
Pittsburg State University Pittsburg State University

Pittsburg State University Digital Commons Pittsburg State University Digital Commons

Problems College of Education

7-1-1988

Methods used in the development of computer programs capable Methods used in the development of computer programs capable

of boolean operators on polyhedrons of boolean operators on polyhedrons

Timothy W. Flood
Pittsburg State University

Follow this and additional works at: https://digitalcommons.pittstate.edu/problems

Recommended Citation Recommended Citation
Flood, Timothy W., "Methods used in the development of computer programs capable of boolean
operators on polyhedrons" (1988). Problems. 22.
https://digitalcommons.pittstate.edu/problems/22

This Graduate Research is brought to you for free and open access by the College of Education at Pittsburg State
University Digital Commons. It has been accepted for inclusion in Problems by an authorized administrator of
Pittsburg State University Digital Commons. For more information, please contact mmccune@pittstate.edu,
jmauk@pittstate.edu.

https://digitalcommons.pittstate.edu/
https://digitalcommons.pittstate.edu/problems
https://digitalcommons.pittstate.edu/coe
https://digitalcommons.pittstate.edu/problems?utm_source=digitalcommons.pittstate.edu%2Fproblems%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pittstate.edu/problems/22?utm_source=digitalcommons.pittstate.edu%2Fproblems%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mmccune@pittstate.edu,%20jmauk@pittstate.edu
mailto:mmccune@pittstate.edu,%20jmauk@pittstate.edu

METHODS USED IN THE DEVELOPMENT OF COMPUTER

PROGRAMS CAPABLE OF BOOLEAN OPERATIONS

ON POLYHEDRONS

A Problem Submitted to the Graduate Division in Partial

Fulfillment of the Requir<2ITlents for the

Degree of I'viastr2T of Science

By

Timothy W . Flood

PITTSBURG STATE UNIVERSITY

Pittsburg, Kansas

July, 1988

ACKNOWLEDGMENTS

The author of this paper would like to thank Dr. Gary L.

McGrath for his constant help and encouragement, not only

on this paper, but also during my five years here at Pittsburg

State University. I would also like to thank the rest of the

people in the Math Department for their support.

ii

ABSTRACT

This paper discusses a method which can be employed on

a computer to allow the computer to perform Boolean

operations on polygons and polyhedrons. Although current

literature is full of algorithms which are vital in the

construction of such a program~ not many complete

algorithms are ava.ilable. The method described here employs

sev'eral of the current algorithms and joins them together

with other information to produce a complete package. The

objects are stored using a boundary representation in linked

lists. The polyhedrons are represented by the polygons that

compose their faces . The polygons are processed by

intersecting each line segment of a given polygon with all of

the line segments the other polygon. The new line segments,.

induced by these intersections, are introd1..1.ced and the

~undamental cycles of the graph evaluated as to the region

they bound and selected accordingly .

iii

LIST OF TABLES

TABLE PAGE

1. Classification of Cycles by Content 22

II. Selection Rules for Boolean Operations 24

III. Characterization of Facets by
Adjoining Regions 31

iv

LIST OF FIGURES

FIGURE PAGE

1. Polygon 1 :3

2. Polygon 2 4

3. Polygon 1 with the Vertices and Edges Numbered
in the Order of Traversal 6

4. Polygon 2 with the Vertices and Edges Numbered
in the Order of Traversal 7

5. Polygons 1 and 2 9

6. Numbering of Half Edges and Vertices 11

7. Numbering of Opposite Half Edges . 12

8. Building of the First Three Cycles 15

9. Rem.aining Cycles 16

10 . Construction of P in the Interior of Cycle :5 17

11. Point P in the Interior of Polygon 1 19

12. Examples of the Difficulties with the Cycle
Classification Method 21

13 . Polygon 1 Intersect the Conl.plement of Polygon 2 23

14. Polygon 1 Union Polygon 2 25

15. Polyhedrons 1 and 2 27

16. Numbering of Facets in Polyhedron 29

17. Numbering of FaCets in Polyhedron 2 30

v

METHODS USED IN THE DEVELOPMENT OF COMPUTER

PROGRAMS CAPABLE OF BOOLEAN OPERATIONS

ON POLYHEDRONS

The development of computer programs capable of

polygon and polyhedron Boolean operations is a rapidly

growing field of interest. It is of interest in computer science,

especially in three-dimensional computer graphics, for

determining the visible parts of solid objects. It is also o·f

interest in the deSign of automated processes, in order to

determine if the parts of the machine will collide or not.

One of the first considerations in developing this type of

program is what type of data structure is best suited for the

application. Three-dimensional polyhedrons can be

represented as a finite number of two-dimensional polygons

describing the faces of the three-dimensional polyhedron, so

the representation of two-dimensional polygons will be

discussed first . There are several data structures currerltly

being used. One structure, that is memory efficient, stores

the vertices in a linked list, in the order that tl"ley occur in

the polygon. Another structure, which is more conducive to

computer graphics but uses more memory, is to break tI"le

1

polygon into a finite nun1ber of line segments, where the

beginning and ending vertices of the line segments are stored

in linked list in the order they occur as the polygon is

traversed in a predetermined direction. Since the major

emphasis of tl1.is paper is computer graphics, the latter

method will be used throughout .

ConSider, for exarnple, polygon 1 shown in figure 1. First

a starting vertex and an orientation must be chosen . A

positive orientation, in which the polygonal region is to the

left as the perimeter is traversed in a counter-clockwise

direction -will be used throughout this paper. In polygon 1,

vertex A is arbitrarily chosen as the starting vertex. The

polygon is stored as directed line segment, or half edge, AD,

followed by DHI' then HE, EF, FG, GI, IJ, JC, eE, and finally BA

complet.ing the cycle. As stated earlier, this method uses

considerable memory, but each individual line segment can be

easily plotted and thus the entire polygon plotted. This

method gives a well defined polygonal region, provided the

polygonal boundary is not self-intersecting, hence self

intersecting, polygons will not be considered. This method

works for polygonal regions with holes, consider polygon 2 in

figure 2. It is represented as two cycles, one cycle being KQ,

QR, RL, and LK.~ and the other cycle MN, NP, PO, and OM.

3

Figure 1

Polygon 1

50

A

40

D

30

20

10

10 20 30 40

4

Figure :2

Polygon 2

50

40

30 K

20

10 Q

10 20 30 40

5

Once polygons can be stored in a manner in which they

can be operated on, one can begin to process the data. The

vertices and half edges are numbered in the order in which

they are traversed, as in figures 3 and 4. Several methods

are currently being used to determine the intersection of the

polygons. One method involves building a grid over the

polygonal regions 811.d checking which line segments occur in

each of the cells. Then only those line segments which occur

in the same cell need to be evaluated to see if they intersect.

This nl.ethod requires a considerable amount of preprocessing

and additional memory, and would only be advantageous

when one polygon is repeatedly compared with many other

polygons . Another method employs building a minimal box

containing each polygon and then the intersection is evaluated

in the box of intersection. One of the most straight forwardJ

easiest to im.plement, and the rnethod used in this paper

in.volves checkin.g each line segment of the first polygon

against each of the line segments of the other polygon.

In detern"lining if two line segmen.ts intersect it is

necessary to check to see if the line segments are parallel, or

if they are collinear . If the cross product of 'vectors lying on

these line seglTIents is zero;, then the line segments are

parallel. If the vectors are found to be linearly dependentJ

6

Figure 3

Polygon 1 with the Vertices and Edges

Numbered in the Order of Traversal

50

1

40
/
~O

9
9

2
4 4 5

5

30 1 6 8
,./

3

20 7
7

8

10

10 20 30 40

7

Figure 4

Polygon 2 with the Vertices and Edges

Numbered in the Order of Traversal

50

40

30 11 14 14

15

15 16

20 11 18 16 13

18 17
17

10 12 13
12

10 20 30 40

8

tIle line seglnents are collinear and the end paints of each are

checked to see if they are on the other line segment and the

intersection thus determined. If the line segments are not

collinear or parallel then the lines through the end points

rnust intersect sornewhere. The point of intersection can be

determined by solving the system. of equations of the lines

SilTIultaneously. Once the point of intersection is found, it

must be determined if the point is on both line segments. If

it is on both line segments, then the line segments do

intersect.

Figure 5 shows the two polygons in the same plane . The

points of intersection m.ust be determined. The line

containing line segment 1 would be found to intersect several

of th.e lines defined by the line segn1.ents of polygon 2, such as

line seglTIen.t 11, but the point of intersection does not occur on

line segment 11 so the line segments do not intersect. Line

segrnent 2 is found to intersect line segment 14, and the point

of intersection is found to be (7.5,30). This new vertex must

be lin.ked into the polygons, betweel1 vertices 2 and 3 in

polygon 1 and vertices 14 and 11 in polygon 2. This new

vertex also divides the two old line segments, creating four

new line segments. This process is continued until all of the

line segments in polygon 1 are compared to each line segment

9

Figure 5

Polygons 1 and 2

10

in. polygon 2. A unique case occurs where line seglnent

14 intersects vertex 6. This does not introduce a new vertex

but it does divide line segment 14 into two new line segments.

Once all of the points of intersection are found, the '/ertices

and ll.alf edges are labeled as in figure 6, by first tra'versing

polygon 1 followed by polygon 2, numbering the half edges and

vertices as they are encountered.

Th.e next step is to determine the degree of each vertex.

This is done by coull.ting the number of occurrence of each

vertex in the beginning and ending end point arrays.

Opposite half edges are also introduced so one can proceed ill.

either direction along the original line segments. The opposite

half edge is SilTlply a half edge directed in the opposite

direction of the original half edges. Since, in figure 6 there

are 33 line seglTlents, the opposite half edges corresponding to

the original half edges have indices 33 larger than the original

half edges, as in. figl.Ire 7. For exan'1ple, half edge 31 goes from

v'ertex 25 to vertex 12, while opposite half edge 64 goes frOITl

vertex 12 to 25 . The half edges leaving a vertex rnust be

associated with it in order of increasing angle of inclination.

The angle of iI1clination is taken as zero parallel to the

positive x-axis and increasing counter-clockwise. Consider, for

exanl.ple, vertex 3. The half edges leaving this vertex, in

1 1

Figure 6

Numbering of Hal f Edges and Vertices

16 16

19~--~20
19

12

Figure 7

Numbering of Opposite Half Edges

1

49 16

19~------------------------------------~20
52

13

increasing order of tl1.e angle of il1.clination1 are 57, 35, 25, and

3; with angles of 0, 116.6, 180, and 296.6 degrees respectively.

When all of the vertices have been processed, the

fundamental cycles of the graph are then computed.

The fundamental cycles are the boundaries of each of

tIl.e COn1.pOll.ell.ts of the plane induced by the graph. They

have the ul1.ique property tl"lat if a given point 011. the interior

of the cycle is in the interior of a giv'en polygon, then the

entire interior of the cycle lies in that polygon. The first

fundamental cycle is computed by selecting the unused half

edge of lowest index, that is half edge 1. Half edge 1 is

traversed from. vertex 1 to vertex 2 and marked as used.

The only 1l.a1f edge leavill.g vertex 2, except the triVial half

edge 34, is half edged 2. Half edge 2 is marked as u.sed and

traversed to 'vertex 3, which is approached at an angle of 116.6

degrees. As stated earlier, the half edges leaving vertex 3 are

sorted by increasing all.gle of inclil"la tion . The half edge of

next smaller degree is selected as the edge to lea "e vertex 3

on. This is found to be half edge 57 with an angle of

inclination of zero degrees . If the approach was made along

the half edge of smallest angle, the half edge . of largest angle

is then selected to leave on. Half edge 57 is traversed from

vertex 3 to 5 and is marked as used . This process is

14

continued ull.til cycle 1 1s completed by traversing hal! eoges ~,

6, 7, 55, 15, 16, and finally 17 as in figure 8. Cycle 2 is then

computed ill. a similar manner. The unused half edge of

lowest index is selected as the starting edge, this being half

edge 3. This edge is traversed from vertex 3 to vertex 4 J

where edge 4 is then traversed to vertex 5. Finally edge 24 is

traversed back to tIle starting vertex, thus completing cycle 2,

as shown in the figure. At this point, half edges 1 through 7

rlave been u.sed, Ilellce the third cycle is begun by traversing

line segment 8 producing cycle 3. The rest of the

fundanl.en.tal cycles are computed as shown in figure 9. The

process stops after cycle 10, since all 66 of the half edges have

beell. used ill. tll.e cycles. Once the fundamental cycles are

coznputed, it m.ust be determ.ined which polygon or polygons,

if any, they are in. In order to determine if a particular

cycle is part of the boundary of a particular polygon, a point

rnust be chosen inside the cycle . Since the cycles are

positively oriented with resp'2ct to the region they describe,

this can be dorle by" findill.g the nornl.al vector, whose cross

product with the first half edge of the cycle in question, is

posi tive . Consider for example, cycle 3. The half edge of

lowest index is half edge 8. The vector along half edge 8 is

shown in figure lOa with coordinates <dx,dy>. Rotating this

2

15

Figure 8

Building of the First Three Cycles

1

5

3 5

Cycle 2

3 24 5

3~ -4
9

4

Cycle 1

6

7

Cycle 3

8

8 V //
25

2.7

28

13
13

17
_~~...;......6--. 16

7
15

8 55 15

22 15

14

14

51

Cycle 4 Cycle 5

60 r I b-' 1GV1 ,'.71 66 - ~_' L

/.::.7

58

Cycle 7

c;,.,.
.... JL

°16

Figure 9

Remaining Cycles

18 ~

49

48

54

5 ... :r

Cycle 6

:::? ... r .:::::.-' I
."..J'

'-117 .//
'76 /4/ ..::. 0",""-

4-J:r
46

.... 1"/ ;;;'79

.30

19

Cycle 8

39

581. 1
40

56

Cycle 9

59
66~?

Cycle 10
45

64\ ~ 162

6 ... J

;;'7{)

dy

17

Figure 10

Construction of P in the Interior

of Cycle 3

a. Half edge 8

dx

b . Normal vector

I~--------------~ 8

dx

9
dy

c. Cycle 3

~

18

vector 90 degrees counter-clockwise causes it to appear as in

figure lOb with coordinates <dy,-dx>. This vector is then made

very short, so as not to extend beyond the other side of the

cycle by first. ITlaking it a unit vector and multiplying it by a

very small nurnber, epsilon. This vector is tIlen added to the

midpoint of the half edge, as in figlJ.re 10c. This new point,

point P, lies within cycle 3 by the way it was constructed, so

in order to tell which polygons this cycle is in, it must be'

determined which polygons point P lies in, if any.

It is obvious if the point lies in a polygon by observing

the graph, however, it is more difficult for the computer to

determine. One of the si:rnplest ways is to cast a ray in some

direction al~d count the number of times it intersects the

boundary of the polygon. If the ray intersects the boundary

an odd l1.UITlber of times, the point is in the interior of the of

the polYBon~ otherwise the point is outside the polygon . For

exanl.ple, in figure 11, the ray cast to the left of point P, in

polygon 1, intersects the boundary' three times, therefore P is

inside polygon 1, and hence cycle 3 is in polygon 1. The major

difficulties with this method occur if the ray intersects a

horizontal segn'1ent or if t he ray ili.tersects a \lertex.

In tersecting. a horizon tal line segment does not need to be

counted and will not affect the results. In the case of

19

Figure 11

Poin t P in the Interior of Polygon 1

20

intersecting a vertex, any line segnlent extending fr01TI this

vertex with the other vertex below the intersected v'ertex

will be counted, while all others will not be counted. For

example, in fig1.J.re 12, the ray from R intersects the boundary

at vertex H, this is counted as intersecting line segment 7, but

not 8, giving one intersection indicating R is inside the

polygon. The ray from S intersects the boundary at vertices

D and F and line segment 7. This is counted as intersecting

lin.e segments 3, 4, 5, 6, and 7 yielding 5 intersection,

indicating S is inside the polygon. Finally consider the ray

cast from point T. It intersect the boundary at vertex E and

line segments 6 and 7. The intersection with vertex E is not

counted since the line segrnents are above the ray. This

leaves two intersection, indicating T is outside the polygon.

Hence, by choosing a point on the i11terior of the cycle as

described, and counting the rlumber of intersections the cycles

are classified as in Table 1. Once each of the polygons can be

described in terms of the fundarnen tal cycles, it is sim.ple to

select the cycles tl1.at are required for a given operations, as

shown in Table II.

21

Figure 12

Examples of the Difficulties with the

Cycle Classification Method

A

G c

TABLE 1

CLASSIFICA TION OF CYCLES BY CONTENT

Cycle

1 .
2
3
4
5
6
7
8
9

10

Polygon 1

xxx
XXX.
XXX.
XXX
XXX

Polygon 2

xxx
XXX

xxx
. XXX

The only problem that remains is to reconnect the

desired cycles to create the resulting polygon. This is done by

checking each cycle against the others to determine if they

ha\le a common edge. Take for example:. the intersection of

polygon 1 and the complement of polygon 2. Table II shows

that this region is comprised of cycle 1 and cycle 4. Since

these two cycles do not have a common edgeJ their graph

shows up as two disjoint cycles~ as in figure 13. A more

cOITlplex example is the union of polygon 1 and 2.

23

Figure 13

Polygon 1 Intersect the Complement of Polygon :2

24

TABLE II

SELECTION RULES FOR BOOLEAN OPERATIONS

Cycle 1 n:2 1 U 2 1 n 2' l' n 2 1 U 2' l' U 2
------ ------ ------- ------- ------- -------- --------

1 XXX XXX XXX
2 XXX XXX. XXX XXX
3 XXX XXX. XXX XXX
4 XXX. XXX XXX
5 XXX XXX. XXX XXX
6 XXX. XXX XXX
7 XXX XXX
8 XXX XXX
9 XXX XXX

10 XXX XXX

This region is made up of the first 6 cycles7 however mal1.Y of

the cycles have common edges. These common. edges are easy

to detect since the indices differ by 33, the nun1.ber of lirle

segments. Cycle 1 and cycle 2 have the common edge pair 24

and 57~ which connect vertices 3 and 5. In order to join these

two cycles, the boundary of cycle 1 is traced to the first

occurrence of either of these vertices . Vertex 3 is the first

one encountered, then cycle 2 is traced to vertex 5 and then

cycle 1 is followed. This process is continued until the region

in figure 14 is produced. This completes the discussion of the

two-dimensional case.

25

Figure 14

Polygon 1 Union Polygon 2

26

In order to operate on three-dimensional polyhedrons, it

is possible to reduce them into numerous two-dimensional

polygons describing the faces of the polyhedrons. Each of the

polygonal faces must be broken up into facets. The facets of

each face are detern1ined by intersecting each face of the

polyhedron with each of the faces of the other polyhedron.

Tll.ese facets are the boundaries of each of the components of

three-space induced by the polyhedrons. Consider, for

exanl.pleJ the pol yll.edrons in figure 15. Each of the

polyhedrons have six faces. They are numbered as in the

figure. The· intersection of the faces is found by first

parameteriZing each of the face planes with (n!x)=b, where n

is tl1e norrrial vector, x is any POill. t in the plane, and b is

determined by the plane. The planes are then checked to see

if they coinCide or are parallel, by checking if the normal

vectors are linearly dependent. If the planes coincide, the

polygonal faces are intersected as described earlier. Wl1.ereas.,

if it is determined that the planes intersect, the point on the

lil1.e of intersection closest the origin is found by using

Lagrange multipliers to minimize the length of x subject to

(otl:x:)=bt and (n21:x:)=b2. With the parameterization of the line:r

it is possible to det ect if the line of intersection cu t8 through

the faces, indicating the faces intersect. This is the method

27

Figure 15

Polyhedrons 1 and 2

Face 6

Polyhedron 1

....... Face 5

Face 12

Face 3
.;

-----r.--....... l........ Face 11
Polyhedron 2

,..----
................. ··~~·;:·t··· ····

Face 8

r:::···T···-:-··

Face 9

Face 7 r--
Face 2 .'

\
Face 4

Face 1

used to find the cross edges and self edges of each of the faces .

The cross edges are the new edses created by the

intersection of this face with another face, while the self edges

are subdivisions of the original edges caused by the

intersection with other faces. The new edges are linked to the

original polygonal face creating a new face composed of facets.

The boundaries of the facets are the fundarnental cycles of

this new polygon that are part of the original face. Consider,

for exarnple, face 2 in figure 16. The original face is cut by

face 7 of polyhedron 2, creating cross edge 1; while the

i:ntersection with face 12 creates cross edge 2. These new cross

edges divide two of the original edges into s ix new self edges.

TIl.e fundarnental cycles of this polygon are found as described

previously, and those that are part of the original face are

kept as tl""le ll.eW facets. Face 2 is conl.posed of tt1ree facets as

shown. Once the faces are broken up into facets, the facets

required to describe the result of a given Boolean operation

must be selected. This is done by taking a point in the facet

and going a small distance along the normal, to obtain a point

on the outside of the facet, and going a small distance in the

direction opposite the normal to pick a point on the inside of

the facet. These points are then evaluated to see which solid

or solids, if any, they are in . In order to determine which

29

Figure 16

Numbering of Facets in Polyhedron 1

Face 1 Face 6

Face :2

2 4

Face 3

5 6 7

Face 4

8 9 10

Face 5

11 12 13

30

Figure 17

Numbering of Facets in Polyhedron 2

Face 8
Face 9

~ __ 17 __ ~1 1~ ____ 1_8 __ ~

Face 10 Face 11

~ __ 19 __ ~1 1~ ___ 2_0 __ ~

Face 7 Face 12

15 21

31

solid a poin. t is in, the distance fron-l the point to all of the

f aces of the solid is computed, and if the distance to the

closest face is positive:! then the point is in the interior of the

solid since all of the faces have outward normals. Hence the

facets are cll.aracterized according to which component lies on

each side of the facet as in Table III.

TABLE III

CHARACTERIZATION OF FACETS BY ADdOII\lING REGIONS

Facet Inside Outside
------ --------------- -------------

1 1 none
2 1 none
3 1 and 2 2
4 1 none
5 1 none
6 1 and 2 2

7 1 none
8 1 none
9 1 and 2 2

10 1 none

11 1 none

12 1 and :2 2
13 1 none

14 1 none

15 2 none

16 1 and 2 1

17 none 2

18 . none 2
2 19 . none
2 20 . none

2 none 21
1 and 2 1 22

32

It 15 110W poss1ble to select the required facets to generate

tl"1e polyhedron resulting from a given Boolean operation.

Suppose the intersection of the two polyhedrons is requested.

Any facet with both polyhedrons on one side are selected ,

tl"ley are 3, 5, 9, 12, 16, and 22. These facets are all oriented

correctl y since the desired region is all on the inside
l

the side

opposite the outward normal. For a more complicated

example, consider the intersection of polyhedron :2 with the

complement of polyhedron 1. The facets should have only

polyhedron 2 on one side. The selected facets are 2, 6, 9, 12,

15, 17, 18, 19, 20, and 21. However, all of the facets except 15

and 21 are oriented incorrectly since polyhedron 2 lies on the

outside of these facets. In order to correct the orientation,

since the polyhedron will be expressed in terms of outward

nornl.als the order of the traversal of the vertices in these ,

facets are reversed. The result of any Boolean operation can

be found in a silnilar n1anner.

33

Conclusion

The rnet.hods described in this paper have been

implenl.en.ted in the development of a cornputer program in

FORTRAN which performs Boolean operations on polygons and

polyhedrons. Dr. McGrath and I have spent nurnerous hours

designing and testing the program ""hich confirms the validity

of tll.is nl.etll.od. Although there are many different nl.etll.ods

described in current literature, this method is a combination

of several of them and is very conducive to computer

graphics. Another advantage is that t.he method is relatively

straight forward and can easily be modified for any particular

application.

BIBLIOGRAPHY

Foley, JaITles D. and Andries Van Darn. Fundamentals of
Int.eractive Computer Graphics. Reading, MA: Addison
Wesley Publishing Co ., 1982 .

Frankli11, W1Tl. Randolph, IIEfficient Polyhedron Intersection
and Union. II Graphics Interface, 1982, 73-80.

Newrn.arl, William M. and Robert F. Sproull. Principles of
Interactive Computer Graphics. New York: IVIcGraw-Hill
Book Co., 1979.

Pavlidis, TI'1eo. Algotithms for Graphics and Image Processing.
Rockville, MD: Computer Science Press, 1982.

Preparata, Franco P. and Michael Ian Shamos. Computational
Geon'1etry. New York: Springer-Verlag, 1985.

Requ.icha, Aristides A. G. and Herbert B. Voelcker. "Boolean
Operations in Solid IVIodelling: Boundary E'Pvaluation and
Mergil1.g Algoritl'11TlS." Technical MernorandurrJ. NUlnber
26. Production Automation Project. University of
Rochester, October 1984.

Tilove, Robert B. "Exploiting Spatial an.d Structural Locality in
Geometric Moddeling.1\ Technical Mem.orandum. Num.ber
38. Production Autom.ation Project. University of
Rochester, October 1981.

34

	Methods used in the development of computer programs capable of boolean operators on polyhedrons
	Recommended Citation

	1988_07_Flood_T_Wpia
	1988_07_Flood_T_Wpiia
	1988_07_Flood_T_Wpiiia
	1988_07_Flood_T_Wpiva
	1988_07_Flood_T_Wpva
	1988_07_Flood_T_Wp01a
	1988_07_Flood_T_Wp02a
	1988_07_Flood_T_Wp03a
	1988_07_Flood_T_Wp04a
	1988_07_Flood_T_Wp05a
	1988_07_Flood_T_Wp06a
	1988_07_Flood_T_Wp07a
	1988_07_Flood_T_Wp08a
	1988_07_Flood_T_Wp09a
	1988_07_Flood_T_Wp10a
	1988_07_Flood_T_Wp11a
	1988_07_Flood_T_Wp12a
	1988_07_Flood_T_Wp13a
	1988_07_Flood_T_Wp14a
	1988_07_Flood_T_Wp15a
	1988_07_Flood_T_Wp16a
	1988_07_Flood_T_Wp17a
	1988_07_Flood_T_Wp18a
	1988_07_Flood_T_Wp19a
	1988_07_Flood_T_Wp20a
	1988_07_Flood_T_Wp21a
	1988_07_Flood_T_Wp22a
	1988_07_Flood_T_Wp23a
	1988_07_Flood_T_Wp24a
	1988_07_Flood_T_Wp25a
	1988_07_Flood_T_Wp26a
	1988_07_Flood_T_Wp27a
	1988_07_Flood_T_Wp28a
	1988_07_Flood_T_Wp29a
	1988_07_Flood_T_Wp30a
	1988_07_Flood_T_Wp31a
	1988_07_Flood_T_Wp32a
	1988_07_Flood_T_Wp33a
	1988_07_Flood_T_Wp34a

