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ENERGY BASED EVALUATION OF DIGITAL HALFTONES 

An Abstract of the Thesis by 
John Weible 

The purpose of this study was to determine the validity 

of the energy measure developed by Geist, Reynolds, and 

Suggs, when used as an evaluator of digitally half toned 

images. The energy measure was found to be a valid, useful 

tool for the evaluation of binary digital halftone quality. 

Data resulting from the analysis and visual comparison of 

fifteen different halftones supports this conclusion. Using 

linear regression, the coefficient of correlation between 

the energy measure and visual quality ratings was -0.606 

using all images, and -0.936 using average results for each 

halftone method. These figures indicate the strong 

relationship between image energy and image quality. 

Although the energy measure was found to be accurate 

for different halftones of the same continuous-tone image, 

there is an inherent difficulty when comparing the quality 

of halftones of different image content. Geist, Reynolds, 

and Suggs' algorithm does not produce values within a fixed 



range. A simple approximation for normalizing the energy 

values is proposed and used for the study I but further 

development is needed to obtain absolute quality rankings 

using this technique. 
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CHAPTER I 

INTRODUCTION 

The Origins of Half toning 

Half toning, regardless of the medium, refers to methods 

of displaying a reasonable reproduction of an image, while 

using fewer component colors than the original (Gentile, 

Walowit, & Allebach, 1990, p. 1019). In many cases, the 

number of available colors with which we intend to create a 

halftone is very limited often only black and white 

(Mitsa & Parker, 1992, p. 1920) 

Methods of "half toning" have existed for centuries, 

al though the term was coined much later, to describe a 

particular printing process. In 1880, Stephen Hargon 

invented the printing of "halftones" by photoengraving, a 

process similar to modern screen printing techniques 

(Rogers, 1985, p. 102) 

Long before modern printing was developed, half tone­

like methods could be found in several types of artwork. 

Woodcuts, etchings, and pen-and-ink drawings often consist 

of black ink on white paper. Many patterns of lines, 

contours, and hatch-marks are used to give the impression of 
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shades. All of these techniques have the same purpose as 

what is specifically called half toning. 

The fundamental capabilities and limitations of 

half toning were described by Gentile, Walowit, and Allebach 

(1990, p. 1020) as relying 

" ... on the viewer's making a local spatial average 

over patterns of alternating colors to create the 

impression of a color that lies between those that 

compose the pattern. The resulting increase in the 

number of perceived colors that can be displayed 

or printed is achieved at the expense of decreased 

spatial resolution and, in some cases, at the 

expense of the appearance of artifacts in the 

image." 

Tyges of Digital Half toning 

Digital half toning techniques fall into several 

categories. With any particular technique, the pixels 

(individual image dots) are calculated based on either 

points or neighborhoods. Each particular method will also 

produce either clustered-dot or dispersed-dot patterns, and 

either periodic or aperiodic patterns (Ulichney, 1987, 

p. 3). 
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Point vs. Neighborhood Algorithms 

If the value of each pixel in the final halftone 

depends only on its position and that single pixel's 

original intensity, a "point" algorithm is being used. On 

the other hand, a "neighborhood" algori thm also considers 

the intensities of nearby pixels when calculating each· 

point. Therefore, neighborhood methods are more 

computationally complex, but achieve better results 

(Ulichney, 1987) 

Clustered-dot vs. Dispersed-dot Algorithms 

Clustered-dot algorithms simulate the traditional 

printing halftone screen, by grouping adjacent pixels 

together to simulate varying sizes of dots. Dispersed-dot 

methods attempt to isolate the pixels within the halftone 

patterns, to create smoother shading overall. Dispersed-dot 

halftones also have greater effective resolution, but are 

not effective if the output device does not adequately 

accommodate isolated pixels (Peli, 1991, p. 625; Ulichney, 

1987; Rogers, 1985). 

Periodic vs. Aperiodic Algorithms 

Periodic halftone algorithms work by overlaying a 

repeated array of numbers I called a mask, on the image to 
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introduce a "dithering" noise. These periodic algorithms are 

generally faster than aperiodic algorithms, and they lend 

themselves to parallel implementations. A major drawback is 

that the periodic process itself usually produces unwanted 

side effects in the image (Ulichney, 1987; Geist, Reynolds, 

& Suggs, 1993; Peli, 1991, p. 625). 

Comparing Halftones 

The selection of a half toning method in a given 

situation is often a combination of skill and trial-and­

error. Some techniques are acceptable with certain images 

and not others. The resolutions of the image itself and of 

the output device also has considerable bearing on the 

results. For example, clustered-dot algorithms inherently 

reduce the apparent resolution in the image. Small details 

can be completely lost. If, however, the output device has 

very high resolution, excellent clustered-dot halftones can 

be produced (Peli, 1991, p. 625; Linotype-Hell Co., 1993). 

This is why photographs or artwork reproduced by screen 

printing may not appear half toned at all. 

In many cases, the equipment available is not capable 

of very high resolution. Then the particular method of 

half toning used may drastically alter the appearance and 

4 



quality of an image. Until quite recently, visual inspection 

and expertise with half toning methods were the only ways to 

determine the success of a particular halftone (Ulichney, 

1987; Geist, Reynolds, & Suggs, 1993, p. l37; Peli, 1991, p. 

625) 

The quality of halftones can be measured a number of 

ways, but there are difficulties with nearly every ·one of 

them. Qualitative comparisons by eye are naturally subject 

to the viewer's bias. Quantitative methods have recently 

become prevalent in the analysis of halftones. Some of these 

quantitative methods, however, do not produce definitive 

results. A definitive, numerical method for evaluating the 

quality of halftones is desired (Geist, Reynolds, & Suggs, 

1993; Ulichney, 1987). 

Statement of the Problem 

The goal of this research is to determine the validity 

of Geist, Reynolds, and Suggs' energy measure as a tool for 

evaluating binary halftones. This will be tested by finding 

the correlation between visual quality rankings and the 

energy for a variety of standard digital halftones. 
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Objectives 

1. Qualitatively compare five images produced by each of 

three methods: 

A) Bayer ordered dither 

B) Jarvis, Judice, and Ninke's minimal average error 

C) Ulichney's 50%-random-weighted error diffusion 

The accuracy of image details, edges, contrast, 

intensity, and the presence of any artificial patterns 

or other distortions in each image will be rated 

numerically on a checklist (See Appendix B for an 

example checklist and the specific criteria) . 

2. Evaluate the same halftone images quantitatively using 

the energy measure algorithm of Geist, Reynolds, and 

Suggs. 

3. Correlate the averaged qualitative results with the 

energy calculations to determine the validity of the 

energy measure. 

Significance of the Study 

Geist, Reynolds, and Suggs (1993, pp. 153-154) did not 

demonstrate the accuracy of their energy measure for 

comparison of advanced digital half toning algorithms, using 

a variety of images. Energy data were only reported for the 
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halftones of a single image. The energy measure was 

introduced in "A Markovian Framework for Digital 

Half toning," but it was not the primary focus of the paper. 

Attention was instead focused on two half toning methods and 

their fundamental equivalence. 

If shown to be accurate, the energy measure's 

significance as a comparison tool will lie in its ease of 

use: it yields a single deterministic number for any given 

halftone image. The power spectra used by Ulichney, for 

example, are much more difficult to evaluate. 
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Figure 1. Sample Image for Comparison (Printed at high 
resolution of 300 dpi) 
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Thresholding 

Thresholding is the simplest method of half toning used. 

In a sense, it is not even a method of half toning, but 

rather the result of not half toning. It entails simply 

replacing each pixel in the original with the nearest color 

available for the halftone. This technique is also 

occasionally called "rounding,n as the pixel value is 

rounded to the nearest possible value. Thresholding is a 

local technique, since the value of each halftone pixel is 

unaffected by any others. Thresholding yields unacceptable 

results for most applications l since nearly all information 

in the original image is lost. (Geist, Reynolds, & Suggs, 

1993) Figure 2 illustrates the poor results of simple 

thresholding. 

Thresholding is often used when producing halftones 

containing more than two colors, however. The more colors or 

intensities available for the reproduction of an image I the 

less need there is for half toning. This perhaps explains why 

the majority of half toning research has focused on either 

bilevel (black-and-white) or four-color (usuall y cyan, 

magenta, yellow, and black) halftones. 
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Figure 2. Results of Simple Thresholding (75 dpi) 
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Ordered Dither 

Dither refers to the introduction of noise to an image. 

In the case of ordered dither, the noise is repetitive and 

well defined, thus "ordered." This contrasts with both white 

noise random dither and random-weighted error diffusion, 

which are unordered dithering techniques. 

Clustered-dot Ordered Dither 

The clustered-dot ordered dither essentially simulates 

a classical optical screen. It uses a matrix of pixels to 

create the varying sizes of dots characteristic to optical 

screens. The number of sizes of dots available, and hence 

the number of apparent intensities, is dependent on the 

number of pixels in each matrix. Figure 1 for example, was 

dithered with an 8x8 matrix yielding 60 different 

"intensities. II Figure 3 is also a clustered-dot ordered 

di ther, but using the same 75 dpi as the other images to 

allow a fair comparison. 
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pixels to simulate each halftone "dot," it generally 

produces good results only with high resolution devices 

(Rogers, 1985, pp. 102-104; Peli, 1991, p. 625). One benefit 

of the technique is that the simulated "screen" is so 

consistent across the entire image, that it does not detract 

visually as much as some other half toning artifacts. The 

familiarity of viewers to the technique also increases its 

acceptance (Ulichney, 1987). 

Bayer Dispersed-dot Ordered Dither 

In 1973, Bayer demonstrated a more successful type of 

ordered dither. Instead of "clustering" the dots to simulate 

an optical screen, the dots were "dispersed" to smooth out 

the image. 

In the Bayer dither, a standard, predetermined matrix 

of thresholds is used. The matrix is superimposed in a 

repeating grid on the image. For each pixel, the halftone 

value is determined simply by comparing its original 

intensity to the corresponding threshold in the matrix. The 

primary advantage of ordered dither over clustered-dot 

techniques is that the effective resolution is not reduced 

when the matrix size is increased (Bayer, 1973; Rogers, 

1985) 
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Error Diffusion 

Whenever half toning is necessary, the final image must 

differ, at least slightly, from the original. At any 

individual pixel, however, the halftone mayor may not 

differ from the original. The actual difference is referred 

to as the "error." Naturally, the visual error should be 

kept small in the half toning process. Techniques previous to 

error diffusion, including thresholding and ordered dithers, 

do not attempt to minimize the overall error. 

Floyd and Steinberg introduced an elegant method of 

half toning, based on the idea of distributing or "diffusing" 

the error, which resul ts from thresholding each pixel, to 

its neighbors. They called it "error diffusion" (Floyd & 

Steinberg, 1975). 

Error diffusion is the first "neighborhood" process 

introduced. For most purposes, it produces superior 

halftones to previous techniques, without their 

characteristic periodic patterns. 

There are a few drawbacks, however. Error diffusion is 

slower than the techniques mentioned previously. Different 

types of unwanted patterns may develop in regions of similar 

intensities and near boundaries (Ulichney 1987, pp. 242-
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253). In the following example images, these artifacts are 

most noticeable in the sky. The severity of these artifacts 

depends on the image and the error diffusion filter 

employed. 

Another problem with this method of error diffusion is 

due to the raster processing order of the algorithm. Low­

contrast edges and gradations are distorted toward the lower 

right corner of the image. Ulichney has called this 

"directional hysteresis." (Ulichney 1987, pp. 242-253) 

The error diffusion technique considers each pixel in 

the image moving from top to bottom, processing each line 

left to right. Each pixel is compared to a threshold. The 

"error," or difference between the desired intensity and the 

halftone intensity, is distributed in a weighted fashion to 

four adjacent pixels. See Figure 5 for a representation of 

the Floyd-Steinberg filter (a matrix of weights) and its 

results. 

The dot represents the pixel being half toned at a 

particular instant, and the numbers indicate the relative 

amount of error to distribute to each pixel. Since the four 

numbers sum to sixteen, each weight must be divided by 

sixteen before multiplying by the error. For example, the 

pixel immediately to the right will always receive 7/16 ths of 
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the error (Floyd & Steinberg, 1975; Ulichney, 1987, p. 239-

241) . 

A number of researchers have attempted to improve on 

the original Floyd-Steinberg filter with different filters. 

Several notable examples follow. Each figure contains the 

example halftone for comparison, and is accompanied by the 

matrix of weights below. 

discussion of these filters. 

See Appendix F for further 

Most of the error diffusion filters in the literature 

are significantly larger than the Floyd-Steinberg four­

element filter. Jarvis, Judice, and Ninke (1976), Stevenson 

and Arce (1985), and Stucki (1979) all proposed 12-element 

filters (Rimmer, 1993, pp. 336-337). The larger filters tend 

to sharpen the images more, and increase the directional 

distortion (Ulichney 1987, p. 253). Although Jarvis, Judice, 

and Ninke termed their filter "minimal average error," it is 

included here, since the process is identical (Jarvis, 

Judice, & Ninke, 1976, p. 37; Ulichney, 1987, p. 253). 
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Figure 5. Floyd-Steinberg Error Diffusion (75 dpi) 
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Figure 6. Burkes Error Diffusion (75 dpi) 
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Dot Diffusion 

Dot diffusion was developed by Donald Knuth as a way of 

employing the capabilities of error diffusion, while 

retaining the speed and parallel design inherent in the 

ordered dither algorithm (Geist, Reynolds, & Suggs, 1993, p. 

139-140) . 

Dot diffusion superimposes a repeating matrix on the 

image to be half toned, similar to the ordered dither. The 

values in the matrix represent diffusion weights, rather 

than dithered thresholds, however. The pixels are half toned 

in the order of their corresponding weight, instead of scan 

line order. Error at each pixel is compu ted as in error 

diffusion, but the error is distributed to adjacent pixels 

with higher matrix weights (Geist, Reynolds, & Suggs, 1993, 

p. 139-140; Knuth, 1987). 

Despite the diffusion used in the algorithm, the 

repeated matrix creates distracting patterns similar to the 

ordered dither. The dot diffusion algorithm is slightly more 

complex than error diffusion, but can take advantage of a 

multiprocessor system. 
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White Noise 

White noise, by analogy to white light, is defined as 

having a spectrum that is approximately flat across the 

entire frequency range. White noise is completely random. To 

halftone using white noise means to use the standard 

thresholding technique, but make the threshold at each pixel 

a random number within the intensity range (Ulichney, 1987, 

p. 63). 

White noise half toning is also called "random dither" 

or occasionally "mez zotint," due to its resemblance to the 

seventeenth-century print making technique. As is apparent 

from Figure 9, white noise dither is not a viable half toning 

method. It does, however, give a good basis for comparison 

to "blue noise" techniques (Ulichney, 1987, pp. 63-71). 
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Figure 9. White Noise Random Dither (75 dpi) 
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Blue Noise 

Ulichney's investigation of digital halftones showed 

that good halftone images have similar spectra. Their 

spectra have virtually no low-frequency components, and are 

nearly flat in upper frequencies. This type of frequency 

distribution is called "blue noise." 

Ulichney explains that, "being devoid of low 

frequencies and localized concentrations of spikes 

in the frequency domain, it [blue noise] has no 

structure and thus does not interfere with the 

interesting features of that which it is 

representing" (1987, p. 340). 

The following half toning algori thms were specifically 

designed to create images with good "blue noise" 

characteristics. 

Improved Error Diffusion 

Ulichney improved the results of the Floyd-Steinberg 

algorithm in two ways. First he suggested processing the 

pixels in a "serpentine" fashion, left-to-right, then right­

to-left, alternating each scan line. This technique tends to 

produce different artifacts, but doesn't necessarily remove 

them, as can be seen in Figure 10 (Rimmer, 1993, p. 339). 
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Next, Ulichney added randomized weights to the error 

diffusion algorithm. The random weighting greatly reduces 

the artifacts (undesired pat terns) often produced by 

standard error diffusion (Ulichney, 1987). This improvement 

is quite noticeable in the sky regions of Figure 11, 

especially near the top of the image. 
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Figure 10. Floyd-Steinberg Error Diffusion, with Serpentine 
Raster (75 dpi) 
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Figure 11. Floyd-Steinberg Error Diffusion l with 50% Random 
Weights and Serpentine Raster. (75 dpi) 
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Spectral-Based Algorithms 

Since UlichneyJ s landmark bookJ Digital Half toning, a 

number of half toning methods have been developed J based on 

his spectral analysis. Mitsa and Parker (1992) achieved good 

results by creating "blue noise masks" and then using them 

similarly to a huge ordered dither matrix. Scheermesser, 

Broja, and Bryngdahl (1993) demonstrated an algorithm 

allowing adaptive spectral control over the half toning 

process. Geist, Reynolds, and Suggs (1993) demonstrated 

excellent results with two equivalent algorithms J one using 

a neural network and one using simulated annealing. 

These methods essentially work by inverting the power 

spectrum calculations Ulichney developed J in order to seek a 

halftone image that will satisfy the desired blue noise 

characteristics. 
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CHAPTER III 

HALFTONING 

Evaluating Halftones 

Halftones are often evaluated visually by comparing any 

of several characteristics. We shall consider the original, 

unhalftoned digital image to be optimal. Most halftones give 

the viewer an approximate idea of the original image, but 

the success of any halftone is dependent on its faithfulness 

in representing the original, optimal image. 

Any particular half toning method may perform well on 

one image, but perform poorly on another. The evaluation and 

comparison of halftone methods, therefore, must involve a 

variety of test images . 

Visual Comgarison 

A person can compare a number of characteristics of 

images by inspection. With similar pictures side-by-side, 

comparisons of contrast, detail, smoothness, and intensity 

can be made between them. Jarvis, Judice and Ninke noted 

that one advantage of the minimized average error method, 

(and therefore, error diffusion) over ordered dither is the 
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ability to enhance edges (1976, p. 13). Geist, Reynolds, and 

Suggs defined their subjective measure of quality as "a 

combination of sharpness of image detail and smoothness of 

gray-scale simulation." (1993, p. 148) 

Additionally, unwanted textures or patterns may be 

apparent in an image. Shapes may be distorted, especially by 

error diffusion methods (Ulichney, 1987; Geist, Reynolds, & 

Suggs, 1993, pp. 138-141). 

When considering half toned images, the viewer should 

evaluate image quality by noting the characteristics 

mentioned above. A halftone should be as true to the 

original as possible, with respect to each of these 

characteristics. As has been mentioned, however, tradeoffs 

usually occur between different half toning methods. 

Power Spectra 

Ulichney has shown that much of the quality of a 

halftone can be measured by calculating its radially­

averaged power spectrum. The best halftones all have very 

similar spectra. This analysis led to the label of "blue­

noise halftones." (Ulichney, 1987) 

While Ulichney used this method to evaluate halftone 

images, later researchers developed methods to create 
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halftones with it. As mentioned before, some blue-noise 

techniques work by seeking these particular spectral 

characteristics. 

Energy Comparison 

Geist, Reynolds, and Suggs (1993) reported that their 

energy measure algorithm ranked several types of halftones 

in the same order that they expected most human observers 

would. They suggested that studies to further test the 

validity of such energy-based ranking be performed. 

For any given image, the minimal energy value (Gibbs 

measure) corresponds to the halftone with the minimal 

assumption. To create a half toning method, they restricted 

the class of possible halftones by making two assumptions: 

"1. Individual binary pixel values should be 

strongly correlated with the underlying gray-scale 

intensities of the individual pixels they 

represent. 

2. In any small Euclidean neighborhood of 

pixels, binary pixel values should exhibit a 

pattern of pairwise correlation (both positive and 

negative) that allows an accurate representation 

of the average gray-scale intensity of that 
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neighborhood and does so with a minimum of low­

frequency noise." (Geist, Reynolds, & Suggs, 1993, 

p. 143) 

Using the proper mathematical representations for these 

constraints, the halftone wi th minimal energy becomes the 

ideal halftone. This energy measure can also, therefore, be 

used as a relative comparison tool between halftones of the 

same original image. 

Design of the Study 

An experiment to test the validity of Geist, Reynolds, 

and Suggs' energy measure is proposed, based on their 

suggestion. Halftone images produced by three methods will 

be used. 

Bayer's ordered dither is included in this experiment 

primarily for two reasons. First, it remains quite popular. 

Secondly, being a periodic, point-oriented algorithm, it 

radically differs from the two aperiodic, 

algorithms being used. 

neighborhood 

While Floyd and Steinberg (1975) first developed error 

diffusion half toning using a four-weight filter, later 

researchers have recommended larger diffusion filters for 
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better results. Jarvis, Judice, and Ninke's (1976) twelve­

weight filter was the first of several large diffusion 

filters to be developed. 

The greater success (and improved blue noise spectra) 

of Ulichney's random-weighted error diffusion is the basis 

for its inclusion this experiment. Ulichney wrote concerning 

his findings, 

"Conventional methods of error diffusion with 

previously reported error filters were closely 

examined and found to be fair blue noise 

generators. Experiments with a broad array of 

perturbations found that excellent blue noise 

patterns could be achieved with error filters of 

four or fewer weights when noise was added and 

processed on a serpentine raster." (Ulichney, 

1987, p. 344) 

The test images are meant to collectively represent 

most types of digital images. They will contain areas of 

high and low contrast, straight and curved edges, and have 

small details. These are typically the regions of images 

that suffer the most from half toning. Sources of the images 

will include digitally rendered scenes, scanned photographs, 
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and some text. Several of the images will be similar to 

images used by previous researchers. 

Methodology 

The procedures below will be followed to meet the 

stated objectives for the study. The results, including all 

test halftones and their evaluations will be printed. An 

analysis of the results will lead to a conclusion concerning 

the validity of energy-based halftone evaluation. 

1. Develop software to produce halftones using Ulichney's 

error diffusion with 50% random weights, Jarvis, 

Judice, and Ninke's minimal average error (error 

diffusion), and Bayer's ordered dither. 

2. Develop software for the quantitative evaluation of 

halftones using the energy measure algorithm of Geist, 

Reynolds, and Suggs. 

3. Obtain suitable gray-scale test images I which fit the 

specified criteria for test variety and difficulty, as 

mentioned in the Design of the Study. 

4. Produce halftones for each gray-scale image using each 

algorithm from step 1. 

S. Compare the resulting halftone images qualitatively. 

The accuracy of details, edges, contrast, intensity I 
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and the presence of any artificial patterns or other 

distortions in each image will be recorded. The 

evaluation criteria are defined specifically in 

Appendix B. 

6. Compare the halftone images quantitatively, using the 

energy measure program written in step 2. 

7. Correlate the data from steps 5 and 6 to determine the 

validity of the energy measure. 
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CHAPTER IV 

RESULTS AND ANALYSIS 

Obtaining the Data 

Each of the images used in the study have been 

reproduced in Appendix C. Five different gray-scale pictures 

were half toned three different ways, yielding fifteen 

halftones. For each of the five, a higher resolution 

prescaled halftone is also printed, to better approximate 

the original gray-scale image. Therefore, a total of twenty 

images are shown. 

The complete program code for the energy calculations 

and the halftones used in the study is listed in Appendix D. 

All code was written in ANSI C, and compiled and executed on 

an IBM RS/6000 Model 580 running AIX version 3.2.5. 

Results 

The results of the visual evaluations are given in 

Table I (See Appendix B for explanations of the specific 

rating criteria used). The average (arithmetic mean) score 

for each of the fifteen images was computed and also appears 
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in Table I. For these values, greater numbers indicate 

better performance. 

Results from the application of Geist, Reynolds, and 

Suggs' energy measure to the images are shown in Table II. 

All values shown are negative as expected, and smaller 

values indicate better performance. 
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Table I. Visual Evaluation Results 

Bayer Ordered Dither Image Image Image Image Image 
#1 #2 #3 #4 #5 

Detail/Edges: 70 65 40 85 40 

Intensity/Contrast: 75 85 85 85 74 

Artifacts/Patterns: 50 50 50 50 35 

Shape Distortion: 95 70 70 90 75 

Average Score: 73 68 61 78 56 

Jarvis, Judice, & Ninke Image Image Image Image Image 
Filter #1 #2 #3 #4 #5 

Detail/Edges: 90 85 75 85 90 

Intensity/Contrast: 65 90 75 85 95 

Artifacts/Patterns: 65 70 65 70 60 

Shape Distortion: 50 70 70 90 85 

Average Score: 68 79 71 83 83 

50% Random Image Image Image Image Image 
Floyd-Steinberg Filter #1 #2 #3 #4 #5 

Detail/Edges: 95 80 90 80 80 

Intensity/Contrast: 90 90 95 95 95 

Artifacts/Patterns: 90 70 95 90 95 

Shape Distortion: 70 90 85 85 85 

Average Score: 86 83 91 88 89 
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Interpretation of the Data 

One difficulty arises when interpreting results of the 

energy measure. The range of values obtainable using the 

energy calculation is dependent on several variables. It 

depends on the size of the image, and the content of the 

orig"inal gray- scale image, as well as the hal ftone being 

measured. For this reason, the energy values are only 

significant for use as a relative comparison between two or 

more halftones of the same original image. All of the images 

evaluated in this study were of identical size to remove the 

variable of size. 

Using linear regression to determine the correlation 

between the fifteen quality ratings and their respective 

energies yields a correlation coefficient, r = -0.0155. This 

small a number indicates that no correlation exists at all. 

To remove the effects of the different spectral 

characteristics of each original image, the energy values 

were normalized. These figures are shown in Table III. Each 

was normalized by dividing them by the absolute value of the 

average of the energy values for the three halftones of each 

image. This is a simple approximation, but allows the energy 
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measure to be used loosely for comparisons of different 

images. 

Table IV summarizes the two sets of data extracted from 

Table I and Table III. Using the same linear regression as 

before, but comparing the visual scores to the normalized 

energy values shown in Table IV yields a correlation of 

-0.606. This indicates a strong but non-conclusive 

relationship does exist. The correlation is negative, as it 

should be, since better images are supposed to produce 

greater negative values. 

The fifteen samples can also be viewed another way. By 

computing the average resul ts for each half toning method 

used (each row in Table IV), three artificial samples are 

obtained. These figures give an overall idea of the 

performance of each half toning method, as measured by visual 

inspection versus image energy. These average values are 

shown in Table V. Using linear regression again, the 

correlation between these figures is a very strong -0.936. 
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Table II. Energy Measure Results 

Energy Value Image Image Image Image Image 
#1 #2 #3 #4 #5 

Bayer Ordered -51988.17 -59247.36 -63774.08 -51922.49 -48631.70 
Dither 

Jarvis, Judice, -51789.48 -65085.64 -64508.38 -52488.24 -49161.00 
& Ninke Filter 

50% Random 
Floyd-Steinberg -52893.55 -62835.74 -65902.60 -53102.55 -49828.81 

Filter 

Note: Smaller values indicate better performance. 

Table III. Normalized Energy Measure Results 

Energy Value Image Image Image Image Image 
#1 #2 #3 #4 #5 

Bayer Ordered -0.9955 -0.9496 -0.9853 -0.9889 -0.9883 
Dither 

Jarvis, Judice l -0.9917 -1.0432 -0.9966 -0.9997 -0.9991 
& Ninke Filter 

50% Random 
Floyd-Steinberg -1.0128 -1.0072 -1.0181 -1.0114 -1.0126 

Filter 

Note: Smaller values indicate better performance. 
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Table IV. Evaluation Summary by Image 

Visual Rank 
Image Image Image Image Image 

vs. #1 #2 #3 #4 #5 
Norm. Energy 

Bayer Ordered 73 68 61 78 56 

Dither 
-0.9955 -0.9496 -0.9853 -0.9889 -0.9883 

Jarvis I Judice , 68 79 71 83 83 

& Ninke Filter 
-0.9917 -1.0432 -0.9966 -0.9997 -0.9991 

50% Random 86 83 91 88 89 
Floyd-Steinberg 
Filter -1.0128 -1.0072 -1.0181 -1.0114 -1.0126 

Table V. Averages of Results by Halftone Method 

Visual Evaluation Average Normalized 
Energy 

Bayer Ordered 
66.95 -0.9815 

Dither 

Jarvis I Judice I & 76.50 -1.0061 
Ninke Filter 

50% Random 
Floyd-Steinberg 87.25 -1.0124 

Filter 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Summary of Results 

The first objective was to qualitatively compare five 

images produced by each of three methods: Bayer ordered 

dither; Jarvis, Judice, and Ninke's minimal average error; 

and Ulichney's 50%-random-weighted error diffusion. Also the 

accuracy of image details, edges, contrast, intensity, and 

the presence of any artificial patterns or other distortions 

in each image were to be rated numerically on a checklist 

(See Appendix B for an example checklist and the specific 

criteria) . 

To meet Obj ective 1, several steps were necessary. 

Software was written to create three types of halftones as 

planned. Five grayscale images were each half toned using the 

software, yielding fifteen test images. The quality of these 

halftones were compared by inspection using the criteria 

listed, and results were recorded in Table I. 

The second objective was to evaluate the same halftone 

images quantitatively using the energy measure algorithm of 
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Geist, Reynolds, and Suggs. To satisfy this objective, the 

software developed for the first objective was modified to 

also calculate image energy. All program code is listed in 

Appendix D and the energy algorithm is given in Appendix E. 

The third and final obj ecti ve was to correlate the 

averaged qualitative results with the energy calculations to 

determine the validity of the energy measure. This was 

performed by applying linear regression to the two sets of 

data (qualitative rankings and energy values). A method of 

normalizing the data was also used in the analysis to 

determine the success of the energy measure algorithm. 

Conclusions from the Study 

The energy measure, of course, cannot produce halftone 

quality rankings that will agree with everyone's subjective 

opinions concerning a given image. It is clear, however, 

that the energy measure introduced by Geist, Reynolds, and 

Suggs successfully ranks images based on their gray- scale 

accuracy, their detail, and their "blue-noise" spectra. Most 

recent digital half toning research seems to agree that these 

are primary characteristics of quality halftones (Ulichney, 

1987; Peli, 1991; Mitsa & Parker, 1992; Scheermesser, Broja, 

& Bryngdahl, 1993) 
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The particular halftone algorithms used in the study 

were chosen in part, to aid and support the visual 

comparisons. One would ordinarily expect that random-

weighted error diffusion should outperform standard error 

diffusion, which should likewise outperform the Bayer 

ordered dither (Ulichney, 1987; Jarvis, Judice, & Ninke, 

1976). The results for image #1, a gray-scale ramp, shown in 

Figures 12-15 are notable, in that they differ from this 

expectation. The Bayer dither in Figure 13 received a 

second-place ranking in the visual comparison, since it 

seems to do a better job of representing the original than 

the Jarvis I Judice, and Ninke filter in Figure 14. 

Interestingly, the energy measure also awards Figure 13 a 

better score than Figure 14. 

The energy measure has been found to be a valid, useful 

tool for the evaluation of binary digital halftone quality. 

The final correlation coefficient of -0.936 indicates a very 

strong link between image energy and image quality. (A 

coefficient of ±1.0 would indicate the absolute dependence 

of energy on quality, while a coefficient of 0 would 

indicate no relationship.) 
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CHAPTER VI 

RECOMMENDATIONS 

Having established that the energy measure can be very 

useful as a quantitative halftone evaluation tool, two 

things remain which could greatly enhance its usability in 

practice. First and most importantly, an accurate method of 

standardizing energy values for arbitrary images needs to be 

developed. Secondly, the processing requirements for 

calculating image energy must be reduced before it will find 

popularity. 

The energy values produced by Geist, Reynolds, and 

Suggs' algorithm do not have a constant range, so a single 

halftone and its energy value are meaningless without other 

halftones of the same image to use for comparison. While an 

average of several halftone algorithms' energy values can be 

used to normalize the energy for a given image, as was done 

in this study, a better solution is needed. A more accurate 

method of standardizing the energy values, which does not 

require computing additional halftones, should be developed. 

The other difficulty with the application of Geist, 

Reynolds, and Suggs' energy measure is its computational 
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requirements. When compared to the complexity of most 

half toning methods, its storage and processing requirements 

are exceedingly large. Efforts should be made to reduce the 

computational complexity of the algorithm, while retaining 

its accuracy. 
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APPENDIX A 

Related Procedures in Image Processing 

Several image processing techniques have been mentioned 

in passing, which can significantly affect halftone quality. 

Especially when half toning with bilevel displays, tone scale 

adjustment and sharpening may be necessary to achieve the 

quality of results desired. Prescaling, if possible, can 

dramatically improve halftones. 

Tone Scale Adjustment 

When half toning gray-scale images with just black and 

white, it is customary to remap, or adjust, the intensities 

in the image to better preserve the brightness and contrast 

of the image. Tone scale adjustment can also add contrast at 

very light and dark regions, enlivening otherwise "flat" 

images (Ulichney, 1987, pp. 11-14; Rimmer, 1993, pp. 331-

333) . 

Sharpening 

Sharpening involves increasing the contrast of an image 

on edges within the image. Sharpening is also called "edge­

enhancement." Some half toning algorithms cause a degree of 
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sharpening as a side-effect. In particular, error diffusion 

filters with many weights tend to sharpen edges. For 

example, compare the twelve-weight filters in Figure 7 and 

Figure 8 to the four-weight filter in Figure 5. 

While some amount of sharpening can enhance a halftone, 

it depends on the particular image. Ulichney argues that 

sharpening should be separately controlled from half toning, 

not inherent in the process. He recommends sharpening the 

image prior to half toning (Ulichney, 1987, p. 253). 

Prescaling 

Prescaling is a process which can significantly improve 

the results of half toning. Prescaling is performed by 

scaling the image resolution up by some factor before 

half toning . Prescaling is particularly successful when an 

error-diffusion technique is employed. The primary drawback 

to prescaling is its memory and computation requirements. 

Since the resolution is increased by the square of the 

scaling factor, so does the memory size of the image, and 

the time needed to process it (Rimmer, 1993, pp. 339-340). 

Obviously, prescaling will require that the half toned 

image is larger than the original, unless it can be printed 
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at a higher resolution. Figure 1, for example, was prescaled 

by a factor of four in both dimensions, before it was 

half toned. Since it was printed at 300 dpi, it is still the 

same size as the other figures, printed at 75 dpi. 
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APPENDIX B 

Evaluation Criteria and Data Sheet 

Each image will be evaluated on several specified 

criteria, using a scale of a to lOa, where 0 is the worst 

performance and 100 is the most accurate. The criteria are 

defined for this study as follows: 

Detail/Edges: Are small features in the original still 

discernible? If there are letters, are they legible? 

Jarvis, Judice, and Ninke (1976, p. 30) define edge 

emphasis as "creating an enhanced legibility of 

textual, line and other material of high detail." 

Intensity/Contrast: Do local intensities closely match the 

original gray levels? Half toning techniques are meant 

to give the subjective appearance of continuous tone 

(Jarvis, Judice, & Ninke, 1976, p. 13). 

Artifacts/Patterns: Are there artificial patterns which 

should not be present? Image artifacts have been a 

primary problem and reason for many developments in 

half toning . (Ulichney, 1987 i Jarvis, Judice, & Ninke, 

1976, p. 27, 31; Knuth, 1987, p. 246) 
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Distortion: Are any shapes in the image obviously distorted? 

Shape distortion by the diffusion process has been 

called "directional hysteresis u by Ulichney (1987, p. 

253). This distortion is most evident in regions of 

slowly-varying intensity. 

Average Score: The arithmetic mean of the four ratings 

above. This result will be used to calculate the 

correlation with image energy. 
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Halftone Evaluation Data Sheet 

Bayer Dither Test Images 

#1 #2 #3 #4 #5 

Detail/Edges: 

Intensity/Contrast: 

Artifacts/Patterns: 

Shape Distortion: 

Average Score: 

Jarvis, Judice, & Ninke Test Images 

#1 #2 #3 #4 #5 

Detail/Edges: 

Intensity/Contrast: 

Artifacts/Patterns: 

Shape Distortion: 

Average Score: 

Random-Weight Error Diffusion Test Images 

#1 #2 #3 #4 #5 

Detail/Edges: 

Intensity/Contrast: 

Artifacts/Patterns: 

Shape Distortion: 

Average Score: 
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APPENDIX C 

Test Images 

The five original gray-scale images used in the study 

were obtained from several sources. The binary halftones of 

those gray-scale images were all produced by programs 

written for this study. The source code is printed in 

Appendix D. 

Image #1 is a series of horizontal ramps, containing 

the entire range of 256 grays from black to white. Similar 

images have been used to evaluate halftones by Ulichney 

(1987), Peli (1991), and Jarvis, Judice, and Ninke (1976) 

Image #2 is a computer-generated ray-traced image. It 

very closely resembles one used by Geist, Reynolds, and 

Suggs (1993). It was created using the Persistence of Vision 

(POV-Ray) ray tracing program. 

Image #3 has a vertical grayscale ramp for background, 

with several lines of text superimposed. The text is solid 

black at the top, 50% gray in the center, and solid white at 

the bottom. 
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Image #4 was digitized from a photograph. It is a NASA 

picture of a space shuttle launch, and was retrieved from a 

public NASA image repository on Internet. 

Image #5 is the same image of San Francisco's Golden 

Gate Bridge that was used to illustrate digital half toning 

methods earlier in this paper. It was also downloaded from a 

public site on Internet. 
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Figure 12. Image #1. Prescaled Halftone for Reference. 
(300 dpi) 
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Figure 14. Image #1. Jarvis I Judice I 
(75 dpi) 

U = -51789.48 
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Figure 15. Image #1. 50-Percent Random Floyd-Steinberg 
Filter. (75 dpi) 

U -52893.55 
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Figure 16. Image #2. Prescaled Halftone for Reference. 
(300 dpi) 
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Figure 17. Image #2. Bayer Ordered Dither. (75 dpi) 

U -59247.36 
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Figure 18. Image #2. Jarvis, Judice, & Ninke Filter. 
(75 dpi) 

U = -65085.64 
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Figure 19. Image #2. 50-Percent Random Floyd-Steinberg 
Filter. (75 dpi) 

U -62835.74 

70 



Figure 20. Image #3. Prescaled Halftone for Reference. 
(300 dpi) 
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Figure 22. Image #3. Jarvis, Judice, 
(75 dpi) 

U -64508.38 
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Figure 23. Image #3. 50-Percent Random Floyd-Steinberg 
Filter. (75 dpi) 

U -65092.60 
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Figure 24. Image #4. Prescaled Halftone for Reference. 
(300 dpi) 
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Figure 25. Image #4. Bayer Ordered Dither. (75 dpi) 

U -51922.49 
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Figure 26. Image #4. Jarvis, Judice, & Ninke Filter. 
(75 dpi) 

U -52488.24 
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Figure 27. Image #4. 50-Percent Random Floyd-Steinberg 
Filter. (75 dpi) 

U = -53102.55 
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Figure 28. Image #5. Prescaled Halftone for Reference. 
(300 dpi) 
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Figure 30. Image #5. Jarvis, Judice, & Ninke Filter. 
(75 dpi) 

U -49161.00 
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Figure 31. Image #5. 50-Percent Random Floyd-Steinberg 
Filter. (75 dpi) 

U = -49828.81 
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APPENDIX D 

Software Source Code 

/* Energy.c 

This program calculates the 'Energy Measure' of binary 
halftones, using the algorithm published by Geist, Reynolds, 
and Suggs in "A Markovian Framework for Digital Half toning", 
ACM Transactions on Graphics, Vol. 12, No 2, April 1993. 

The program also calculates binary halftones using three 
methods: 

1. Bayer Ordered Dither (with an 8x8 dither matrix), 
2. Jarvis, Judice, and Ninke Minimal Average Error 

(Error Diffusion), & 
3. Ulichney's 50%-Random-Weighted Serpentine Raster 

version of the Floyd-Steinberg Error Diffusion 
Filter. 

*/ 

#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 

#include "bitmap.hl! /* Listing follows Energy.c */ 

#define MAXCOLOR 255 

/* define image size. */ 
#define XSIZE 440 
#define YSIZE 440 

#define RADIUS (5) 
#define MAXNEIGHBORS (80) 
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/* calculate the horizontal position of pixel i within the 
image */ 

long int x(long int i) 
{ 

return (i % XSIZE) i 

} 

/* calculate the vertical position of pixel i within the 
image */ 

long int y(long int i) 
{ 

return ((i / XSIZE) + 1) i 

} 

/* return the distance between two pixels */ 

double distance(long int i, long int j) 
{ 

} 

long int dx, dYi 

dx = x(i) -x(j); 
dy = Y ( i) - y (j ) i 

return(sqrt((double)dx*dx+dy*dy)) i 

/* i and j are neighbors if they are within distance RADIUS 
of each other, 

and are not the same pixel. */ 

int neighbor(long int i, long int j) 
{ 

} 

if ((distance(i, j) <= RADIUS) && (i != j)) 
return (1) i 

else 
return (0) i 
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/* return the value of the binary halftone at pixel l. (00 
or FF) */ 

int w(long int i, struct bm256 *halftone) 
{ 

return (halftone->array[i] / 255); 
} 

/* return the original value at pixel i as a floating point 
number, scaled to 0-1. */ 

double V(long int i, struct bm256 *orig) 
{ 

return ((double)orig->array[i] / 255.0); 
} 

/* returns the average pixel value for all neighbors of l 

(including i) */ 

unsigned char char_AVE(long int i, struct bm256 *orig) 
{ 

long int j, pixels, count, height, first, last; 
long int sum, num; 

pixels = (orig->xs+l)*(orig->ys+l); 

/* start sum to include the value at pixel i. This is 
necessary, since i is not defined as a neighbor of i. 
*/ 

sum orig->array[i] 
num 1; 

height = (XSIZE * RADIUS) i 

first = max(O, i-height-l); 
last = min (pixels, i+height+l) i 

/* The purpose of count, first, and last is simply to 
speed calculations. 
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} 

The algorithm states to sum for all i,j. But for a 
given pixel i, there can be no more than 80 neighbors j 
(given the radius 5) . 

If i and j are not neighbors, then the energy cannot 
change. 
So using count, MAXNEIGHBORS, and first, and last are 
just some simple optimizations to speed things along.*/ 

count = 0; 
for (j=first; (j < last)&&(count < MAXNEIGHBORS); j++) 

{ 
if (neighbor(i, j)) 

} 

{ 
/* found a neighbor, increment count */ 
count++; 

/* add pixel value to sum */ 
sum += orig->array[j]; 
/* count the pixel */ 
num++; 
} 

return (sum/num) ; /* return the average value */ 

/* The avgs matrix is stored as integer values. This 
returns the average value as a floating point number, 
scaled to O-l. */ 

double double_AVE (long int i, struct bm256 *avgs) 
{ 

return(avgs->array[i]/255.0) i 

} 
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/* calculate the matrix of average values. */ 
void calc_avgs(struct bm256 *orig, struct bm256 *avgs) 
{ 

} 

long int i, pixels; 
pixels (orig->xs+1) * (orig->ys+1); 

/* for all pixels */ 
for (i = 0; i < pixels; i++) 

{ 

/* calculate the average value of all neighbors to 
i (including i) */ 

avgs->array[i] = char_AVE(i, orig); 
} ; 

/* rho is the coefficient obtained by inverting the 
idealized power spectrum for halftones. */ 

double rho (double k, double pf) 
{ 

} 

double b, top, spikeup, spikedown, kp, r; 
double pi = 3.14159265; 

b = 0.8 * pf; 
top = ( 0 . 4 * ( sqrt (2 . 0) * pf + 1)) ; 
spikeup = 1.05 * pf; 
spikedown = 0.95 * pf; 
kp = k*pi; 

r = (sin(kp*spikeup) - sin(kp*spikedown)) / (4*kp); 
r += (cos (kp*top) - cos(kp*b)) / ((top-b)*kp*kp); 

return (r); 
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/* given two pixels i,j, and the matrix of average values, 
function find T calculates the value of the T matrix at i,j. 

Note in this implementation, the T matrix is not stored, but 
calculated as needed. 

Since the T matrix is an array of floating point values, 
indexed by the number of pixels times 40 (half the 
neighbors), the memory requirements for storage can be quite 
large. This method is a compromise of speed for efficiency. 

*/ 

double find_T(long int i, long int j, struct bm256 *avgs) 
{ 

} 

const double A = 0.15; 
const double B = 0.03; 
double k, mean, pfreq, T; 

if (!neighbor (i, j)) 
return (0.0); 

else 
{ 
k = distance (i, j); 

mean=O.S*(double_AVE(i,avgs)+double_AVE(j, avgs)); 
if (mean <= 0.5) 

pfreq = sqrt (mean) i 

else 
pfreq sqrt (1 - mean); 

} 

T = (A * rho(k, pfreq) - B / (k * k)); 
return(T) ; 

/* Function total_energy calculates and returns the energy 
for the supplied gray-scale image and its binary halftone. 

Note that the matrix of averages for all pixels must be 
calculated before the call */ 
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double total_energy(struct bm256 *orig, struct bm256 
*halftone, struct bm256 *avgs) 

{ 
long int i, j, pixels, count, height, first, last; 
long int xmax, ymaxj 
double energy; 

height = (XSIZE * RADIUS); 

energy == 0.0; 

xmax min(orig->xs, halftone->xs); 
ymax min (orig->ys, halftone->ys); 

/* total number of pixels in the image */ 
pixels = (xmax+1) * (ymax+1) ; 

/* First pass. 
This calculates the second term of the energy value: 

This term compares the similarity of each pixel in the 
halftone to its original gray scale value. */ 

for (i = 0; i < pixels; i++) 
{ 
energy -= (2* V(i, orig) - 1) * 

(2* w(i, halftone) - 1); 
} 

/* Second pass. 
This calculates the first term of the energy value: 

( T · . 1.,J * (2wi - 1) (2wj - 1) ) ) 

The purpose of this term is to measure the 'blue-noise' 
quality of the region around pixel i, and the overall 
intensity of the region. */ 

89 



} 

for (i OJ i < pixels; i++) 
{ 

/* The purpose of count, first, and last is simply 
to speed calculations. 

The algorithm states to sum for all i,j. But 
for a given pixel i, there can be no more than 80 
neighbors j (given the radius 5) . 

If i and j are not neighbors, then the energy 
cannot change. 
So using count, MAXNEIGHBORS, and first, and last 
are just some simple optimizations to speed things 
along. */ 

count = OJ 

first = max(O, i-height-l) j 

last = min (pixels, i+height+1); 

for (j=first; (j<last)&&(count < MAXNEIGHBORS) ij++) 

{ 
if (neighbor(i, j)) 

{ 
/* found a neighbor, increment count */ 
count++; 

/* the following is an optimized expression for: 

-(1/2) T· . * ~,J 
(2wi - 1) (2wj - 1) */ 

if (w(i, halftone) == w(j, halftone)) 
energy .5 * find_T(i,j, avgs); 

else 
energy += .5 * find_T(i,j, avgs) i 

} 
} 

} 
return (energy); /* done. return energy value */ 
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void 
{ 

bayer8(struct bm256 *source, struct bm256 *dest) 

int x, y, i, j , n· , 
unsigned char c; 
int xmax, ymax; 

/* matrix of weights for optimal ordered dither, 
determined by Bayer */ 

int D [8] [8] = { { 0, 32, 8, 40, 
{ 48, 16, 56, 24, 
{ 12, 44, 4, 36, 
{ 60, 28, 52, 20, 
{ 3 , 35, 11, 43, 
{ 51, 19, 59, 27, 
{ 15, 47, 7, 39, 
{ 63, 31, 55, 23, 

n = 8 ; 

xmax = min(source->xs, dest->xs); 
ymax = min(source->ys, dest->ys); 
copybitmap (source, dest); 

2, 
60, 
14, 
62, 
1, 

49, 
13, 
61, 

/* process each pixel in the bitmap. 
Note order is not important */ 

for (x = 0; x <= xmax; x++) 
for (y = 0; y <= ymax; y++) 

{ 

34, 10, 42 
18, 58, 26 
46, 6, 38 
30, 54, 22 
33, 9 , 41 
17, 57, 25 
45, 5 , 37 
29, 53, 21 

as 

} , 
} , 
} , 
} , 
} , 
} , 
} , 
} } ; 

/* determine position within the repeating 
ma t r i x D [] [] * / 

1 (x % n) ; 

j = (y % n) ; 

/* i 
/* j 

horizontal offset */ 
vertical offset */ 

/* get original pixel color */ 
c = findcolor(x, y, source); 

/* First scale the matrix value up from 0-63 
to 0-255. 

The 8x8 dither matrix can only produce 64 
intensity patterns. 
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} 

Next, use the value as a threshold. 
Then store the resulting 00 or FF. */ 

storecolor (x,y,dest, 
(c > (256/n/n) *D [i] [j] ) *255) ; 

} ; 

void jarvis(struct bm256 *source, struct bm256 *dest) 
{ 

int x, y; 
unsigned char c, newc; 
char error; 
int width, height; 
width = min(source->xs, dest->xs) 
height = min(source->ys, dest->ys); 
copybitmap (source, dest); 

/* process scan lines from top to bottom */ 
for (y = 0; Y <= height; y++) 

/* process each scan line from left to right */ 
for (x = 0; x <= width; x++) 

{ 
/* get pixel value from original image */ 
c = findcolor(x, y, dest); 

/* Use a simple threshold of 127. Determine 
the error value */ 

if (c > 127) 
{ 
newc = 255; 
error = c - 255; 
} 

else 
{ 
newc = O· , 
error = c· , 
} 
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} 

/* store the binary (00 or FF) value dictated 
by the threshold test */ 

storecolor (x, y, dest, newc); 

/* distribute error value to neighboring 
pixels. 

The Jarvis, Judice, and Ninke filter may be 
illustrated as: 

X 7 5 

35753 

13531 

increasecolor (x+l, y, dest, 
increasecolor (x+2, y, dest, 
increasecolor (x-2,y+l, dest, 
increasecolor (x-l,y+l, dest, 
increase color (x ,y+l, dest, 
increasecolor (x+l,y+l, dest, 
increasecolor (x+2,y+l, dest, 
increasecolor (x-2,y+2, dest, 
increasecolor (x-1,y+2, dest, 
increasecolor (x ,y+2, dest, 
increasecolor (x+1,y+2, dest, 
increasecolor (x+2,y+2, dest, 
} ; 

*/ 

(error) *7/48); 
(error) *5/48); 
(error) * 3 /48) ; 
(error) *5/48); 
(error) *7/48); 
(error) * 5/48) ; 
(error) *3/48); 
(error) *1/48); 
(error) *3/48); 
(error) *5/48); 
(error) *3/48) i 

(error) *1/48) i 

/*function random(x) returns an integer between 0 and x-l.*/ 
int random(int range) 
{ 

} 

float fi 

f = rand()/32768.0j 
return((int) (f*range)); 
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void rs50_floyd_steinberg(struct bm256 *orig, 

{ 
int x, y, XX; 

unsigned char c, newc; 
char error; 
int width, height; 
int rlarge, rsmall; 

struct bm256 *halftone) 

width = min(orig->xs, halftone->xs); 
height = min(orig->ys, halftone->ys) 
copybitmap (orig, halftone); 

/* process scan lines from top to bottom */ 
for (y = 0; Y <= height; y++) 

/* process pixels across the current scanline */ 
for (xx = 0; xx <= width; xx++) 

{ 
/* test for raster direction, to use 
'serpentine raster' */ 

if (y % 2) 

x xx; /* processing left to right */ 
else 

x width-xx; /* process right to left*/ 

/* get current color */ 
c = findcolor(x, y, halftone); 

/* apply threshold of 127, calculate error */ 
if (c > 127) 

else 

{ 
newc = 255; 
error = c - 255; 
} 

{ 
newc = 0; 
error = c; 
} 

/* store color dictated by threshold test */ 
storecolor (x, y, halftone, newc); 
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/* int from -5 to +5 */ 
rlarge = random(ll) - 5 i 

/* int from -1 to +1 */ 
rsmall = random(3) - 1· , 

/* distribute error value using randomized 
weights, to neighboring pixels. 

The Floyd-Steinberg filter is normally 
expressed as: 

X 7 

3 5 1 

Here, the weights are scaled by two to 
facilitate the 50% randomly perturbed 
weights, while still using integer 
arithmetic. The filter is therefore: 

X 14 

6 10 2 */ 

if (y % 2) /* test for raster direction */ 
{ 
increasecolor (x+l, y, halftone, 

(int) (error* (14+rlarge) /32) ) i 

increasecolor (x-l,y+l, halftone, 
( in t) (e r ro r * ( 6 + r sma 11) /3 2 ) ) i 

increase color ( x,y+l, halftone, 
(int) (error* (10-rlarge) /32)) i 

increasecolor (x+l,y+l, halftone, 
(int) (error* ( 2 -rsmall) /32) ) i 

} 
else 

{ 
increase color (x-I, y ,halftone, 

(int) (error* (14 +rlarge) /32) ) i 

increasecolor (x+l, y+l, halftone, 
(int) (error* ( 6+rsmall) /32)) i 
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} 

increasecolor (x , y+I, halftone, 
(int) (error* (IO-rlarge) /32)); 

increasecolor (x-I, y+I, halftone, 

} 
} ; 

( in t) (e rr 0 r * ( 2 - r small) /3 2) ) ; 

int main (void) 
{ 

struct bm2S6 bitmapI, bitmap2, avgs; 
unsigned long arraysize; 
double D; 

char filename [40] 
char filename2 [40] 

- 1111. - , 
- "". - , 

arraysize (unsigned long)XSIZE*(unsigned 
long)YSIZE*sizeof(unsigned char) i 

/* allocate memory to store the original gray-scale 
image */ 

if ((bitmapl.array 
(unsigned char *)malloc(arraysize)) == NULL) 
{ 
perror ("bitmapI [] memory allocation failed. ") ; 
return(O) ; /* exit on failure */ 
} 

bitmapI.xs 
bitmapI.ys 

XSIZE-l; 
YSIZE-I; 

/* allocate memory to store the binary halftone created 
from bitmapl 

NOTE: For simplicity, the binary halftone is still 
stored as an 8-bit per pixel array, but having only 
values 00 and FF */ 

if ((bitmap2.array = 
(unsigned char *)malloc(arraysize)) NULL) 

{ 
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perror ("bi tmap2 [] memory allocation failed.") i 

return (0); /* exit on failure */ 
} 

bitmap2.xs = XSIZE-l; 
bitmap2.ys YSIZE-l; 

/* allocate memory for the avgs[] array, used in energy 
calculations */ 

if ((avgs.array = (unsigned char *)malloc(arraysize)) 
== NULL) 

{ 
perror (" avgs [] memory allocation failed.") i 

return (0); /* exit on failure */ 
} 

/* avgs[] is same size as the bitmap being processed */ 
avgs.xs = XSIZE-l; 
avgs.ys YSIZE-li 

/* ask for the filename of the gray-scale image */ 
printf ("Enter byte array file name:") ; 
scanf ("%s" ,&filename) ; 

/* make a filename for recording the avgs[] array for 
the image */ 
strcpy(filename2, filename); 
strcat(filename2, ".avgs") i 

/* read the gray-scale image file */ 
readbytearray (filename, &bitmapl, XSIZE, YSIZE); 

/* if the avgs[] array has not been computed yet, do 
so, then save it so it doesn't have to be recalculated 
for every halftone of this image */ 

if (readbytearray(filename2, &avgs, XSIZE, YSIZE)) 
{ 
calc_avgs(&bitmapl, &avgs) i 

writebytearray(filename2, &avgs, XSIZE, YSIZE); 
} 
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} 

/* create the Bayer Dither halftone for the image */ 
bayer8(&bitmap1, &bitmap2); 
/* store the binary halftone */ 
writebytearray("bayer8", &bitmap2, XSIZE, YSIZE); 
/* calculate the energy for the image */ 
U = total_energy (&bitmap1, &bitmap2, &avgs); 
/* print the final energy value */ 
printf (out, "\nThe total Energy U = %16. 4lf\n\n", U); 

/* create the Jarvis, Judice, & Ninke halftone for the 
image */ 
jarvis(&bitmap1, &bitmap2); 
/* store the binary halftone */ 
writebytearray("jarvis", &bitmap2, XSIZE, YSIZE); 
/* calculate the energy for the image */ 
U = total_energy (&bitmap1, &bitmap2, &avgs); 
/* print the final energy value */ 
printf (out, "\nThe total Energy U = %16. 4lf\n\n", U); 

/* create the 50%-random-weighted Floyd-Steinberg 
halftone for the image */ 
rs50_floyd_steinberg(&bitmap1, &bitmap2); 
/* store the binary halftone */ 
writebytearray("rs_floyd", &bitmap2, XSIZE, YSIZE); 
/* calculate the energy for the image */ 
U = total_energy (&bitmap1, &bitmap2, &avgs); 

/* print the final energy value */ 
printf(out, "\nThe total Energy U = %16.4lf\n\n", U); 

/* free memory allocated for bitmaps */ 
free (bitmap1.array) ; 
free (bitmap2.array) ; 
free(avgs.array) ; 

return (0); 

/* end of file "energy.e" */ 
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/* Bitmap.h 

This is a set of routines for manipulating gray-scale 
bitmaps as arrays of character values. */ 

#ifndef BITMAP 

#define BITMAP 
#include <stdlib.h> 
#include <stdio.h> 

#define MAXXSIZE 512 

#define max (valuel,value2) «value1>value2) ? valuel:value2) 
#define min (valuel,value2) «value2>valuel) ? valuel:value2) 

/* store bitmaps as structures, containing the width, 
height, and a pointer to an array. Memory must be allocated 
for the array, since it is not static. */ 

struct bm256 { 
int xs, ys; 
unsigned char *arraYi 

} ; 

/* store the pixel value c in the bitmap, at x,y */ 
void storecolor (int x, int y, struct bm256 *bitmap, 

unsigned char c) 
{ 

} 

int xmax, ymax; 
unsigned long offset; 

xmax = bitmap->xs; 
ymax = bitmap->ys; 
if «x <= xmax) && (y <= ymax) && (x >= 0) && (y >= 0)) 

{ 
offset = (unsigned long)x + (unsigned long)y * 

(unsigned long) (xmax+1) ; 
bitmap->array[offset] = Ci 

} 
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1* increase (or decrease) the value of pixel x,y by the 
amount dcolor *1 

void increasecolor (int x, int y, struct bm256 *bitmap, char 
dcolor) 

} 

int xmax, ymax, C; 
unsigned long offset; 

xmax = bitmap->xs; 
ymax = bitmap->ys; 
if ((x <= xmax) && (y <= ymax) && (x >= 0) && (y >= 0)) 

{ 
offset = (unsigned long)x + (unsigned long)y * 

(unsigned long) (xmax+1) ; 

c = bitmap->array[offset] ; 
bitmap->array[offset]=max(O, min(255, (c+dcolor))); 
} 

/* retrieve the value of the pixel x,y in bitmap *1 

unsigned char findcolor (int x, int y, struct bm256 *bitmap) 
{ 

} 

int xmax, ymax; 
unsigned long offset; 

xmax = bitmap->xs; 
ymax = bitmap->ysi 
if (( x > xmax) I I ( y > ymax) ) 

else 

{ 
perror (" coordinate out of bitmap's range. \n") 
return (0); 
} 

{ 
offset = (unsigned long)x + (unsigned long)y * 

(unsigned long) (xmax+l) ; 
return (bitmap->array[offset]) i 

} 
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/* Copy one bitmap to another */ 
void copybitmap(struct bm256 *source, struct bm2S6 *dest) 
{ 

} 

int x, y; 
unsigned char c; 
int width, height; 
width = min (source->xs, dest->xs); 
height min(source->ys, dest->ys) i 

for (x 0; x <= width; x++) 
for (y 0; y <= height; y++) 

{ 
c = findcolor(x, y, source) 
storecolor (x, y, dest, c) i 

} ; 

/* Read a raw data file from disk into a bitmap array */ 
int readbytearray(char *filename, struct bm256 *bitmap, int 

xs, int ys) 
{ 

} 

int x, y, xmax, ymax; 
unsigned char buf[MAXXSIZE] 
FILE *fPi 
xmax bitmap->xs; 
ymax = bitmap->ys; 

if ((fp = fopen(filename, "rb")) == NULL) 
return (-1) i 

for (y = 0; y <= min(ys-l, ymax); y++) 
{ 
if (fread(buf, 1, xs, fp) <= 0) 

{ 
perror("readbytearray: bad read") ; 
re turn (- 1) ; 
} 

for (x = 0; x <= min (xmax, xS-1); x++) 
storecolor(x, y, bitmap, buf[x]); 

} 
fclose(fp) ; 
return (0) i 
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/* write a raw data file to disk from a bitmap array */ 

int writebytearray(char *filename, struct bm256 *bitmap, int 
xs, int ys) 

{ 

} 

int x, y, xmax, ymax; 
unsigned char buf[MAXXSIZE] 
FILE *fp; 

xmax 
ymax 

bitmap->xs; 
bitmap->ys; 

if (( fp = fopen (filename, "wb")) == NULL) 
return (-1); 

for (y = 0; Y <= min(ys-l, ymax)i y++) 
{ 
for (x 0; x <= min (xmax, xS-l); x++) 

buf [x] = (unsigned char)findcolor(x,y, bitmap); 
if (fwrite(buf, 1, xs, fp) <= 0) 

} 

{ 
perror ( "wri t ebytearray: bad write") i 

re turn (- 1) ; 

} 

fclose(fp) i 

return (0); 

#endif 

/* end of file "bitmap.h" */ 
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Calculation of the T-matrix is based on the desired spectral 

characteristics determined by Ulichney. This is the 

algorithm given by Geist, Reynolds, and Suggs. 

compute_T_matrix() 
{ 
#define A (0.15) 
#def ine B (0.03) 

for (I = 1; I <= PIXELS; I = 1+1) 
AVE i = average gray-scale intensity for all pixels in 

NEIGHBORS (I) ; 

for (I = 1; I <= PIXELS; I I+l) 
{ 
for (J E NEIGHBORS(I)) 

} 
} 

{ 
MEAN = (AVE i + AVE j ) /2; 
if (MEAN <= 0.5) then 

PFREQ square_root (MEAN) 
else 

PFREQ = square_root(l - MEAN); 

K = distance(1, J); 
T · . = A * rho(K,PFREQ) l,J 

} 

rho(K, PFREQ) 
{ 
base 
top 
spike_up 
spike_down 

kp = K * n; 

0.8 * PFREQ; 
0.4 * (square_root (2) * PFREQ + 1); 
1.05 * PFREQi 
0.95 * PFREQ; 

rho (sin (kp*spike_up) - sin(kp*spike_down)) / (4*kp); 
+ (cos (kp*top) - cos(kp*b)) / ((top-b)*kp*kp); 

} 
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APPENDIX F 

Error Diffusion Filters 

The standard error diffusion technique considers each 

pixel in the image moving from top to bottom, processing 

each line left to right. Each pixel is compared to a 

threshold. The "error," or difference between the desired 

intensity and the halftone intensity chosen, is distributed 

in a weighted fashion to adjacent pixels. Consider the 

Floyd-Steinberg filter (a matrix of weights) shown below. 

Floyd- Steinberg: • 7 

351 

The dot represents the pixel being half toned at a 

particular instant I and the numbers indicate the relative 

amount of error to distribute to neighboring pixels. Since 

the four numbers sum to sixteen in this filter, each weight 

must be divided by sixteen before multiplying by the error, 

thus distributing exactly 100% of the error each time. For 

example, the pixel immediately to the right will always 

receive 7/16 ths of the error, while the pixel straight below 

receives 5/16 ths of it. The other error diffusion fil ters 

work exactly the same way, but differ in the placement and 

amount of the error distribution. 
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Table VI. Error Diffusion Filters 

Floyd-Steinberg: 

Burkes 

Jarvis, Judice, & Ninke 

Stucki 
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• 7 

351 

• 8 4 

2 4 842 

• 7 5 

3 5 753 

1 3 531 

• 8 4 

2 4 8 4 2 

1 2 421 
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