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ABSTRACT 

This paper discusses a method which can be employed on 

a computer to allow the computer to perform Boolean 

operations on polygons and polyhedrons. Although current 

literature is full of algorithms which are vital in the 

construction of such a program~ not many complete 

algorithms are ava.ilable. The method described here employs 

sev'eral of the current algorithms and joins them together 

with other information to produce a complete package. The 

objects are stored using a boundary representation in linked 

lists. The polyhedrons are represented by the polygons that 

compose their faces . The polygons are processed by 

intersecting each line segment of a given polygon with all of 

the line segments the other polygon. The new line segments,. 

induced by these intersections, are introd1..1.ced and the 

~undamental cycles of the graph evaluated as to the region 

they bound and selected accordingly . 
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METHODS USED IN THE DEVELOPMENT OF COMPUTER 

PROGRAMS CAPABLE OF BOOLEAN OPERATIONS 

ON POLYHEDRONS 

The development of computer programs capable of 

polygon and polyhedron Boolean operations is a rapidly 

growing field of interest. It is of interest in computer science, 

especially in three-dimensional computer graphics, for 

determining the visible parts of solid objects. It is also o·f 

interest in the deSign of automated processes, in order to 

determine if the parts of the machine will collide or not. 

One of the first considerations in developing this type of 

program is what type of data structure is best suited for the 

application. Three-dimensional polyhedrons can be 

represented as a finite number of two-dimensional polygons 

describing the faces of the three-dimensional polyhedron, so 

the representation of two-dimensional polygons will be 

discussed first . There are several data structures currerltly 

being used. One structure, that is memory efficient, stores 

the vertices in a linked list, in the order that tl"ley occur in 

the polygon. Another structure, which is more conducive to 

computer graphics but uses more memory, is to break tI"le 
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polygon into a finite nun1ber of line segments, where the 

beginning and ending vertices of the line segments are stored 

in linked list in the order they occur as the polygon is 

traversed in a predetermined direction. Since the major 

emphasis of tl1.is paper is computer graphics, the latter 

method will be used throughout . 

ConSider, for exarnple, polygon 1 shown in figure 1. First 

a starting vertex and an orientation must be chosen . A 

positive orientation, in which the polygonal region is to the 

left as the perimeter is traversed in a counter-clockwise 

direction -will be used throughout this paper. In polygon 1, 

vertex A is arbitrarily chosen as the starting vertex. The 

polygon is stored as directed line segment, or half edge, AD, 

followed by DHI' then HE, EF, FG, GI, IJ, JC, eE, and finally BA 

complet.ing the cycle. As stated earlier, this method uses 

considerable memory, but each individual line segment can be 

easily plotted and thus the entire polygon plotted. This 

method gives a well defined polygonal region, provided the 

polygonal boundary is not self-intersecting, hence self

intersecting, polygons will not be considered. This method 

works for polygonal regions with holes, consider polygon 2 in 

figure 2. It is represented as two cycles, one cycle being KQ, 

QR, RL, and LK.~ and the other cycle MN, NP, PO, and OM. 
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Figure 1 
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Figure :2 
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Once polygons can be stored in a manner in which they 

can be operated on, one can begin to process the data. The 

vertices and half edges are numbered in the order in which 

they are traversed, as in figures 3 and 4. Several methods 

are currently being used to determine the intersection of the 

polygons. One method involves building a grid over the 

polygonal regions 811.d checking which line segments occur in 

each of the cells. Then only those line segments which occur 

in the same cell need to be evaluated to see if they intersect. 

This nl.ethod requires a considerable amount of preprocessing 

and additional memory, and would only be advantageous 

when one polygon is repeatedly compared with many other 

polygons . Another method employs building a minimal box 

containing each polygon and then the intersection is evaluated 

in the box of intersection. One of the most straight forwardJ 

easiest to im.plement, and the rnethod used in this paper 

in.volves checkin.g each line segment of the first polygon 

against each of the line segments of the other polygon. 

In detern"lining if two line segmen.ts intersect it is 

necessary to check to see if the line segments are parallel, or 

if they are collinear . If the cross product of 'vectors lying on 

these line seglTIents is zero;, then the line segments are 

parallel. If the vectors are found to be linearly dependentJ 
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Figure 3 

Polygon 1 with the Vertices and Edges 
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Figure 4 

Polygon 2 with the Vertices and Edges 
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tIle line seglnents are collinear and the end paints of each are 

checked to see if they are on the other line segment and the 

intersection thus determined. If the line segments are not 

collinear or parallel then the lines through the end points 

rnust intersect sornewhere. The point of intersection can be 

determined by solving the system. of equations of the lines 

SilTIultaneously. Once the point of intersection is found, it 

must be determined if the point is on both line segments. If 

it is on both line segments, then the line segments do 

intersect. 

Figure 5 shows the two polygons in the same plane . The 

points of intersection m.ust be determined. The line 

containing line segment 1 would be found to intersect several 

of th.e lines defined by the line segn1.ents of polygon 2, such as 

line seglTIen.t 11, but the point of intersection does not occur on 

line segment 11 so the line segments do not intersect. Line 

segrnent 2 is found to intersect line segment 14, and the point 

of intersection is found to be (7.5,30). This new vertex must 

be lin.ked into the polygons, betweel1 vertices 2 and 3 in 

polygon 1 and vertices 14 and 11 in polygon 2. This new 

vertex also divides the two old line segments, creating four 

new line segments. This process is continued until all of the 

line segments in polygon 1 are compared to each line segment 
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Figure 5 

Polygons 1 and 2 
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in. polygon 2. A unique case occurs where line seglnent 

14 intersects vertex 6. This does not introduce a new vertex 

but it does divide line segment 14 into two new line segments. 

Once all of the points of intersection are found, the '/ertices 

and ll.alf edges are labeled as in figure 6, by first tra'versing 

polygon 1 followed by polygon 2, numbering the half edges and 

vertices as they are encountered. 

Th.e next step is to determine the degree of each vertex. 

This is done by coull.ting the number of occurrence of each 

vertex in the beginning and ending end point arrays. 

Opposite half edges are also introduced so one can proceed ill. 

either direction along the original line segments. The opposite 

half edge is SilTlply a half edge directed in the opposite 

direction of the original half edges. Since, in figure 6 there 

are 33 line seglTlents, the opposite half edges corresponding to 

the original half edges have indices 33 larger than the original 

half edges, as in. figl.Ire 7. For exan'1ple, half edge 31 goes from 

v'ertex 25 to vertex 12, while opposite half edge 64 goes frOITl 

vertex 12 to 25 . The half edges leaving a vertex rnust be 

associated with it in order of increasing angle of inclination. 

The angle of iI1clination is taken as zero parallel to the 

positive x-axis and increasing counter-clockwise. Consider, for 

exanl.ple, vertex 3. The half edges leaving this vertex, in 
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Figure 6 
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Figure 7 

Numbering of Opposite Half Edges 
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increasing order of tl1.e angle of il1.clination1 are 57, 35, 25, and 

3; with angles of 0, 116.6, 180, and 296.6 degrees respectively. 

When all of the vertices have been processed, the 

fundamental cycles of the graph are then computed. 

The fundamental cycles are the boundaries of each of 

tIl.e COn1.pOll.ell.ts of the plane induced by the graph. They 

have the ul1.ique property tl"lat if a given point 011. the interior 

of the cycle is in the interior of a giv'en polygon, then the 

entire interior of the cycle lies in that polygon. The first 

fundamental cycle is computed by selecting the unused half 

edge of lowest index, that is half edge 1. Half edge 1 is 

traversed from. vertex 1 to vertex 2 and marked as used. 

The only 1l.a1f edge leavill.g vertex 2, except the triVial half 

edge 34, is half edged 2. Half edge 2 is marked as u.sed and 

traversed to 'vertex 3, which is approached at an angle of 116.6 

degrees. As stated earlier, the half edges leaving vertex 3 are 

sorted by increasing all.gle of inclil"la tion . The half edge of 

next smaller degree is selected as the edge to lea "e vertex 3 

on. This is found to be half edge 57 with an angle of 

inclination of zero degrees . If the approach was made along 

the half edge of smallest angle, the half edge . of largest angle 

is then selected to leave on. Half edge 57 is traversed from 

vertex 3 to 5 and is marked as used . This process is 
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continued ull.til cycle 1 1s completed by traversing hal! eoges ~, 

6, 7, 55, 15, 16, and finally 17 as in figure 8. Cycle 2 is then 

computed ill. a similar manner. The unused half edge of 

lowest index is selected as the starting edge, this being half 

edge 3. This edge is traversed from vertex 3 to vertex 4 J 

where edge 4 is then traversed to vertex 5. Finally edge 24 is 

traversed back to tIle starting vertex, thus completing cycle 2, 

as shown in the figure. At this point, half edges 1 through 7 

rlave been u.sed, Ilellce the third cycle is begun by traversing 

line segment 8 producing cycle 3. The rest of the 

fundanl.en.tal cycles are computed as shown in figure 9. The 

process stops after cycle 10, since all 66 of the half edges have 

beell. used ill. tll.e cycles. Once the fundamental cycles are 

coznputed, it m.ust be determ.ined which polygon or polygons, 

if any, they are in. In order to determine if a particular 

cycle is part of the boundary of a particular polygon, a point 

rnust be chosen inside the cycle . Since the cycles are 

positively oriented with resp'2ct to the region they describe, 

this can be dorle by" findill.g the nornl.al vector, whose cross 

product with the first half edge of the cycle in question, is 

posi tive . Consider for example, cycle 3. The half edge of 

lowest index is half edge 8. The vector along half edge 8 is 

shown in figure lOa with coordinates <dx,dy>. Rotating this 
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Figure 8 

Building of the First Three Cycles 
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Cycle 4 Cycle 5 
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vector 90 degrees counter-clockwise causes it to appear as in 

figure lOb with coordinates <dy,-dx>. This vector is then made 

very short, so as not to extend beyond the other side of the 

cycle by first. ITlaking it a unit vector and multiplying it by a 

very small nurnber, epsilon. This vector is tIlen added to the 

midpoint of the half edge, as in figlJ.re 10c. This new point, 

point P, lies within cycle 3 by the way it was constructed, so 

in order to tell which polygons this cycle is in, it must be' 

determined which polygons point P lies in, if any. 

It is obvious if the point lies in a polygon by observing 

the graph, however, it is more difficult for the computer to 

determine. One of the si:rnplest ways is to cast a ray in some 

direction al~d count the number of times it intersects the 

boundary of the polygon. If the ray intersects the boundary 

an odd l1.UITlber of times, the point is in the interior of the of 

the polYBon~ otherwise the point is outside the polygon . For 

exanl.ple, in figure 11, the ray cast to the left of point P, in 

polygon 1, intersects the boundary' three times, therefore P is 

inside polygon 1, and hence cycle 3 is in polygon 1. The major 

difficulties with this method occur if the ray intersects a 

horizontal segn'1ent or if t he ray ili.tersects a \lertex. 

In tersecting. a horizon tal line segment does not need to be 

counted and will not affect the results. In the case of 
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Figure 11 

Poin t P in the Interior of Polygon 1 
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intersecting a vertex, any line segnlent extending fr01TI this 

vertex with the other vertex below the intersected v'ertex 

will be counted, while all others will not be counted. For 

example, in fig1.J.re 12, the ray from R intersects the boundary 

at vertex H, this is counted as intersecting line segment 7, but 

not 8, giving one intersection indicating R is inside the 

polygon. The ray from S intersects the boundary at vertices 

D and F and line segment 7. This is counted as intersecting 

lin.e segments 3, 4, 5, 6, and 7 yielding 5 intersection, 

indicating S is inside the polygon. Finally consider the ray 

cast from point T. It intersect the boundary at vertex E and 

line segments 6 and 7. The intersection with vertex E is not 

counted since the line segrnents are above the ray. This 

leaves two intersection, indicating T is outside the polygon. 

Hence, by choosing a point on the i11terior of the cycle as 

described, and counting the rlumber of intersections the cycles 

are classified as in Table 1. Once each of the polygons can be 

described in terms of the fundarnen tal cycles, it is sim.ple to 

select the cycles tl1.at are required for a given operations, as 

shown in Table II. 
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Figure 12 

Examples of the Difficulties with the 
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TABLE 1 

CLASSIFICA TION OF CYCLES BY CONTENT 

Cycle 

1 . 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Polygon 1 

xxx 
XXX. 
XXX. 
XXX 
XXX 

Polygon 2 

xxx 
XXX 

xxx 
. XXX 

The only problem that remains is to reconnect the 

desired cycles to create the resulting polygon. This is done by 

checking each cycle against the others to determine if they 

ha\le a common edge. Take for example:. the intersection of 

polygon 1 and the complement of polygon 2. Table II shows 

that this region is comprised of cycle 1 and cycle 4. Since 

these two cycles do not have a common edgeJ their graph 

shows up as two disjoint cycles~ as in figure 13. A more 

cOITlplex example is the union of polygon 1 and 2. 
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Figure 13 

Polygon 1 Intersect the Complement of Polygon :2 
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TABLE II 

SELECTION RULES FOR BOOLEAN OPERATIONS 

Cycle 1 n:2 1 U 2 1 n 2' l' n 2 1 U 2' l' U 2 
------ ------ ------- ------- ------- -------- --------

1 XXX XXX XXX 
2 XXX XXX. XXX XXX 
3 XXX XXX. XXX XXX 
4 XXX. XXX XXX 
5 XXX XXX. XXX XXX 
6 XXX. XXX XXX 
7 XXX XXX 
8 XXX XXX 
9 XXX XXX 

10 XXX XXX 

This region is made up of the first 6 cycles7 however mal1.Y of 

the cycles have common edges. These common. edges are easy 

to detect since the indices differ by 33, the nun1.ber of lirle 

segments. Cycle 1 and cycle 2 have the common edge pair 24 

and 57~ which connect vertices 3 and 5. In order to join these 

two cycles, the boundary of cycle 1 is traced to the first 

occurrence of either of these vertices . Vertex 3 is the first 

one encountered, then cycle 2 is traced to vertex 5 and then 

cycle 1 is followed. This process is continued until the region 

in figure 14 is produced. This completes the discussion of the 

two-dimensional case. 
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Figure 14 

Polygon 1 Union Polygon 2 
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In order to operate on three-dimensional polyhedrons, it 

is possible to reduce them into numerous two-dimensional 

polygons describing the faces of the polyhedrons. Each of the 

polygonal faces must be broken up into facets. The facets of 

each face are detern1ined by intersecting each face of the 

polyhedron with each of the faces of the other polyhedron. 

Tll.ese facets are the boundaries of each of the components of 

three-space induced by the polyhedrons. Consider, for 

exanl.pleJ the pol yll.edrons in figure 15. Each of the 

polyhedrons have six faces. They are numbered as in the 

figure. The· intersection of the faces is found by first 

parameteriZing each of the face planes with (n!x)=b, where n 

is tl1e norrrial vector, x is any POill. t in the plane, and b is 

determined by the plane. The planes are then checked to see 

if they coinCide or are parallel, by checking if the normal 

vectors are linearly dependent. If the planes coincide, the 

polygonal faces are intersected as described earlier. Wl1.ereas., 

if it is determined that the planes intersect, the point on the 

lil1.e of intersection closest the origin is found by using 

Lagrange multipliers to minimize the length of x subject to 

(otl:x:)=bt and (n21:x:)=b2. With the parameterization of the line:r 

it is possible to det ect if the line of intersection cu t8 through 

the faces, indicating the faces intersect. This is the method 
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Figure 15 
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used to find the cross edges and self edges of each of the faces . 

The cross edges are the new edses created by the 

intersection of this face with another face, while the self edges 

are subdivisions of the original edges caused by the 

intersection with other faces. The new edges are linked to the 

original polygonal face creating a new face composed of facets. 

The boundaries of the facets are the fundarnental cycles of 

this new polygon that are part of the original face. Consider, 

for exarnple, face 2 in figure 16. The original face is cut by 

face 7 of polyhedron 2, creating cross edge 1; while the 

i:ntersection with face 12 creates cross edge 2. These new cross 

edges divide two of the original edges into s ix new self edges. 

TIl.e fundarnental cycles of this polygon are found as described 

previously, and those that are part of the original face are 

kept as tl""le ll.eW facets. Face 2 is conl.posed of tt1ree facets as 

shown. Once the faces are broken up into facets, the facets 

required to describe the result of a given Boolean operation 

must be selected. This is done by taking a point in the facet 

and going a small distance along the normal, to obtain a point 

on the outside of the facet, and going a small distance in the 

direction opposite the normal to pick a point on the inside of 

the facet. These points are then evaluated to see which solid 

or solids, if any, they are in . In order to determine which 
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Figure 16 

Numbering of Facets in Polyhedron 1 
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Figure 17 

Numbering of Facets in Polyhedron 2 
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solid a poin. t is in, the distance fron-l the point to all of the 

f aces of the solid is computed, and if the distance to the 

closest face is positive:! then the point is in the interior of the 

solid since all of the faces have outward normals. Hence the 

facets are cll.aracterized according to which component lies on 

each side of the facet as in Table III. 

TABLE III 

CHARACTERIZATION OF FACETS BY ADdOII\lING REGIONS 

Facet Inside Outside 
------ --------------- -------------

1 1 none 
2 1 none 
3 1 and 2 2 
4 1 none 
5 1 none 
6 1 and 2 2 

7 1 none 
8 1 none 
9 1 and 2 2 

10 1 none 

11 1 none 

12 1 and :2 2 
13 1 none 

14 1 none 

15 2 none 

16 1 and 2 1 

17 none 2 

18 . none 2 
2 19 . none 
2 20 . none 

2 none 21 
1 and 2 1 22 
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It 15 110W poss1ble to select the required facets to generate 

tl"1e polyhedron resulting from a given Boolean operation. 

Suppose the intersection of the two polyhedrons is requested. 

Any facet with both polyhedrons on one side are selected , 

tl"ley are 3, 5, 9, 12, 16, and 22. These facets are all oriented 

correctl y since the desired region is all on the inside
l 

the side 

opposite the outward normal. For a more complicated 

example, consider the intersection of polyhedron :2 with the 

complement of polyhedron 1. The facets should have only 

polyhedron 2 on one side. The selected facets are 2, 6, 9, 12, 

15, 17, 18, 19, 20, and 21. However, all of the facets except 15 

and 21 are oriented incorrectly since polyhedron 2 lies on the 

outside of these facets. In order to correct the orientation, 

since the polyhedron will be expressed in terms of outward 

nornl.als the order of the traversal of the vertices in these , 

facets are reversed. The result of any Boolean operation can 

be found in a silnilar n1anner. 
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Conclusion 

The rnet.hods described in this paper have been 

implenl.en.ted in the development of a cornputer program in 

FORTRAN which performs Boolean operations on polygons and 

polyhedrons. Dr. McGrath and I have spent nurnerous hours 

designing and testing the program ""hich confirms the validity 

of tll.is nl.etll.od. Although there are many different nl.etll.ods 

described in current literature, this method is a combination 

of several of them and is very conducive to computer 

graphics. Another advantage is that t.he method is relatively 

straight forward and can easily be modified for any particular 

application. 
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