addison Wesley,

2nd edition.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Prentice

Hall, 1st edition.

McCormick, J. W. and Chapin, P. C. (2015). Building High Integrity Applications with

SPARK. Cambridge University Press, 1st edition.

River, W. (2009). VxWorks 6.8 Device Driver Developer’s Guide. Wind River, 1st edition.

Thurlow, R. (2009). RPC: Remote Procedure Call Protocol Specification Version 2. Network

Working Group, 5531 edition.

University College of Southeast Norway (2016). Hardware in the loop simulation.

http://home.hit.no/~hansha/documents/lab/Lab%20Work/HIL%20Simulation/

Background/Introduction%20to%20HIL%20Simulation.pdf, [Accessed: 2017-27-04].

43

Werner, S., Masing, L., Lesniak, F., and Becker, J. (2015). Software-in-the-loop simulation

of embedded control applications based on virtual platforms. IEEE.

44

Michael Glaser-Garbrick

Cell: (937) 545-0909
mglaserg@gmail.com
9530 Cutlers Trace
Dayton, Ohio 45458

Education

Morehead State University 2015–2017

Pursuing Masters in Space Systems Engineering.
Thesis consists of writing the Software Requirements Specifications for Lunar IceCube.
Anticipated graduation date is May 2017.

Morehead State University 2011–2015

Received Bachelors of Science with an Area of Concentration in Space Science.
Thesis consisted of designing an X-Band Up-Converter for CubeSats.

Morehead State University 2012–2015

Received Bachelors of Arts with an Area of Concentration in Mathematics.

Pending Publications

Development of Ground Station Software (GSSW) for
the Cosmic X-Ray Background Nanosat-2 (CXBN-2)

IEEE

Toward an Improved Measurement of the Cosmic X-ray
Background: Characterization and Adaptation of A
CZT Imaging Array to be Flown on the Cosmic X-ray
Background Nanosatellite-2 (CXBN-2)

JAI

Work

Graduate Assistantship at Morehead State University Fall 2016–Current

• Completed the flight software and was a key member of integration for CXBN2

• Working as part of a team for the software development for Lunar IceCube

• Developing the flight software using a P400K from Space Micro with VxWorks as the operating system

Research Fellowship at Morehead State University Summer 2016

• Wrote the flight software for CXBN2 using an MSP430

• Interfaced a Blue Gecko Bluetooth module with a Cortex-M processor

• Wrote a terminal serial program in C++ used to debug CXBN2

Graduate Assistantship at Morehead State University Fall 2015–Spring 2016

• Presented the software design at Critical Design Review for CXBN2

• Software development lead for CXBN2

• Designed a Reed-Solomon encoder and decoder for CXBN2

Research Assistantship at Morehead State University Summer 2015

• Worked on the data analysis software for CXBN2 using C/C++

• Finished X-band up-converter originally done for senior thesis

• Analyzed the demagnetization factors of the magnetorquers for CXBN2

Internship at Vernon F. Glaser Inc Summer 2014

• Learned about Agile and Scrum methodologies and its application to software development

• Used Extreme Programming practices for a MIME upload script

• Wrote an AES encryption and decryption program in Python

Research Fellowship at Morehead State University Summer 2012

• Worked with Bob Twiggs on designing the PocketQub

• Designed the structure for PocketQubs using SolidWorks

• Helped develop the software for Eagle-1

Extracurricular

Phi Sigma Pi – National Honors Fraternity 2013–2015

• Met on a weekly basis to discuss and solve issues within our chapter

• Volunteered at a soup kitchen to help the homeless

• Coordinated a fundraiser to help raise money for our philanthropy

Phi Eta Sigma – National Freshman Honors Fraternity 2011–2015

• Must have had a minimum GPA of 3.5 by the end of freshman year

• Part of Region XI of the Phi Eta Sigma

Student Goverment Association 2011–2012

• Freshman Representative Class of 2015

• Part of the economic subgroup to distribute fundings to other organizations on campus

• Learned to argue in a constructive way to achieve diplomatic solutions

Skills

C/C++ Python MATLAB Linux VxWorks Forward Error Correction Verilog

Points of Reference

Name: Kevin Brown
Title: Spacecraft Engineer
Phone: (408)373-2756
Email: kz.brown@moreheadstate.edu

Name: Charles Conner
Title: Electrical Engineer
Phone: (240)821-0611
Email: c.conner@moreheadstate.edu

