
Pittsburg State University Pittsburg State University

Pittsburg State University Digital Commons Pittsburg State University Digital Commons

Electronic Thesis Collection

12-1987

A Microprocessor-based multivariable interactive control system A Microprocessor-based multivariable interactive control system

Sayed Mehdi Khayam-Nekouei
Pittsburg State University

Follow this and additional works at: https://digitalcommons.pittstate.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Khayam-Nekouei, Sayed Mehdi, "A Microprocessor-based multivariable interactive control system" (1987).
Electronic Thesis Collection. 42.
https://digitalcommons.pittstate.edu/etd/42

This Thesis is brought to you for free and open access by Pittsburg State University Digital Commons. It has been
accepted for inclusion in Electronic Thesis Collection by an authorized administrator of Pittsburg State University
Digital Commons. For more information, please contact mmccune@pittstate.edu, jmauk@pittstate.edu.

https://digitalcommons.pittstate.edu/
https://digitalcommons.pittstate.edu/etd
https://digitalcommons.pittstate.edu/etd?utm_source=digitalcommons.pittstate.edu%2Fetd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.pittstate.edu%2Fetd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pittstate.edu/etd/42?utm_source=digitalcommons.pittstate.edu%2Fetd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mmccune@pittstate.edu,%20jmauk@pittstate.edu

A MICROPROCESSOR-BASED MUL TIV ARIABLE INTERACTIVE

CONTROL SYSTEM

A Thesis Submitted to the Graduate School in Partial

Fulfillment of the Requirements for the

Degree of Master of Science

By

Sayed Mehdi Khayam-Nekouei

PITISBURG STATE UNIVERSITY

Pittsburg, Kansas

December, 1987

ACKNOWLEDGE~NT

The author wishes to express his sincere appreciation to Dr. Bill Studyvin for his

encouragement, helpful comments, constructive criticisms, patience, and timely

suggestions which made this thesis possible.

The author also wishes to express his gratitude to Dr. John Iley, Dr. W. Larry

Williamson, Dr. Porter and Mr. Jim Lookadoo for their constructive criticisms and

suggestions.

A special note of gratitude is extended to my lovely and faithful wife for being a

source of inspiration throughout this period.

ii

ABSTRACT

This study outlines the various types of control systems and reviews the necessary

mathematical techniques to solve the problem of multivariable interactive control. The

characteristics as well as the state representation for control processes involving either p or

v type canonical structures are discussed.

Next, the characteristics of multivariable interactive discrete control systems are

discussed in detail. ~The advantages of flexibility and speed of microprocessors are used as

powerful tools to implement a microprocessor-based control system for a selected model.

The associated hardware and software of a microprocessor-based control system

are described. It is also shown how a microprocessor-based system can be employed to

control discrete processes. '

To demonstrate a practical application of a microprocessor-based system in a

multivariable interactive discrete process, the algorithm and software (Assembly Language)

is developed for a special engine control system selected as the model.

iii

TABLE OF CONTENTS

CHAPTER PAGE

1. IN"TRODUCTION .. 1

1.1. Introduction to the Problem ... 1
1.2. Control System Overview .. 2
1.3. Purpose of the Study ... 6
1.4. Limitation of the Study .. 6

2. REVIEW OF LIT'ERA TlJRE ... 7

3. MULTIVARIABLEINTERACTIVECONTROLSYSTEM · -:10

3.1. Interaction Analysis Technique10
3.2. Design Approach14
3.3. Description of Transfer Function Representations of Canonical

Structure ... 14
3.4. Description of the Matrix Polynomial Representations of Canonical

Structure .. 17
3.5. Description of State Representations of Canonical Structures18
3.6. Multivariable Interactive Discrete Control System 19

3.6.1. ON-OFF Control. .. 20

4. THE MICROPROCESSOR IN CONTROL APPLICATIONS 24

4.1. Associated Hardware .. 24
4.2. Associated Software ... 29
4.3. Software Specifications of MC68HC11 34
4.4. The Microprocessor in a Control Loop 37

4.4.1. Digital-to-Analog (D/A) Conversion41
4.4.2. Analog-to-Digital (AID) Conversion49
4.4.3. Input Multiplexing .. 54
4.4.4. Signal Processing Cycle ... 55
4.4.5. Digital Interfacing ... 57

4.5. Microprocessor-Based Implementation of Multivariable Interactive
Discrete Control System ... 61

4.6. Microprocessor-Based Implementation of the Special Engine Control
System .. 62
4.6.1. Algorithms .. 63
4.6.2. I/O Truth Table ... 64
4.6.3. Development of the Program in Assembly .. ~ 64

5. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS 71

5.1. Results ... 71
5.2. Conclusions ... 73
5.3 Recommendations .. 75

BillLIOGRAPHY ... 77

iv

APPENDIX 1 .. . 84

v

LIST OF FIGURES

FIGURE PAGE

1. Control Problem Overview .. j

2. A Two-Output Multivariable Interactive System ... 11

3. The Bristol Array for a Two-Loop System ... 12

4. lliustration of the Special Engine's Multivariable Interactive Process 15

5. Canonical Structures of Multivariable Interactive Processes for a Two-Variable
Process .. 16

6. Discrete-State Systems ... 22
-

7. Simplified CPU Architecture ... 25

8. Microcomputer Architecture .. 27

9. Block Diagram of the MC68HC11 Single-Chip Microcomputer 30

10. Typical Microprocessor-Based Products 31

11. The computer Process ... 32

12. Flowcharting Symbols .. 35

13. Flow Chart for a Microprocessor-Based System Used for the Automobile Engine
Control System .. 36

14. A Continuous Control Loop Containing a Microprocessor 38

15. Outline of the Operation of a D/ A Convertor .. .42

16. The input-output behavior of an ideal D/A converter43

17. The Input-Output Behavior of a Non-Ideal D/A Convertor43

18. Analog Output-One D/A Convertor Per Channel ~ 44

19. Analog Output-One Sample and Hold Per Channel 44

20. Analog Output Using Serial Digital Transmission to a Group of Actuators45

21. The Digital-to-Analog Converter CD/A) .. .47

22. A Sample and Hold as well as AID Converter for a Data Input System48

23. A Timing Sequence for a Data Input Process .. 53

vi

24. A Typical Sample-and-Hold Circuit .. 53

25. The Process Computer as Sampled-Data Controller 56

26. Control Loop with a Computer as a Sampled-Data Controller 56

27. Outline of an Asynchronous Communications Interface Adaptor (ACIA)59

28. A Microcomputer in a Basic Control Loop ... 59

29. Control of an AID Converter by a PIA Chip ... 60

30. Essential Features of Engine Control ... 60

vii

List of Tables

Table Page

1. The Comparison ,of Classical and Modem Controls4

2. The Truth Table for the Special Engine Control System Which Used as A Model .. . 65

viii

CHAPTER 1

INTRODUCTION

1.1 Introduction to the Problem

During the last decade extensive developments in digital control theory have been

made. The rapid drop in the cost of microcomputer hardware identifies it as a potential

device available for implementation of control systems. With increase in the number of

microprocessor-based devices for process control applications it can be expected for the

future that modern digital control techniques will expand to applications with

microprocessors. (17, p. 1641)

The advent of Large Scale Integration (LSI) microprocessors promises to remove

past limitations and expand the computer applications in control significantly. (20, p. 8)

Microprocessor-based control systems are relatively inexpensive to build and are potentially

more flexible and more reliable than equivalent systems built with electromechanical or

electronic logic. (12, p. 29) The flexibility of microprocessor-based systems drastically

expands its applications to a wide range of modern control systems.

Microprocessors can be used for effective, fast and accurate control of any process

involving more than one variable. The systems which have more than one input and more

than one output, where perturbation of anyone input results in a response from more than

output, are called multivariable interactive systems. If perturbation of any input results in a

response from more than one output then it is due to some internal coupling or transmission

path in the system. Usually one particular system output will respond more than the others

when a particular input is manipulated. The response of the other outputs to this input

perturbation is called interaction. (18,p. 197-198)

Any control system may be classified as either closed loop or open loop. The tenn

c~osed loop essentially designates the same concept as the term feedback. The concept of

-1

2

closed-loop control is to provide feedback of a measured value of the output variable to be

compared with the setting of a control command value, to amplify the difference between

them, and to alter the output based on this difference. In open-loop control systems, it is

not possible to alter the output based on the difference between the control command and

the output. The selected problem which is a special engine control system involves discrete

control of multiple variables which interact with one another. For the problems mentioned

above, microprocessors offer an attractive solution for discrete control of the system.

1.2 Control Systems Overview

Control problems may be classified into several categories according to the type of

control approach, signal format, control objective, and closed or open loop. These

classifications are shown in Fig. 1.

(a) Types of Controls

Classical control: Control problems can also be classified into classical control and

modern controL The description "modern control" is misleading because it implied that the

classical controls are "not modern" and "antiqued". In Table I, a detailed list of their

I

differences is presented for clarification. It can be seen that their objectives and

mathematical operations are significantly different. In classical control problems, relatively

less signal processing operations are used. In modern control problems, sophisticated

signal processing operations are often used which require very high computational

capabilities.

Modern control: The interest of microprocessor applications in control is in the

category of real time digital controls. Although their applications today are mainly in

classical types of control problems. It seems eminent that more control applications of

microprocessors will take place because its computational capabilities are being increased at

a rapid rate.

3

Multivariable control is considered as a modem control system. Their differences

from the classical problems have been summarized in Table 1. The important items to be

considered about modem control are:

(1) In modern control, signals usually contain several pieces of information (state

variables) and must be represented by a vector of several dimensions (state vectors).

Processing of these vectors requires more complicated matrix operations in time domain.

(2) In modern control, signals are often contaminated by noise. It is desirable that

the quality of signal is fIrst improved by some type of signal processing operations before

any control operations can be made. Frequently, some informatioI! of the signal cannot be

directly measured. They have to be estimated by some type of signal processing operation.

These signal processing operations are generally known as "optimal (or sub-optimal)

estimations." (20,p. 9 and 11)

(b) Signal Format

Continuous (analog) control: In which the independent variable signal is

continuous.

Discrete (sampled data and digital) control: In which the independent variable is

discrete and the signal is sampled. The special engine control system which is designed

and simulated has a discrete nature.

(c) Control Objective

Four types of control operations are shown in Fig. 1. Two are real time and

include analysis/simulation and synthesis/design.

The other two can be either real time or non-real time although it is desirable that

they can be carried out in real time (or on-line). They are signal processing operation and

control operation. The purposes of signal processing operations are typically as follows:

.to improve the quality of signal-such as the use of filters to enhance the signal-to

noise ratio;

TABLE _1 THE COMPARISON OF CLASSICAL AND '
MODERN CONTROLS

---- ------

l I CLASSICAL CONTROL MODERN CONTROL

Good system performance: rise time, Optimize system design to meet
OBJECTIVE settling time, overshoot, stability mpre complex performance require-

gain/phase margin, etc. ments. Minimize or maximize
performance index.

ScaiCer (Single Variable) Vector/scaler (multivariable,
SIGNAL state space)

Deterministic (Mostly) Stochastic/deterministic

f--.

SYSTEM Linear Nonlinear/linear

Time invariant Time variant/invariant

-

Signal well measured and Signal is contaminated by noise.
~IGNAL I characterized.
PROCESSING (Passive, active filters) Optimal Estimation may be required !ACTION . . .)

(Dlgl tal, sampled data fl.lter

CONTROL Simple servo~loops with fi xed more complex feedback and feed I flow paths forward loop s with conditional I
(servo-=-control) signal flow paths. (optimal control

f-.

Both signal processing and control Both signal processing and control
REMARKS actions can be described by actions are described by algorithms
I differential integral equation or of matrix. They are often inter-

I
H{S) or H (Z) . active process.

~

5

CONTR,OL PROBLEMS

r

CLASSICAL CONTROL

I DISCRETE

I~AMPLED DATA CONT)

I
REAL TIME
OPERATION

]
SIGNAL I CONTROL

PROCESSING: OPERATION
OPERATION I

Fig. l. Control problem overview.

I

MODERN CONTROL

CONTINUOUS
(ANALOG CONT.)

NON ... REAL TIME
OPERATION

~

ANALYSIS SYNTHESIS
SIMULATION DESIGN

6

.to change the measured signal into another form more suitable for its uses-such as

the transformation of coordinate systems;

.to estimate, discriminate or recognize targets;

.to transmit the signal.

The purpose of control operations are the use of processed signals to accomplish

the feedback control objectives.

The best way to solve multivariable interactive discrete control problems with the

aid of microprocessors is to defme the problem in the fonn of truth table. Write the

Boolean equations, d!aw the flow chart, before attempting to wtite the assembly program

for the system.

1.3 Purpose of the Study

Objectives for this study are:

(a) Identify a technique for analysis and design of multivariable interactive control

systems which have interaction bonds.

(b) Apply the technique to an industrial discrete control system model involving

multivariable interaction.

(c) Develop a microprocessor-based system to solve the industrial discrete control

system model.

1.4 Limitation of the Study

This study is limited to a discrete system of multivariable interactive control based

on on an engine control system used as the model.

CHAPTER 2

REVIEW OF LITERATURE

The use of specific devices for automatic control or regulation is an old art. A

systematic theory, however, has been developed only within the last few decades. In

particular, the linear control theory has advanced rapidly and is now being recognized as a

powerful tool for solving a variety of control problems. Attention was fIrst restricted to

simple control systems with conventional P, PI, or PID regulators. Increasing complexity

of systems requiring control along with availability of digital computers initiated the idea of

discrete control. The need or desire to optimize the performance of such control systems

has eventually led to the advancement of optimal control theory.

Each single stage of the evolution of linear control theory can be characterized by

the mathematical techniques then employed for the analysis and synthesis of control

systems. The classical or frequency-domain approach has evolved from the frequency

response analysis and the main tool is the theory of complex functions. In particular, the,

traditional Laplace transfonn method gave rise to the z-transfonn theory. The pertinent

material is covered in any of the following books: Ragazzini and Franklin (1958), Jury

(1958), Tou (1959), Tschauner (1960), and Tsypkin (1963). Systems are described by

transfer functions or in any other equivalent way which reflects just the external or input

output properties of the system. This mode of description entails some difficulties

concerning stability and realization.

The modem or time-domain approach revolves around the axiomatic concept of

state and the main mathematical tools are differential equations and vector spaces. The

inception of these methods is usually attributed to increasing complexity of systems

requiring control and to the advent of large-scale general-purpose digital computers. The

methods are exact in defining the notion of dynamical system and are tailored to describe

7

8

the structure and internal properties of the system. They are applicable to multivariable

systems and to time-varying situations as well. Though promising success at first, they

came in the end to seem somewhat disappointing. This is for the most part due to the

necessity of finding state-variable models and to the implicit assumptions that all state

variables are accessible for direct measurement. This assumption is justified in mechanical

or electrical systems but it is only exceptionally satisfied for plants encountered in chemical,

gas, paper and other industries. Then the need for state reconstruction is lost. Last, not

least, this approach leads to relatively complicated matrix manipulations, like the change of

basis in the state space 9f the solution of matrix Riccati equations. -The existing literature is

ample and diverse; the reader may wish to sample Bellman (1957), Zadeh and Desoer

(1963), Tou (1964), Sage (1968), Kalman, Falb, and Arbib (1969), Meditch (1969),

Anderson and Moore (1971), Ackermann (1972), and Kwakemaak and Sivan (1972).

This status quo was responsible for the comeback of transfer function methods.

This trend became evident in early seventies through the works of Rosenbrock (1970),

MacFarlane (1972), Wolovich (1974), Wonham (1974), Desoer and Vidyasagar (1975), '

and others. As a result of synthesis of the two approaches, combining the advantages of

both, has been achieved. A new feature is the use of polyps matrices to cope with

multivariable systems. The emphasis is placed on exposing the algebraic nature of various

system manipulations. This point of view was pioneered by Kalman, Falb, and Arbib

(1969) and in recent years has witnessed a growing cognizance of the intrinsic presence of

algebra in system theory.

In keeping with this most recent trend, a more algebraic approach to discrete linear

control is offered. Systems are described by input-output data, typically by the transfer

matrices; however, these matrices are regarded as algebraic objects rather than complex

functions in order to allow for systems defined over arbitrary fields or even rings. Then,

the principal idea is to reduce the synthesis procedure to solving linear Polynomial

9

equations. This mathematical technique provides natural and elegant means for solving a

variety of control problems in a unified way and leads directly to simple computational

algorithms.

The earliest attempts to employ Polynomial equations in the control system design

go back to Jury (1958), Tou (1959), Chang (1961), and notably to Vol gin (1962) and

Astrom (1970). It took time to understand and fully appreciate their role even in the

simplest situations involving single variable systems. (1 O,p. 17-19)

Discrete control systems are used in a great range of applications in ,the mooern

world, from household appliances to the most sophisticated guided -missile systems.

Computers, and particularly microprocessor-based systems, are being applied in every

increasing numbers to all areas of control.

The two-value nature of the variables in discrete (ON/OFF) control systems makes

interface to the computer particularly simple, but control operations can still become quite

complex. (9,p. 138)

During the past ten years the growth of the microprocessor-based control systems

could be appropriately described as volcanic. Today it impacts nearly all aspects of our

daily lives to one extent or another. Likewise, the research applications of microprocessors

have proliferated. It is used to measure and control laboratory analog signals in

instruments ranging from simple single-pan balances to complex particle-beam accelerators.

The microprocessor is an integral part of internal equipment in a vast assortment of

applications. Microprocessor-based interactive discrete control system is one such

application.

Before a microprocessor can be of any use in a control system, it mus t be properly

programmed and interfaced to the system of interest, many of which are becoming

increasingly sophisticated

CHAPTER 3

MULTIV ARIABLE INTERACTIVE CONTROL SYSTEM

3.1 Interaction Analysis Technique

A method for evaluating the degree of interaction between control loops involves

use of the relative gain concept or the Bristol array. (6,p. 17, 124) For clarification a two

output-variable interactive system is shown in Fig. 2. The Bristol array for this process is

given in Fig. 3. The concept is similar for a system of any size. In each square of the

table, the numerator is the ratio of the change in an output variable-to the change in an input

variable with all other output variables held constant with all other loops under perfect

control. Thus, when there is zero interaction between the inputs of one loop and the

outputs of another loop, the ratio in all loops on the diagonal, box (1,1) and box (2,2), will

be one. The off-diagonal terms, boxes (1,2) and (2,1), will be zero. No matter how many

boxes there are in Fig. 3, each row and each column will add to one. Thus, in a system

with any number of loops, if the diagonal terms are one, the off-diagonal terms must all be ,

zero. Besides, the relative gain approach of Bristol is based on steady-state gains. To

apply Bristol array for interaction analysis of multivariable control system, the following

steps should be considered:

1. Form array A of measured variables and manipulated variables such as the one given in

Equ. 3.1 and calculate the uncontrolled response for each pair.

10

ReL~
, \
+ \. ----

\ . ~ ,---_.
/ Controller 1

/

. .-"---'" I--~

Ref-'~_«-,,} _u_l contr~~j
11 - -

I
I
I

U
1 - Process

Output Y
1

1\

L Interaction

i

·action I r Inter

~I

J2 1
'---_--.J

Process
f
' Output]2

I 1--

Fig. 2 . A two-outp ut rnultivariable interactiv e s y stem.

I--'
I--'

Box (1,1) Box (1,2)

Change in Y
1

Change in Y
1

Change in U
1

(U
2

constant) Change in U
2

(U
1

constant)

Change in Y 1 Change in Y
J

Change in U
1 (Y2 constant) Change in U

2
(Y

2
constant)

t-'
tv

Box (2 I 1) Box (2,2)

Change in Y
2

Change in Y
2

Change in U
1

(U
2

constant) Change in U
2

(U
1

constant)

Change in Y
2

Change in Y
2

Change in U
1 (Y 1 constant) Change in U

2 (Y~ constant)

Fig. 3. The Bristol array for a two-loop system.

C-l

C2

Cn

13

Manipulated Variables

ml m2 mn

all

a21

anI '

aI2 aln

a22 a2n

an2 ann

2. Calculate the B matrix.

B = (A-l)T

Controlled Variables (3-1)

(3-2)

3. Form the Bristol arrayO\ by multiplying corresponding terms of A and B. It

should be remembered that this is not conventional matrix multiplication.

4. Select manipulated-variable-con trolled-value pairs by selecting those ~ith

positive relative gain closest to 1.0.

5. Consider the properties of the relative gain array (RGA):

a. Rows and columns of sum to 1.0.

b. If aij = 0, then ~ ij = 0,

c. Pairing on a negative relative gain array (RGA) element results in either an

unstable system or an inverse responding system,

Where A is array of measure variables.

B is inverse of controlled responses.

If\ is relative gain array.

However, using discrete approach the multivariable interactive discrete processes

can be controlled efficiently with the aid of microprocessors which are discussed in the next

chapter.

14

3.2 Design Approach

In the design of multivariable control systems, an adequate process model is

crucial. The most useful applications of the theory have been in the selection of variables in

applications involving interaction. (6, p. 17, 124)

As shown in Fig. 4 the inputs and outputs of multivariable processes influence each

other, resulting in mutual interactions of tp.e direct signal paths R-F, T-A, and L-S. The

internal struc;ture of multi variable processes has a significant effect on the design of

multivariable control systems. This structure can be obtained by theoretical modeling if

there is sufficient knowledge of the process. The structures of technical processes are very

different such that their input-output relations cannot be described in tenns of only a few

standardized structures. However, the real structure can often be transformed into a

Canonical Model Structure using similarity transformations or simply block diagram ,

conversion rules. The following sections consider special structures of multi variable

processes based on the transfer function representation, matrix polynomial representation

and state representation. These structures are the basis for the designs of multivariable

control system. (8,p. 316)

The relative gain array (RGA) method of Bristol is also very useful for

multivariable processes involving interactions. (6,p. 17, 124)

3.3 Description of Transfer Function Representation of Canonical Structure

The most imponant Canonical Structures used to describe the multivariable process

input/output behavior are shown in Fig 5. (8,p. 317)

In case of P-Canonical Structure each input acts on each output. And the

summation points are at the outputs. Changes in one transfer element influence only the

corresponding output, and the number of inputs and outputs can be different. The

characteristics of the V-Canonical Structure is that each input acts directly only on one

corresponding output and each output acts on the other inputs; this structure is defined only

Speed (R) J.:::::- __________ G_~= ___________ J P-uel Feed (F) >

u 1'.:::--_ ----::;. 1 -. _ _ ~ _ - ./""'-

_
J "--G..l~_ C-J, -- "

, '- ' - ~ - -- >- G ./'
.... ,. _.- --..-.,., /

--< ~-
- 0 ,

-- .. ' - v.J./ - -_Temp ._~~ ,,<" ________ >< __ Gn ____ -:.:-~! ..
U

2
I - ' '- '- -

;/- >-::.

Air Feed (A)

:\.. ./ ' - - :> ~ ' -G:' G2~ - -- - -G..2.J

__ _ _ __ :;.1 :=./=' ~ -=- ~ ~-_____ _ ~3~ ______ ~:: -=-~'~ ~I Spark Advance (S) :;. Load (L)

U
3

Fig. 4. Illustration of the special engine's multivariable interactiv e process.

I--'
lJ1

(

16

Gll

G21

G22

V-Canonical Structure

"I L~
I Gll I -V
'--_.)

I

G12 \/

..--~. __ ._~~_l_J x\
U2 I I 1~'Y2

- - - - --'-----:;,71 G22 ,--4)--7
L _____ .. ____ ___ ____ ._. J ' .~_/

P-Canonical Structure

Fig. 5. Canonical Structures of Multiva riable Inte ractive Processes
for a Two variable Process.

17

for the same number of inputs and outputs. Change in one transfer element influences the

signal of all other elements.

Both Canonical forms can be converted to each other, but realizability must be

considered. If the behavior of multivariable processes has to be identified on the basis of

non-parametric models, as for example using non-parametric frequency responses or

impulse responses, then one obtains only the transfer behavior in a P-Canonical Structure.

If other internal structures are considered, proper parametric models and parameter

estimation methods must be used. (8,p. 318)

The overall structure describes only the signal flow paths. The actual behavior of

multivariable processes is determined by the transfer functions of the main and coupling

elements including both their signs and mutual position. One distinguishes between

symmetrical multivariable processes, where

Gii(z) = Gjj(z)

Gij(z) = Gji(z)

i=1,2

j=1,2,

and non-symmetrical multivariable processes, where

Gii(z) 1 G.ij(z)

Gij(z) :I Gji(z)

, (3-3)

(3-4)

With regard to the settling times of the decouples main control loops, slow process

elements Gii can be coupled with fast process elements Gij. With lumped parameter

processes signals can only appear at the input or output of energy, mass or momentum

storages. The main and coupling elements often contain the same storage components, so

that a main transfer element and coupling transfer element possess some common transfer

function terms. Hence Gii Gij, or Gii Gji can often be observed.

3.4 Description of the Matrix Polynomial Representations of Canonical Structure

An alternative to the transfer function representation of linear multi variable system

is the matrix polynomial representation. (11, p. 239)

I

·i
\

18

with (3-5)

A(Z-l) '= AO + Alz-l + + Amz·m

B(z)-l = Blz-l + + Bmz-m

If A(z) is a diagonal polynomial matrix, the matrix polynomial representation for a process

with two inputs and two ouputs will be

All(z-l) 0 Yl(z) B 11(z-1) Ul(z)

= (3-6)

o A22(z-1) Y2(z) B12(z-1) B22(z-1) U2(z)

This corresponds to a P-Canonical Structure with a common denominator

polynomials ofG11(z) andG21(z) orG22(z) andG12(z). More general structures arise if

off-diagonal polynomials are introduced into A(z-l).

3.5 Description State Representation of Canonical Structures

For a linear multivariable processes with p inputs U(k) and r outputs Y(K), the

following equations apply:

where

X(k+ 1) = A X(k) + B ll(k)

Y (k) = C x(k) + D y(k)

P is number of inputs

r is number of outputs

X(k).is (mxl) state vector

y(k) is (px1) control vector

y(k) is (rxl) output vector

A is (noon) systems matrix

B is (mxp) control matrix

(3-7)

19

Cis (rxm) output (measurement) matrix

Dis (rxp) input-output matrix.

The state representation of multivariable systems has several advantages over the

transfer matrix notation. For example, arbitrary internal structures with a minimal number

of parameters and non-controllable or non-observable process parts can also be described.

Furthermore, on switching from single-input/single-output processes to multivariable

processes only parameter matrices I!, C and D have to be ~tten instead of parameter

vectors 12 and £ T and the parameter d. Therefore, the analysis and design of single

input/single-output control systems can easily be extended to multi-inputlmulti-output

control systems. However, a larger number of canonical structures exists for multivariable

processes in state form. These techniques which are discussed would be applicable if the

system is intended to operate in continuous mode. However, since the special engine

control problem has a discrete nature it is essential to be specific and discuss the discrete ,

control of multivariable process in the following section.

3.6 Multivariable Interactive Discrete Control System

A discrete-state system is one for which at every instant of time the state of the

system is defmed by the values of a set of variables, each of which can only be defmed to

be in one of two conditions or states. The variables themselves may be continuous in

value, but insofar as the control system is concerned, their values are only required to be

known relative to two states. Two distinct types of control strategies are associated with

discrete-state systems. One type is used to control the value of one or more variables in the

system. The second type of control is sequential in nature and refers to the progress of the

system through a defined set of discrete states, in time, to accomplish some overall

objective. (9,p. 138)

The special engine control system model is intended to be implemented based on

two-state (ON/OFF) control systems. The control algorithm of such a system is based on a

20

determination of the state of the input and using this to detennine the proper output state.

The output respond levels are based on the state of the inputs. The ON/OFF condition of

inputs is detennined based on voltage level (between logic 1 and 0) referred to as V sp'

For ON State Vin>Vsp

For OFF State Vin<Vsp

Where Yin = input (measurement)

Vsp = Limit Value Between Hi and Low State (set point)

ON/OFF = Two possible output states.

(3-8)

Even though the input variables may actually be continuous but the discrete nature

of the system is based on two facts: (1) the value of input variables relative to a limit, and

(2) that the output can only have two states. Of course, in special engine control systems

the inputs are inherently discrete and have only two states, such as being either on or off.

(9,p. 139)

3.6.1 ON-OFF Control

In the on-off control mode, the final correcting device has only two positions or

operating states. For this reason, on-off control is also known as two-position or bang

bang control. If the error signal is positive, the control system sends the fmal correcting

device to one of its two positions. If the error signal is negative, the controller sends the

final correcting device to the other position. On-off control can be conveniently visualized

by considering the final correcting device to be a solenoid-actuated valve. When a valve is

actuated by a solenoid, it is either fully open or completely closed; there is no middle

ground. (14,p. 288-290)

The position control supplies energy in pulses to the process. This causes a cycling

of the controlled variables. The amplitude of the cycling depends on three factors: the

capacitance of the process, the dead-time lag of the process, and the size of the load

21

changes the process is capable of handling. The amplitude of the oscillation is decreased

by either increasing the capacitance, decreasing the dead-time lag, or decreasing the size of

the load change that can be accommodated. For these reasons, two-position control is only

used on processes that have a capacitance large enough to counteract the combined effect of

the dead-time lag and the load-change capability of the process. (2,p.245)

Being limited to two positions, the two-position control either supplies too much or

too little correction to the system. Thus, the controlled variables must continuously move

between the two limits required to cause the controlling elements to move \from one fixed

position ~o the other. The range through which the controlled variables must move is called

differential gap. The "oscillation" of the controlled variables between two limits is one

important characteristic of two-position control and one which sometimes limits its

usefulness. However, two-position control is relatively simple and inexpensive and, for

this reason, is widely used. (7,p. 172-173)

The application of ON/OFF control to systems with a continuous controlled

variable, have two important practical conditions and consequences:

1. Such systems will usually always require a deadband or hysteresis about the set

point to prevent rapid fluctuations of the output when the input is near the set point.

2. Such systems will usually always exhibit an oscillation of the controlled

variables within the deadband. The period of this oscillation increases with decreasing

deadband width.

The use of microprocessor for ON/OFF control would clearly be impractical for a

single variable. For example, it would be difficult to justify using a microprocessor-based

control system to turn on and off the compressor of a refrigerator. However, when there

are many such independent, single variables to control in a system, it may be practical to

use a microprocessor-based control system. In such a case the control system would have

a hardware configuration like that shown in Fig. 6. The comparators are used to convert

cOIDPararoi Lev--r;vel

I I
! .

1~ ,--
I----i

I
I
i

Iprocess
I
I

[
I:

1\ - j~.

L

=-G>---

Fig. 6. A Discrete State-System.

Buffer

J kf)
I-- V

~I

J
TEnable

I
'ii I

/ 1 .
~Data
I "(,r---
I

!.-....--II Latch

I

IV
IV

23

continuous variables into a two-state input, while inherently discrete variables are input

directly after conversion to proper digital signals. A tri-state buffer is used for interface.

The output uses a latch to provide updated ON/OFF state infonnation to the output

The software consists of a series of decision blocks that evaluate the input states

and update the output state. Any required hysteresis can be provided by hysteresis

comparators or by timing loops in the software that prevent output state changes from

occurring too rapidly. (9,p. 140-141)

CHAP1ER4

THE MICROPROCESSOR IN CONTROL APPLICATIONS

4.1 Associated Hardware

The digital processor or central processing unit (CPU), first as the minicomputer

and now in the fonn called microprocessor, has become an excellent all-purpose electronic

control unit (3,p.33)

Microprocessors are integrated circuits that have the ability to perfonn many

functions and consist of numerous registers, counters and decoders. Buses serve to

transfer infonnation internally between the registers and to external devices. A system

clock and timing circuitry causes functions to be sequenced properly to move data from one

area to another at the right time. However, no infonnation can flow within the

microprocessor until it is instructed to do so. The hardware approach begins with a

diagram showing the interconnections of a component in the system. (21,p. 3-1,4-1)

The primary functions of the CPU of a microcomputer are to:

1. Fetch, decode, and execute program instructions in the proper order.

2. Transfer data to and from memory and to and from input/output sections.

3. Respond to external interrupts.

4. Provide overall timing and control signals for the entire system.

Most microprocessor CPU's contain at least the elements diagrammed in Fig. 7.

The main sections include the various registers, the arithmetic and logic unit, the instruction

decoder, the all-important control and timing section, along with inputs and outputs. Most

CPU's actually contain several special registers as well as many specialized input and

output not detailed in Fig. 7.

24

Address h-
Bus .3

, cO
I H 1_

~ ~I - . ~_J

I
Control i

Lines i
~----:

~~
~------

< --------;

CPU

I
Ul
::J
o:l

r-I L
ro
s::
~ ~rogram

Counter
H
(l)
+l
s::
H

'-./~ fn-struction I In~tr. l~
Decoder !Reglster

I

IJj

Timing and Control

Fig. 7. Simp lified CPU a r chitecture.

r-I
cO
C
!.-l
(l)
.w
c
H

~

!.-l
ill

4-t
4-t

S

I

I

Data
Bus

~

i Input
i]..ines
f-::---

t--
I .

J

tv
Ul

26

The CPU's arithmetic and logic unit performs operation such as add, shift/rotate,

compare, increment, decrement, negate, AND, OR, XOR, complement, clear and preset.

(21,p. 79)

The microcomputer architecture shown in Fig. 8 shows two types of semiconductor

memory used in this system. The ROM is the penn anent memory which probably contains

the monitor program for the system . . The ROM has address input along with chip-select

and read-enable input lines. The ROM also has 8 three-state outputs connected to data bus.

Each memory, word is then 8 bits wide. Of course, the ROM would also have power

supply connections, although they are many times omitted from the block diagrams.

The architecture in Fig. 8 also shows a RAM as temporary read/write storage

device. The RAM has address inputs along with chip-select and read/write enable inputs.

The RAM has 8 three-state outputs connected to the data bus. This RAM inputs, outputs

stores data as 8-bit words. RAM power supply connections are also shown.

The microcomputer system diagrammed in Fig. 8 uses a keyboard as the input

device. Power connections to the keyboard are shown along with the data lines to a special

IC called a keyboard interface. The interface circuit stores data and coordinates the

keyboard inputs.

At the proper time, the keyboard interface interrupts the microprocessor via the

special interrupt line. This interrupt signal causes the microprocessor to (1) finish

executing the current instruction, (2) suspend nonnal operation, and (3) jump to a special

group of instructions in its monitor program that handles the data input from the keyboard.

The keyboard interface circuit has address, chip-selects and control inputs for activating the

unit. When activated, the keyboard interface unit will put keyboard data on the data bus.

The microprocessor accepts the new input data via the data bus. When the interface three

state outputs are not activated, they return to their high-impedance state.

Address
Bus

(16
Lines)

1---

t
I

1

1---1

I

Chip
Select
Lines

/~
_.

I

I

I

--

27

~~ Keyboard I
;> / Interface .. -
I .. ,-

""""?

I
~

- ---_.\
t~rrupt J
L.l.ne

I~
I ' ~

MPU -

I I

Control
I Click I

Bus

~; ~
I ::>'-- \.

~

~~ 1

RAM f 1/ "

I! ______ J
Display I

l ____ ~ ·i
>~ ""J Interface ~---

._ .1 .- - j

-----~--------

EJ l3 .0 EEII~
OP-<

Fig. 8. Microcomputer architecture.

Data Bus
(8 Lines)

28

The microcomputer in Fig. 8 uses a group of seven-segmented displays for output.

The display is connected to the power supply on the right. A special interface circuit or IC

is used to store data and drive the displays in Fig. 8. When activated by the address, chip

select, and enable inputs, the interface accepts data off the data bus and stores it. The

interface then drives the displays continuously showing the data stored in the display

interface in visual form.

The t'61ines of the address bus can contain 65,536 (216) different patterns of zeros

and ones. The address bus lines may be attached to several devices such as RAMs, ROMs,

and interfaces~ To turn on or enable only the correct device, an address decoder samples

the data on the address bus. The combinational logic of the address decoder activates the

proper chip-select line, thus enabling the correct device. To simplify circuitry, not all 16

address lines go to the address decoder, memories, or interfaces. (22,p. 66-68)

The microcomputer selected for the purpose of experiment is MC68HC11A8

manufactured by Motorola. It is an advanced single-chip microcomputer (MCU) with

highly sophisticated on-chip peripheral functions. New design techniques are us~d to

achieve a nominal bus speed of two nlegahertz. In addition, the fully static design allows

operation at frequencies down to dc, further reducing its low power consumption. Some

of the hardware features of this microcomputer are:

· 8K Bytes of ROM

.512 Bytes ofEEPROrv1

· 256 Bytes of RAM

· Enhanced 16-bit timer system

· An 8-bit pulse accumulator circuit .

· A enhanced NRZ serial communication interface (SCI)

· A serial peripheral interface

· Eight channel, 8-bit analog-to Digital Converter

29

. Real Time Interrupt Circuit

. Computer Operating Properly (COP) watchdog system

A block diagram of the MC68HCIIA8 is shown in Fig. 9. (l,p. 1-1, 1-2)

4.2 Associated Software

Microprocessor-based systems contain all the essential ingredients found in any

computer-based system, but the relative emphasis on each of these ingredients is often

considerably different. (19, p. 18) Fig. 10 illustrates some typical microprocessor-based

systems. Som~ of these systems such as the camera exposure control and the automobile

fuel injection system represent extensive special purpose microprocessor design effort due

to special packaging or power-consumption problems, but the rest could be handled by

standard off-the-shelf microcomputers. In the latter case, the design problem thus

principally boils down to the selection of a microcomputer system, design of a system

interface, and design of programs for the system controL The fIrst two steps just

mentioned are described as the hardware design, while the latter step is that of softyvare

design. (4,p. 18)

Software refers to programs and the programming system used to control the

operation of the computer system. (21,p. 4-1)

The physical units of a microcomputer shown in the boxes in Fig. 9 are referred to

as hardware. To be useful, the program memory must tell the CPU what to do. Preparing

the list of instructions is called programming. The list of instructions is a program and is

stored either temporarily or permanently in the program memory. These programs

manipulate information, called data. Software is a general tenn to cover all programs. (22,

p. 1)

The program list is initially generated by the human programmer and entered into

the computer memory. The basic process is shown in Fig. 11.

(LIR)

Mal Mar
~-M-o-de Can troll

_____ _ _______ J

---I -Timer -l-
ilt I System I

I e I I
I I
I I

1- 1
I w ~ OCI

! ~ i I ~
j ilt
I ~
i rl~("\j (Y) <:;j' Lf) rl ("\j (Y)

j r::I; l U U U U U U U

' ''' r OOOHHH

TJJ1]]
I Port A -I
lTI1 1 " I
~; ~I~- ~I ~ ' d
F1.! r::I;
ilt ilt

XTACll
l_f;~~~ ~

RESET IRQ XIRQ t

~~u~
CPU CORE

I
I ~ ROM 8K -Bytes

EEPROM 512 BYTES ---1
RAM 256 Bytes

t
Serial t- j

omrnunicatio DD--
~us Expansion Address Data Interface
[Address ____ ! ___ V

CI I _~_ SS

~
--

rl 0 I Y
Storage and Handshake Ul 1:1 ~ ~ ~ I - RH

(f)(f)~ ~8 V

,~TIIT . control

f1;1 t tL!o~ rt;OfTr~~t RL

i Port B I I Port C J I Port D I I Port E I

11111 r I Tm':Tf'11 fz~l1JIP tl nq r
'II V n L; \ ! t H \ , ~ d 'II 'i/ ~ 1 , I I I , !
~ 0 ~ Om~Lf) - 0 ~ 0
m m U U~80 ~ W W
ilt ilt ilt ilt8(f)ilt ilt ilt ilt

(f)

Fig. 9. Block diagram of the MC68HCll single-chip microcomputer.
Not Bon ded on
48 Pin Ver sions

w
o

[I

31

Temperaturer-____________ ~

~~-. --------- IMicrocomputer
Burner
Control

(a) Electric oven control

ISU NEBR
DO

I 1:171

Keyboard

(c) Athletic scoreboard

Meter output. Micro I
Computer

--~< '
~Exposure

I ~~ Control

(e) Automatic camerq

Fig. 10. Typical microcomputer-based products.

I Program Correct or I

I Writer (Human) - Edit as
I Source Code Needed

-

r---- · ----------------------------
I

I \

~----

'-{: I
Source Prog. I Assembly Code

Machine LanguagefE---'-_ or Higher Level Language ~ -'" Storage-Disk
(He~~~~cimal or . I (e.g. BASIC, Pascal) J

I . Octal) I

Personal
Computer

Applications

• '- I --r--

T
I

Assembler Editor Linker
Compiler Library

Interprets - Debugger

~------------------------------ - - -

~Object

I

I

i -:-1
I

. I

~----l I Output
Results- I
Printer ,_

t. [Code Bin
... _____ .Jr~._ _
Object Program ___ jLoad into
Storage Magnetic Computer
or Punched Tape Memory

CRT
Tape, etc .

Punched Ca~ds
Magnetlc DlSk
or Other

....::, -

Fig. 11. The computer process.

w
I\.)

33

There are two methods by which the program can enter the computer. Since the

cpu only understands binary code, the human programmer must fIrst prepare the program

known as the source code. If the source code is prepared in binary (or the equivalent

hexadecimal or octal, which is immediately convertible to binary), this program also

becomes the binary object code which is understood by the computer. But machine

language is very difficult for humans to remember and use without mistakes. It is much

easier to write a program using an assembly language which features a structure such as

memories, or code names resembling natural language, that helps the programmer to recall

their meaning.

The alternative path to object code shown in Fig. 11, is through assembly or higher

level languages, using the blocks shown enclosed in the dashed box. It is also possible, as

shown, for the programmer to code in assembly language and then hand-convert to

hexadecimal/object code, since there is a one-to-one relationship between them. The more

professional way, which is invariably chosen by developers of industrial instruments or

consumer produce using microprocessors, is to write source codes in assembly or a higher

level language, and automatically (using a computer) translate this into a binary object code.

This involves other programs (for the translating computer), known as assemblers for

assembly language, or compilers or interpreters for higher level language. These programs

are of considerable complexity and require a good deal of memory and operating time, but

this operation need not be conducted on the microcomputer for which the program is

designed. (3,p. 33-35)

The instruction which is a statement that specifies an operation and the values or

location of its operands (5,p. 0-2) generally divided into two parts: the Opcode (operation

code), which tells the computer what to do, and the operand, which is a piece of data or

information that the computer processes according to the Opcode. (23,p. 67)

Some of..the software highlights of MC68HCIIA8 single-chip microcomputer are:

34

· Enhanced M6800!M680 1 instruction set

· 16 x 16 integer and fractional divide features

· Bit manipulation'

· WAIT mode

· Stop mode

Before making any attempt to write a program it is beneficial as well as efficient for

the programmer to draw a flow chart for the program. Flow charts are a graphic way of

describing the operation of a program. They are composed of different types of blocks

interconnected with lines. A rectangular block describes each action the program takes. A

diamond-shaped block is used for each decision, such as testing the value of a variable. An

oval marks the beginning of the flow chart, with the name of the program placed inside it.

An oval can also be used to mark the end of the flow chart. Three principle types of flow

charting symbols are shown in Fig. 12. (19, p. 29)

The flow chart for a microprocessor-based interactive control system used for the

special engine is shown in Fig. 13.

4.3 Software Specifications of MC68HCll

The MC68HC11 single-chip microcomputer unit (MCU) utilizes a four-page

Opcode map, which increases the instruction set capacity. Page 1 of the map contains all of

the M6801 MCU Opcodes in original locations, as well as several instructions relating

strictly to the M68HCll MCV. Three new Opcodes on page one serve as switchers to the

other map pages. When the M68HC11 MCV is ready to execute an instruction, page 1 is

searched for an appropriate Opcode. If found, the M68HCll MCU executes the operation

immediately as if there were no paging scheme. However, if the .Opcode is located on map

pages 2, 3, or 4, the M68HC11 MCU reads one of the Opcode switches on the map page 1

that directs the M68HCl1 MCV to the applicable page. Pulling instructions from the map

(Program Name

'-

~.

Fig. 12. Flowcharting Symbols

~/

Action

\!i

I

I

j

\I ;
'/

w
U1

36·

Fig. 13. Flowchart for a microprocessor-based system
used for the automobile engine control system.

37

on pages 2 through 4 result in an extra instruction byte (prebyte) and an additional

execution cycle.

Four bit-manipul~tion instructions-bit set (BSET), bit clear (BCLR), branch if bit

set (BRSET), and branch if clear (BRCLR) - are used in conjunction with the M68HC 11

MCV Opcode map. The bit-manipulation instruction contains a mask-byte operand used to

indicate which bit or bits should be used by the instruction. (15,p. 1-1) The necessary

information for programming purposes regarding M68HCll can be found in Appendix 1.

Instead of going through several stages to convert the input s}gnal from analog to

digital and output signal from digital to analog in continuous control, it is more economical

to build the system to operate in discrete mode. That's why discrete control in the fonn of

ON/OFF has found many uses in industrial applications. In the next section it will be

found that discrete (two-state) control offers an attractive solution for the design of

microprocessor-based control systems.

4.4 The Microprocessor in a Control Loop

Fig. 14 shows a schematic diagram of a control loop containing a microprocessor.

The dotted line encloses the components that would normally be located together and

referred to as the microcomputer. It is intended to treat the practical aspects of specifying

and interconnecting the elements in such a control loop to ensure their compatible

operation. For simplicity, only one of the input variables is shown and interactions are

omitted.

In the stage of input circuits design it should be kept in mind that in a typical control

scheme most measurements will be made by analog tr~sducers. Therefore, proper

attention must be paid to the associated analog circuitry in some applications. Some of the

questions that need to be considered at this stage are the following:

Do the signals need to be amplified, buffered or isolated before being transmitted?

Visual
Display ~-

K~:b-~ __ .

Serial dig~tal data

.~

IRAM and

IInterf~
pdapterl

b D/A 1
I iconverterl I ROM ; I . onv. .
~. _~_ - I ____________________ L __ ._ ._

. analog ~--~ analog
-~--, signal ---Lilill

I
Analog. . Actuator

Processlng

[-sensor
< I;rocess to be,,<t::;:...- -~

.controlled

Fig. 14. A continuous control loop containing a microprocessor.

w
(X)

39

What measures, such as special grounding, shielding or analog filtering are needed

to reduce interference?

Do the transducers need local excitation, open-circuit detection or some other

application dependent consideration?

It is clear that the most difficult situation will occur when low-amplitude, wide-band

width signals are to be transmitted over long distance through a noisy environment, with a

high accuracy requirement. Some typical measurement inputs in an industrial control

scheme may include, typically, fifty or more information signals arising from a variety of

different devices at different geographical locations. Signal levels may vary widely and

transmission distances of several hundred meters through electrically noisy environments

are common. Bringing reliably to the the computer the information from this wide range of

devices is an important operation. (13,p. 197-198) The selection of measurement devices

are also important due to variation of 'types and level of signals arising. Where a sensor is

located near to the computer, it is often possible to undertake special computation in a

purpose-built application-oriented input.

Low-level analog signals need to be robust enough for transmission to the

computer. Conversion to current signals is the most straight forward approach. A current

signal can be sent over several kilometers since it is not affected by voltage drop and is

more immune to noise than a voltage signal. If many analog signals arise remotely near to

one point, they may be multiplexed, AID converted and then transmitted serially along a

pair of wires to the computer.

The computer is also required to detect the status (on or off) of switches, such as

limit switches or auto-manual change over switches. Somewhat confusingly, signals

arising from simple on-off switches tend to be called digital inputs in the commercial

literature. Such signals can be considered as Boolean variables--they are input directly to

the computer.

40

In small-scale applications, such as in the control of laboratory furnaces, it is usual

for actuator to be the most expensive element in the control loop. Such systems, therefore,

need to be specified with cru:eful consideration of the actuators if a cost-effective design is

to be produced Actuator selection is very application-specific and it, therefore, cannot be

explained here further.

Most processes that are called upon to control in the industrial applications operate

in continuous time. This implies that an analog world must be interfaced to/from the digital

computer through which the process is influenced.

The control aspect of AID and D/ A conversion can be understood by knowing the

characteristics of these devices in so far as these affect the controlloops into which they are

connected.

Considering fITSt analog-to-digital (AID) conversion with the assumption that the

signal f(t) is to be discretized. At time T the signal f(t) is connected to AID converter.

Two questions arise:

How long does the conversion take?

How accurate is the conversion?

Considering digital-to-analog (D/ A) conversion, three questions naturally arise.

These are:

How long does the conversion take?

How accurate is the initial conversion?

Is the output of the D/A converter subject to significant drift between the sampling

intervals?

First D/ A conversion will be considered, since every AID converter necessarily

contains a D/ A converter.

41

4.4.1 Digital-to-Analog Conversion CD/A)

A digital-to-analog converter operates as shown in Fig. 15. A parallel digital word

is converted by a logic and swi:tching network into an equivalent resistance from which an

analog voltage is derived. The fmal amplifier shown in the diagram prevents electrical

loading and provides appropriate impedance conversion.

The settling time of a D/A converter is determined largely by the characteristics of

the buffering amplifier. In some cases, the amplifier is omitted and then the settling time

depends on the characteristics of the output circuit.

The output of a D/ A converter may contain unwanted transients, sometimes called

glitches, due to imperfectly matched switches. For instance, if the digital word 0111111 is

being converted and that the work then increased by one unit to 1000000. Ideally the

converter output should be as shown in Fig. 16. However, in practice the switches that

control the resistor network may not be perfectly synchronized If the six switches that

represent the six least significant bits open before the switch that represents the seventh

digit has closed, then the voltage from the converter contains a major glitch as shown in

Fig. 17.

It should be noticed that major glitches occur only when there are major changes in

the binary code. The change from 1000000 to 1000001, for instance, does not generate a

glitch. The simplest way to remove glitches is probably to follow the D/ A converter by a

sample-and -hold device.

For analog output arrangements figures 18 and 19 shows two alternative

configurations by which a multiple analog outputs may be produced. The frrst alternative

(Fig. 18), in which each channel has its own D/A converter, is faster to respond and less

prone to drift than the system of Fig. 19.

When a group of analog outputs needs to be located some distance, perhaps several

kilometers, from the control computer, the configuration of Fig. 20 may offer a cost-

i Logic
____ ~--1 and

I

n-bit
digital
input

i switch
: network

i_

~~lIResistor
~INetwork -I
~ >~

I

-~

Feedback Resistor

-nv\/\//\\//~

'" Analogue
I ~ . voltage

~
_ ' ~ ' ~ output

+ \ High~gain ',."-... .. _______ ::»-~-~ y arnpli/,/
//

V

Fig. · 15. Outline of the operation of a O/A converter.

,j:::.

tv

Output
Voltage

43

,- ---_.,---_.

0111111 I 1000000 1000001

Fig. 16. The Input-Output Behavior of an Ideal
O/A Converter.

Il
Output I \ I
Voltage

I II I ~_- -__ ~ _____________ ___ _ _
011l~ll 1000000 1000001

Fig. 17. The Input~Output Behavior of a non-ideal
O/A Converter.

computer

44

I--~
~f---~~A ~--'--:7

1_>_,,,--- I~
. D/A .-------:->) Analog

Signals

I
I

D/A

Fig. 18. Analog Output - One D/A Converter
Per Channel.

-\

11 I sanamd
Ple I I

j1hOld ,t-. --7~~ I

computer D/A
~ I 6 l
~ > / Analog

I

't

1
I

0,-1 (Symbols

i----- ----- I

~ I~sample I I
and ~ I

. 1 __ 1_-.-1 hQJ._Q. ___ .)

r- 7 - -- oo

•

~

I

Fig. 19. Analog Output - One Sample and Hold Per Channel.

iSerial Transmission
r··- --------------

Control
Lines

-E :>

, -~-
I

Intelligent
output
distributor

I
l

I
'-~ D!A J-_._>

I
. ~~-;;;::.
I-V~

~'~ D!A

V!
1

Analogue
outputs

[--->

Fig. 20. Analogue Output Using Serial Transmission to a Group of Actuators.

~
lJ1

46

effective solution. The system depends on an auto serial/parallel distributer that can drive a

number ofD/A converters (13,p. 202-206)

In some cases the digital signal appearing on the output of the latch is sufficient in

itself for the control function. This is particularly true when on-off types of control

functions are involved. In these cases, no digital-to-analog conversion is required. The

more interesting problem in the use of"computers for control is when the output is required

to be an analog signal. In this case it is necessary to perform a conversion of the digital

signal on the output of the latch to a proportional analog signal. The basic principle of

digital-to-analog conversion (D/A) is that the digital data word is considered to define

percentage or fraction of some reference signal. The fractional amount is detennined from

the original input signal by D/A converter. The actual output signal may be a current or

voltage, but it is usually a voltage. In Fig. 21, the operation of the D/A converter is shown

symbolically as producing an output voltage from the reference input based upon the value

of the digital input. In equation fonn this can be written

Vout =O(Vref (1) (4-1)

Where Vout = D/ A converter output voltage

Vref = D/ A converter reference voltage

D(= a fraction «1) determined by the digital input signal.

The relationship between the fraction 0(and the digital signal is defined by

considering the binary number of the digital data to be a fractional number. Thus, if an 8-

bit digital output from the computer is 101101012, this is considered to be 0.101101012,

with the decimal point to the left of the most significant bit (MSB). In this case, is

defined by

0(= bi 2-1 + b22-2 + b32-3 + + bn2-n (4-2)

Where b i b2 ... bn = the binary number with b i the MSB.

V
ref

47

1"---- -------. ,

----l DAC 1-- ·----·-:;:;.-
I _I

--.-V~

Digital Data

Fig. 21. The digital-to-analog converter (D/A-).

ADC

V
out

Hold [~
V . ~+I) ___ .----_1+ >----'-----

In . I

~~ ..
I '" Dlgl tal

I

/ data
-~/

1-- "

v

_-L-

T -
I

._ l--- GND

I
I

!

'1 _ ___ . ___ _

I
I 1. __ . __ . ___ . ______ "_ " ._ .. ----;::_

1._._«_ --)
\-_. ---'-"- _ __ ... _-. _._. __ .-_. __ _ .. -_ ._. __ ._-._ .. - .. -.-_.. _ _ ._

Fig. 22. A sample and hold as well as AID converter
for a data input system.

Start

Complete

Sample
ann
hold

48

Of course, the above equation can be generalized to any number of bits in the data

bus of the computer. Basically, the D/A converter simply calculates the value of using

the above equation and multiplies this times a reference voltage. To determine the output

step size, if the input digital data are composed of 8 bits there are 256 possible states or the

values of this number from OOH to FFH. Thus there will be 256 steps in the output

voltage as determined by Eqs. (4-1) and (4-2). The size of each step is imply the reference

divided into 256 values. This is called the resolution of the output voltage:

Vout = Vref
256

(4-3)

For the general case of a digital signal of n bits, the resolution equation can be generalized

to

Vout = Vref 2-n (4-4)

Where Vout = step size of output voltage. The step size is very important because it

indicates the fittness by which the output voltage can be varied. If very delicate and smooth

control is desired, the step size must be very small.

Another important point regarding the use of D/ A converters is that the maximum

output voltage is not equal to the reference. The reason for this is that will always be less

than 1, even with the maximum digital input of alII's.

Relationship Between Input and Output. It is not difficult to calculate the analog output

from Eq. (4-2) when the digital input is known. The reverse problem, of finding the digital

.-input that produces a specific output, is somewhat more complicated. Part of the problem

is that, since the output jumps in increments of the step size, it is only possible to find the

digital input that gives an output closest to that desired. This is done by finding the fraction

and then converting this to the closest binary number with the specified number of bits. (9,

p.78-80)

49

4.4.2 Analog-to-Digital Conversion (AID)

When a computer control system involves continuous variation of an analog

variable over a range, the value of this 'variable must be converted into a proportional digital

signal for input to the computer. This is the reverse of the problem of digital-to-analog

conversion considered previously_ It turns out that there are more difficulties associated

with the analog-to-digital conversion, however, which makes their use in the control

systems a little more complicated. The basic idea is to consider the analog data to be a

"number" and to convert this into ~he equivalent binary number. The difficulty is at once

obvious; the binary number can only have a finite number of bits, such as the common 8-

bit microprocessor-based computers, and therefore can only represent a limited range of

numbers. In fact, for 8 bits one can only represent 256 counting states (including zero).

So it can be seen easily that there will be a loss in knowledge of the variable value in going

from continuous analog information to fmite bits of digital information. Anyway, as the

D/A converter, it turns out to be the easiest to treat the analog data as a fraction of some

reference. If voltage is taken to be the analog medium, input voltage will be considered

some fraction of a reference voltage, Vref. This means that the input voltage will have to

be less than this reference.

What most AID converters do is to find a fractional number, given by the binary

output, that is the closest smaller fraction of the analog input voltage. In equation form,

Vin>0< Vref

Where Vin = analog input voltage

Vref = analog reference voltage

0(= b i 2-1 + b22-2 + b32-3 + ... + bn2-n

(4-5)

(4-6)

Equation (4-6) assumes an n-bit bit word results from the conversion. The ineqUality of

Eq. (4-5) means that the voltage on the right side of the equation will always be less than

50

the input voltage, but never by more than the step-size voltage represented by LSB of the

digital signal. Thus the uncertainty in this ideal case in never greater than

V = Vref2-n (4-7)

Relationship Between Input and Output. The actual relationship between the input

and output can be deduced by procedures like that used for the D/A converter. If digital

output is known, and the reference, then limits can be placed upon the possible values of

the analog input voltage. The limit is just that represented by the step-size voltage given by

Eq. (4-7). When the input analog voltage is known, and the reference, and the binary

output is desired, a calculation is perfonned like that for D/A conversion. The fractional

ratio of input voltage to reference is fIrst calculated. Then this is converted by a binary by

the process of successive multiplication by 2. (9,p.89-90)

Conversion Time. One of the most important characteristics of AID converters is

that a finite amount of time is required for the device to produce a digital output from the

input analog voltage. The length of time required for the ND converter to calculate the

binary output of an analog input varies over a large range, depending upon the type of

conversion process employed. One of the most common processes is called the successive

approximation AID converter. This device will typically convert 8 bits in 30 to 50 s.

Another type, commonly used for digital voltmeter, is called the dual-slope ND converter

and may take up to 1000 s for a conversion. The flash converters are among the fastest,

since an 8-bit conversion may be completed in only a few nanoseconds, but this AID

converter suffers from other disadvantages that limit its usefulness.

The finite conversion time of AID converters has several important consequences

when the AID converter is used in data-acquisition systems. The following paragraphs

describe factors in the application of AID converters that result from the fInite conversion

time.

51

1. State Convert Command. Since the AID converter takes a fmite length of time to

determine the binary output of an analog input, the binary output does not represent the

input at every instant of time. In fact, most AID converters do not even calculate the binary

output until receiving a command, in the fonn of a digital signal input, to start the

conversion process. Thus the computer or external equipment must generate a command to

the AID converter to start the conversion process when the computer needs to input the

data. This is often called the START CONVERT (SC) command.

2. Conversion Complete Signal. The length of time required to perfonn a

conversion is not constant, even for a given AID converter. The time is dependent on the

frequency of an internal AID converter clock. For this reason the AID converter generates a

digital output signal that notifies the computer or other external equipment when the

conversion process is complete~ This is a signal that the computer can input the binary

output of the AID converter. This is often called END OF CONVERT (EOC) or

CONVERSION COMPLETE (CC) signal.

3. Analog Voltage. Since a finite length of time is required for AID converter to

compute the binary output, it stands to reason that input voltage must remain constant

during this interval. The AID converter refers to the value of input voltage during the

conversion process. Therefore, if this voltage were changing, the conversion process

would become confused and the output would be in error. Thus either the change in the

input voltage must be very slow compared to conversion time or a system must be used to

"hold" the voltage value at the moment a conversion is started by a convert start signal.

The most important consequences of the conversion time is its impact on the

process of analog data input to a computer. In general, a four-step sequence must occur:

1. The computer issues a command to the AID converter to start conversion (SC).

2. The computer goes into a wait mode while the conversion process is taking

place.

52

3. The AID convertor sends a conversion complete (CC) signal to the computer

when the binary output has been determined and placed on the NO convener binary output

lines.

4. The computer reads the AID converter binary output into the data bus.

Sample and Hold. In those cases when the input voltage changes at a rate not slow

compared to the conversion time, it will be necessary to capture and "hold" an input value

at the moment of a sample of analog voltage is to be converted. This is accomplished by a

sample-and-hold circuit constructed. using op-amps. The basic principle of such a "Circuit is

shown in Fig. 22. The switch is a solid-state device, usually an FET, which is turned on

by a digital input signal. In the on state the circuit is in the sample mode, and the changing

input voltage will appear across the capacitor, C. The voltage-follower op-amp is selected

to have very high impedance. When the digital input signal opens the switch, the circuit

enters the hold mode. Whatever voltage was on the capacitor at the instant the switch was

opened will now remain, regardless of subsequent changes of input voltage. The capacitor

voltage will not change, even when "measured" by the ND converter, since the high input

impedance of the voltage follower prevents discharge of the stored voltage. Fig. 23

illustrates the time sequence of successive sampling and holding of a changing analog

voltage. In fact, the actual binary signal input by the computer will be samples of the

analog voltage at intervals determined by the time from one hold to the next hold. The fact

that the computer has only periodic samples of process variables will have important

consequences on control.

The ability of the capacitor voltage to tract fast changes in the input voltage in the

sample mode is determined by the source resistance, Rs' of the circuit providing V in to the

sample-and-hold circuit. The time constant RsC must be as small as possible. This is often

assured by using a voltage follower on the input before the switch. The low output

Sample
Hold

Start

- _. _ - _ . - <-I __ _

_ ____ J~l _ _ . __ ._
Complete .

_ . __ ._ ._ . __ .1 ___ _

Read

53

i
• • _____ 0 . _ _ . _ •• _ , _ " _ • • _ "

.~:~.~--~=~'-=-=- ~
_ __ 1- ____ 1 ___ _

Time

Fig. 23. A timing sequence for a data input
process.

~I_ ..) vout

~ ,

150k

lSpF

<
i r-II

i -

F

\-~ Level , / '-r' -~-- Converter

! I /1 . L ______ ! ____ .-.:...._. __ . _ _ . __ ./ __ ~ . _

+15 and -15 '"

Fig. 24. A typical samp1e-and-hold circuit.

Sample
and
hold

54

resistance of the follower and low "on" resistance of the switch provide for fast tracking of

input voltage changes. A typical sample-and-hold circuit is shown in Fig. 24.

Use of the sample-and-hold circuit introduces the need for another command in the

data-acquisition process. Now the computer must issue a hold command in addition to the

START CONVERT command.

Input-Level Adjustment. The voltage generated by measurement of some process

variable has a level and range dependent on the transducer and signal conditioning of the

measurement process. The AID converter will perfonn conversion on the basis of a voltage

varying between 0 and V ref. To obtain compatibility between the measurement and AID

converter, it is often necessary to use amplifiers, attenuators, and voltage bias circuit

between the measurement system and the AID converter. These circuit typically use

standard op-amp approaches. It is very important to maintain traceability throughout such

conditioning between the signal levels and ranges and the process variable. (9,p. 89-95)

4.4.3 Input Multiplexing

A multiplexer is a device for scanning across a number of analog signals and time

sharing them sequentially into a single analog output channel.

The switching is usually performed by JFET or CMOS transistors although

mechanical read relays may still be preferred for some applications. The speed of a

multiplexer depend on:

(a) the speed of the switch (typical switching times for JFET and Reed relays are 2

x -10-7 s and 10-3s respectively)

(b) the settling time of the circuit fed by the multiplexer.

If the time constant of the circuit is r seconds and AID converter has n bits; then a

time Ts must be allowed to elapse before the multiplexer output is ND converted, where

Ts >tln(2n - 1) (4-8)

55

Each time the multiplexer switches, a transient occurs in the signal that is passed on

to be AID converted. Satisfaction of the given inequality guarantees that the transient has

died away to a magnitude that cannot cause an error in the digital conversion, even in the

worst case, in which the multiplexer switching is between signals at the opposite end of the

conversion range. A typical value for might be r = 10-6s. This leads to a necessary

waiting time for at least 5.5 x 10-6s for 8-bit or 11 x 10-6s for 16-bit, working.

The choice of a multiplexer for a particular application involves the familiar

comprise between speed and accuracy--if both high speed and high accuracy are needed,

the required device will be relatively expensive. So three alternative approaches should be

considered. The flying capacitor method that has been found adequate for many industrial

applications; the analog multiplexer that is required for the most exacting application; and

digital multiplexing. The choice between these approaches can only be made by preparing

comparative cost and performance budgets for envisaged application. (13,p.211-214)

4.4.4 Signal Processing Cycle

The sampling is usually performed periodically with sampling time. To buy a

multiplexer which is constructed together with an effective range selector and an

analog/digital (ND) converter. The digitized input data is sent to the central processor unit.

There, the output data are calculated using programmed algorithms. If an analog signal is

required for the actuator, the output data emerge through a D/ A converter followed by a

hold device. Fig. 25 shows a simplified block diagram.

The samplers of the input and output signal do not operate synchronously, but are

displaced by an internal T R' This interval results from the ND conversion and the dat.a

processing within the central processing unit. Since this interval is usually small in

comparison with the time constants of the actuators, processes and sensors, it can often be

neglected. Synchronous sampling at the process computer input and output can therefore

be assumed Also the quantization of the signal is small for computers with a word length

sampler

YL
--1-1 _____ >

t

analogi
digital '
convp.:r:ter

56

digital
computer

U l~
d

IKT + TR
I 0

u ~- l '---1 .-- u
d .:: : 0-0 _.----:;:t~a._4~J-----?-

sampler- digital! hold
analog
converte r

- I

t t

Fig. 25. The process computer as sampled-data controller.

I KT I' I 0

v y u t u y

I~~r~_ > [~~;;_~(~~:e~_ : h: I ... _~:::~~1l--?
Fig. 26. Control loop with a computer as a sampled-data

controller.

57

of 16 bits and more and AID converters with at least 10 bits so that the signal amplitudes

initially can be regarded as continuous.

These simplifications lead to the block diagram of Fig. 26, which shows a control

loop with a process computer as a sampled-data controller. The samplers now operate

synchronously and generate time-discrete signals. The manipulated variable U is calculated

by a control algorithm using the control variable Y and the reference value W as inputs.

Such sampled-data control loops do not only exist in connection with process computers.

Sampled data also occurs when:

--measured variables are only present at defmite instants

--multiplexing of expensive equipment (cables, channels) (8,p. 10-11)

4.4.5 Digital Interfacing

Digital interfacing is concerned with the technology digital data transfer between

devices. The chief data transfers that are needed in control application are:

(a) transfer of process measurement data from an AID converter to a

microprocessor-based system;

(b) transfer of actuator commands from a microprocessor-based system to a D/ A

converter,

(c) transfer of data between a microprocessor-based system and peripheral devices,

such as keyboard, visual display unit, tape drives, printers, graph plotters and other

computering devices such larger supervisory computers.

The date transfers are usually achieved by sequential (serial) transfer when the

distances are large and by parallel transfers when devices are close together and rapid

transfer is required. In part (a) and (b) are usually achieved by parallel transfer, serial

transmission being reserved for special cases involving relatively long distance. The

peripherals in part (c) are serviced by a mixture of serial and parallel transfers.

58

1. Serial Interfacing. Since a microcomputer configuration operates internally by

parallel data transfer, it is necessary to use a serial-to-parallel device to interface a serial line

to the system. Such a serial-to-parallel converter may consist of a register that is filled, one

bit at a time, at the rate dictated by the system clock, by incoming serial data. When the

register is full, it is connected to the system data bus. Serial data transfer is facilitated by

the use of special serial/parallel chips that contain the logic necessary for organizing the

operation. A common device is the ACIA (Asynchronous Communications Interface

Adaptor), sometimes referred to as a UART (Universal Asynchronous Receiver and

Transmit) device. A typical ACIA has two serial connections for input and output

respectively. It has logic connections with the remote data source/sender and the address

bus of the computer and it connects via a buffer register to the computer data bus as shown

in Fig. 27.

2. Parallel Interfacing. Most of the parallel interfacing required in simple control

applications is achieved through the use of PIA (Peripheral Interface Adaptor) chips. A

PIA is programmable in so far as manipulation of particular bits in its control register.

Alters the operating configuration. A PIA is the natural interfacing device to interpose

between an AID or D/A converter and a microprocessor system. A typical configuration is

shown in Fig. 28. Much of the interfacing effort is devoted to proper connection of PIA

device which are directly in the control loop.

Because of the importance of the PIA chip, it is intended to outline how the

connection to an AID converter is done. Fig. 29 shows a PIA chip with control register CR

and data register DR. Its connection to the microprocessor is through the address bus, the

data bus and an interrupt line. Its connection to the AID converter is through a parallel port

and two control lines.

59

/1 I'" -,
// "'- jl , f--7------ Serial transmission

~ ; I ~r------ -- i / I --E---- ------ -- ---- Serial Reception - ./ : --=t-----------
Data
Bus

/ / I _____ ~ -- }- Logic communications Address , - J '"

'" __ __ wi th remote
Bus <~ _ I - --;7"----- source/receiver

~

Fig. 27. Outline of an asynchronous communications interface
adapter (ACIA).

Microprocessor

'C"ontrol lines

8 lines
prograrnm
as input

ed
s

!

y1JH

i'
_\

A/D
Converter

~~
PIA

I

J

t f J

I
DJJ1-1--

\1 tt i L ~ \

J

~ D/ A I
I Converter I

8 lines
programmed
as outputs

-~----- rC;~trol si -~nai~--l--~~l;;-~e
\. slgnals
: to actuator

Process to be
controlled

Fig. 28. A microprocessor in a basic control loop.

Analogue signal
to be converted

- -- ------
I

I
I
I
I A/D

I converter

I

60

_II
Start conversion
command

r -----
/i~~~~!"

~
EC

Control line /' ,-I ,-- "-
I', I I '-.,,-,"-----'

J '~/J
' I I
I I I I
I I

1-
_i'~

Digital ~/ IJ parallel V/ transfer
Data tra

:?

Control line 2 :?

To/from
microprocessor

01 signals

~
.'

nsfer

I Interru pt line

_~'onversion
Conversion complete
continuing

Fig. 29. Control of an A/D converter by a PIA chip.

1 j 'v

I 1
Engine I Mi croproces sor I

-t----r---~~rJ i----------TJ

I I 1--------11 J
Fig. 30. Essential Feature of Engine Control.

61

A command from the microprocessor along the address bus flxes the configuration

of the PIA so that, in particular, the parallel port is designed as an input port. The

operation of the arrangement is then as follows:

(a) The PIA sends a "start-conversion" signal on control line, to the AID converter.

(b) When conversion is complete, the AID converter sends a "conversion completed

signal along control line 2 to the PIA.

(c) PIA reads the data from the converter into its data registers, set a particular bit in

its control register and sends an interrupt signal to the microprocessors.

(d) The microprocessor checks bits in the control registers of all PIA's to see which

has raised the interrupt. It then transfers the data from the PIA and clears the bit in the

control register.

(e) When the time is reached for a new input signal to be obtained the

microprocessor initiates the procedure again. (13,p. 219-222)

4.5 Microprocessor-Based Implementation of Multivariable Interactive Discrete Control
System

Many discrete-state systems are composed of variables that interact and for which

the output states are dependent on the states of several input variables. A multivariable

discrete two-state system with interaction is one for which a control output is detennined by

the states of a number of inputs. If the inputs are all expressed in digital fonnat (ON and

OFF), these state-dependent systems are the same as combination logic systems.

Generally, Boolean equations can be written by which the outputs are determined from the

inputs. These equations can be solved by hardware combination logic circuits or by

software in a computer. There are number of advantages to using' the computer for solving

these equations. Since software changes can be easily made to accommodate new designs,

it is not necessary to attempt simplification of the equations, and many such equations can

be handled by one computer.

62

If a discrete-state system has a set of n two-state input variables and a set of m two

state control outputs, a set of Boolean equations can be written for the control:

C1 = F1 (V l' V2, , Vn)

(4-9)

Where C 1 Cm = m Boolean control outputs

VI V n = n Boolean inputs

Fl Fm = m functions relating inputs and outputs

The functions will consist of Boolean equations involving the input variables and

their inverses along with AND and OR operations. The control problem reduces to finding

ways to implement the equations of software. (9,p. 145-146)

4.6 Microprocessor-Based Implementation of the Special Engine Control System

Even though there are different detailed approaches to engine control employed

recently in automotive industries all approaches require certain variables to be measured at a

given time intervals. These measurements are used to decide, through computations,

actions to be taken to control the engine.

The engine control system which is used as a model consists of three variables that

are sensed and three actions controlled, as illustrated in Fig. 30. The values of the three

input quantities are entered into a set of equations stored in the microprocessor. The result

of mathematical calculations determines the optimum fuel feed (F), air feed (A), and spark

63

advance (S) mode. The three variables that are being measured are: speed in revolution per ,

minute (R), temperature of engine (T), and load (L).

The center of the control is the microprocessor and its affiliated components.

Sensors collect the required data. Actuators respond to the control commands.

This microprocessor-based control system for a special engine control starts with a

primary sensing element (sensor or transducer) that senses a condition, state, or value of a

process variable and produces an output that reflects a condition. In the fmal stage of

control referred to as actuators; a switch or contact may be opened or closed; 1\ valve may

be fully opened or closed; an electromagnetic device such as solenoid valve may be

energized or de-energized; and a motor may be started or stopped.

The selected problem is a special engine control system having multivariable

interactive discrete two-state input variables of rpm (R), temperature (T) and load (L). The

two-state outputs are fuel feed (F), air feed (A), and spark advance (S). It is desired that

the outputs to be high under the following conditions:

Fuel feed: When the rpm is low and the load is high, or when the rpm is high and

load is low.

Air feed: When the temperature is high and the rpm and load are low, or when the

temperature is low and the rpm is high.

Spark advance: When the temperature is high and the rpm is low and the load is

high.

4.6.1 Algorithm: The algorithm is the set of equations andlor sequence of operations that

solve some problem. In this case, the Boolean equations can be referred as the algorithm

for the engine control system. Therefore, before attempting to design the software for this

particular application, it is better to express the desired outputs in the fonn of Boolean

equations which are:

F=R·L+R·[

A = T·R·L + T·R

S =T·R·L

64

Where . is AND (a logic notation)

+ is OR (a logic notation)

(4-10)

- on the top of any input variables means NAND (a logic notation) showing

the low or off condition.

Now the flow chart should be constructed for the aforesaid equations. -The flow

chart for this multivariable interactive discrete control system for the special engine already

discussed is shown in Fig. 13. (9,p. 146-147)

4.6.2 I/O Truth Table

A common method used to tabulate all the possible combinations of input and

output levels for a given Boolean equation is called truth table. Table 2 shows the truth

table constructed for the special engine based on all the possible combinations of input and

output. R, L, and T are the inputs and F, A, and S are the outputs. Zero means low (off

condition) and 1 means high (ON condition).

4.6.3 Development of the Program in Assembly

Assembly language permits us to develop software using a mnemonic for each

instruction instead of the Is and Os which the microprocessor understands. It also permits

-us to represent addresses in RAM and ROM with address labels. The process of assembly

consists largely of translating the mnemonics and address labels of the assembly language

source program into the object code of the microcomputer. (16,p. 352)

Assembly language is not one specific language, but a class of languages. Each

microprocessor has its own machine language and therefore its own assembly language.

The following is the program developed in assembly language for the model, the special

. ----.-------=--~--.------. ------ -
TI'--.JPlJT i-- (lU-T PL1T

\.. ..-/ , . .

c~ L T I F .A
.---..
~

l
!

0 0 0 I 0 0 0

I
0 0 1

I
0 1 0

0'\ 0 1 0 I 1 0 0 U1

0 1 1 1 0 1

1 0 0 I
I

1 1 0

1 0 1 i 1 0 0

1 1 0 I 0 1 0

1 1 1 I 0 0 0

Fig. 2. Truth table for the special engid e
I

control system which used as a model.

66

engine, which involves the three interactive discrete input variables R, L and T. The

outputs are F, A, and S. This program uses assembly language based on MC68HCl1

Motorola single-chip microcomputer. Only one port is used for I/O purposes. The address

of the 1, and 2 are used to input T, L, and R respectively. Bit 3, 4, and 5 are used to

output S, A, and F. Bit 6 and 7 are not used The following program is run, and tested

with simulated inputs.

67

The outcome of this program meets the desired outputs for the special engine

control system.

Label Address Instruction Comments

START EOOO CLRA Clear Accumulator A

Test 1 E001 LDAA#4 Load A (input R)

E003 ANDA$l000 AND A with port A

E006 BNE$EOOA If Result = 0, Jump Test 2

EOO8 BEQ$E014 If Result = 0, Jump Test 3

Test 2 EOOA CLRA Clear Accumulator A

. EOOB LDAA#2 Load A (input L)

EOOD ANDA$l000 AND A with port A

EOlO BNE$EOA If Result = 0, Then OFFI

E012 BEQ$EOlE If Result = 0, Then ON 1

Test 3 E014 CLRA Clear Accumulator A

E015 LDAA#2 Load A (input L)

E017 ANDA$l000 . AND A with port A

E01A BNE $EOlE If Result = 0, Then ONI

E01C BEQ$E02A If Result = 0, Then OFF1

ONI E01E CLRA Clear Accumulator A

E01F LDAA$lOOO Load A with Content of Memory

Location $1000

E022 ORAA#20 OR A with 20H .

E024 STAA$lOOO Store Content of A in $1000

E027 JMP $E036 Clear Accumulator A

OFFl E02A CLRA

E02B LDAA$l000 Load A with Location $1000

68

E02E ANDA#DF AND A with DFH

E030 STAA$1000 Store Content of A in $1000

E033 IMP $E036

Test 4 E036 CLRA Clear Accumulator A

E037 LDAA#4 Load A (input R)

E039 ANDA$l000 AND A with port A

E03C BNE$E060 If Result = 0, Then OFF2

E03E BEQ$E040 If Result = 0, Jump Test 5

TestS E040 CLRA Clear Accumulator A

E041 LDAA#l Load A (input T)

E043 ANDA$l000 AND A with port A

E046 BNE$E04A If Result = 0, Jump Test 6

E048 . BEQ$E060 If Result = 0, Then OFF 2

Test 6 E04A CLRA Clear Accumulator A

E04B LDAA#2 Load A (inputL)

E04D ANDA$l000 AND A with port A

E050 BNE $E054 If Result = 0, then ON 2

E052 BEQ$E060 If Result = 0, Then OFF 2

ON2 E054 CLRA Clear Accumulator A

E055 LDAA$l000 Load A with Content of Memory

Location $1000

E058 ORAA=II8 ORA with 8H

E05A STAA$1000 Store Content of A in $1000

EOID JMP$E06C

OFF2 E060 CLRA Clear Accumulator A

E061 LDAA$l000 Load A with Content of $1000

69

E064 ANDA#F7 AND A with F7H

E066 STAA$1000 Store Content of A in $1000

E069 JMP$E06C

Next 1 E06C CLRA Clear Accumulator A

E06D LDAA#4 Load A (input R)

E06F ANDA$I000 AND A with port A

E072 BEQ$E076 If Result = 0, Jump Test 7

E074 BNE$E08A If Result = 0, Jump Test 9

Test 7 E076 CLRA Clear Accumulator A

E077 LDAA#l Load A (input T)

E079 ANDA$l000 AND A with port A

E07C BNE$E080 If Result = 0, Jump Test 8

E07E BEQ$EOAO If Result = 0, Then OFF 3

Test 8 E080 CLRA Clear Accumulator A

E081 LDAA#2 Load A (input L)

E083 ANDA$l000 AND A with port A

E086 BEQ$E094 If Result = 0, Then Jump Test 8

E088 BNE$EOAO If Result = 0, Then OFF3

Test 9 E08A CLRA Clear Accumulator A

E08B LDAA#l Load A (input T)

E08D AND A $1000 AND A with port A

E090 BNE$EOAO If Result = 0, Then OFF3

E092 BEQ$E094 If Result = 0, Then ON3

ON3 E094 CLRA Clear Accumulator A

E095 LDAA$l000 Load A with Content of $1000

E098 ORAA#10 ORA with 10H

70

E09A STAA $1000 S tore A in Location $1000

E09D JMP$EOAC

OFF 3 EOAO CLRA Clear Accumulator A

EOA1 LDAA$l000 Load A with Content of $1000

EOA4 ANDA#EF AND A with EFH

EOA6 STAA$1000 S tore A in Location $1000

EOA9 JMP$EOAC Jump Start

, Next 2 EOAC JMP $EOOO

EOAF STOP STOP

CHAPTER 5

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Results

A technique for analysis and design of the multivariable interactive discrete control

system was determined. Based on the technique, a microprocessor-based system was

developed for an automobile engine modeL Next, the software was developed for the

~odel based on the truth table given in Table 2 and all possible conditions of the input were

simulated. The following results were obtained during the simulation of the model for all

possible input conditions.

(a) When the input R, L, and T were set low (grounded), all the outputs were low.

This outcome met the output state for the flrst possible input condition shown in Table 2.

For the frrst possible input condition when all the inputs floated, no change in the output

was observed.

(b) The input T was set high (5 Vdc) and the other two inputs R and L were kept

low (grounded). It was observed that the output A was high and the other two outputs

were low. The outcome met the output state for the second possible input condition.

For the second possible input condition when the input T was high but the input R

and L were floating, the output F and S reached to 3.5 volts and gradually dropped to zero.

However, when the input T was disconnected after the input Rand L floated, the output A

stayed high (5.02 Vdc).

(c) The input L was set high (5 Vdc) and the other two inputs Rl and T were kept

low (grounded). It was observed that only the output F was high and the other two outputs

were low. The outcome met the output state for the third possible input condition.

For the third possible input condition the input Rand T were floated while the input

L was high and the output A was low. It was observed that the output F and S were 2.62

7~

72

volt and 2.10 volt respectively. However, when the input L was floated, all the output

became low.

(d) When the input R was kept low (grounded), the other two inputs Land Twere

set high (5 Vdc). It was observed that only the outputs F and S were high. The outcome

met the output state for the fourth possible input condition.

For the fourth possible input condition when R was floated while the input L and T

were high, the output F and S remained unchanged. When the input Land T were floated

~ter being high while the input R is low, it took 10 seconds for the outputs F and S to drop

to zero.

(e) The input R was set high (5 Vdc) and the other two inputs L and T were kept

low (grounded). It was observed that the output F and A were high but the output S was

low. The outcome met the output state for the fifth possible input condition.

For the fIfth possible input condition when the input R was floated after being high

while the inputs Land T were grounded, the output A and F remained high. Next both

inputs L and T were floated but no change in the state of either one of the outputs was

observed.

(f) The input L was set low but the other two inputs were kept high (5 Vdc). It

was observed that only the output F was high and the other two outputs were low. The

outcome met the output state for the sixth possible input condition.

For the sixth possible input condition when the input R was floated after being

high, the output F remained high. When the input T was floated, the output F and A stayed

high for two seconds and then dropped to zero.

(g) Both inputs R and L were set high but the input T was kept low. It was

observed that only the output A was high. The outcome met the output state for the seventh

possible input condition.

73

For the seventh possible input condition when the input R and L were high and the

input T was floated, the outputs remained unchanged. Even when the input R andL were

floated, no change in the state of inputs was noticed.

(h) All the inputs R, L, and T were set high (5 Vdc). It was found that all the

outputs were low. The outcome met the output state for the eighth possible input

condition.

For the eighth possible input condition the inputs R, L, and T were floated one after

the other but no change in the state of outputs was observed. All the outputs remained in

low state.

(i) It was found that leaving anyone of the inputs in the floating state would cause

the state of the outputs to be unstable and unpredictable.

G) A false triggering occurred during the simulation of the model due to the state up

of an electric compressor which was in use nearby while the inputs floated. This proved

that the state of the outputs could be unpredictable if any of them are floated.

(k) By changing the state of an input for any possible input condition not only

changed the state of one output but also affected the state of the other outputs as well. This

proved that the system was interactive.

(1) It was found that the I/O function could easily be altered by modifying the

program for other tasks. This proved the flexibility of the microprocessor-based system.

(m) The software as well as the hardware functioned properly. No major problem

occurr~d during the simulation of the model.

5. 2 Conclusions

There are three major purposes for this study. The objectives and associated major

findings are outlined below.

1. Identify a technique for analysis and design of multivariable interactive control

systems which have interaction bonds.

74

Section 3.2 reveals that in the design of multi variable control systems obtaining an

adequate process model is crucial. The relative gain array (RGA) method of Bristol is very

useful for multivariable process involving interactions.

Section 3.3 identified canonical structures as the most important approach for

detennining the input/output behavior of the multi variable process.

Section 3.5 explains that the state representation of multivariable systems has

several advantages over the transfer matrix notation. These techniques would be applicable

if the system is intended to operate in continuous mode. However, since the automobile

engine model has a discrete nature, setting up Boolean equations is found to be the most

effective technique for solving the multivariable discrete (two state) process with interaction

bonds.

2. Apply the technique to an industrial discrete control system model involving

multivariable interaction.

Section 4.6.1 presents the algorithm for an automobile engine control system model

having three input measured variables and three output controlle-d variables with interaction

between the input and output variables. Based on the algorithm, an I/O truth table is

developed for the model in section 4.6.2.

3. Develop a microprocessor-based system to solve the industrial discrete control

system model.

Section 4.6.3 presents the software developed for the model based on the

MC68HC11 Motorola single-chip microcomputer Opcode Maps. The program was

debugged and run. The inputs were simulated with a regulated dc power supply based on

the model algorith given in Table 2 both in sequence and randomly. The output states were

monitored on a DVM.

75

The output states matched expectations listed in Table 2. To design and implement

a microprocessor-based control system, the following steps should be taken into

consideration.

To design and implement a microprocessor-based control system, the following

steps should be taken into consideration.

(a) Analysis of the control problem.

The nature of the control problem needs to be identified. It should be determined

whether the control system can be operated in continuous or discrete mode.

(b) Fonnulation of a potential approach to solve the problem. Proper techniques

should be employed to solve the problem. For instance, if a multivariable interaction

control process has a continuous nature, then state space approach can be considered as one

of the alternatives. If the process is discrete, ON/OFF control approach can be an

alternative for implementation of an efficient and inexpensive system.

(c) Implementation of Algorithms (control laws) which simply defmes the

relationship between input and output variables written in the fonn of equations.

(d) Selection of a microprocessor-based system. An appropriate microprocessor

based system should be chosen based on required speed and memory capacity to perfonn a

particular task.

(e) Development of software. It is very important to draw a flow chart for any

process before attempting to write the program. For some common industrial applications,
.-

software packages are available at a reasonable price.

(f) Testing and modifying if necessary.

(g) System interfacing to the real world for the process control.

5.3 Recommendations

Based on this study, the following recommendations are made.

(a) Model the effect of noise disturbances on the digital system.

76

(b) Expand the study to include continuous signals, AID and D/A converters.

(c) Investigate the state space approach as an alternative to the Bristol array

approach.

(d) Research other models of microprocessor systems.

(e) Varify the results of the study with actual systems instead of models.

Bibliography

BIBLIOGRAPHY

1. Advance Information on HCMOS Single-Chip Microcomputer, Motorola, 1985.

2. Bateson, Robert, Introduction to Control System Technology, Merrill Publication Co.,
Ohio, 1980.

3. Bibbero, Robert J.; Stern, David M., Microprocessor Systems Interfacing and
Applications, John Wiley and Sons, 1982.

4. Camp, R. C.; Smay, T. A.; Triska, C. 1. Microprocessor Systems Engineering,
Matrix Publishers, Oregon, 1979.

5. Cannon, Don L.; Luecke G., Understanding Microprocessors, Texas Instruments,
Inc., 1986.

6. Considine, Douglas M., Process Instruments and Controls, McGraw-Hill, New York,
1982.

7. Harrison, H. L.; Bollinger, 1. C., Automatic Controls, lntext Educational Publishers,
New York, 1969.

8. Isermann, Rolf, Digital Control Systems, Springer-Verlag, NY, 1981.

9. Johnson, Curtis D., Microprocessor-Based Process Control, Prentice-Hall, New
Jersey, 1984.

10. Kucera, Vladimir, Discrete Linear Control, John Wiley and Sons, Prague, 1979.

11. Kuo, Benjamin C., Automatic Control Systems, Prentice-Hall, N,1., 1982.

12. Lee, Edwin, "Design and Document Microprocessor Systems for Easy Maintenance",
Automatic Control Conference, 1977.

13. Leigh, J. R., Applied Digital Control, Prentice-Hall, N.J., 1985.

14. Maloney, Timothy J., Industrial Solid-State Electronics, Prentice-Hall, N.J., 1986.

15. M68HC11 Programmer's Reference Manual, Motorola, 1986.

16. Peatman, John B., Microcomputer-Based Design, McGraw-Hill, N.Y., 1977.

17. Radke, F. "Identification and System Parameter Estimation", Vol. 2,1977.

18. Singh, Madan G., Elloy, Jean-Pierre, Mezencev, R., Munro, Neil, Applied Industrial
Controls, Pergamon Press, N.Y., 1980.

19. Slater, M.; Bronson, B., Practical Microprocessors, Hewlett-Packard Co., 1979.

20. Tao, T. F., Yehoshua, D. Bar, Martinez, R., "Applications of Microprocessors in
Control Problems", Automatic Control Conference, 1977.

77

78

21. The Staff of Buck Engineering Co., Inc., Microprocessor Concepts and Applications,
Lab-Volt, 1983.

22. Tokheim, Roger L., Microprocessor Fundamentals, McGraw-Hill, N.Y., 1983.

23. Wist, A. 0.; Meiksin, Z. H., Electronic Design of Microprocessor-Based Instruments
and Control Systems, Prentice-Hall, N.J., 1986.

LITERATURE SEARCH

Alexandridis, Nikitas A., Microprocessor System Design Concept, Computer Science
Press, MD, 1984.

Arnold, James T., Simplified Digital Automation with Microprocessors, Academic Press,
1979.

Aumiaux, Michel, Microprocessor Systems, Wiley, NY, 1982.

Auslander, David M., Introducing Systems and Controls, McGraw-Hill, 1974.

Bibbero, Robert T., Microprocessor Systems, Wiley, NY, 1982.

Bibbero, Robert J., Microprocessors in Industrial Control, ISA, 1982.

Bishop, Albert B., Introduction to Discrete Linear Controls, Academic Press, 1975.

Cahill, S. J., Digital and Microprocessor Engineering, Halsted Press, NY, 1982.

Chesmond, C. 1., Control System Technology, Edward Arnold Publication, London,
1984.

Considine, Douglas M., Process Instruments and Controls Handbook, McGraw-Hill,
1974.

Davis, Thomas W., Experimentation with Microprocessor Applications, Reston Publishing
Co., VA, 1981.

D'Azzo, John J., Linear Control System Analysis and Design, McGraw-Hill, NY, 1981.

Dransfield, Petter, Engineering Systems and Automatic Control, Prentice-Hall, NJ, 1968.

Elbert, Theodore F., Estimation and Control of Systems, Van Nostrand Reinhold Co.,
NY, 1984.

Friedland, Bernard, Control System Design, McGraw-Hill, NY, 1986.

Gapal, M., Modern Control Theory, Wiley, NY, 1984.

Garner, K. C., Introduction to Control System Performance Measurements, Pergamon
Press, Oxford, 1968.

Groover, Mikell P., Automation, Production Systems, and Computer-Aided
Manufacturing, Prentice-Hall, NJ, 1980.

Holland, R. C., Microcomputers for Process Control, Pergamon Press, Oxford, 1983.

79

80

Hsu, Jay C., Modern Control Principles and Applications, McGraw-Hill, NY, 1968.

Isermann, Rolf, Digital Control Systems, Springer-Verlay, Berlin, 1981.

Jacobites, O. L. R., Introduction to Control Theory, Clarendon Press, Oxford, 1974.

Karl, J. Astrom, Computer Controlled System's, Prentice-Hall, NJ, 1984.

Kucera, Vladimir, Discrete Linear Control, Wiley, NY, 1976.

Kuo, Bengamin C., Automatic Control Systems, Prentice-Hall, NJ, 1982.

Lago-Gladwyn Vaile, Control System Theory, Ronald Press, NY, 1962.

Leigh, J. R., Applied Digital Control, Prentice-Hall, U.K., 1985.

Lytel, Allan, Digital Computers in Automation. Photofact, 1966.

Manifold, George 0., Automatic Control for Power and Process, McGraw-Hill, NY,
1964.

Mishkin, Eli Braun, Ludwing J. R., Adaptive Control Systems, McGraw-Hill, 1961.

Mohler, Ronald R., Bolinear Control Processes, Academic Press, NY, 1973.

Motorola Semiconductor Product Inc., Mkroprocessor Applications Manual, McGraw
Hill, NY, 1975.

Netushil, A., Theory of Automatic Control, Mir Publishers, Moscow, 1978.

Ogata, Katsuhiko, State Space Analysis of Control Systems, Prentice-Hall, NJ, 1967.

Phillips, Charles L., Digital Control System Analysis and Design. Prentice-Hall, NJ,
1984.

Popov, E. P., The Dynamics of Automatic Control Systems, Addison-Wesley Publishing
Co., 1962.

Savant, C. J., Control System Design, McGraw-Hill, NY, 1964.

Schmitt, Neil M., Understanding Automation Systems, Texas Instruments Publishing,
1984.

Sensicle, Allan, Introduction to Control Theory for Engineers, Blaclde and Sons Press,
London, 1968.

Singh, Madan G., Applied Industrial Control, Pergamon Press, NY, 1980.

Smardzewski, Richard R., Microprocessor Programming and Applications for Scientists
and Engineers. Elsevier Publishing Co., NY, 1984.

81

Steckhahn, A. D., Industrial Applications for Microprocessors Reston Publishing Co
VA, 1982. ,.,

Stout, David F., Microprocessor Applications Handbook, McGraw-Hill, NY, 1982.

Thomas, John B., Zadeh, Lotfi A., Introduction to Statistical Dynamics of Automatic
Control System, Dover Publishing Co., NY, 1960.

Tredennick, Nick, Microprocessor Logic Design, Digital Press, MA, 1987.

Journals and Conferences

Bruijn, P. M., Focop: An In-Line Control Package Written in FORTH, Mini and
Microcomputers and Their Applications. Proceedings of the ISMM International
Symposium, Sant Feliu de Guizols, Spain, 1985.

Bruijn, P. M., An In-Line Control Package Written in Forth, Microcomputer Applications,
USA, Vol. 5, No.2, 1986.

Changqiao, L., Corke, P. 1., Jamieson, 1. D., Anderson, J. H., Simulation and Real-Time
Control of Some Dynamical Systems Using Mini-and Microcomputers, Second
Conference on Control Engineering 1982, Newcastle, Australia, 1982.

Cutler, C. R., Dynamic Matrix Control of Imbalanced Systems, ISA Trans., vol. 21, no.
1, 1982.

Cutler, C. R., Perry, R. T., Real Time Optimization with Multivariable Control is Required
to Maximize Profits, Comput & Chem. Eng., vol. 7,. no. 5, 1983.

Evans, F. J., Ioannou, J., Structural Analysis of Decentralized Control Systems, IEE
Colloquium on 'The Use of Personal Computers in Control Systems Analysis',
London, England, May 23, 1986.

Frederick, D. K., Draft, R. P., Sadeghi, T., Computer-Aided Control System Analysis
and Design Using Interactive Computer Graphics, IEEE Control Syst. Mag., vol.
2, no. 4, December 1982.

Furuta, K., Hatakeyama, S., Kominami, H., Structural Identification and Software
Package for Linear Multivariable Systems, Automatica, vol. 17, no. 5, September
1981.

Gonzalez de Santos, P., A Software Package for Computer Aided Design of Multivariable
Control Systems, Software for Computer Control 1982, Proceedings of the Third
IFACIIFIP Symposium, IFAC, IFIP, Madrid, Spain, 1983.

Gossman, G. 1., Buncombe, A., The Application of A Microprocessor-Based
Multivariable Controller to a Gold Milling Circuit, Automation in Mining, Mineral
and Metal Processing 1983, Proceedings of the 4th IFAC Symposium IFAC,
Helsinki, Finland, 1984.

82

Hae-Young-Jung, Won-Kyoo-Lee, Modified Derivative Decoupling Control of Nonlinear
Interacti.ve Systems, .Control.Sci~nce and Technology for the Progress of Society,
Proceedings of the EIghth Tnenmal World Congress of the International Federation
of Automatic Control, Kyoto, Japan, 1982.

Hulbert, D. G., Braae, M., Multivariable Control of A Milling Circuit at East Driefontein
Gold Mine, Nat. Inst. Metall., Randburg, S. Africa, 1981.

Jamsa, S. L., Melama H., Penttinen, 1., Design and Experimental Evaluation of a
Grinding Circuit Control system, Automation in Mining, Mineral and Metal
Processing 1983, Proceedings of the 4th IFAC Symposium, IFAC, Helsinki,
Finland, August 22-25, 1983.

Jones, A. H., CAD/CAT of Digital PID Controllers for Multivariable Plants, IEE
Colloquium on 'New Developments and Applications of CAD Packages to Control _.
System Design', lEE, London, England, May 15, 1985.

Kotta, D., On-Line Eigenvector Algorithms for the Identification of Dynamic Systems,
Identification and System Parameter Estimation 1982, Proceedings of the Sixth
IFAC Symposium, IFAC, Washington, DC, 1983.

Konor, A. F., Mahesh, J. K., Computer-Aided Engineering of Large-Scale Process
Control Systems, On-Line Process Simulation Techniques in Industrial Control
Eleventh Annual Advanced Control Conference, Purdue University, 1985.

Lehtinen, B., Geyser, L. C., AESOP A Computer-Aided Design Program for Linear
Multivariable Control Systems, Proceedings of the 1982 American Control
Conference, Arlington; VA, 1982.

MacFarlane, A. G. J., Hung, Y. S., Gains, Phases and Angles (Multivariable Feedback
Systems), Bridge Between Control Science and Technology, Proceedings of the
Ninth Triennial World Congress ofIFAC, Budapest, Hungary, 1985.

Maciejowski, J. M., Jeanes, S. E., The Cambridge Linear Analysis and Design Programs
CLADP, Proceedings of the 1982 American Control Conference, Arlington, V A,
1982.

Mensah, S., "Potential Benefits of a CAD Package for Designing Multivariable Control
Systems," Canadian Nuclear Society/American Nuclear Society International
Conference on Numerical Methods in Nuclear Engineering, Montreal, Que.,
Canada, 1983.

Mensah, S., Frketich, G., Mvpack: A Computer-Aided Design Tool for Multivariable
Control Systems, Atomic Energy Canada Ltd., Chalk River, Ont., 1985.

Owens, D. H., Chotai, A., Robust Controller Design for Linear Dynamic Systems Using
Approximate Models, lEE Proc. D., vol. 130, no. 2, March 1983.

Polak, E., Interactive Software for Computer-Aided-Design of Control Systems via
Optimization, Proceedings of the 20th IEEE Conference on Decision and Control
Including the Symposium on Adaptive Processes, IEEE, San Diego, CA, 1981.

APPENDIX 1

Software Specification for M68HCll Motorola

Single-Chip Microcomputer

83

Polak, E., Optimization-Based Computer-Aided-Design of Control systems, Proceedings
of the 1981 Joint Automatic Control Conference, AIChE, ASME, IEEE, ISA,
Charlottesville, VA, 1981.

Polak, E., Siegel, P., Wuu, T., Nye, W. T., and Mayne, D. Q., Delight, Mimo: An
Interactive, Optimization-Based Multivariable Control System Design Package,
IEEE Control Syst. Mag., vol. 2, no. 4, December 1982.

Rauch, H. E., Automated Synthesis of Control Systems: A Design Approach,
Applications of Nonlinear Programming to Optimization and Control, Proceedings
of the 4th IFAC Workshop, IFAC, San Francisco, CA, 1984.

Roberts, G. N., Winch, K. J., Real-Time Digital Simulation of A Gas Turbine Marine
Propulsion Plant, Proceedings of the 1985 Summer Computer Simulation
Conference, SCS, Chicago, IL, 1985.

Sadeghi, T., Wozny, M. J., Computer Aided Multivariable Control System Design
Package, Proceedings of the 1982 American Control Conference, Arlington, VA,
1982.

Schafer, R. M., Computer Requirements for Computer Aided Multivariable Control
System Design, Proceedings of the Second Annual Workshop on Interactive
Computing: CAD/CAM: Electrical Engineering Education, IEEE, CAD/CAM
Consortium, Washington, DC, 1983.

Schafer, R. M., Sain, M. K., Cardiad Approach to system Dominance with Application to
Turbofan Engine Models, Conference Record of the Thirteenth Asilomar
Conference on Circuits, Systems and Computers, Naval Postgraduate School,
Monterey University, Santa Clara, IEEE, 1979.

Seraji, H., Design of Digital Two-and Three-Term Controllers for Discrete-Time
Multivariable Systems, Int. J. Control, vol. 38, no. 4, October 1983.

Stein, G., Pratt, S., Multivariable Design Tools, AGARD Lecture Series, Multivariable
Analysis and Design Techniques, Ankara, Turkey, September 1981.

van Alste, J. A., Schoute, A. L., Vaartjes, S. R., and Boom, H. B. K., Interactive
Control of Isolated Heart Experiments, Computers in Cardiology, Ninth Meeting of
Computers in Cardiology, IEEE, Seattle, WA, 1983.

van der Weiden, A. J. J., Bosgra, O. H., The Analysis of System Properties Relevant for
Multivariable Control System Design, J. A., vol 23, no. 1,1982.

Wright, S. M., Microsim, A Control System Simulation and Analysis Package for the IBM
PC, IEE Colloquium on 'The Use of Personal Computers in Control Systems
Analysis', London, England, May 23, 1986.

2.1 INTRODUCTION

SECTION 2
REGISTER DESCRIPTIONS

This section describes the M68HC11 MCU registers that are avai lable to programmers. In addi·
tion to being able to execute all M68DD and M68D1 MCU instructions, the M68HC11 MCU uses a
four-page opcode map to allow execution of 91 new opc6des. Seven registers, described in the
following paragraphs, are shown in Figure 2·1. Figure 2·2 illustrates the interrupt stacking order.

15

15

15

15

15

M68HC11PM/AD

017
D

IX

IY

SP

PC

I S X H I N Z V

I I I

o I a·BIT ACCUMULATORS A AND 8
o OR 16·81T DOUBLE ACCUMULATOR D

o I INDEX REGISTER X

o I INDEX REGISTER Y

o I STACK POINTER

o I PROGRAM COUNTER

C J CO NOITION CODE REGISTER

CARRY/BORROW FROM MSB
OVERfLOW
ZERO
NEGATIVE
~INTERRUPT MASK
HALF CARRY (FROM 81T :11
X·INTERRUPT MASK
STOP DISABLE

Figure 2·1. Programming Model

1.-47]

MOTOROLA
2· '

2.2 ACCUMULATORS A AND B

STACK

Pel SP - - SP BEFORE INTERRUPT

SP·,

SP·2

SP·3

SP·4

SP·5

Sp·S

SP·7

SP·8

PeH

IYl

IYH

IXl

IXH

ACCA

ACCS

CCR

Sp·g - - SP AfTER INTERRUPT

Figure 2·2. Interrupt Stacking Order

Accumulator A and accumulator B are general purpose a·bit registers used to hold operands and
results of arithmetic calculations or data manipulations. These accumulators can be can·
catenated into a single 16-bit ?ccumulator called the D accumulator.

2.3 INDEX REGISTER X (IX)

The 16-bit index register X is used for indexed mode addressing. It provides a 16-bit indexing
value which is added to an a·bit offset provided in an instruction to create an effective address.
The index register X can also be used as a counter or as a temporary storage register.

2.4 INDEX REGISTER Y (IV)

The 16-bit index register Y is also used for indexed mode addressing similar to the index register
X; however, all instructions using the index register Y require an extra machine code byte and an
extra cycle of execution time since the instructions are two byte opcodes.

2.5 STACK POINTER (SP)

The stack pointer is a 16-bit register that contains the address of the next free location on the
stack. The stack is configured as a sequence of last·in·first-out read/write registers which allow
important data to be stored during interrupts and subroutine calls. Each time a new byte is add
ed to the stack (push), the stack pointer is decremented; whereas, each time a byte is removed
from the stack (pull) the stack pOinter is incremented.

2.6 PROGRAM COUNTER (PC)

The program counter is a 16·bit register that contains the address of the next instruction to be
executed.

MOTOROLA
2-2

M68HC11PM/AD

2.1 CONDITION CODE REGISTER (CCR)

The condition code register is an a·bit register in which each bit signifies the results of the in·
struction just executed. Each bit can be individually tested by a program and a specific action
can be taken as a result of the test. Each condition code register bit is described in the following
paragraphs.

2.1.1 Carry/Borrow (C)

The carry/borrow bit is set if there was a carry or borrow out of the arithmetic logic unit (ALU)
during the last arithmetic operation. The C bit is also affected during the shift and rotate
instructions.

2.1.2. Overflow (V)

The overflow bit is set if there was an arithmetic overflow as a result of the operation; otherwise,
the V bit is cleared.

2.1.3 Zero (Z)

The zero bit is set if the result of the last arithmetic, logic, or data manipulation operation was
zero; otherwise, the Z bit is cleared. '

2.7.4 Negative (N)

The negative bit is set if the result cif the last arithmetic, logic, or data manipu lation operation
was negative; otherwise, the N bit is cleared.

2.7.5 I Interrupt Mask (I)

The interrupt mask bit is set either by hardware or program instruction to disable (mask) all
maskable interrupt sources (both external and internal).

2.7.6 Half Carry (H)

The half carry bit is set to a logic one when a carry occurs between bits 3 and 4 of the arithmetic
logic unit during an ADD, ABA, or ADC instruction; otherwise, the H bit is cleared.

2.7.7 X Interrupt Mask (X)

The X interrupt mask bit is set only by hardware (RESET or XIRQ acknowledge), and it is cleared
only by program instruction (TAP or RTI).

2.7.8 Stop Disable (S)

The stop disable bit is set to disable the STOP instruction, and cleared to enable the STOP in
struction. The S bit is program controlled. The STOP instruction is treated as no operation (NOP)
if the S bit is set.

M68HC11PMI AD MOTOROLA
2·3/2·4

Opcod .. Operands

00
01
02
03

04
05
06
07

08
09
OA
OB

OC
00
OE
OF

10
11
12 dd mm rr

13 dd mm rr

14 dd mm

15 dd mm

16
17

18
19
1A
18

1C ff mm

10 ff mm

1E ff mm rr

1F ffmmrr

20 rr
21 rr
22 rr
23 rr

24 rr
25 rr
26 rr
27 rr

MOTOROLA
3-10

Table 3-1. Opcode vs Instruction Cross Reference
AOOR

Instruction Mode Cycla Opcode Operands Instruction

TEST INH - 2S rr BVC (reI)
NOP INH 2 29 rr BVS (rell
10lV INH 41 2A rr BPL (reI)
FolV INH 41 28 rr 8MI (reI)

lSRO INH 3 2C rr BGE (rell
ASLD/lSlD INH 3 20 rr BlT (rell
TAP INH 2 2E rr 8GT (rell
TPA INH 2 2F rr elE (reI)

INX INH 3 30 TSX
OEX INH 3 31 INS
CLV INH 2 32 PULA
SEV INH 2 33 PULB

ClC INH 2 34 DES
SEC INH 2 35 TXS
CLI INH 2 36 PSHA
SEI INH 2 37 PSHB

SBA INH 2 38 PULX
CBA INH 2 39 RTS
BRSET (apr) OIR 6 3A ABX

(msk) 38 RTI
(rei)

BRClR(opr) OIR 6
(msk)
(reI)

3C PSHX
3D MUL
3E WAI
3F SWI

BSET (opr) OIR 6
(msk)

BCLR (opr) OIR 6
(msk)

TAB INH 2

40 NEGA
43 COMA
44 lSRA
46 RORA

TBA INH 2 47 ASRA

(Page 2 Switch)
OAA INH 2
(Page 3 Switch)

48 ASLA/lSlA
49 ROLA
4A CECA

ABA INH 2 4C INCA

BSET (oprl INo.X 7
(msk)

BCLR (oprl 'INO.X 7

40 TSTA
4F CLRA
50 NEGB

(msk) 53 COMB

BRSET (opr) INO.X 7 54 lSRB

(msk) 56 RORB

(reI) 51 ASRB / ASlB

BRCLR (opr) INo.X 7 58 lSLB
(mskl 59 ROLB
(rail SA CECB

BRA (rei) REL 3 · 5C INCB

BRN (ren REL 3 50 TSTB
BHI (ral) REL 3 SF CLRB
BlS (reI) REL 3 60 H NEG (apr!

BCC/ BHS (reI) REL 3 63 ff COM (opr)

BCS/BlO Irel) REL 3 64 ff LSR (oprl
BNE (rell REL J 66 ff ROR (oprl
BEQ (reI) REL 3 or H ASR (opr!

ADD'R
MO'de Cycle

r~El 3
REl 3
REL 3
REl 3

REl 3
REL 3
REL 3
REL 3

INH 3
INH 3
INH 4
INH 4

INH 3
INH 3
INH 3
INH 3

INH 5
INH 5
INH 3
INH 12

INH 4
INH 10
INH 14
INH 14

INH 2
INH 2
INH 2
INH 2

INH 2
INH 2
INH 2
INH 2

INH 2
INH 2
INH 2
INH 2

INH 2
INH 2
INH 2
INH 2

INH 2
INH 2
INH 2
INH 2

INH 2
INH 2

IND.X 6
IND.X 6

IND.X 6
IND.X 6
IND.X 6

M68HC11 PM/ AD

Table 3-1. Opcode vs Instruction Cross Reference (Continued)
AOOR

Ope ode Operands Instruction Mode Cycle Opcode Operands Instruction

68
\

H ASLlLSL INO,X 6 Al H CMPA (opr)
69 H ROL (opr) INO,X 6 A1 H SBCA (opr)
6A ff DEC (opr) INO,X 6 A3 H SU6D (opr)
6C ff INC (opr) INO,X 6 A4 H ANDA (opr)

60 ff TST (opr) INO,X 6 AS H BITA (opr)
6E H JMP (opr) INO,X 3 A6 H LDAA (opr)
6F ff CLR (opr) INO,X 6 A7 H STAA (opr)
70 hh II NEG (opr) EXT 6 A8 H EORA (opr)

73 hh II COM (opr) EXT 6 A9 H ADCA (opr)
74 hh II LSR (opr) EXT 6 AA H DRAA (opr)
76 hh II ROR (opr) EXT 6 AB H AODA (opr)
T7 hh I ASR (opr) EXT 6 AC H CPX (opr)

78 hh ASLlLSL (opr) EXT 6 AD H JSR (opr)
79 hh ROL (opr) EXT 6 AE H LDS (opr)
7A hh DEC (opr) EXT 6 AF H STS (opr)
7C hh INC (opr) EXT 6 60 hh II SU6A (opr)

70 hh TST (opr) EXT 6 61 hh II CMPA (opr)
7E hh JMP (opr) EXT 3 62 hh)I S6CA (opr)
7F hh CLR (opr) EXT 6 63 hh II SUBD (opr)
80 ii SUBA (opr) IMM 2 64 hh" ANDA (opr)

81 ii CMPA (opr) IMM 2 65 hh II BITA (opr)
82 ii SBCA (opr) IMM 2 66 ·hh" LDAA (apr)
83 II kk SUBO (opr) IMM 4 67 hh)I STAA (opr)
84 ii ANDA (opr) IMM 2 88 hh II EORA (apr)

85 ii BITA (opr) IMM 2 89 hh II AOCA {opr!
86 ii LDAA (opr) IMM 2 BA hh" DRAA {opr!
88 ii EORA (opr) IMM 2 BB hh" AODA (opr)
89 ii ADCA (opr) IMM 2 BC hh II CPX (opr)

8A ii ORAA (opr) IMM 2 BD hh" JSR (opr)
8B ii ADDA (opr) IMM 2 BE ii LOS (opr)
8C li kk CPX (opr) .IMM 4 6F ii STS (opr)
80 rr BSR (rell REL 6 CO ii SUBB (apr)

8E jj kk LOS (opr) IMM 3 C1 hh II CMPB (opr)
BF XGDX INH 3 C2 hh" SBCB (apr)
90 dd SUBA (opr) DIR 3 C3 li kk ADOD (opr)
91 dd CMPA (opr) DIR 3 C4 ii ANOB (apr)

92 dd SBCA (cpr) DIR 3 C5 ii BIT6 (opr)
93 dd SUBO (opr) DIR 5 C6 ii LOAB (opr)
94 dd ANDA (opr) DIR 3 CB ii EaRS (opr)
95 dd BITA (opr) DIR 3 C9 ii ADCS (opr)

96 dd LDAA (opr! DIR 3 CA ii DRAB (opr)
97 dd STAA (opr) DIR 3 CB ii ADOB (opr)
98 dd EORA (opr) DIR 3 CC li kk LOD (opr)
99 dd ADCA (opr) DIR 3 CD (Page 4 Switch)

9A dd ORAA (cpr) DIR 3 CE li kk LOX (opr)
9B dd ADDA (opr) DIR 3 CF STOP
9C dd CPX(opr) DIR 5 DO dd SUBB lopr)
90 dd JSR (opr) DIR 5 01 dd CMPB (opr)

9E dd LOS (opr) OIR 4 02 dd S6CB (apr)
9F dd STS (opr) OIR 4 03 dd ADOD (opr)
AO H SUBA {opr! (ND,X 4 04 dd ANOB (opr)

M68HC11 PM/AD

ADOR !
Mode I Cycle

IND,X 4
IND,X 4
INCi ,X 6
INO.X 4

IND.X 4
IND.X 4
IND,X 4
IND.X 4

IND,X 4
INO,X 4
IND,X 4
IND.X 6

IND,X 6
INO.X 5
IND,X 5
EXT 4

EXT 4
EXT 4
EXT 6
EXT 4

EXT 4
EXT 4
EXT 4
EXT 4

EXT 4
EXT 4
EXT 4
EXT 6

EXT 6
EXT 5
EXT 5
IMM 2

IMM 2
IMM 2
IMM 4
IMM 2

IMM 2
IMM 2
IMM 2
IMM 2

IMM 2
IMM 2
IMM 3

IMM 3
INH 2
OIR 3
DIR 3

DIR 3
DIR 5
DIR 3

MOTOROLA
3·11

Ope o de Operands

05 dd
0 6 dd
07 dd
08 dd

09 dd
OA dd
DB dd
DC dd

DO dd
DE dd
OF dd
EO H

El H
E2 H
E3 H
E4 H

E5 H
E6 H
E7 ff
EB ff

E9 H
EA H
EB ff
EC ff

ED H
EE ff
EF ff
FO hh

Fl hh
F2 hh
F3 hh
F4 hh

F5 hh
F6 hh
F7 hh
F8 hh

F9 hh
FA hh
FB hh
FC hh

FD hh
FE hh
FF hh

1808

1809
181C ff mm

1810 Hmm

18 IE ff mm rr

MOTOROLA
3-12

Table 3-1. Opcode vs Instruction Cross Reference (Continued)

AOOR
Instruction Mode Cycle Opcode Operands Instruction

BITB (apr) OIR 3 18 IF H mm rr BRCLR (opr)
LOAB (apr) OIR 3 (msk)
STAB lopr) OIR 3 (rell
EORB (apr) OIR 3 lB 30 TSY

AOCB lopr) OIR 3
ORAB lopr) OIR 3

1835 TYS

1838 tf PULY

AOOB (opr) OIR 3 183A ASY
LOO (opr) OIR 4 183C PSHY

5TO (apr) OIR 4
LOX (apr) OIR 4

1860 tf NEG (opr)

1863 tf COM (opr)

STX(opr) OIR 4 1864 H LSR (opr)
SUBB (opr) INO ,X 4 1866 H ROR (opr)

CMPB (opr) INO,X 4
SBCS (opr) INO,X 4

1867 H ASR lopr)
1868 ff ASL/ LSL l opr)

AOOO (opr) INO,X 6 1869 ff ROL lopr)
AN DB (apr) INO,X 4 186A ff DEC lopr)

BITB (opr) INO,X 4
LOAS (opr) INO,X 4

186C ff INC (opd
1860 ff TST lopr)

STAB (opr) INO,X 4 186E ff JMP (opr)
EORS (opr) INO,X 4 186F ff CLR lopr)

AOeB (apr) INO,X 4
ORAB (opr) INO,X 4

188C jj kk CPY (opr)

188F XGDY

AOOB (apr) INO,X 4 189C dd CPY lopr)
LOO (apr) INO,X 5 18AO H SUSA lopr)

STO (opr) INO,X 5
LOX (opr) INO,X 5

18Al H CMPA (opr)
18Al H SBCA lopd

STX(opr) INO,X 5 18 A3 ff SUBO [opr)
SUBB (opr) EXT 4 18 A4 H ANDA (apr)

CMPB (opr) EXT 4
SBCS (apr) EXT 4

18 A5 ff BITA [opr)

18 A6 ff LDAA (apr)

AOOO (apr) EXT 6 18 A7 ff STAA (apr)
ANOS (opr) EXT 4 18 AB H EDRA (apr)

BITB (opr) EXT 4
LOAS (opr) EXT 4

18 A9 ff ADCA (apr)
18AA H ORAA (opr)

STAB (opr) EXT 4 18 AS H AOOA lopr)
EORS (opr) EXT 4 18 AC H CPY lopr)

AOCB (opr) EXT 4 18AD H JSR (opr)

ORAB (apr) EXT 4 18 AE H LOS (opr)

A008 (opr) EXT 4 18 AF H STS (opr)
LOO (apr) EXT 5 18 se hh II CPY (opr)

STO (apr) EXT 5 18 CE ti kk LOY (opr)

LOX (opr) EXT 5 18 DE dd LOY (opr)

STX (apr) EXT 5 18 DF dd STY (opr)
INY INH 4 18 EO H SUBB (opr)

DEY INJ1 4 18 El H CMPS (opr)

BSET (opr) IND,Y 8
(msk)

BCLA (opr) IND,Y 8
(msk)

18 E2 H SSCS lopr)
18 E3 H AOOO (apr)

18 E4 tf ANOB (opr)

BRSer (opr) IND,Y 8 18 E5 H BITB (apr)

Imsk) 18 E6 ff LDAB (opr)

(rell 18 E7 ff STAB (apr)

AOOR
Mode Cycle

INO,Y 8

INH 4
INH 4

INH 6

INH 4
INH 5

IND,Y 7
)ND ,Y 7

INO,Y 7

INO,Y 7
IND,Y 7
IND ,Y 7

INO,Y 7
INO,Y 7
IND,Y 7
IND,Y 7

INO ,Y 4
INO,Y 7
IMM 5
INH 4

DIR 6
IND,Y 5
IND,Y 5
IND,Y 5

IND,Y 7
IND,Y 5
IND,Y 5
IND ,Y 5

IND,Y 5
IND,Y 5
INO, Y 5
IND,Y 5

IND,Y 5
INO ,Y 7
IND,Y 7
INO, Y 6

INO,Y 6
EXT 7
IMM 4
DIR 5

DIR 5
IND,Y 5
IND,Y 5

INO,Y 5
IND,Y 5
IND,Y 5

IND, Y 5
INO,Y 5
IND,Y 5

M68HC11 PM / AD

Table 3-1. Opcode vs Instruction Cross Reference (Concluded)

Opcode

18 E8
18 E9

18 EA
18 eB
18 ec
18 EO
18 EE
18 EF

18 FE
18 FF
1A 83

NOTES;
Cycle:

*

Operands Instruction

'H EORB (apr)
ff AOCS (apr)
ff ORAB (apr)
ff ADDS (apr)

If LOO (apr)
ff STO (apr)
ff LOY (oprl
ff STY (apr)

hh II LOY (apr)
hh II STY (oprl
ji kk CPO (apr)

AOOR
Mode Cycle

INO,Y 5
INO,Y 5
INO,Y 5
INO,Y 5

INO,Y 6
INO,Y 6
INO,Y 6
INO,Y 6

F.xT 6
EXT 6
IMM 5

ADOR
Opcode Operands Instruction Mr,de Cycle

1A 93 dd CPO (oprl .QIR B
lA A3 If CPO (apr) 1NO ,X 7
1A AC ff CPY(opr) INO,X 7
1A 93 hh II CPO {oprl EXT 7

lA EE ff LOY (apr) IND,X 6
lA EF ff STY (oprl IND,X 6

CO A3 ff CPO (apr) INO,Y 7

CO AC ff CPX (apr) INO,Y 7
CO EE ff LOX (apr) INO,Y 6

CO EF ff STX(opr) INO,V 6

** ..
Infinity or until reset occurs
12 cycles are used b89inning with the opcode fetch. A walt state is entered which remains in effect for an integer number
of MPU E·clock cycles (n) until an interrupt is recognized. Finally, two additional cycles are used to fetch the appropriate

interrupt vector (total = 14 + nl.

Operandls):
dd 8-bit direct address $0000 - $OOFF. (High byte assumed to be $00.)
ff 8-bit positive oHset $00 (0) to $FF (255) added to index.
hh High order byte of 16-bit extended address.

One byte of immediate data.
li High order byte of 16-bit immediate data.
kit low order by1e at 16-bit immediate data.
I Low order byte of 16-bit extended address.
mm 8-bit mask (set bits to be affected),
rr Signed relative offset $80 (-118) to $7F { + 1271.

Offset relative to the address following the machine code oHset by1e.

M68HC11PM/AD

tWA 4,W3WWi MBJ#WM
MOTOROLA

3- 13

Table 3·2. Instructions vs. Addressing Mode Cross Reference

Sou'f'ce
Forrr,IJs) Operation

ABA Add Accumulators

ABX Add B toX

ABY Add B to Y

AOCA loprl Add with Carry to A

AOC8 (opr) Add with Carry to B

AODA (opr) Add Memory to A

ADOS (opr) Add Memory to a

AOOD lopr) Add H; .. 8it to 0

ANOAloprl AND A with Memory

ANOB (opr) AND a with Memory

ASL(opr) Arithmetic Shift left

ASLA
ASL8

ASLO Arithmetic Shift Left Doubl.

ASA (opr) Arithmetic Shift Right

ASAA
ASR8

acc (rell' e 'ancn if Carry Clear

8ClA (opr) Clear Bitls)
(mskl

BCS (rell Branch if Carry Set

BEQlrell Branch if,. Zero

BGE {retl Branch it:!: '" Zero

BGTlrell Branch if> Zero

BHI {rell Branch if Higher

MOTOROLA
3 .. 14

Bool •• n
Expras.ion

A ... S-A

IX.OO:B-IX

IY·OO:B-IY

A+M+C-A

S ... M ... C-B

A.M-A

B ... M-a

Dt-M:M ... 1-0

A'M-A

S-M-S

-D-illIDID-o
C b7 bO

O-CC. -::D- 0
C b15 bO

CO:r:illro-o
b7 bO C

?C:O

M-Imm)-M

?C31

?Z .. ,

H~ ED V.O

?Z ... (N eVI .. o
?C ... Z .. O

Addrsssing Machine Coding
Mode for (Huadecimall
Operand Opcoda Operandlsl

INH 1B

INH JA

INH 18 JA

AIMM 89 ii
A OIR 99 dd
A EXT 89 1'11'1 II
A INO,X A9 ff
A INO.Y 18 A9 ff

B IMM C9 ii
BOlA 09 dd
B EXT r9 1'11'1 II
B IND,X E9 tf
B IND,Y 18 E9 ff

AIMM S8 ii
A DIA 9S dd
A EXT B8 1'11'1 II
A IND,X AS H
A IND,Y 1S AS tf

B IMM C8 Ii
BOlA OS dd
8 EXT F8 hh II
a IND,X EB tf
a IND,Y 18 EB tf

IMM CJ il kk
OIA 03 dd
EXT F3 hh II
IND,X EJ H
IND, Y 18 EJ H

AIMM 84 ii
A DIR 94 dd
A EXT B4 hh II
A INO,X A4 H
A IND,Y 18 A4 ff

81MM C4 Ii
B aiR 04 dd
8 EXT F4 1'11'1 II
81NO,X E4 ff
8INO.Y 18 E4 ff

EXT 78 hh II
INO.X 68 ff
INO,Y 1868 ff

AINH 48
B INH 58

INH 05

EXT n hn II

INO,X 07 ff
IND.Y 1807 ff

AINH 47
81NH '!!iT

AEL 24 rr

OIA 15 dd mm
INO,X 10 ff mm
INO,Y 1810 ff mm

AEL 25 rr

AEL 27 rr

REL 2C rr

REL 2E rr

REL 22 rr

. • II U Condi~ion Codes ; > 5 X H I N Z \I C &:0 tJ

1 2 1. t t t t
1 J

2 4

2 2 t I t I I
2 J
3 4
2 4
3 5

2 2 I I t I t
2 J
J 4
2 4
J 5

2 2 t t t t 1
2 3
J 4

2 4

3 5

2 2 t I t I I
2 3
3 4
2 4
3 5

3 4 t t I t
2 5
3 6
2 6
3 7

2 2 . I I 0
2 3
3 4
2 4
3 5

2 2 t I 0 .
2 3
3 4
2 4
3 5

3 6 I t t t
2 6
J 7
1 2
1 2
1 J I t t t

3 6 t 1 1 I
2 6
3 7
1 2
1 2

2 3

J 6 . 1 I 0
J 7
4 8

2 J .
2 3
2 J .
2 J -
2 J

M68HC11PM/AD

Table 3-2. Instructions vs. Address Mode Cross Reference (Continued)

Sourc" Boolean
Addressing
Mode tor

Formls! Operation Expression Operand

BHS(rell Branch if Higher or Same 7 C =0 AEL
BITA (opr) Bitls) Test A with Memory A-M AIMM

A OIR
A EXT
A IND,X
A IND,Y

BITa (opr) Bills) Test B with Memory B-M alMM
a OIR
a EXT
a INO,X
a IND,Y

BlE Irell Branch if s Zero 7Z+(N 9VI-l AEL
BLO(rel) Branch if lower 7C=1 AEL
BlS I reI) Branch if lower or Same 7C+Z=1 REL
BlT(rel) Branch If<Zero 7N 9V:l AEL
BMI(ntH Branch if Minus 7 N= 1 AEL
BNE(rell Branch if Not.: Zero 7Z=0 AEL
BPL (rell Branch if Plus 7 N~O AEL

BRA (rell Branch Always 7 I =1 AEL

BRClR(opri Branch if Bit(s) Clear 7Me mm:Q OIR

(msk IND ,X
(rell IND,Y

BRN(rel) Branch Never 7 I =0 REL

BRSET(opr) Branch if Bitls) Set 7lMl e mm=0 OIR
Imsk) IND,X
I rei) IND,Y

BSETlopr) Set Bit(s) M+mm-M OIR
(msk) IND,X

IND,Y

BSR Irel) Branch to Subroutine See Special Ops AEL

BVClrel) Branch if Overflow Clear 7V=0 REL

BVS(rell Branch it Overflow Set 7V=1 REL

CSA Compare A to B A-B INH

CLC Clear Carry Bit O-C INH

Cli Clear Interrupt Mask 0-1 INH

CLR (opr! Clear Memory Byte O-M EXT
INO,X
IND,Y

ClRA Clear Accumulator A O-A A INH

ClRB Clear Accumulator B 0-8 B INH

CLV Clear Overflow Flag O-V INH

CMPA (opr) Compare A to Memory A-M AIMM
A OlA
A EXT
A IND,X
A INO,Y

CMPB (oprl Compare B to Memory B-M B IMM
8 DIA
B EXT
B IND,X
81NO,Y

COM (oprl 1'5 Complement Memory Byte $FF-M-M EXT
INO.X
IND,Y

COMA 1'5 Complement A $FF-A-A AINH

COMB 1's Complement B $fF- B-B 81NH

M68HC11 PM/AD

Machine Coding .
(Hexadecimal) •

Opcode Operandls) >-
c:c

24 rr 2
85 ii 2
95 dd 2
B5 hh II 3
A5 ff 2

18 AS ff 3
C5 Ii 2
05 dd 2
F5 hh II 3
ES ff 2

18 E5 ff 3
2F rr 2

25 rr 2

23 rr 2

2D rr 2

2B rr 2

26 rr 2
2A rr 2

20 rr 2

13 dd mm rr 4

IF ff mm rr 4
18 IF ff mm rr 5

21 rr 2

12 dd mm rr 4
IE ff mm rr 4

18 IE ff mm rf 5

14 dd mm 3
lC ff mm 3

181C ffmm 4

80 rr 2

28 rr 2

29 rr 2

" I

OC I

OE I

7F hh II 3
6F ff 2

186F ff 3

4F I

5F I

OA 1

81 ii 2
91 dd 2
Bl hh II 3
Al ff 2

18 Al ff 3
Cl ii 2
01 dd 2
Fl hh 1\ 3
El ff 2

18 El H 3

73 hh 1\ 3
63 H 2

1863 tf 3

43 I

53 1

• U
>

<.J 5

J

2
J
4

4
S

2
J
4
4
5

J

J

3

J

3

J

3

3

6

7
8

3

6
7
8

6
7
B

6

3

3

2

2

2

6
6
7

2

2

2

2
3
4
4

5
2
3
4
4

5

6
6
7

2

2

CondiTion Codes
X H I

-

-

-
-

0

N Z V C

I t 0

1 t 0 -

-

I 1 0

t 1 I t
0

0 1 0 a

0 I 0 a
0 I 0 a

a
t I I I

t t I I

t I 0 1

I I 0 1

t I 0 1

MOTOROLA
3· 15

Table 3·2. Instructions vs. Addressing Mode Cross Reference (Continued)

Source
Formls) Operltion

CPO lopr) C,)mpare 0 to Memory
1S-Bit

CPXlopr) Compare X to Memory
IS-Bit

CPY lopr) Compare Y to Memory
IS-Bit

CAP. Decimal Adjust A

OEC(opr) Decrement Memory Byte

'"

OECA Decrement Accumulator A

DECa Decrement Accumulator B

DES Decrement Stack Pointer

DEX Decrement Index Register X

DEY Decrement Inde" Register Y

EOAA loprl Exclusive OA A with Memory

EORS (Opr) Exclusive OR 8 with Memory

FOI" Fractional Oivide16 bv 16

IOIV Integer Oivide 16 by 16

INClopr) Increment Memory 8yte

INCA Increment Accumulator A

INCB Increment Accumulator B

INS Increment Stack Pointer

INX Increment Inde" Register X

INY Increment Inde" Register Y

JMP(Ollrl Jump

JSR (oprl Jump to Subroutine

LDAA (oprl Load Accumulator A

MOTOROLA
3·16

Addres:sing
Boolean Mode for

Expression Operand

O-M:M 1 IMM
CIR
EXT
IND ,X
INO,Y

IX-M: M~1 IMM
OIR
EXT
IND,X
IND,Y

IV-M:M+ 1 IMM
OIR
EXT
IND,X
IND.Y

Adjust Sum to BCD INH

M-l-M EXT
INO,X
IND,Y

A-I-A AINH

B-I-8 B INH

SP-l-SP INH

IX-I-IX INH

IV-l-IY INH

A9M-A AIMM
A DIA
A EXT
A IND,X
A IND,Y

89M-B BIMM
BOlA
B EXT
B IND,X
BIND Y

OIiX-IX; r-D INH

OIiX-IX; r-O INH

M+l-M EXT
IND,X
INO.Y

A I-A AINH

8 1-8 B INH

SP l-SP INH

IX'" 1 IX INH

IY ~ I-IY INH

See Special Ops EXT
INO.X
INO.Y

See Special Ops OIR
EXT
IND.X
INO.Y

M-A A IMM
A OIR
A EXT
A IND,X
A INO,Y

Machine Codi~g .. 0
IHexadecimell 11 U Condition Cod!!!

Opcode Operandls)
;. >
a:I (.) 5 X H I N Z " C

lA 83 il kk 4 5 t I t t
lA 93 dd 3 6
lA aJ hn II 4 7
lAAJ H 3 7
CD AJ H 3 7

8C ji kk 3 4 · I t t t
9C dd 2 5
BC nn II 3 6
AC H 2 6

CD AC H 3 7

188C il kk 4 5 t t 1 I
189C dd 3 . 6
18 BC hh II 4 7
lA AC H :3 7
18 AC H 3 7

'19 1 2 · t I t I
7A nh II 3 6 · I t I
SA H 2 6

186A H 3 7
4A 1 2 I t I
SA 1 2 t t I
34 1 3

09 1 3 t
1809 2 4 t

88 ii 2 2 I t 0
98 dd 2 3
88 hh II :3 4
AS H 2 4

18 A8 H 3 5

C8 ii 2 2 · I I 0 .
08 dd 2 3
F8 hh II :3 4
E8 tf 2 4

18 EB tf 3 5
03 1 41 . t 1 I
02 1 41 . I 0 I
7C hh II 3 6 · I I t
ec H 2 6

186C H :3 7

4C 1 2 t t I
SC 1 2 I 1 I
31 1 3

08 1 3 . I
1808 2 4 . I

7E hh II 3 3
6E H 2 3

186E H 3 4

90 dd 2 5
BO hn II 3 6
AD H 2 6

18 AD H :3 7

86 ii 2 2 · I t 0
96 dd 2 :3
B6 nn II 3 4
A6 tf 2 4

18 A6 ff 3 5

M68HC11PM/AD

Table 3·2. Instructions ys. Addressing Mode Cross Reference (Continued)
Addreuing Machine Coding . II

Source Boole.n Mod. for (He:udecimall . Y Condition Codas
Formlsl Operation Expression Operand

>. >-
5 X H I N Z C Opcod. Operandls! CD (J V

LOAS loprl Load Accumulator S M-B BIMM C6 ii 2 2 t I 0
B OIR 06 dd 2 3
B EXT Fe hh II 3 4

B INO.X E6 If 2 4
B INO.Y 18 E6 If 3 5

LOO loprl Load Doubl. Accumulator 0 M-A.M+l-B IMM CC il kk 3 3 - - t t 0
DIR DC dd 2 4
EXT FC hh II 3 5
IND.X EC If 2 5
IND .Y 18 EC If 3 6

LOS lopr! Load Stack Pointer M :M~I-SP IMM 8E il kk J J - t I 0
DIR 9E dd 2 4

EXT BE hh II J 5
IND.X AE H 2 5

" ". IND .Y 18 AE If 3 6

LOX loprl Load Indel(Register X M:M+l-IX IMM CE jj kit J 3 t t a
DIR DE dd 2 4

EXT FE hh II 3 5
IND.X EE If 2 5
IND .Y CO EE If 3 6

LOY loprl Load Ind .. Registar Y M:M + l-IY IMM 18 CE jj kk 4 4 t t 0
DIR 18 DE dd 3 5
EXT 18 FE hh II 4 6
IND.X 1A EE If 3 6
IND.Y 18 EE If 3 6

LSLlopr! Logical Shift Laft - EXT 78 hh II 3 6 - · t t t t
CHIIIDID-o IND.X 68 If 2 6

C b7 bO IND.Y 1868 ff 3 7
LSLA A INH 48 I 2
LSLB B INH 58 1 2

LSLD Logical Shift Left Double [J-{C - -:::n-0 INH 05 , 3 - - - I t t t
C b15 bO

LSR lopr! Logical Shift Right EXT 7. hh II 3 6 - · a t t I - IND.X 64 If 2 6 O-CIlIlIIIJ-O
b7 bO C INO.Y 1864 ff 3 7

LSRA AINH .w , 2
LSRB B INH 54 , 2

LSRD Logical Shift Right Doubl. [J-{C - -:::n-O INH 04 1 3 · 0 t t t
C b15 bO

MUL Multiply 8 by 8 AxB-D INH 3D I 10 · t
NEG (optl ~·s Complement Memory Byte O-M-M EXT 70 hh II 3 6 t , t 1

INO.X 60 If 2 6
IND.Y 1860 If 3 7

NEGA Zs Complement A O-A-A AINH 40 1 2 1 t 1 I
NEGB Z5 Comolement B 0-8-B B INH 50 1 2 1 t I 1
NOP No Ooeration No Operation INH 01 1 2 -
ORAAloprl OR Accumulator A Unclusi"e" A .. M-A AIMM SA ii 2 2 t t a

A OIR 9A dd 2 3
A EXT BA hh II 3 4

A IND.X AA If 2 4
A IND.Y 18AA If 3 5

ORABloptl OR Accumulator B (lndusi"e' B+M-B B IMM CA ii 2 2 I t 0
B DIR DA dd 2 3
B EXT FA hh II 3 4
B IND.X EA If 2 4
B IND.Y 18 EA ff J 5

PSHA Push A onto Slack A-Slit. SP ",SP-l AINH 36 1 3

. ,~ ~~6 "": ';I /'·'.·_. ,",I <'-. r"" " :' ~.' . ~ .• ' .. • ,-' c .~ ,,? .. - . l. ~ .. '. : ;~.,.rtl~-: : ~ ... :,".:',\ .: • •• ,~.'t'; ; , .. "t:'i:'!t:'!' ,

M68HC11PM/AD MOTOROLA
3-17

Table 3·2. Instructions vs. Addressing Mode Cross Reference (Continued)

Source
Formlsl Operation

PSHB Push B onto Stack

PSHX Push X onto Stack ILo Fir1t)

PSHY Push Yonto Stack ILo First'

PULA Pull A from Stack

PULB Pull B from StaCk

PULX Pull X from Stack (Hi First)

PULY Pull Y from Stack (Hi Firstl

ROL (oprl Rotate Left

ROLA
ROLB

ROR (apr! Rotate Right

ROrlA
RORB

RTI Return from Interrupt

RTS Return from Subroutine

SaA Subtract B trom A

saCA (oprl Subtract with Carry from A

SBCB (oprl Subtract with Carry from B

SEC Set Carry

SEI Set Interrupt Mask

SEV Set Overflow Flag

STAA (apr) Store Accumulator A

STAB (opr) Store Accumula!or B

STD (oprl Store Accumulator D

STOP Stoo Internal Clocks

STS (apr! Store Stack Pointer

STX (oprl Store Index AegistlH' X

STYlopr! Store Index Register Y

MOTOROLA
3·18

Bool.,."
Expression

B-Sdot.SP=SP-l

IX-Stk.SP=SP-2

IY-Stk.SP.,.SP-2

SP",SP.l.A-Stk

SP=SP.l.B-Stk

SP ... SP.2.IX-Stk

SP,..SP·2,IY Stk

o --m:rrIiJJ-{]
C b7 -bO C

D--IT.!IIIDJ-O
C b7 - bO C

See Special Ops

See Special Ops

A-B-A

A-M-C-A

B-M-C-B

l-C

1-1

I-V
A-M

B-M

A-M. B-M+l

SP-M:M+l

IX-M:M+l

IY-M:M.l

Addr"s.sing Macnine Codin~
Modefor IHexadecimal)
Operand Opcode Operand(sl

BINH 37

INH 3C

INH 18 3C

AINH 32
BINH l3

INH 38

INH 18 38

EXT 79 hh II

IND.X 69 If
IND.Y 18 69 If

AINH 49
BINH 59

EXT 76 hh II

IND .X 66 If
IND .Y 18 66 H

AINH 48
B INH 56

INH 38

INH 39
INH 10

A IMM 8:2 ii
A DIR 92 dd
A EXT B2 hh II
A IND.X A2 tf
A IND.Y 18 A2 tf

B IMM C2 ii
B OIR 02 dd
B EXT F2 nh II
B IND.X E2 tf
B IND.Y 16 E2 tf

INH 00
INH OF

INH 08

A OIR 97 dd
A EXT B7 nil II
A INO.X A7 If
A INO.Y 18 A7 If

B DIR 07 dd
B EXT F7 hh II
B INO.X C7 If
B INO.Y 18 E7 If

DIA DO dd
EXT FD nh II
INO.X ED If
IND.Y 18 ED If

INH CF

OIA 9F dd
EXT BF nh II
IND.X AF If
INO.Y 18 AF If

OIR OF dd
EXT FF hh II

IND.X EF If

IND.Y CD EF If

CIR 18 DF dd
EXT 18 FF hh II
IND.X IA EF If
INO.Y 18 EF If

. 0
II) U Condition Codes >- >

.j(= U S H I N Z V C

1 3

1 4

2 5

1 4

1 4

1 5

2 6

3 6 I 1 1 I
2 6
3 7
1 2
1 2

J 6 1 1 1 1
2 6
3 7
1 2
1 2

1 12 t I 1 1 t 1 I I
1 5 .
1 2 1 t t I
2 2 I 1 1 1
2 3
3 4

2 4

3 5

2 2 1 1 1 1
2 3
3 4
2 4
3 5

1 2 . . 1

1 2 1 . .
1 2 . . 1 .
2 3 1 1 0
3 4

2 4
3 5

2 3 . 1 t 0
3 4
2 4
3 5

2 4 1 1 0
3 5
2 5
3 6

I 2

2 4 1 1 0
3 5
2 5
3 6

2 4 1 I 0
3 5
2 5
3 6

J 5

I-
. , 1 0

4 6
3 6
J 6

M68HC11PM/AD

Table 3·2. Instructions vs. Addressing Mode Cross Reference (Concluded)

Source
Addre"ing Machine Coding .. .

Boolean Mode for (Hexadecimall • U Condition Codes
Form(s.) Operation Expression Operand Opcode Operandls)

>. >- s IXI U X H I N Z V C
SUBA loprt Subtract Memory from A A-M A AIMM 80 ii 2 2 I I t t

A DIA 90 dd 2 J
A EXT BO hh II 3 4
A IND.X AO H 2 4
A IND.Y 18 AO H 3 5

SU8B loprl Subtract Memory from B 8-M B 81MM CO ii 2 2 I I t I
8 DIA 00 dd 2 3
8 EXT Fa hh II 3 4
8IND.X EO If 2 4
B IND .Y 18 EO If 3 5

SUBD loprt Subtract Memory from 0 O-M:M-rl 0 IMM 83 il ilk 3 4 I t t t
OIR 93 dd 2 5
EXT B3 hh II 3 6
IND.X A3 If 2 6
IND ,Y 18 A3 If 3 7

SWI Software Interrupt See Special Ops INH 3F 1 14 1
TAB Transler A to B A-B INH 16 I 1 2 I· t t 0
TAP Transfer A to CC Register A-CCR INH 06 1 2 t I t t t t t I
TBA Transfer B to A B A INH 17 1 2 t t 0
TeST TEST (Only in Test Modesl Addre" BusCounts INH 00 1 .
T?A Transfer CC Aegister to A eCA A INH 07 I 1 2
TST (oprl Test for Zero or Minus M-O EXT 70 hh II 3 6 t I a 0

IND.X 60 If 2 6
INO.Y 186D If 3 7

TSTA A-a A INH 40 1 2 · I I 0 0

TSTa 8-0 B INH SO 1 2 · I I 0 0

TSX Transfer Stack Pointer to X SP ·1-IX INH 30 1 3

TSY Transfer Stack Pointer to Y SP .,.1 IY INH 1830 2 4- · .
TXS Transfer X to Stack Pointer IX-l-SP INH 35 1 3

TYS Transfer Y to Stack Pointer IY-l SP INH 1835 2 4 · . .
W.o.I Wait for Interrupt StackR89s1W.o.IT INH 3E 2 -
XGOX Exchange 0 witl:! X IX-D.O-IX INH 8F 1 3

XGOY Exchange 0 with Y IY-O. D-IY INH 18 SF 2 4

NOTES:
Cycle:
* '" Infinity or until reset occurs

** .. 12 cycles are used b89inning with the opcode fetch. A wait state is entered which remains in effect for an integer number
of MPU E-clock cycles (n) until an interrupt is recognized. Finally. two additional cycles are used to fetch the appropriate

interrupt vector (total = 14 + n).

Operand(sl:
dd - 8-bit direct address $0000 - $ooFF. (High byte a"umed to be $00,)
ff 8-bit positive offset $00 (0) to $FF (255) added to index.
hh High order byte of 16-bit extended address.

One byte of immediate data.
B High order byte of H,·bit immediate data.
kk Low order byte of 16-bit immediate data.
II Low order byte of 16-bit extended address.
mm 8-bit mask (set bits to be affected).
rr Signed rIMative offset $80 (- 12S1 to $7F (+ 1271.

OHset relative to the address following the machine code offset byte.

Condition Codes:
Bit not changed.

o Always cleared (logiC 0).
Always set (logic n.
Bit cleared or set depending on operation.
Bit may be cleared. cannot become set.

M68HC11PMI AD MOTOROLA
3-19/ 3· 20

3.1 INTRODUCTION

SECTION 3
ADDRESSING MODES

This section describes the M68HC11 MCU addressing modes. Six addressing modes can btl

used to reference memory; they include: immediate, direct , extended, indexed (with either of tWL)
16·bit index registers and an 8-bit offset), inherent, and relative. Some instructions require an ad
ditional byte before the opcode to accommodate a multi-page opcode map; this byte is called .1

prebyte.

Each of the addressing modes (except inherent) results in an internally generated double by to
value referred to as the effective address. This is the resultant value of a statement operand field
and is the value that appears on the address bus during the memory reference cycle. The ad·
dressing mode is an implicit part of every M68HC11 MCU opcode.

Bit manipulation instructions actually employ two or three addressing modes during execution
but are classified by the addressing mode used to access the primary operand. All bit manipula
tion instructions use immediate address mode to fetch a bit mask and branch versions uso
relative address mode to determine a branch destination.

The following paragraphs provide a description of each addressing mode and the prebyte in,
struction. In these descriptions the term effective address is used to indicate the memory ad·
dress from which the argument is fetched or stored, or from which execution is to proceed.

Also included, after the addressing mode and prebyte instruction descriptions, are opcode map
page illustrations and cross-reference tables pertaining to opcodes vs instructions and instruc·
tions vs addressing modes. These opcode map illustrations and tables are used for quick cross·
referencing purposes during machine code/assembly language programming and debugging
operations.

3.2 IMMEDIATE ADDRESSING

In the immediate addressing mode, the actual argument is contained in the byte(s) immediately
following the instruction, where the number of bytes matches the size of the register. These aro
two, three, or four (if prebyte is required) byte instructions.

Machin~ code byte(s) that fo lfow the operation code are the value of the statement operand field
rather than the address of a value. The effective address of the instruction in this case j::J

specified by the character # sign and implicitly points to the byte following the opcode. The im
mediate value is limited to either one or two bytes depending on the size of the register included
in the statement. Examples of several statements which use the immediate addressing modo
are shown as follows. Symbols and expressions used in these statements are defined im
mediately after the· examples.

M68HC11 PM / AD MOTOprjl f ·
:! 1

Machine Code Label
86 16
C8 34
81 24

86
CC
CC

86
86
CE

07
12
00

12
41
10

34
07

00

CAT

Operation
LDAA
EaRS
CMPA
EOU

LDAA
LDD
LDD

LDAA
LDAA
LOX

Operand Comments
#22 #22-ACCA
#$34 XOR ($34,ACCS)
#% 100100 CMPA#$24
7 CAT SAME AS 7

#CAT 7-ACCA
#$1234
#7 7-ACCA:ACCS

#@22 OCTAL
#'A ASCII
#TABLE ADOR (TABLE)-X

Examine the above machine code and observe the value of each statement operand field ap
pears in byte(s) immediately following the opcode. Note that the operand field for immediate ad
dressi ng begins with the character # sign. The character # sign is used by the assembler to
detect the immediate mode of addressing.

A variety of symbols and expressions can be used following the character # sign. Character
prefixes used in the above example are defined as follows:

Prefix
None

$
@

%

Definition
Decimal
Hexadecimal
Octal
Binary
Single ASCII Character

In the last statement of the above example, the immediate bytes consist of the value of the sym
bol TABLE. The value of any symbol is equal to its address except when used in the label field of
an equate (EOU) statement. The value of a symbol that appears in the label field of an EOU direc
tive is defined by the value in the operand field of the statement.

3.3 DIRECT AND EXTENDED ADDRESSING

Direct addressing allows the user to access $0000 through $OOFF using two byte instructions
and execution time is reduced by eliminating the additional memory access. In most applica
tions, th is 256-byte area is reserved for frequently referenced data. In the M68HC11 MCU, soft
ware can configure the memory map so that internal RAM, and/or internal registers, or external
memory space can occupy these addresses.

In the direct addressing mode, the least significant byte of the effective address (operand) is
contained in a single byte following the opcode and the most significant byte is assumed to be
$00. The length of most instructions using the direct addressing mode is two bytes: one for the
opcode ~nd one for the least significa~t byte of the effective address.

I n the extended addressing mode, the effective address of the instruction appears explicitly in
the two bytes following the opcode. Therefore, the length of most instructions using the extend
ed addressing mode is three bytes: one for the opcode and two for the effective address. The se
cond and third bytes (following the opcode) contain the absolute address of the operand. These

MOTOROLA
3-2

M68HC11 PM .' AD

are three ?r four (if prebyte is required) byte instructions: one or two for the opcode, and two for
the effective address. Instructions from the second, third, and fourth opcode map pages require
a page select prebyte prior to the opcode byte.

Thus, the direct and extended addressing modes differ in two respects: (1) the memory range
t~at can be accessed and (2) the length of the instruction. Using direct addressing, an instruc
tion can reference memory only within the range SOOOO-$OOFF, whereas in the extended address.
ing mode the entire memory space can be accessed.

There are some instructions that provide an extended addressing mode but not a direct mode.
These instructions are members of a group called "read-modify·write" instructions (opcodes
$40-$75 on all opcode pages except JMP and TST) which operate directly on memory, M, and
have the following form:

< operation> M - M

The INC, DEC, CLR, and COM instructions are members of this group and each has an extended
addressing mode bu t no direct mode. The following examples show the direct and extended ad·
dressing modes.

Machine Code Label Operation Operand Comments
83 00 12 SU8D CAT FWD REF TO CAT

CAT EQU S12 DEFINE CAT=$12

93 12 SU8D CAT BKWD REF TO CAT
7F 00 12 CLR CAT EXTENDED ONLY

In the above sequence, the first reference to the CAT symbol was a forward reference and the
assembler selected the extended addressing mode. The second reference was a backward
reference which enabled the assembler to know the symbol value when processing the state·
ment, and the assembler selected the direct addressing mode. The last reference to CAT is also
a backward reference to a symbol in the direct area, and the extended addressing mode was
selected because the particular instruction does not have a direct addressing mode. Some
assemblers allow the direct or extended addressing modes to be forced even when other condi
tions would suggest the other mode.

3.4 INDEXED ADDRESSING

In the indexed addressing mode, either the X or Y index register is used in calculating the effec-
• tive address. In this case, the effective address is variable and depends on two factors:

the current contents of the X or Y index register being used, and
the 8-bit unsigned offset contained in the instruction.

This addressing mode allows referencing any memory location in the 64K byte address space.
These are usually two or three (if prebyte is required) byte instructions, the opcode plus the 8-bit
offset.

In microprocessor-based systems, instructions usually reside in read only memory (ROM).
Therefore, the offset in the instruction should be considered a static value determined at
assembly time rather than during program execution. The use of dynamic single byte offset is

f

M68HC'1PM/AD MOTOROLA
3-3

facilitated with the use of the add ACCS to index register (ASX) instruction. More complex ad·
dress calculations are aided by the 16·bit arithmetic capability of the 16-bit 0 accumulator and
the exchange 0 with X (XGDX) and exchange 0 with Y (XGDY) instructions.

If no offset is specified or desired, the instruction will contain $00 in the offset byte. The offset
is an unsigned single byte value that when added to the current value in the index register yields
the effective address of the operand leaving the index register unchanged. Because the offset
byte is unsigned, a negative offset cannot be specified.

Examples of the indexed addressing mode are shown in the following statements where EA in
dicates effective address.

Machine Code Label Operation Operand Comments
E3 00 ADDD X EA=(X)
E3 00 ADDD ,X EA=(X)
E3 00 ADDD O,X EA=(X)

E3 04 ADDD 4,X EA= (X) +4
CAT EQU 7 DEFINE CAT= 7

E3 07 ADDD CAT,X EA= (X) + 7

E3 22 ADDD $22,X EA = (X) + $22
E3 22 ADDD CAT"S/2 + 6,X EA = (X) + (CAT"8/2 + 6)

3.5 INHERENT ADDRESSING

In the inherent addressing mode, all of the information to execute the instruction is contained in
the opcode. The operands (if any) are registers and no memory reference is required. These are
usually one or two byte instructions.

Many M68HC11 MCU instructions do not require an operand because the effective address is in
herent within the instruction. For instance, the ABA instruction causes the CPU to add the con
tents of accumulators A and 8 and place the result in accumulator A. The instruction INCa
causes the contents of accumulator B to be incremented by one. Similarly, the INX instruction
causes the index register X to be incremented by one. These three inherent instruction ex·
amples, shown in the following statements, do not require an operand and require only a single
machine code byte.

Machine Code
1B
5C
08

Label

3.6 RELATIVE ADDRESSING

Operation
ABA
INCB
INX

Operand Comments
A+B-A
B+1-8
X+1-X

The relative addressing mode is used for branch instructions. If the branch condition is true, the
contents of the 8-bit signed byte following the opcode (offset) is added to the contents of the
program counter to form the ef fective branch address; otherwise, control proceeds to the next
instructicn. These are usually two byte instructions.

MOTOROLA
3-4

M68HC11PMI AD

In both the direct and extended addressing modes, the address contained in the operand byte(s)
is an absolute numerical address. The relative addressing mode is used only for branch instruc·
tions and specifies a location relative to the current value to the program counter. The program
counter wrll always point to the next statement while the addition is being performed. A zero off·
set byte will result in a no branch instruction regardless of the test involved.

Branch instructions, other than the branching versions of bit manipulation instructions,
generate two machine code bytes: one for the opcode and one for the relative offset. Because it
Is desirable to branch in either direction, the offset byte is a signed twos complement offset
with a range of - 128 to + 127 bytes. The effective branch range must be computed with respect
to the address of the next instruction. For branch instructions that consist of two bytes, the next
instruction is at PC + 2. If the branch destination address is defined as R, the range is computed
as follows:

(PC + 2) - 128 ~ R ~ (PC + 2) + 127
or

PC -126~ R:s PC + 129

The above result indicates that the destination of the branch instruction must be within -126 to
+129 memory locations of the first byte of the branch instruction. If it is desired to transfer con·
trol beyond this range, then the J MP or JSR instruction must be used. Examples of the relative
addressing mode are shown in the following statements.

Machine Code Label
24 08
20 00 THERE
22 FC WHERE

27 FE HANG
27 FE
7E 10 00 LBCe

80 F7

M68HC11 PM/AD

Operation Operand
BCC LBCe
BRA WHERE
BHI THERE

BEQ HANG
BEQ
JMP $1000

BSR HANG

Comments
L·O·N·G BCC
FORWARD BRANCH
BACKWARD BRANCH

BRANCH TO SELF
*MEANS "HERE"

MOTOROLA
3-5

The following are examples of simple, signed, unsigned conditional, and bit manipulation
branches.

MOTOROLA
3-6

.------SIMPLE BRANCHES -------,

Test
N=1
Z=1
V=1
C=1

Test
r>m
r~m

r=m
rsm
r<m

Mnemonic
BAA
BAN
BSA

Opcode Cy~les
20 3
21 3
eo 7

SIMPLE CONDITIONAL BRANCHES

True Opcode False Opcode
BMI 2B BPL 2A
BEQ 27 BNE 26
BVS 29 BVC 28
BCS 25 BCC 24

SIGNED CONDITIONAL BRANCHES

True Opcode False Oecode
BGT 2E BlE 2F
BGE 2C BlT 20
BEQ 27 BNE 26
BlE 2F BGT 2E
BlT 20 BGE 2C

UNSIGNED CONDITIONAL BRANCHES

Test True Opcode False Opcode
r>m BHI 22 BlS 23
r~m BHS/BCC 24 BLO/BCS 25
r=m BEQ 27 BNE 26
rsm BLS 23 BHI 22
r<m BlO/BCS 25 BHS/BCC 24

BIT MANIPULATION BRANCHES

BRClR - Branch if all selected bits are clear
(opcode) (operand addr) (mask) (rei offset)
M-mm = 07 M = operand in memory; mm = mask

BRSET - Branch if all selected bits are set
(opcode) (operand addr) (rei offset)
(M)emm = 07 M = operand in memory; mm = mask

M68HC11PM/AD

3.7 PREBYTE

In order to expand the number of instructions used in the MC68HC11 MCU, a prebyte instruction
has been added to certain instructions. The instructions affected are usually associated with the
Y index register. Instructions which do not require a prebyte reside in the opcode map page 1. In·
struct ions requiring a prebyte reside in the opcode map pages 2 through 4. The opcode map
prebyte assignment is $18 for page 2, $1A for page 3, and $CD for page 4. Figures 3·1 through 3·4
illustrate opcode map page 1 through 4, respectively.

The opcode map pages illustrate the instruction set vs opcode relationships and can be used
during logic analyzer debugging operations. From a binary logic analyzer trace, machine code
bytes can be reverse assembled to yield assembly language mnemonics to aid in the debugging
operation. First a machine code byte is broken into four bit halves. The higher order half iden
tifies a column in the opcode map and the low order half then identifies the line within that col
umn where the assembly language mnemonic can be read.

Table 3-1 provides the opcode vs instruction cross·reference listing which is useful for machine
code reverse assembly. Some users will find this table easier to use than the opcode map pages.
In addition to showing the assembly language mnemonic and addressing mode, this table also
lists operand construction details and gives the total number of E cycles required to execute the
instruction. Table 3-1 is organized by opcode, operands, instruction, number of cycles, and ad
dressing mode.

Table 3·2 provides the instruction vs addressing mode cross-reference listing which is useful for
hand assembly of machine code or as a condensed summary of important instruction set
details. For hand assembly the user would write out a program using source instruction
mnemonics and notations. Then each mnemonic would be looked up in Table 3·2 to translate the
mnemonic i.nto the appropriate opcode taking into account the desired addressing mode. Table
3-2 is organized by instruction (source form), operation, Boolean expression, addressing mode
for operand, machine coding (opcode and operand), number of bytes, number of cycles, and con
dition code register bit states.

M68HC11PM / AD MOTOROLA
3 -7

OIR

ACCA ACC9
INH INH REL INH ACCA ACCS IND.X EXT IMM DIR IND.X EXT IMM DIR IHD.X EXT

~ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 lOll "00 1101 1,,0 "" LSB' - 0 1 2 3 .. 5 8 7 8 9 A I C D E F
0000 a TEST- SBA BRA TSX NEG SUB I 0
0001 1 NOP CRA BRN INS " .. , '., .. ::. ~.: . ': ,." :' L ~;·.·

CMP 1
0010 2 10lV BRSH BHI PUU :;;'i::l::..?~~~~!·~;~r.~;; :' (~ .!:.'::. SBC 2
DOlt J FDN BRCUI BlS PUlS COM SUBO AOoO 3
0100 4 LSRO BSET Bce OES lSR AND 4
Dl0t 5 ASlO BCllI BCS TXS .. :;~1;~~··.~· ~~:i}::~~'::. ;-t:~.'.~;!7: I'~. BIT 5
Ollo 6 TAP TAB BNE PSHA ROR lOA 6
all t 7 TPA TBA BED PSHB ASR . - STA ::~:;:.::!'1 STA 7
1000 B INX PAGE2 Bve PUlX ASl EOR 8
1001 9 DEX OAA BVS RTS RUl ADC 9
1010 A elV PAGE3 I BPL ABX DEC ORA A
1011 B SEV ABA BMI RTI , .' , . . .,:;- ADO B
1100 C ClC BSH BGE PSHX I INC CPX lDO e

1101 0 SEC BClll BlT MUl TST BSR JSR PAGE4 STO D
IltO E ell SRSH BGT WAI .--:: '.-:-:'~ ~'':,~t.A':':i JMP lOS lOX E

1 It 1 F SEI SRClR SLE SWI CLR XGOX . STS STOP STX F

0 1 2 J 4 5 B 7 8 9 A B C 0 E F

* lNO,X
Test instruction executable only In test mode.

Figure 3-1. Opcode Map Page 1

ACCA ACCS
INH INH IND.Y IMM DIR IND.Y EXT IMM DIR IND.Y EXT

0000 0001 0010 0011 0100 010' 0'10 0111 1000 1001

0 2 .. 5 6 7 8 9

DODD . ..:. " :::j .:~ ,:::· ·~ ;, t"' ''\t.~-:~~:~·:···,l TSY ~~.~~ ':i. ::~ . :~~ ... : NEG "

.. :. :1'
' " SUB ~~~~-

DIDO

010t

0110

0111

1000

lOOt

'1010

1011

1100 ~::·~it :.r..

1101 '7i.'-$f'::
1110 .~~

1111 "'~ .. ~~1-'

MOTOROLA
3-8

BSH

BCLR

BRSET

SRelR

.,:~(j~ PSHY :~:~;;':~:"~0: INC

:~¥:~~~~~~·~~'!~2;t:~?i TST

.~)~~~~:~.:~ JMP LOS

:~.;.:~~":.r:~i~~·~~;Jt.;J:(\r'~~·:a:~·: . CLR ;. ... , :~ - XGOY I ' : .:' STS

IHO,Y

Figure 3-2. Opcode Map Page 2 (18xx)

CMP -~"'t·~
SSC -t$..~

AOOO .~)

ANO .,*>"~ 4

BIT ~~~
LOA f.~
ST4 'it~~
EOR ~~1.~
ADC ~~
ORA ;~,)?~i:; A

ADO '~;).@
LOO ~'~
STO ~~~

STY

M 68 H C 11 PM I' A 0

I r I I
~ ~I 0000 i 0001 : 0010 I 0011 : 0100 0101

LSB ~ 0 I 1 I 2 I 3 I 4 5

0000 a
0001 I

0010 2

0011

0100 4

0101

0110

0111

1000

IDOl

1010

1011

1100

1101 o ' .!.' .-.:

1110

1111

a I 1 I 2 I J I 4

0110

8

I ACCA T AceB =.=J
I IMM : DIR i INO .X ! EXT I I INO'X~

0111 1,000 1 1001 1 ,010 i 1011 ! 11001,10, 1 ",0 i "11

71al91ATBIcio E F

I CPO I

I Cpy 1

LOY

STY

Figure 3-3. Opcode Map Page 3 (1Axx)

~ MSB 0000 0001 0010 001'

LSBt~ 0 2 3

0000

0001

0010

aOll

0100

0101

0110

0111 ':: ., ' ,'. ,

1000 ,_ ,;: ;, .,,:0 '

1001

1010

1011

1100

1101

1110

1111

0100 0101

4 5

0110 0111

8

5 I 8 7 I

ACCA

1000 1001

9

IND.Y

1010 lOll

A B

CPO

CPX

Figure 3-4. Opcode Map Page 4 (CDxx)

M68HC11 PM I AD

ACCS

1100 1101

C 0

IND.X

1110 1111

E

LOX

STX

'" a

M070ROLA
3-9

	A Microprocessor-based multivariable interactive control system
	Recommended Citation

	1987_12_Khayam-Nekouei_S_M_p000ia
	1987_12_Khayam-Nekouei_S_M_p000iia
	1987_12_Khayam-Nekouei_S_M_p000iiia
	1987_12_Khayam-Nekouei_S_M_p000iva
	1987_12_Khayam-Nekouei_S_M_p000va
	1987_12_Khayam-Nekouei_S_M_p000via
	1987_12_Khayam-Nekouei_S_M_p000viia
	1987_12_Khayam-Nekouei_S_M_p000viiia
	1987_12_Khayam-Nekouei_S_M_p01a
	1987_12_Khayam-Nekouei_S_M_p02a
	1987_12_Khayam-Nekouei_S_M_p03a
	1987_12_Khayam-Nekouei_S_M_p04a
	1987_12_Khayam-Nekouei_S_M_p05a
	1987_12_Khayam-Nekouei_S_M_p06a
	1987_12_Khayam-Nekouei_S_M_p07a
	1987_12_Khayam-Nekouei_S_M_p08a
	1987_12_Khayam-Nekouei_S_M_p09a
	1987_12_Khayam-Nekouei_S_M_p10a
	1987_12_Khayam-Nekouei_S_M_p11a
	1987_12_Khayam-Nekouei_S_M_p12a
	1987_12_Khayam-Nekouei_S_M_p13a
	1987_12_Khayam-Nekouei_S_M_p14a
	1987_12_Khayam-Nekouei_S_M_p15a
	1987_12_Khayam-Nekouei_S_M_p16a
	1987_12_Khayam-Nekouei_S_M_p17a
	1987_12_Khayam-Nekouei_S_M_p18a
	1987_12_Khayam-Nekouei_S_M_p19a
	1987_12_Khayam-Nekouei_S_M_p20a
	1987_12_Khayam-Nekouei_S_M_p21a
	1987_12_Khayam-Nekouei_S_M_p22a
	1987_12_Khayam-Nekouei_S_M_p23a
	1987_12_Khayam-Nekouei_S_M_p24a
	1987_12_Khayam-Nekouei_S_M_p25a
	1987_12_Khayam-Nekouei_S_M_p26a
	1987_12_Khayam-Nekouei_S_M_p27a
	1987_12_Khayam-Nekouei_S_M_p28a
	1987_12_Khayam-Nekouei_S_M_p29a
	1987_12_Khayam-Nekouei_S_M_p30a
	1987_12_Khayam-Nekouei_S_M_p31a
	1987_12_Khayam-Nekouei_S_M_p32a
	1987_12_Khayam-Nekouei_S_M_p33a
	1987_12_Khayam-Nekouei_S_M_p34a
	1987_12_Khayam-Nekouei_S_M_p35a
	1987_12_Khayam-Nekouei_S_M_p36a
	1987_12_Khayam-Nekouei_S_M_p37a
	1987_12_Khayam-Nekouei_S_M_p38a
	1987_12_Khayam-Nekouei_S_M_p39a
	1987_12_Khayam-Nekouei_S_M_p40a
	1987_12_Khayam-Nekouei_S_M_p41a
	1987_12_Khayam-Nekouei_S_M_p42a
	1987_12_Khayam-Nekouei_S_M_p43a
	1987_12_Khayam-Nekouei_S_M_p44a
	1987_12_Khayam-Nekouei_S_M_p45a
	1987_12_Khayam-Nekouei_S_M_p46a
	1987_12_Khayam-Nekouei_S_M_p47a
	1987_12_Khayam-Nekouei_S_M_p48a
	1987_12_Khayam-Nekouei_S_M_p49a
	1987_12_Khayam-Nekouei_S_M_p50a
	1987_12_Khayam-Nekouei_S_M_p51a
	1987_12_Khayam-Nekouei_S_M_p52a
	1987_12_Khayam-Nekouei_S_M_p53a
	1987_12_Khayam-Nekouei_S_M_p54a
	1987_12_Khayam-Nekouei_S_M_p55a
	1987_12_Khayam-Nekouei_S_M_p56a
	1987_12_Khayam-Nekouei_S_M_p57a
	1987_12_Khayam-Nekouei_S_M_p58a
	1987_12_Khayam-Nekouei_S_M_p59a
	1987_12_Khayam-Nekouei_S_M_p60a
	1987_12_Khayam-Nekouei_S_M_p61a
	1987_12_Khayam-Nekouei_S_M_p62a
	1987_12_Khayam-Nekouei_S_M_p63a
	1987_12_Khayam-Nekouei_S_M_p64a
	1987_12_Khayam-Nekouei_S_M_p65a
	1987_12_Khayam-Nekouei_S_M_p66a
	1987_12_Khayam-Nekouei_S_M_p67a
	1987_12_Khayam-Nekouei_S_M_p68a
	1987_12_Khayam-Nekouei_S_M_p69a
	1987_12_Khayam-Nekouei_S_M_p70a
	1987_12_Khayam-Nekouei_S_M_p71a
	1987_12_Khayam-Nekouei_S_M_p72a
	1987_12_Khayam-Nekouei_S_M_p73a
	1987_12_Khayam-Nekouei_S_M_p74a
	1987_12_Khayam-Nekouei_S_M_p75a
	1987_12_Khayam-Nekouei_S_M_p76a
	1987_12_Khayam-Nekouei_S_M_p77_Aa
	1987_12_Khayam-Nekouei_S_M_p77a
	1987_12_Khayam-Nekouei_S_M_p78a
	1987_12_Khayam-Nekouei_S_M_p79a
	1987_12_Khayam-Nekouei_S_M_p80a
	1987_12_Khayam-Nekouei_S_M_p81a
	1987_12_Khayam-Nekouei_S_M_p82a
	1987_12_Khayam-Nekouei_S_M_p83_Aa
	1987_12_Khayam-Nekouei_S_M_p83a
	1987_12_Khayam-Nekouei_S_M_pm2-1a
	1987_12_Khayam-Nekouei_S_M_pm2-2a
	1987_12_Khayam-Nekouei_S_M_pm2-3a
	1987_12_Khayam-Nekouei_S_M_pm3-10a
	1987_12_Khayam-Nekouei_S_M_pm3-11a
	1987_12_Khayam-Nekouei_S_M_pm3-12a
	1987_12_Khayam-Nekouei_S_M_pm3-13a
	1987_12_Khayam-Nekouei_S_M_pm3-14a
	1987_12_Khayam-Nekouei_S_M_pm3-15a
	1987_12_Khayam-Nekouei_S_M_pm3-16a
	1987_12_Khayam-Nekouei_S_M_pm3-17a
	1987_12_Khayam-Nekouei_S_M_pm3-18a
	1987_12_Khayam-Nekouei_S_M_pm3-19a
	1987_12_Khayam-Nekouei_S_M_pm3-1a
	1987_12_Khayam-Nekouei_S_M_pm3-2a
	1987_12_Khayam-Nekouei_S_M_pm3-3a
	1987_12_Khayam-Nekouei_S_M_pm3-4a
	1987_12_Khayam-Nekouei_S_M_pm3-5a
	1987_12_Khayam-Nekouei_S_M_pm3-6a
	1987_12_Khayam-Nekouei_S_M_pm3-7a
	1987_12_Khayam-Nekouei_S_M_pm3-8a
	1987_12_Khayam-Nekouei_S_M_pm3-9a

