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ABSTRACT

This paper discusses a method which can be employed on
a computer to allow the computer to perform Boolean
operations on polygons and polyvhedrons. Although current
literature is full of algorithms which are wvital in the
construction of such a program, not many complete
algorithms are available. The method described here employs
several of the current algorithms and joins thermn together
with other information to produce a complete package. The
objects are stored using a boundary representation in linked
lists. The polyhedrons are represented by the polygons that
compose their faces. The polygons are processed by
intersecting each line segment of a given polygon with all of
the line segments the other polvgon. The new line segments,
induced by these intersections, are introduced and the
fundamental cycles of the graph evaluated as to the region

they bound and selected accordingly.
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METHODS USED IN THE DEVELOPMENT OF COMPUTER
PROGRAMS CAPABLE OF BOOLEAN OPERATIONS

ON POLYHEDRONS

The development of computer programs capable of
polygon and polvhedron Boolean operations is a rapidly
growing field of interest. It is of interest in computer science,
especially in three-dimensional computer graphics, for
determining the visible parts of solid objects. It is also of
interest in the design of automated processes, in order to
determine if the parts of the machine will collide or not.

One of the first considerations in dewveloping this type of
program is what type of data structure is best suited for the
application. Three-dimensiocnal polyhedrons can be
represented as a finite number of two-dimensional polygons
describing the faces of the three-dimensional polyvhedron, so
the representation of two-dimensional polygons will be
discussed first. There are several data structures currently
being used. One structure, that is memory efficient, stores
the vertices in a linked list, in the order that they occur in

the polygon. Another structure, which is more conducive to

computer graphics but uses more memory, is to break the



polygon into a finite number of line segments, where the
beginning and ending wvertices of the line segments are stored
in linked list in the order they occur as the polygon is
traversed in a predetermined direction. Since the ma jor
emphasis of this paper is computer graphics, the latter
method will be used throughout.

Consider, for exarmple, polygon 1 shhown in figure 1. First
a starting vertex and an orientation must be cheosen. A
positive orientation, in which the polygonal region is to the
left as the perimeter is traversed in a counter-clockwise
direction will be used throughout this paper. In polygon 1,
vertex A is arbitrarily chosen as the starting vertex. The
polygon is stored as directed line segment, or half edge, AD,
followed by DH, then HE, EF, FG, GI, IJ, JC, CB, and finally BA
completing the cycle. As stated earlier, this method uses
considerable memory, but each individual line segment can be
easily plotted and thus the entire polygon plotted. This
method gives a well defined polygonal region, provided the
polygonal boundary is not self-intersecting, hence self-
intersecting polygons will not be considered. This method
works for polygonal regions with holes, consider polygon 2 in
figure 2. It is represented as two cycles, one cycle being KQ,

QR, RL, and LK, and the other cycle NN, NP, PO, and OM.
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Figure 2

Polygon 2
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Once polygons can be stored in a manner in which they
can be operated on, one can begin to process the data. The
vertices and half edges are numbered in the order in which
they are traversed, as in figures 3 and 4. Several methods
are currently being used to determine the intersection of the
polygons. One method involves building a grid over the
polygonal regions and checking which line segments occur in
each of the cells. Then only those line segments which occur
in the same cell need to be evaluated to see if they intersect.
This method reguires a considerable amount of preprocessing
and additional memory, and would only be advantageous
when one polygon is repeatedly compared with many other
polygons. Another rmethod employs building a minimal box
containing each polygon and then the intersection is evaluated
in the box of intersection. One of the most straight forward,
easiest to implement, and the method used in this paper
involves checking each line segment of the first polygon
against each of the line segments of the other polvgon.

In determining if two line segments intersect it is
necessary to check to see if the line segments are parallel, or
if they are collinear. If the cross product of vectors lying on
these line segments is zero, then the line segments are

parallel. If the vectors are found to be linearly dependernt,



Figure 3

Polygon 1 with the Vertices and Edges

Numbered in the Order of Traversal
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Figure 4

Polygon 2 with the Vertices and Edges

Numbered in the Order of Trawversal
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the line segments are collinear and the end points of each are
checked to see if they are on the other line segment and the
intersection thus determined. If the line segments are nbt
collinear or parallel then the lines through the end points
must intersect somewhere. The point of intersection can be
determined by solving the systerm of equations of the lines
simultaneously. Once the point of intersection is found, it
must be determined if the point is on both line segments. If
it is on both line segments, then the line segrments do
intersect.

Figure 5 shows the two polygons in the same plane. The
points of intersection must be determined. The line
containing line segment 1 would be found to intersect several
of the lines defined by the line segments of polygon 2, such as
line segment 11, but the point of intersection does not occur on
line segment 11 so the line segments do not intersect. Line
segment 2 is found to intersect line segment 14, and the point
of intersection is found to be (7.5,30). This new wvertex must
be linked into the polygons, betweern vertices 2 and 3 in
polygon | and vertices 14 and 1l in polygon 2. This new
vertex also divides the two old line segments, creating four
new line segments. This process is continued until all of the

line segments in polygon | are compared to each line segment



Figure 5

Polygons 1 and 2
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in polygon 2. A unigue case occurs where line segment

14 intersects vertex 6. This does not introduce a new vertex
but it does divide line segment 14 into two new line segments.
Once all of the points of intersection are found, the vertices
and half edges are labeled as in figure 6, by first traversing
polygon 1 followed by polygon 2, numbering the half edges and
vertices as they are encountered.

The next step is to determine the degree of each vertex.
This is done by counting the number of occurrence of each
vertex in the beginning and ending end point arrays.

Opposite half edges are also introduced so one can proceed in
either direction along the original line segments. The opposite
half edge is simply a half edge directed in the opposite
direction of the original half edges. Since, in figure 6 there
are 33 line segments, the opposite half edges corresponding to
the original half edges have indices 33 larger than the original
half edges, as in figure 7. For exarnple, half edge 31 goes {rom
vertex 25 to vertex 12, while opposite half edge 64 goes from
vertex 12 to 25. The half edges leaving a vertex must be
associated with it in order of increasing angle of inclination.
The angle of inclination is taken as zero parallel to the
positive x-axis and increasing counter-clockwise. Consider, for

example, vertex 3. The half edges leaving this vertex, in
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increasing order of the angle of inclination, are 57, 35, 25, and
3; with angles of 0, 116.6, 180, and 296.6 degrees respectively.
When all of the vertices have been processed, the
fundamental cycles of the graph are then computed.

The fundamental cycles are the boundaries of each of
the components of the plane induced by the graph. They
have the unique property that if a given point on the interior
of the cycle is in the Interior of a given polygon, then the
entire interior of the cycle lies in that polygon. The first
fundamental cycle is computed by selecting the unused half
edge of lowest index, that is half edge 1. Half edge 1 is
traversed from vertex | to vertex 2 and marked as used.

The only half edge leaving vertex 2, except the trivial half
edge 34, is half edged 2. Half edge 2 is marked as used and
traversed to vertex 3, which is approached at an angle of 116.6
degrees. As stated earlier, the half edges leaving vertex 3 are
sorted by increasing angle of inclination. The half edge of
next smaller degree is selected as the edge to leave vertex 3
onn. This is found to be half edge 37 with an angle of
inclination of zero degrees. If the approach was made along
the half edge of smallest angle, thie halfl edge of largest angle
is then selected to leave on. Half edge 57 is traversed from

vertex 3 to 5 and is marked as used. This process is
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continued until cycle 1 is completed by traversing half edges 5,
6, 7, 55, 15, 16, and finally 17 as in figure 8 Cycle 2 is then
computed in a similar manner. The unused half edge of
lowest index is selected as the starting edge, this being half
edge 3. This edge is traversed from vertex 3 to vertex 4,
where edge 4 is then traversed to vertex 5. Finally edge 24 is
traversed back to the starting vertex, thus completing cycle 2,
as shown in the figure. At this point, half edges 1| through 7
hawve beernn used, hence the third cycle is begun by traversing
line segment 8 producing cycle 3. The rest of the
fundamental cycles are computed as shown in figure 9. The
process stops after cycle 10, since all 66 of the half edges have
beeri used in the cycles. Once the fundamental cycles are
computed, it must be determined which polygon or polygons,
if any, they are in. In order to determine if a particular
cycle is part of the boundary of a particular polygon, a point
must be chosen inside the cycle. Since the cycles are
positively oriented with respect to the region they describe,
this can be done by finding the normal vector, whose Ccross
product with the first half edge of the cycle in question, is
positive. Consider for example, cycle 3. The half edge of
lowest index is half edge 8 The vector along half edge 8 is

shown in figure 10a with coordinates <«dx,dy>». Rotating this
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Figure 8

Building of the First Three Cycles
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Figure 9
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Figure 10

Construction of P in the Interior

of Cycle 3
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vector 90 degrees counter-clockwise causes it to appear as in
figure 10b with coordinates «dvy,-dx>. This vector is then made
very short, so as not to extend beyond the other side of the
cycle by first making it a unit vector and multiplyving it by a
very small number, epsilon. This vector is then added to the
midpoint of the half edge, as in figure 10c. This new point,
point P, lies within cycle 3 by the way it was constructed, so
in order to tell which polygons this cycle is in, it must be
determined which polygorns point P lies in, if any.

It is obwvious if the point lies in a polygon by observing
the graph, however, it is more difficult for the computer to
determine. One of the simplest wavys is to cast a ray in some
direction and count the number of times it intersects the
boundary of the polygon. If the ray intersects the boundarvy
an odd nummber of times, the point is in the interior of the of
the polygon,; otherwise the point is outside the polygon. For
example, in figure 11, the ray cast to the left of point P, in
polvygon 1, intersects the boundary three times, therefore P is
inside polygon 1, and hence cycle 3 is in polygon 1. The major
difficulties with this method occur if the ray intersects a
horizontal segrment or if the ray intersects a vertex.

Intersecting a horizontal line segment does not need to be

counted and will not affect the results. In the case of



Figure 11
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intersecting a vertex, any line segment extending from this
vertex with the other vertex below the intersected vertex
will be counted, while all others will not be counted. For
example, in figure 12, the ray from R intersects the boundarvy
at vertex H, this is counted as intersecting line segment 7, but
not 8, giving one intersection indicating R is inside the
polygon. The ray from S intersects the boundary at vertices
D and F and line segment 7. This is counted as intersecting
line segments 3, 4, 5, 6, and 7 vyielding 5 intersection,
indicating S is inside the polygon. Finally consider the ravy
cast from point T. It intersect the boundary at vertex E and
line segments 6 and 7. The intersection with vertex E is not
counted since the line segments are above the ray. This
leaves two intersection, indicating T is outside the polygon.
Hence, by choosing a point on the interior of the cycle as
described, and counting the number of intersections the cycles
are classified as in Table I. Once each of the polygons can be
described in terms of the fundamental cycles, it is simple to
select the cycles that are required for a given operations, as

shown in Table II.
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Figure 12

Examples of the Difficulties with the

Cycle Classification Method
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TAEBLE 1

CLASSIFICATION OF CYCLES BY CONTENT

Cycle Polygon | Polygon 2

XXX

XXX . . . XXX
XXX . . XXX
XXX :
XXX . . XXX

. XXX

O 0o~ N B b

—

The only problem that remains is to reconnect the
desired cycles to create the resulting polygon. This is done by
checking each cycle against the others to determine if thevy
have a common edge. Take for exammple, the intersection of
polygon | and the complement of polygon 2. Table Il shows
that this region is comprised of cycle 1 and cvycle 4. Since
these two cycles do not have a common edge, their graph
shows up as two disjoint cycles, as in figure 13. A more

complex example is the union of polygon 1 and 2.
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Figure 13
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TABLE 1I

SELECTION RULES FOR BOOLEAN OPERATIONS

1. S XXX XXX . . . . . XXX

2. XXX XXX . . . . . . . . 0 XXX . XXX
S XKEX O XXX . . . . . . . . . XXX . XXX
4 . . oo AXRX . . XXX . . . . . KXX

B XXX . XXX . . . . . . .. 0 EXX . XXX
G XXX XXX . . . . . XXX
7 . XXX . XXX
g . XXX . XXX
e XXX . XXX
10N XXX . XXX

This region is made up of the first 6 cycles, however many of
the cycles have common edges. These cormmon edges are easy
to detect since the indices differ by 33, the number of line
segments. Cycle | and cycle 2 have the common edge pair 24
and 57, which connect vertices 3 and 5. In order to join these
two cycles, the boundary of cycle 1 is traced to the first
occurrence of either of these vertices. Vertex 3 is the first
one encountered, then cycle 2 is traced to vertex 5 and then
cvycle 1 is followed. This process is continued until the region
in figure 14 is produced. This completes the discussion of the

two-dimensional case.
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Figure 14

Polygon 2

Polygon 1 Union
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In order 1o operate on three-dimensional polyhedrons, it
is possible to reduce them into numerous two-dimensional
polygons describing the faces of the polyhedrons. Each of the
polygonal faces must be broken up into facets. The facets of
each face are determined by intersecting each face of the
polyhedron with each of the faces of the other polyhedron.
These facets are the boundaries of each of the corriponernts of
three-space induced by the polyhedrons. Consider, for
example, the polyhedrons in figure 15. Each of the
polyhedrons have six faces. They are numbered as in the
figure. The intersection of the faces is found by first
parameterizing each of the face planes with (nlx)=b, where n
is the normal vector, x is any point in the plane, and b is
determined by the plane. The planes are then checked to see
if they coincide or are parallel, by checking if the normal
vectors are linearly dependent. If the planes coincide, the
polygonal faces are intersected as described earlier. Whereas,
if it is determined that the planes intersect, the point on the
line of intersection closest the origin is found by using
Lagrange multipliers to minimize the length of x subject to
(nix)=b1 and (nzlx)=b2. With the parameterization of the line,
it is possible to detect if the line of intersection cuts through

the faces, indicating the faces intersect. This is the method
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Figure 15
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used to find the cross edges and self edges of each of the faces.
The cross edges are the new edges created by the
intersection of this face with another face, while the self edges
are subdivisions of the original edges caused by the
intersection with other faces. The new edges are linked to the
original polygonal face creating a new face composed of facets.
The boundaries of the facets are the fundamental cycles of
this new polygon that are part of the original face. Consider,
for example, face 2 in figure 16. The original face is cut by
face 7 of polyhedron 2, creating cross edge 1, while the
intersection with face 12 creates cross edge 2. These new Cross
edges divide two of the original edges into six new self edges.
The fundamental cycles of this polygon are found as described
previously, and those that are part of the original face are
kept as the new facets. Face 2 is composed of three facets as
shown. Once the faces are broken up into facets, the facets
required to describe the result of a given Boolean operation
must be selected. This is done by taking a point in the facet
and going a small distance along the normal, to obtain a point
on the outside of the facet, and going a small distance in the
direction opposite the normal to pick a point cn the inside of
the facet. These points are then evaluated to see which solid

or solids, if any, they are in. In order to determine which
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Figure 16

Numbering of Facets in Polyvhedron 1
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Figure 17

Numbering of Facets in Polyhedron 2
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solid a point is in, the distance from the point to all of the
faces of the solid is computed, and if the distance to the
closest face is positive, then the point is in the interior of the
solid since all of the faces have outward normals. Hence the

facets are characterized according to which component lies on

each side of the facet as in Table III.

TARBLE Il

CHARACTERIZATION OF FACETS BY ADJOINING REGIONS

Facet Inside Outside
1 1 . . . . . . none
2 1 . . . . . . none
3 1 and 2 . 2
e | . . . . . . none
B ¢ s s s w o e o 1 . . . . . . none
6 1 and 2 . 2
7 1 . . . . . . none
8 1 . . . . . . none
9 . . . . . . . land?2 . 2
w . . . . . . . .1 .. . . . . none
mn .. . . . . . v . . . . . . none
12 . . . & owie 4l and 2 . 2
;R | . . . . . . none
7 . .. . . . . none
15 . . . . . . . . 2 . . . . . . none
16 1 and 2 1
17 none 2
18 . none 2
19 none 2
20 . none 2
21 2 . . none

22 1 and 2 . 1




It is now possible to select the required rfacets to generate
the polyhedron resulting from a given Roolean operation.
Suppose the intersection of the two polyhedrons is requested.
Anvy facet with both polyhedrons on one side are selected,
they are 3, 5, 9, 12, 16, and 22. These facets are all‘ oriented
correctly since the desired region is all on the inside, the side
opposite the outward normal. For a more complicated
example, consider the intersection of polyhedron 2 with the
complement of polyhedron 1. The facets should have only
polyhedron 2 on one side. The selected facets are 2, 6, 9, 12,
15, 17, 18, 19, 20, and 21. However, all of the facets except 15
and 21 are oriented incorrectly since polyhedron 2 lies on the
outside of these facets. In order to correct the orientation,
since the polyvhedron will be expressed in terms of outward
normals, the order of the traversal of the vertices in these
facets are reversed. The result of any Boolean operation can

be found in a similar rmanner.
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Conclusion

The methods described in this paper have been
implemented in the development of a computer program in
FORTRAN which performs Boolean operations on polygons and
polyvhedrons. Dr. McGrath and I have spent numerous hours
designing and testing the program which confirms the validity
of this method. Although there are many different methods
described in current literature, this method is a combination
of several of them and is very conducive to computer
graphics. Another advantage is that the methed is relatively

straight forward and can easily be meodified for any particular

application.
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