
Pittsburg State University Pittsburg State University

Pittsburg State University Digital Commons Pittsburg State University Digital Commons

Electronic Thesis Collection

7-1994

Energy-Based Evaluation of Digital Halftones Energy-Based Evaluation of Digital Halftones

John Weible
Pittsburg State University

Follow this and additional works at: https://digitalcommons.pittstate.edu/etd

 Part of the Graphic Design Commons

Recommended Citation Recommended Citation
Weible, John, "Energy-Based Evaluation of Digital Halftones" (1994). Electronic Thesis Collection. 39.
https://digitalcommons.pittstate.edu/etd/39

This Thesis is brought to you for free and open access by Pittsburg State University Digital Commons. It has been
accepted for inclusion in Electronic Thesis Collection by an authorized administrator of Pittsburg State University
Digital Commons. For more information, please contact mmccune@pittstate.edu, jmauk@pittstate.edu.

https://digitalcommons.pittstate.edu/
https://digitalcommons.pittstate.edu/etd
https://digitalcommons.pittstate.edu/etd?utm_source=digitalcommons.pittstate.edu%2Fetd%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1134?utm_source=digitalcommons.pittstate.edu%2Fetd%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pittstate.edu/etd/39?utm_source=digitalcommons.pittstate.edu%2Fetd%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mmccune@pittstate.edu,%20jmauk@pittstate.edu

ENERGY-BASED EVALUATION OF DIGITAL HALFTONES

Submitted to the Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

by

John Weible

PITTSBURG STATE UNIVERSITY

Pittsburg, Kansas

July, 1994

Acknowledgments

I would like to thank two people in particular I for

their help during the wri ting of this paper. I thank Dr.

William Studyvin, my advisor, without whom I would probably

have never started. I am al so especially grateful for my

wife Cherie', without whom I would probably never have

finished.

ENERGY BASED EVALUATION OF DIGITAL HALFTONES

An Abstract of the Thesis by
John Weible

The purpose of this study was to determine the validity

of the energy measure developed by Geist, Reynolds, and

Suggs, when used as an evaluator of digitally half toned

images. The energy measure was found to be a valid, useful

tool for the evaluation of binary digital halftone quality.

Data resulting from the analysis and visual comparison of

fifteen different halftones supports this conclusion. Using

linear regression, the coefficient of correlation between

the energy measure and visual quality ratings was -0.606

using all images, and -0.936 using average results for each

halftone method. These figures indicate the strong

relationship between image energy and image quality.

Although the energy measure was found to be accurate

for different halftones of the same continuous-tone image,

there is an inherent difficulty when comparing the quality

of halftones of different image content. Geist, Reynolds,

and Suggs' algorithm does not produce values within a fixed

range. A simple approximation for normalizing the energy

values is proposed and used for the study I but further

development is needed to obtain absolute quality rankings

using this technique.

TABLE OF CONTENTS

CHAPTER PAGE

I . INTRODUCTION .. 1

The Origins of Hal ftoning 1

Types of Digital Half toning 2

Comparing Halftones 4

Statement of the Problem 5

Obj ecti ves .. 6
Significance of the Study 6

II. DEVELOPMENTS IN DIGITAL HALFTONING 8

Standard for Comparison 8
Thresholding 10
Ordered Di ther 12

Error Diffusion 16
Dot Diffusion 23

Whi te Noise 24

Blue Noise 26

III. HALFTONING ... 31

Evaluating Halftones 31
Design of the Study 34
Methodology 36

IV. RESULTS AND ANALYSIS 38

Obtaining the Data 38

Results .. 38

Interpretation of the Data 41

V. SUMMARY AND CONCLUSIONS 45

Summary of Results 45

Conclusions from the Study 46

VI . RECOMMENDATIONS 48

BIBLIOGRAPHY 50

APPENDIX A. Related Procedures in Image Processing 55

APPENDIX B. Evaluation Criteria and Data Sheet 58

APPENDIX C. Test Images 61

APPENDIX D. Software Source Code 83

APPENDIX E. The Energy Measure 103

APPENDIX F. Error Diffusion Filters '" 105

ii

LIST OF TABLES

Table I. Visual Evaluation Results 40

Table II. Energy Measure Results 43

Table III. Normalized Energy Measure Results ... , 43

Table IV. Evaluation Summary by Image 44

Table V. Averages of Results by Halftone Method 44

Table VI. Error Diffusion Filters 106

iii

LIST OF FIGURES

Figure 1. Sample Image for Comparison (Printed at high
resolution of 300 dpi) 9

Figure 2. Results of Simple Thresholding (75 dpi) 11

Figure 3. Clustered-dot Ordered Dither (75 dpi) 13

Figure 4. Bayer Dispersed-dot Ordered Dither (75 dpi) 15

Figure 5. Floyd-Steinberg Error Diffusion (75 dpi) 19

Figure 6. Burkes Error Diffusion (75 dpi) 20

Figure 7. Jarvis, Judice, & Ninke Error Diffusion
(75 dpi) .. 21

Figure 8. Stucki Error Diffusion (75 dpi) 22

Figure 9. White Noise Random Dither (75 dpi) 25

Figure 10. Floyd-Steinberg Error Diffusion, with
Serpentine Raster (75 dpi) 28

Figure 11. Floyd-Steinberg Error Diffusion, with 50%
Random Weights and Serpentine Raster. (75 dpi) 29

Figure 12. Image #1. Prescaled Halftone for Reference.
(300 dpi) ... 63

Figure 13. Image #1. Bayer Ordered Dither. (75 dpi) 64

Figure 14. Image #1. Jarvis, Judice, & Ninke Filter.
(75 dpi) .. 65

Figure 15. Image #1. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi) 66

Figure 16. Image #2. Prescaled Halftone for Reference.
(300 dpi) ... 67

Figure 17. Image #2. Bayer Ordered Dither. (75 dpi) 68

Figure 18. Image #2. Jarvis, Judice, & Ninke Filter.
(75 dpi) .. 69

iv

Figure 19. Image #2. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi) 70

Figure 20. Image #3. Prescaled Halftone for Reference.
(300 dpi) 71

Figure 21. Image #3. Bayer Ordered Dither. (75 dpi) 72

Figure 22. Image #3. Jarvis, Judice, & Ninke Filter.
(75 dpi) 73

Figure 23. Image #3. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi) 74

Figure 24. Image #4. Prescaled Halftone for Reference.
(300 dpi) 75

Figure 25. Image #4. Bayer Ordered Dither. (75 dpi) 76

Figure 26. Image #4. Jarvis, Judice, & Ninke Filter.
(75 dpi) .. 77

Figure 27. Image #4. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi) 78

Figure 28. Image #5. Prescaled Halftone for Reference.
(3 00 dp i) ... 79

Figure 29. Image #5. Bayer Ordered Dither. (75 dpi) 80

Figure 30. Image #5. Jarvis, Judice, & Ninke Filter.
(75 dpi) .. 81

Figure 31. Image #5. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi) 82

v

CHAPTER I

INTRODUCTION

The Origins of Half toning

Half toning, regardless of the medium, refers to methods

of displaying a reasonable reproduction of an image, while

using fewer component colors than the original (Gentile,

Walowit, & Allebach, 1990, p. 1019). In many cases, the

number of available colors with which we intend to create a

halftone is very limited often only black and white

(Mitsa & Parker, 1992, p. 1920)

Methods of "half toning" have existed for centuries,

al though the term was coined much later, to describe a

particular printing process. In 1880, Stephen Hargon

invented the printing of "halftones" by photoengraving, a

process similar to modern screen printing techniques

(Rogers, 1985, p. 102)

Long before modern printing was developed, half tone­

like methods could be found in several types of artwork.

Woodcuts, etchings, and pen-and-ink drawings often consist

of black ink on white paper. Many patterns of lines,

contours, and hatch-marks are used to give the impression of

1

shades. All of these techniques have the same purpose as

what is specifically called half toning.

The fundamental capabilities and limitations of

half toning were described by Gentile, Walowit, and Allebach

(1990, p. 1020) as relying

" ... on the viewer's making a local spatial average

over patterns of alternating colors to create the

impression of a color that lies between those that

compose the pattern. The resulting increase in the

number of perceived colors that can be displayed

or printed is achieved at the expense of decreased

spatial resolution and, in some cases, at the

expense of the appearance of artifacts in the

image."

Tyges of Digital Half toning

Digital half toning techniques fall into several

categories. With any particular technique, the pixels

(individual image dots) are calculated based on either

points or neighborhoods. Each particular method will also

produce either clustered-dot or dispersed-dot patterns, and

either periodic or aperiodic patterns (Ulichney, 1987,

p. 3).

2

Point vs. Neighborhood Algorithms

If the value of each pixel in the final halftone

depends only on its position and that single pixel's

original intensity, a "point" algorithm is being used. On

the other hand, a "neighborhood" algori thm also considers

the intensities of nearby pixels when calculating each·

point. Therefore, neighborhood methods are more

computationally complex, but achieve better results

(Ulichney, 1987)

Clustered-dot vs. Dispersed-dot Algorithms

Clustered-dot algorithms simulate the traditional

printing halftone screen, by grouping adjacent pixels

together to simulate varying sizes of dots. Dispersed-dot

methods attempt to isolate the pixels within the halftone

patterns, to create smoother shading overall. Dispersed-dot

halftones also have greater effective resolution, but are

not effective if the output device does not adequately

accommodate isolated pixels (Peli, 1991, p. 625; Ulichney,

1987; Rogers, 1985).

Periodic vs. Aperiodic Algorithms

Periodic halftone algorithms work by overlaying a

repeated array of numbers I called a mask, on the image to

3

introduce a "dithering" noise. These periodic algorithms are

generally faster than aperiodic algorithms, and they lend

themselves to parallel implementations. A major drawback is

that the periodic process itself usually produces unwanted

side effects in the image (Ulichney, 1987; Geist, Reynolds,

& Suggs, 1993; Peli, 1991, p. 625).

Comparing Halftones

The selection of a half toning method in a given

situation is often a combination of skill and trial-and­

error. Some techniques are acceptable with certain images

and not others. The resolutions of the image itself and of

the output device also has considerable bearing on the

results. For example, clustered-dot algorithms inherently

reduce the apparent resolution in the image. Small details

can be completely lost. If, however, the output device has

very high resolution, excellent clustered-dot halftones can

be produced (Peli, 1991, p. 625; Linotype-Hell Co., 1993).

This is why photographs or artwork reproduced by screen

printing may not appear half toned at all.

In many cases, the equipment available is not capable

of very high resolution. Then the particular method of

half toning used may drastically alter the appearance and

4

quality of an image. Until quite recently, visual inspection

and expertise with half toning methods were the only ways to

determine the success of a particular halftone (Ulichney,

1987; Geist, Reynolds, & Suggs, 1993, p. l37; Peli, 1991, p.

625)

The quality of halftones can be measured a number of

ways, but there are difficulties with nearly every ·one of

them. Qualitative comparisons by eye are naturally subject

to the viewer's bias. Quantitative methods have recently

become prevalent in the analysis of halftones. Some of these

quantitative methods, however, do not produce definitive

results. A definitive, numerical method for evaluating the

quality of halftones is desired (Geist, Reynolds, & Suggs,

1993; Ulichney, 1987).

Statement of the Problem

The goal of this research is to determine the validity

of Geist, Reynolds, and Suggs' energy measure as a tool for

evaluating binary halftones. This will be tested by finding

the correlation between visual quality rankings and the

energy for a variety of standard digital halftones.

5

Objectives

1. Qualitatively compare five images produced by each of

three methods:

A) Bayer ordered dither

B) Jarvis, Judice, and Ninke's minimal average error

C) Ulichney's 50%-random-weighted error diffusion

The accuracy of image details, edges, contrast,

intensity, and the presence of any artificial patterns

or other distortions in each image will be rated

numerically on a checklist (See Appendix B for an

example checklist and the specific criteria) .

2. Evaluate the same halftone images quantitatively using

the energy measure algorithm of Geist, Reynolds, and

Suggs.

3. Correlate the averaged qualitative results with the

energy calculations to determine the validity of the

energy measure.

Significance of the Study

Geist, Reynolds, and Suggs (1993, pp. 153-154) did not

demonstrate the accuracy of their energy measure for

comparison of advanced digital half toning algorithms, using

a variety of images. Energy data were only reported for the

6

halftones of a single image. The energy measure was

introduced in "A Markovian Framework for Digital

Half toning," but it was not the primary focus of the paper.

Attention was instead focused on two half toning methods and

their fundamental equivalence.

If shown to be accurate, the energy measure's

significance as a comparison tool will lie in its ease of

use: it yields a single deterministic number for any given

halftone image. The power spectra used by Ulichney, for

example, are much more difficult to evaluate.

7

Figure 1. Sample Image for Comparison (Printed at high
resolution of 300 dpi)

9

Thresholding

Thresholding is the simplest method of half toning used.

In a sense, it is not even a method of half toning, but

rather the result of not half toning. It entails simply

replacing each pixel in the original with the nearest color

available for the halftone. This technique is also

occasionally called "rounding,n as the pixel value is

rounded to the nearest possible value. Thresholding is a

local technique, since the value of each halftone pixel is

unaffected by any others. Thresholding yields unacceptable

results for most applications l since nearly all information

in the original image is lost. (Geist, Reynolds, & Suggs,

1993) Figure 2 illustrates the poor results of simple

thresholding.

Thresholding is often used when producing halftones

containing more than two colors, however. The more colors or

intensities available for the reproduction of an image I the

less need there is for half toning. This perhaps explains why

the majority of half toning research has focused on either

bilevel (black-and-white) or four-color (usuall y cyan,

magenta, yellow, and black) halftones.

10

Figure 2. Results of Simple Thresholding (75 dpi)

11

Ordered Dither

Dither refers to the introduction of noise to an image.

In the case of ordered dither, the noise is repetitive and

well defined, thus "ordered." This contrasts with both white

noise random dither and random-weighted error diffusion,

which are unordered dithering techniques.

Clustered-dot Ordered Dither

The clustered-dot ordered dither essentially simulates

a classical optical screen. It uses a matrix of pixels to

create the varying sizes of dots characteristic to optical

screens. The number of sizes of dots available, and hence

the number of apparent intensities, is dependent on the

number of pixels in each matrix. Figure 1 for example, was

dithered with an 8x8 matrix yielding 60 different

"intensities. II Figure 3 is also a clustered-dot ordered

di ther, but using the same 75 dpi as the other images to

allow a fair comparison.

12

pixels to simulate each halftone "dot," it generally

produces good results only with high resolution devices

(Rogers, 1985, pp. 102-104; Peli, 1991, p. 625). One benefit

of the technique is that the simulated "screen" is so

consistent across the entire image, that it does not detract

visually as much as some other half toning artifacts. The

familiarity of viewers to the technique also increases its

acceptance (Ulichney, 1987).

Bayer Dispersed-dot Ordered Dither

In 1973, Bayer demonstrated a more successful type of

ordered dither. Instead of "clustering" the dots to simulate

an optical screen, the dots were "dispersed" to smooth out

the image.

In the Bayer dither, a standard, predetermined matrix

of thresholds is used. The matrix is superimposed in a

repeating grid on the image. For each pixel, the halftone

value is determined simply by comparing its original

intensity to the corresponding threshold in the matrix. The

primary advantage of ordered dither over clustered-dot

techniques is that the effective resolution is not reduced

when the matrix size is increased (Bayer, 1973; Rogers,

1985)

14

Error Diffusion

Whenever half toning is necessary, the final image must

differ, at least slightly, from the original. At any

individual pixel, however, the halftone mayor may not

differ from the original. The actual difference is referred

to as the "error." Naturally, the visual error should be

kept small in the half toning process. Techniques previous to

error diffusion, including thresholding and ordered dithers,

do not attempt to minimize the overall error.

Floyd and Steinberg introduced an elegant method of

half toning, based on the idea of distributing or "diffusing"

the error, which resul ts from thresholding each pixel, to

its neighbors. They called it "error diffusion" (Floyd &

Steinberg, 1975).

Error diffusion is the first "neighborhood" process

introduced. For most purposes, it produces superior

halftones to previous techniques, without their

characteristic periodic patterns.

There are a few drawbacks, however. Error diffusion is

slower than the techniques mentioned previously. Different

types of unwanted patterns may develop in regions of similar

intensities and near boundaries (Ulichney 1987, pp. 242-

16

253). In the following example images, these artifacts are

most noticeable in the sky. The severity of these artifacts

depends on the image and the error diffusion filter

employed.

Another problem with this method of error diffusion is

due to the raster processing order of the algorithm. Low­

contrast edges and gradations are distorted toward the lower

right corner of the image. Ulichney has called this

"directional hysteresis." (Ulichney 1987, pp. 242-253)

The error diffusion technique considers each pixel in

the image moving from top to bottom, processing each line

left to right. Each pixel is compared to a threshold. The

"error," or difference between the desired intensity and the

halftone intensity, is distributed in a weighted fashion to

four adjacent pixels. See Figure 5 for a representation of

the Floyd-Steinberg filter (a matrix of weights) and its

results.

The dot represents the pixel being half toned at a

particular instant, and the numbers indicate the relative

amount of error to distribute to each pixel. Since the four

numbers sum to sixteen, each weight must be divided by

sixteen before multiplying by the error. For example, the

pixel immediately to the right will always receive 7/16 ths of

17

the error (Floyd & Steinberg, 1975; Ulichney, 1987, p. 239-

241) .

A number of researchers have attempted to improve on

the original Floyd-Steinberg filter with different filters.

Several notable examples follow. Each figure contains the

example halftone for comparison, and is accompanied by the

matrix of weights below.

discussion of these filters.

See Appendix F for further

Most of the error diffusion filters in the literature

are significantly larger than the Floyd-Steinberg four­

element filter. Jarvis, Judice, and Ninke (1976), Stevenson

and Arce (1985), and Stucki (1979) all proposed 12-element

filters (Rimmer, 1993, pp. 336-337). The larger filters tend

to sharpen the images more, and increase the directional

distortion (Ulichney 1987, p. 253). Although Jarvis, Judice,

and Ninke termed their filter "minimal average error," it is

included here, since the process is identical (Jarvis,

Judice, & Ninke, 1976, p. 37; Ulichney, 1987, p. 253).

18

Figure 5. Floyd-Steinberg Error Diffusion (75 dpi)

• 7

351

19

--

Figure 6. Burkes Error Diffusion (75 dpi)

• 8 4

2 4 -8 4 2

20

Dot Diffusion

Dot diffusion was developed by Donald Knuth as a way of

employing the capabilities of error diffusion, while

retaining the speed and parallel design inherent in the

ordered dither algorithm (Geist, Reynolds, & Suggs, 1993, p.

139-140) .

Dot diffusion superimposes a repeating matrix on the

image to be half toned, similar to the ordered dither. The

values in the matrix represent diffusion weights, rather

than dithered thresholds, however. The pixels are half toned

in the order of their corresponding weight, instead of scan

line order. Error at each pixel is compu ted as in error

diffusion, but the error is distributed to adjacent pixels

with higher matrix weights (Geist, Reynolds, & Suggs, 1993,

p. 139-140; Knuth, 1987).

Despite the diffusion used in the algorithm, the

repeated matrix creates distracting patterns similar to the

ordered dither. The dot diffusion algorithm is slightly more

complex than error diffusion, but can take advantage of a

multiprocessor system.

23

White Noise

White noise, by analogy to white light, is defined as

having a spectrum that is approximately flat across the

entire frequency range. White noise is completely random. To

halftone using white noise means to use the standard

thresholding technique, but make the threshold at each pixel

a random number within the intensity range (Ulichney, 1987,

p. 63).

White noise half toning is also called "random dither"

or occasionally "mez zotint," due to its resemblance to the

seventeenth-century print making technique. As is apparent

from Figure 9, white noise dither is not a viable half toning

method. It does, however, give a good basis for comparison

to "blue noise" techniques (Ulichney, 1987, pp. 63-71).

24

Figure 9. White Noise Random Dither (75 dpi)

25

Blue Noise

Ulichney's investigation of digital halftones showed

that good halftone images have similar spectra. Their

spectra have virtually no low-frequency components, and are

nearly flat in upper frequencies. This type of frequency

distribution is called "blue noise."

Ulichney explains that, "being devoid of low

frequencies and localized concentrations of spikes

in the frequency domain, it [blue noise] has no

structure and thus does not interfere with the

interesting features of that which it is

representing" (1987, p. 340).

The following half toning algori thms were specifically

designed to create images with good "blue noise"

characteristics.

Improved Error Diffusion

Ulichney improved the results of the Floyd-Steinberg

algorithm in two ways. First he suggested processing the

pixels in a "serpentine" fashion, left-to-right, then right­

to-left, alternating each scan line. This technique tends to

produce different artifacts, but doesn't necessarily remove

them, as can be seen in Figure 10 (Rimmer, 1993, p. 339).

26

Next, Ulichney added randomized weights to the error

diffusion algorithm. The random weighting greatly reduces

the artifacts (undesired pat terns) often produced by

standard error diffusion (Ulichney, 1987). This improvement

is quite noticeable in the sky regions of Figure 11,

especially near the top of the image.

27

Figure 10. Floyd-Steinberg Error Diffusion, with Serpentine
Raster (75 dpi)

28

Figure 11. Floyd-Steinberg Error Diffusion l with 50% Random
Weights and Serpentine Raster. (75 dpi)

29

Spectral-Based Algorithms

Since UlichneyJ s landmark bookJ Digital Half toning, a

number of half toning methods have been developed J based on

his spectral analysis. Mitsa and Parker (1992) achieved good

results by creating "blue noise masks" and then using them

similarly to a huge ordered dither matrix. Scheermesser,

Broja, and Bryngdahl (1993) demonstrated an algorithm

allowing adaptive spectral control over the half toning

process. Geist, Reynolds, and Suggs (1993) demonstrated

excellent results with two equivalent algorithms J one using

a neural network and one using simulated annealing.

These methods essentially work by inverting the power

spectrum calculations Ulichney developed J in order to seek a

halftone image that will satisfy the desired blue noise

characteristics.

30

CHAPTER III

HALFTONING

Evaluating Halftones

Halftones are often evaluated visually by comparing any

of several characteristics. We shall consider the original,

unhalftoned digital image to be optimal. Most halftones give

the viewer an approximate idea of the original image, but

the success of any halftone is dependent on its faithfulness

in representing the original, optimal image.

Any particular half toning method may perform well on

one image, but perform poorly on another. The evaluation and

comparison of halftone methods, therefore, must involve a

variety of test images .

Visual Comgarison

A person can compare a number of characteristics of

images by inspection. With similar pictures side-by-side,

comparisons of contrast, detail, smoothness, and intensity

can be made between them. Jarvis, Judice and Ninke noted

that one advantage of the minimized average error method,

(and therefore, error diffusion) over ordered dither is the

31

ability to enhance edges (1976, p. 13). Geist, Reynolds, and

Suggs defined their subjective measure of quality as "a

combination of sharpness of image detail and smoothness of

gray-scale simulation." (1993, p. 148)

Additionally, unwanted textures or patterns may be

apparent in an image. Shapes may be distorted, especially by

error diffusion methods (Ulichney, 1987; Geist, Reynolds, &

Suggs, 1993, pp. 138-141).

When considering half toned images, the viewer should

evaluate image quality by noting the characteristics

mentioned above. A halftone should be as true to the

original as possible, with respect to each of these

characteristics. As has been mentioned, however, tradeoffs

usually occur between different half toning methods.

Power Spectra

Ulichney has shown that much of the quality of a

halftone can be measured by calculating its radially­

averaged power spectrum. The best halftones all have very

similar spectra. This analysis led to the label of "blue­

noise halftones." (Ulichney, 1987)

While Ulichney used this method to evaluate halftone

images, later researchers developed methods to create

32

halftones with it. As mentioned before, some blue-noise

techniques work by seeking these particular spectral

characteristics.

Energy Comparison

Geist, Reynolds, and Suggs (1993) reported that their

energy measure algorithm ranked several types of halftones

in the same order that they expected most human observers

would. They suggested that studies to further test the

validity of such energy-based ranking be performed.

For any given image, the minimal energy value (Gibbs

measure) corresponds to the halftone with the minimal

assumption. To create a half toning method, they restricted

the class of possible halftones by making two assumptions:

"1. Individual binary pixel values should be

strongly correlated with the underlying gray-scale

intensities of the individual pixels they

represent.

2. In any small Euclidean neighborhood of

pixels, binary pixel values should exhibit a

pattern of pairwise correlation (both positive and

negative) that allows an accurate representation

of the average gray-scale intensity of that

33

neighborhood and does so with a minimum of low­

frequency noise." (Geist, Reynolds, & Suggs, 1993,

p. 143)

Using the proper mathematical representations for these

constraints, the halftone wi th minimal energy becomes the

ideal halftone. This energy measure can also, therefore, be

used as a relative comparison tool between halftones of the

same original image.

Design of the Study

An experiment to test the validity of Geist, Reynolds,

and Suggs' energy measure is proposed, based on their

suggestion. Halftone images produced by three methods will

be used.

Bayer's ordered dither is included in this experiment

primarily for two reasons. First, it remains quite popular.

Secondly, being a periodic, point-oriented algorithm, it

radically differs from the two aperiodic,

algorithms being used.

neighborhood

While Floyd and Steinberg (1975) first developed error

diffusion half toning using a four-weight filter, later

researchers have recommended larger diffusion filters for

34

better results. Jarvis, Judice, and Ninke's (1976) twelve­

weight filter was the first of several large diffusion

filters to be developed.

The greater success (and improved blue noise spectra)

of Ulichney's random-weighted error diffusion is the basis

for its inclusion this experiment. Ulichney wrote concerning

his findings,

"Conventional methods of error diffusion with

previously reported error filters were closely

examined and found to be fair blue noise

generators. Experiments with a broad array of

perturbations found that excellent blue noise

patterns could be achieved with error filters of

four or fewer weights when noise was added and

processed on a serpentine raster." (Ulichney,

1987, p. 344)

The test images are meant to collectively represent

most types of digital images. They will contain areas of

high and low contrast, straight and curved edges, and have

small details. These are typically the regions of images

that suffer the most from half toning. Sources of the images

will include digitally rendered scenes, scanned photographs,

35

and some text. Several of the images will be similar to

images used by previous researchers.

Methodology

The procedures below will be followed to meet the

stated objectives for the study. The results, including all

test halftones and their evaluations will be printed. An

analysis of the results will lead to a conclusion concerning

the validity of energy-based halftone evaluation.

1. Develop software to produce halftones using Ulichney's

error diffusion with 50% random weights, Jarvis,

Judice, and Ninke's minimal average error (error

diffusion), and Bayer's ordered dither.

2. Develop software for the quantitative evaluation of

halftones using the energy measure algorithm of Geist,

Reynolds, and Suggs.

3. Obtain suitable gray-scale test images I which fit the

specified criteria for test variety and difficulty, as

mentioned in the Design of the Study.

4. Produce halftones for each gray-scale image using each

algorithm from step 1.

S. Compare the resulting halftone images qualitatively.

The accuracy of details, edges, contrast, intensity I

36

and the presence of any artificial patterns or other

distortions in each image will be recorded. The

evaluation criteria are defined specifically in

Appendix B.

6. Compare the halftone images quantitatively, using the

energy measure program written in step 2.

7. Correlate the data from steps 5 and 6 to determine the

validity of the energy measure.

37

CHAPTER IV

RESULTS AND ANALYSIS

Obtaining the Data

Each of the images used in the study have been

reproduced in Appendix C. Five different gray-scale pictures

were half toned three different ways, yielding fifteen

halftones. For each of the five, a higher resolution

prescaled halftone is also printed, to better approximate

the original gray-scale image. Therefore, a total of twenty

images are shown.

The complete program code for the energy calculations

and the halftones used in the study is listed in Appendix D.

All code was written in ANSI C, and compiled and executed on

an IBM RS/6000 Model 580 running AIX version 3.2.5.

Results

The results of the visual evaluations are given in

Table I (See Appendix B for explanations of the specific

rating criteria used). The average (arithmetic mean) score

for each of the fifteen images was computed and also appears

38

in Table I. For these values, greater numbers indicate

better performance.

Results from the application of Geist, Reynolds, and

Suggs' energy measure to the images are shown in Table II.

All values shown are negative as expected, and smaller

values indicate better performance.

39

Table I. Visual Evaluation Results

Bayer Ordered Dither Image Image Image Image Image
#1 #2 #3 #4 #5

Detail/Edges: 70 65 40 85 40

Intensity/Contrast: 75 85 85 85 74

Artifacts/Patterns: 50 50 50 50 35

Shape Distortion: 95 70 70 90 75

Average Score: 73 68 61 78 56

Jarvis, Judice, & Ninke Image Image Image Image Image
Filter #1 #2 #3 #4 #5

Detail/Edges: 90 85 75 85 90

Intensity/Contrast: 65 90 75 85 95

Artifacts/Patterns: 65 70 65 70 60

Shape Distortion: 50 70 70 90 85

Average Score: 68 79 71 83 83

50% Random Image Image Image Image Image
Floyd-Steinberg Filter #1 #2 #3 #4 #5

Detail/Edges: 95 80 90 80 80

Intensity/Contrast: 90 90 95 95 95

Artifacts/Patterns: 90 70 95 90 95

Shape Distortion: 70 90 85 85 85

Average Score: 86 83 91 88 89

40

Interpretation of the Data

One difficulty arises when interpreting results of the

energy measure. The range of values obtainable using the

energy calculation is dependent on several variables. It

depends on the size of the image, and the content of the

orig"inal gray- scale image, as well as the hal ftone being

measured. For this reason, the energy values are only

significant for use as a relative comparison between two or

more halftones of the same original image. All of the images

evaluated in this study were of identical size to remove the

variable of size.

Using linear regression to determine the correlation

between the fifteen quality ratings and their respective

energies yields a correlation coefficient, r = -0.0155. This

small a number indicates that no correlation exists at all.

To remove the effects of the different spectral

characteristics of each original image, the energy values

were normalized. These figures are shown in Table III. Each

was normalized by dividing them by the absolute value of the

average of the energy values for the three halftones of each

image. This is a simple approximation, but allows the energy

41

measure to be used loosely for comparisons of different

images.

Table IV summarizes the two sets of data extracted from

Table I and Table III. Using the same linear regression as

before, but comparing the visual scores to the normalized

energy values shown in Table IV yields a correlation of

-0.606. This indicates a strong but non-conclusive

relationship does exist. The correlation is negative, as it

should be, since better images are supposed to produce

greater negative values.

The fifteen samples can also be viewed another way. By

computing the average resul ts for each half toning method

used (each row in Table IV), three artificial samples are

obtained. These figures give an overall idea of the

performance of each half toning method, as measured by visual

inspection versus image energy. These average values are

shown in Table V. Using linear regression again, the

correlation between these figures is a very strong -0.936.

42

Table II. Energy Measure Results

Energy Value Image Image Image Image Image
#1 #2 #3 #4 #5

Bayer Ordered -51988.17 -59247.36 -63774.08 -51922.49 -48631.70
Dither

Jarvis, Judice, -51789.48 -65085.64 -64508.38 -52488.24 -49161.00
& Ninke Filter

50% Random
Floyd-Steinberg -52893.55 -62835.74 -65902.60 -53102.55 -49828.81

Filter

Note: Smaller values indicate better performance.

Table III. Normalized Energy Measure Results

Energy Value Image Image Image Image Image
#1 #2 #3 #4 #5

Bayer Ordered -0.9955 -0.9496 -0.9853 -0.9889 -0.9883
Dither

Jarvis, Judice l -0.9917 -1.0432 -0.9966 -0.9997 -0.9991
& Ninke Filter

50% Random
Floyd-Steinberg -1.0128 -1.0072 -1.0181 -1.0114 -1.0126

Filter

Note: Smaller values indicate better performance.

43

Table IV. Evaluation Summary by Image

Visual Rank
Image Image Image Image Image

vs. #1 #2 #3 #4 #5
Norm. Energy

Bayer Ordered 73 68 61 78 56

Dither
-0.9955 -0.9496 -0.9853 -0.9889 -0.9883

Jarvis I Judice , 68 79 71 83 83

& Ninke Filter
-0.9917 -1.0432 -0.9966 -0.9997 -0.9991

50% Random 86 83 91 88 89
Floyd-Steinberg
Filter -1.0128 -1.0072 -1.0181 -1.0114 -1.0126

Table V. Averages of Results by Halftone Method

Visual Evaluation Average Normalized
Energy

Bayer Ordered
66.95 -0.9815

Dither

Jarvis I Judice I & 76.50 -1.0061
Ninke Filter

50% Random
Floyd-Steinberg 87.25 -1.0124

Filter

44

CHAPTER V

SUMMARY AND CONCLUSIONS

Summary of Results

The first objective was to qualitatively compare five

images produced by each of three methods: Bayer ordered

dither; Jarvis, Judice, and Ninke's minimal average error;

and Ulichney's 50%-random-weighted error diffusion. Also the

accuracy of image details, edges, contrast, intensity, and

the presence of any artificial patterns or other distortions

in each image were to be rated numerically on a checklist

(See Appendix B for an example checklist and the specific

criteria) .

To meet Obj ective 1, several steps were necessary.

Software was written to create three types of halftones as

planned. Five grayscale images were each half toned using the

software, yielding fifteen test images. The quality of these

halftones were compared by inspection using the criteria

listed, and results were recorded in Table I.

The second objective was to evaluate the same halftone

images quantitatively using the energy measure algorithm of

45

Geist, Reynolds, and Suggs. To satisfy this objective, the

software developed for the first objective was modified to

also calculate image energy. All program code is listed in

Appendix D and the energy algorithm is given in Appendix E.

The third and final obj ecti ve was to correlate the

averaged qualitative results with the energy calculations to

determine the validity of the energy measure. This was

performed by applying linear regression to the two sets of

data (qualitative rankings and energy values). A method of

normalizing the data was also used in the analysis to

determine the success of the energy measure algorithm.

Conclusions from the Study

The energy measure, of course, cannot produce halftone

quality rankings that will agree with everyone's subjective

opinions concerning a given image. It is clear, however,

that the energy measure introduced by Geist, Reynolds, and

Suggs successfully ranks images based on their gray- scale

accuracy, their detail, and their "blue-noise" spectra. Most

recent digital half toning research seems to agree that these

are primary characteristics of quality halftones (Ulichney,

1987; Peli, 1991; Mitsa & Parker, 1992; Scheermesser, Broja,

& Bryngdahl, 1993)

46

The particular halftone algorithms used in the study

were chosen in part, to aid and support the visual

comparisons. One would ordinarily expect that random-

weighted error diffusion should outperform standard error

diffusion, which should likewise outperform the Bayer

ordered dither (Ulichney, 1987; Jarvis, Judice, & Ninke,

1976). The results for image #1, a gray-scale ramp, shown in

Figures 12-15 are notable, in that they differ from this

expectation. The Bayer dither in Figure 13 received a

second-place ranking in the visual comparison, since it

seems to do a better job of representing the original than

the Jarvis I Judice, and Ninke filter in Figure 14.

Interestingly, the energy measure also awards Figure 13 a

better score than Figure 14.

The energy measure has been found to be a valid, useful

tool for the evaluation of binary digital halftone quality.

The final correlation coefficient of -0.936 indicates a very

strong link between image energy and image quality. (A

coefficient of ±1.0 would indicate the absolute dependence

of energy on quality, while a coefficient of 0 would

indicate no relationship.)

47

CHAPTER VI

RECOMMENDATIONS

Having established that the energy measure can be very

useful as a quantitative halftone evaluation tool, two

things remain which could greatly enhance its usability in

practice. First and most importantly, an accurate method of

standardizing energy values for arbitrary images needs to be

developed. Secondly, the processing requirements for

calculating image energy must be reduced before it will find

popularity.

The energy values produced by Geist, Reynolds, and

Suggs' algorithm do not have a constant range, so a single

halftone and its energy value are meaningless without other

halftones of the same image to use for comparison. While an

average of several halftone algorithms' energy values can be

used to normalize the energy for a given image, as was done

in this study, a better solution is needed. A more accurate

method of standardizing the energy values, which does not

require computing additional halftones, should be developed.

The other difficulty with the application of Geist,

Reynolds, and Suggs' energy measure is its computational

48

requirements. When compared to the complexity of most

half toning methods, its storage and processing requirements

are exceedingly large. Efforts should be made to reduce the

computational complexity of the algorithm, while retaining

its accuracy.

49

BIBLIOGRAPHY

Bayer, B. (1973). An Optimum Method for Two Level Rendition
of Continuous-Tone Pictures. Proceedings of the IEEE
International Conference on Communications, New York:
IEEE, 26-11 - 26-15.

Floyd, R. & Steinberg, L. (1975). An Adaptive Algorithm for
Spatial Gray Scale. SID 1975, International Symposium
on Digital Technology, Papers, 36-37.

Geist, R., Reynolds, R., & Suggs, D.
Framework for Digital Half toning.
Graphics, 12(2), 136-159.

(1993) A Markovian
ACM Transactions on

Gentile, R. S., Walowit, E., & Allebach, J. P. (1990).
Quantization and Mul~ilevel Half toning of Color Images
for Near-O~iginal Image Quality. Journal of the Optical
Society of America, 1, 1019-1026.

Jarvis, J. F., Judice, C. N., & Ninke, W. H., (1976). A
Survey of Techniques for the Display of Continuous Tone
Pictures on Bilevel Displays. Computer Graphics and
Image Processing, 2, 13-40.

Knuth, D. (1987). Digital Halftones by Dot Diffusion. ACM
Transactions on Graphics, Q, 245-273.

Linotype-Hell Company, (January 1993). Resolution, Screen
Ruling and Halftone Dot Shape. Technical Guidebook, A9,
Hauppage, NY: Author.

Mitsa, T., & Parker, K. (1992). Digital Half toning Technique
Using a Blue-Noise Mask. Journal of the Optical Society
of America, ~, 1920-1929.

Peli, E. (1991). Multiresolution, Error-Convergence Halftone
Algorithm. Journal of the Optical Society of America,
.a, 625-636.

Rimmer, S. (1993)
McGraw-Hill.

Windows Bitmapped Graphics. Windcrest/

Rogers, David F., (1985). Procedural Elements for Computer
Graphics. New York: McGraw-Hill.

51

Scheermesser, T. , Broj a, M. , & Bryngdahl, O. (1993).
Adaptation of Spectral Constraints to Electronically
Half toned Pictures. Journal of the Ogtical Society of
America, 10, 412-417.

Stevenson, R. & Arce, G. (1985). Binary Display of
Hexagonally Sampled Continuous-Tone Images. Journal of
the Optical Society of America, ~, 1009-1013.

Stucki, P. (1979) . Image Processing for Document
Reproduction. In P. Stucki (Ed.), Advances in Digital
Image Processing. New York: Plenum. 177-218.

Ulichney, R., (1987). Digital Half toning. Cambridge, MA: MIT
Press.

Weissbach, S., & Wyrowski, F. (1992). Error Diffusion
Procedure: Theory and Applications in Optical Signal
Processing. Applied Optics, 31(14), 2518-2534.

52

Related Literature

Bellanger, M. (1986). Digital Processing of Signals: Theory
and Practice. Chichester: John Wiley & Sons.

Booth, K., Bryden, M., Cowan, W., Morgan, M., & Plante, B.
(1987, September). On the Parameters of Human Visual
Performance: An Investigation of the Benefits of
Antialiasing. IEEE Computer Graphics and Applications,
2, 34-41.

Crow, F. (1978) The Use of Grayscale for Improved Raster
Display of Vectors and Characters. Computer Graphics,
12(3), 1-5.

Dayhoff, J. (1990) Neural Network Architectures: An
Introduction. New York: Van Nostrand Reinhold.

Earnshaw, R. A. (Ed.). (1985). Fundamental Algorithms for
Computer Graphics (NATO ASI Series. Series F, Computer
and System Sciences; 17). Berlin: Springer-Verlag.

Gupta, S., & Sproull, R. (1981). Filtering Edges for Gray­
Scale Displays. Computer Graphics, 15(3), 1-5.

Hamming, R. W. (1983). Digital Filters (2nd ed.). Englewood
Cliffs, NJ: Prentice-Hall.

Kinderman, R., & Snell, J. (1980). Markov Random Fields and
their Applications. Providence, Rhode Island: American
Mathematical Society.

Simpson, P. (1990). Artificial Neural Systems: Foundations,
Paradigms, Applications, and Implementations. New York:
Pergamon Press.

Stanley, W. D. (1975). Digital Signal Processing. Reston,
VA: Reston Publishing.

53

APPENDIX

APPENDIX A

Related Procedures in Image Processing

Several image processing techniques have been mentioned

in passing, which can significantly affect halftone quality.

Especially when half toning with bilevel displays, tone scale

adjustment and sharpening may be necessary to achieve the

quality of results desired. Prescaling, if possible, can

dramatically improve halftones.

Tone Scale Adjustment

When half toning gray-scale images with just black and

white, it is customary to remap, or adjust, the intensities

in the image to better preserve the brightness and contrast

of the image. Tone scale adjustment can also add contrast at

very light and dark regions, enlivening otherwise "flat"

images (Ulichney, 1987, pp. 11-14; Rimmer, 1993, pp. 331-

333) .

Sharpening

Sharpening involves increasing the contrast of an image

on edges within the image. Sharpening is also called "edge­

enhancement." Some half toning algorithms cause a degree of

55

sharpening as a side-effect. In particular, error diffusion

filters with many weights tend to sharpen edges. For

example, compare the twelve-weight filters in Figure 7 and

Figure 8 to the four-weight filter in Figure 5.

While some amount of sharpening can enhance a halftone,

it depends on the particular image. Ulichney argues that

sharpening should be separately controlled from half toning,

not inherent in the process. He recommends sharpening the

image prior to half toning (Ulichney, 1987, p. 253).

Prescaling

Prescaling is a process which can significantly improve

the results of half toning. Prescaling is performed by

scaling the image resolution up by some factor before

half toning . Prescaling is particularly successful when an

error-diffusion technique is employed. The primary drawback

to prescaling is its memory and computation requirements.

Since the resolution is increased by the square of the

scaling factor, so does the memory size of the image, and

the time needed to process it (Rimmer, 1993, pp. 339-340).

Obviously, prescaling will require that the half toned

image is larger than the original, unless it can be printed

56

at a higher resolution. Figure 1, for example, was prescaled

by a factor of four in both dimensions, before it was

half toned. Since it was printed at 300 dpi, it is still the

same size as the other figures, printed at 75 dpi.

57

APPENDIX B

Evaluation Criteria and Data Sheet

Each image will be evaluated on several specified

criteria, using a scale of a to lOa, where 0 is the worst

performance and 100 is the most accurate. The criteria are

defined for this study as follows:

Detail/Edges: Are small features in the original still

discernible? If there are letters, are they legible?

Jarvis, Judice, and Ninke (1976, p. 30) define edge

emphasis as "creating an enhanced legibility of

textual, line and other material of high detail."

Intensity/Contrast: Do local intensities closely match the

original gray levels? Half toning techniques are meant

to give the subjective appearance of continuous tone

(Jarvis, Judice, & Ninke, 1976, p. 13).

Artifacts/Patterns: Are there artificial patterns which

should not be present? Image artifacts have been a

primary problem and reason for many developments in

half toning . (Ulichney, 1987 i Jarvis, Judice, & Ninke,

1976, p. 27, 31; Knuth, 1987, p. 246)

58

Distortion: Are any shapes in the image obviously distorted?

Shape distortion by the diffusion process has been

called "directional hysteresis u by Ulichney (1987, p.

253). This distortion is most evident in regions of

slowly-varying intensity.

Average Score: The arithmetic mean of the four ratings

above. This result will be used to calculate the

correlation with image energy.

59

Halftone Evaluation Data Sheet

Bayer Dither Test Images

#1 #2 #3 #4 #5

Detail/Edges:

Intensity/Contrast:

Artifacts/Patterns:

Shape Distortion:

Average Score:

Jarvis, Judice, & Ninke Test Images

#1 #2 #3 #4 #5

Detail/Edges:

Intensity/Contrast:

Artifacts/Patterns:

Shape Distortion:

Average Score:

Random-Weight Error Diffusion Test Images

#1 #2 #3 #4 #5

Detail/Edges:

Intensity/Contrast:

Artifacts/Patterns:

Shape Distortion:

Average Score:

60

APPENDIX C

Test Images

The five original gray-scale images used in the study

were obtained from several sources. The binary halftones of

those gray-scale images were all produced by programs

written for this study. The source code is printed in

Appendix D.

Image #1 is a series of horizontal ramps, containing

the entire range of 256 grays from black to white. Similar

images have been used to evaluate halftones by Ulichney

(1987), Peli (1991), and Jarvis, Judice, and Ninke (1976)

Image #2 is a computer-generated ray-traced image. It

very closely resembles one used by Geist, Reynolds, and

Suggs (1993). It was created using the Persistence of Vision

(POV-Ray) ray tracing program.

Image #3 has a vertical grayscale ramp for background,

with several lines of text superimposed. The text is solid

black at the top, 50% gray in the center, and solid white at

the bottom.

61

Image #4 was digitized from a photograph. It is a NASA

picture of a space shuttle launch, and was retrieved from a

public NASA image repository on Internet.

Image #5 is the same image of San Francisco's Golden

Gate Bridge that was used to illustrate digital half toning

methods earlier in this paper. It was also downloaded from a

public site on Internet.

62

Figure 12. Image #1. Prescaled Halftone for Reference.
(300 dpi)

63

Figure 14. Image #1. Jarvis I Judice I
(75 dpi)

U = -51789.48

65

& Ninke Filter.

.................
t

: ".: ' ..
.. : : :

• • •••••• • • •••• •• ·0 "

.. ••• 0

... ." ... • 0 : •• " •••• "0 0 " "" ...

Figure 15. Image #1. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi)

U -52893.55

66

Figure 16. Image #2. Prescaled Halftone for Reference.
(300 dpi)

67

Figure 17. Image #2. Bayer Ordered Dither. (75 dpi)

U -59247.36

68

Figure 18. Image #2. Jarvis, Judice, & Ninke Filter.
(75 dpi)

U = -65085.64

69

Figure 19. Image #2. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi)

U -62835.74

70

Figure 20. Image #3. Prescaled Halftone for Reference.
(300 dpi)

71

~~.*:~.~.~.:.f:~.~.{.~:' ... ~.~.~.~:~_}::.·.~:~_~.~.l.::f.!.:,!.:.·.1_~_~,~~~
.. ' .. -:.: -:: .: :-'-.: . :.:: :~::. ::: : ':: '-. :". "-:'-: .. :'-.~' :'.~':' .. ,1-.';' :-: .. ~ ::: !. r.-. :' .. ':~ ':;' .-: : .. : '

• ••••• • ' ••• ' .' • : : : : : 0° '. ' .' •••• ' • • ••••• ••• • • • • • • • • • • • • • • • • • • •• • •••••••••• • •••••• • • ' .

:: . .:,:.:::':: .. : ' ... : : : : .: ':::::::: ::;': : : '.' ':::. .::.: :.: .. ,,:'.: :::. : :' :',' ::::::: .:'.: .. ::' :':::: ::':': ::.: ::'::'.::::::: :.:.:,.: :'~ .: ::':':'::.:. :.:.:.:.:.:. :.: ::'.: :':':':':':': '.:-: :',':'.:.',,=:. :.::.:; :':'.: .

!~U~i}~,i~E~d~~~,;t;~.1~f,~{{~~;ir,{:@:if~~g;~~:Wjf.~Jr~jl}{i~;~~E~Mi,tf~~mJ~t~x2:~~~t&J:~·.:i~.I~tiw>\

Figure 22. Image #3. Jarvis, Judice,
(75 dpi)

U -64508.38

73

& Ninke Filter.

Figure 23. Image #3. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi)

U -65092.60

74

Figure 24. Image #4. Prescaled Halftone for Reference.
(300 dpi)

75

Figure 25. Image #4. Bayer Ordered Dither. (75 dpi)

U -51922.49

76

Figure 26. Image #4. Jarvis, Judice, & Ninke Filter.
(75 dpi)

U -52488.24

77

Figure 27. Image #4. 50-Percent Random Floyd-Steinberg
Filter. (75 dpi)

U = -53102.55

78

Figure 28. Image #5. Prescaled Halftone for Reference.
(300 dpi)

79

xxx::x::xxx::x::x::::::::::::':::':::':::':::':::':::':::.:::.:.:.:.:.:.:.:.:.:-:-:::-:-:-:::-:::-:::-:::-:: :-:::-:::-:::::::::::::x::
::x::x::x::x::x::x::::::::::::-:::-:::':::':::':::':::.::;-:::.:::.:::.:::.:::.:::.:::-:::.:::.:::.:::-:::-:::-:::':::':::':::':::::::::x
xxx::x::x::x::x::x::x::::::::::::::::':::':::':::':::-:::.:::.:::.:::.:.:.:::.:::.:::.:::.:::.:::-:::.:::.:::':::':::::::::::::::::x::
xx::x::x::x::x::x::::::::::::::::::::':::':::':::':::':::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::':::':::':::':::::::::::::x
~~~~~~~~~~~~~~~~~~~~~~~~1~1~1~~;111;111;1~~=111=111=1;l=l;l=l;l=l;l=l;l=l;l=l;l=l;j=l;l=l;l=l;l=l;l=l;l=lll=lllllllllj1f:~f:~f: 
xxxxxxxxxxxxx::x::x::x::x::::::::::::::::::::::::::::':::.:::.:::.:::.:::.:::::::.:::.:::.:::::::::::::::::::::::::x::x::xxx 
xxxxxxxxxx::x::x::x::::::::::::::::::::::::::::::::':::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::':::::::::::::x::x:: 
~~~~~~~~~~~~~~~~11~11~;1~11~;111111111111111111;li=iil=1;1=11;:111:111=ili=ili:l;1=111=111:111=11i=1;lilil~il~ll~~~~x 
~~~~~~~~~~~~~U~U~U~U~U~iillll~llllllllllllll=lll=l;l=l;l=lllllll=lll=lll:lll=lll:lll:lll:lll:lgllllllll~ll~ll~~~~ 
~~~~~~~~~~~~~~~~~~~~Uf:~f:llf:lllllllllll1lllll1=111=111=111=11111111111=111:111:111:111=111=11111111111~11~11~~~~ 

*~~~~~~~~~~~~~~~R~H~ll~l~~ll~ll~lllll~11ll111lll1l111111ll;lll;111;lll;nl;lll;llll1ll11111111~ll~ll~ xx::x::x::x::x::x::x::.:::.:::.:::.:::.:::::::::::::::::
xxxxxxXxxxx::x::x::x::x::x::x:: xx::xxx::x::x::x::x::x::::::::::::::::::::::::::::::::::::-:::.:::.:::.:::.:::::::::::::::::: ...
xxxxxxxxxxx::x::x::x::x::x::x::
xxxxxx::x::x::x::x::x::x::::::::::::::::::::::::::::::::::::.:::.:::.:::.:::::::::::::::::

xxxxxxx::x::x::x::x::x::
::x::x::x::x::x::x::::::::::::::::::::::::::::::::':::.:::.:::.:::.:::::::::::::::::

::x::x::x::x::x::x::x
x::x::x::x::::::::::::::::::::::::::::':::':::':::':::.:::.:::::::::::::
::x::x::x::x::x::::::::::::::::::::::::::::':::::::::::::::;::::::::::: ... x::x::x::::::::::::::::::::::::':::':::':::':::':::':::':::'::::::::::::::::
::x::x::x::x::x::x::

xxxxx::x.::x::x::x::x::::::::::::::::::::::::·:::·:::·:::.:::-:::-:::- :::.:::.:::.:::::::::::::::::::
~~~~~~~~~~~~~~~~~~g~11111111111111:11i:iii:i;i:iil:i;i:ii;:iil:1ii:ili=iii:il~iiiiiiii~ii::x::xxXXXi< 
xxxxxxxxxx::x::x::x::x::x::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::x::x::xxxxx,.xx 
xxxxX::X::X::X::X::X::x::::::::::::::::':::':::':::':::.:::.:::.:::.:::.:::.:::.:::.::::::::::::::::: 
xX~~~~~~~~~~~~~~llnll~llllllilll:lll=lll:lll :l;l=l;l=l;l:l;l:lll:lll=lll=lllllllllllllllnll~ 

xxxxxxxx::x::x::x::x::::::::::::::::::::::::::::':::':::':::::::::::::::::::::::::::::::::x::x 
xxx::x::x::x::x::x::::::::::::::::::::':::::::':::':::.:::.:::.:::.:::.:::.:::.::::::::::::::::::::: 
xxXXxx::x::x::x::x::x::x::::::::::::::::::::::::::::':::'l::::::::::::::::::::::::::::::::X::X 
x)Cx::x::x::x::x::x::::::::::::::::::::::::::::-:::-:::-:::-:::-:::-:::-:::-:::-:::::::::::::::::X·· 
xxxxxX::x::x::x::x::::::::::::::::::::::::::~:::::::::::::::::::::::::::::::::::::: 

~~~~~~~~~~;;~;;~;;~l;;l;lg;ll;llllllllll;ll;;lll;lll;l11;111;m;11111111111'" 
xxx::x::x::x::':::.:::.:::.:::: •......•....
~~~~~~~~~~11~11nll~11111lllll~llllllilllilli:lll:l11=11l=11 
xxxxxx::x::x::x::x::x::x::x::::::::::::::::::::::::::::::::: 
xXX::X::X::X::::::::::::::::::::::::::::::::::::::::':::.:::::::.:: 
xxxxxxxx::x::?!::?!::~::?!::?!::?!:::::::::::::::::::::::::::::::: 

ll?ill?ill?ill?ill?ill?illllllilligiiliiiiiiilliiiiiiii 
~~~~~H~1 r:1~r:1 ~r: ~1~HHH 1 ~~;~ ;~ .................. . 

~ ~~? ~ ~ ~ ~~ ~ ~ [~~~~~~ ~~~ ~~ ~; ~ ~~~~ ~ ~??
:llllllllllllllllgllHlll:lmm~ll
lllllllliglllllilillllllllm:lllHll

~~~llllllllljmjjWmljjllljjjj~jj 
~::::=:~11111mlml1llgllllllllllllllll1l1l 

...... HllHllulljjjjjWl1WjjWjWjjjjjjjjjjjj_ll 
.~11f:lmlml1111111!liiiiiiiiiiiiili!!@lW1Wlllll; , 

-ri 
~ 
'0 

lI) 

r--

H 
ill 
~ 
.w 
-ri 
~ 

'0 
(1) 
H 0 
ill r-
'd 
~ rl 
0 c-r1 

'-D 
H co 0 

<1J ~ 
co 

>, 
~ 
m II 

~ 
lI) 

# 

ill 
bl 
ro 
S 
H 

OJ 
[\J 

(lJ 

~ 
;:j 
bl 

-ri 
~ 



Figure 30. Image #5. Jarvis, Judice, & Ninke Filter. 
(75 dpi) 

U -49161.00 

81 



Figure 31. Image #5. 50-Percent Random Floyd-Steinberg 
Filter. (75 dpi) 

U = -49828.81 

82 



APPENDIX D 

Software Source Code 

/* Energy.c 

This program calculates the 'Energy Measure' of binary 
halftones, using the algorithm published by Geist, Reynolds, 
and Suggs in "A Markovian Framework for Digital Half toning", 
ACM Transactions on Graphics, Vol. 12, No 2, April 1993. 

The program also calculates binary halftones using three 
methods: 

1. Bayer Ordered Dither (with an 8x8 dither matrix), 
2. Jarvis, Judice, and Ninke Minimal Average Error 

(Error Diffusion), & 
3. Ulichney's 50%-Random-Weighted Serpentine Raster 

version of the Floyd-Steinberg Error Diffusion 
Filter. 

*/ 

#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 

#include "bitmap.hl! /* Listing follows Energy.c */ 

#define MAXCOLOR 255 

/* define image size. */ 
#define XSIZE 440 
#define YSIZE 440 

#define RADIUS (5) 
#define MAXNEIGHBORS (80) 

83 



/* calculate the horizontal position of pixel i within the 
image */ 

long int x(long int i) 
{ 

return (i % XSIZE) i 

} 

/* calculate the vertical position of pixel i within the 
image */ 

long int y(long int i) 
{ 

return ((i / XSIZE) + 1) i 

} 

/* return the distance between two pixels */ 

double distance(long int i, long int j) 
{ 

} 

long int dx, dYi 

dx = x(i) -x(j); 
dy = Y ( i) - y (j ) i 

return(sqrt((double)dx*dx+dy*dy)) i 

/* i and j are neighbors if they are within distance RADIUS 
of each other, 

and are not the same pixel. */ 

int neighbor(long int i, long int j) 
{ 

} 

if ((distance(i, j) <= RADIUS) && (i != j)) 
return (1) i 

else 
return (0) i 

84 



/* return the value of the binary halftone at pixel l. (00 
or FF) */ 

int w(long int i, struct bm256 *halftone) 
{ 

return (halftone->array[i] / 255); 
} 

/* return the original value at pixel i as a floating point 
number, scaled to 0-1. */ 

double V(long int i, struct bm256 *orig) 
{ 

return ((double)orig->array[i] / 255.0); 
} 

/* returns the average pixel value for all neighbors of l 

(including i) */ 

unsigned char char_AVE(long int i, struct bm256 *orig) 
{ 

long int j, pixels, count, height, first, last; 
long int sum, num; 

pixels = (orig->xs+l)*(orig->ys+l); 

/* start sum to include the value at pixel i. This is 
necessary, since i is not defined as a neighbor of i. 
*/ 

sum orig->array[i] 
num 1; 

height = (XSIZE * RADIUS) i 

first = max(O, i-height-l); 
last = min (pixels, i+height+l) i 

/* The purpose of count, first, and last is simply to 
speed calculations. 

85 



} 

The algorithm states to sum for all i,j. But for a 
given pixel i, there can be no more than 80 neighbors j 
(given the radius 5) . 

If i and j are not neighbors, then the energy cannot 
change. 
So using count, MAXNEIGHBORS, and first, and last are 
just some simple optimizations to speed things along.*/ 

count = 0; 
for (j=first; (j < last)&&(count < MAXNEIGHBORS); j++) 

{ 
if (neighbor(i, j)) 

} 

{ 
/* found a neighbor, increment count */ 
count++; 

/* add pixel value to sum */ 
sum += orig->array[j]; 
/* count the pixel */ 
num++; 
} 

return (sum/num) ; /* return the average value */ 

/* The avgs matrix is stored as integer values. This 
returns the average value as a floating point number, 
scaled to O-l. */ 

double double_AVE (long int i, struct bm256 *avgs) 
{ 

return(avgs->array[i]/255.0) i 

} 

86 



/* calculate the matrix of average values. */ 
void calc_avgs(struct bm256 *orig, struct bm256 *avgs) 
{ 

} 

long int i, pixels; 
pixels (orig->xs+1) * (orig->ys+1); 

/* for all pixels */ 
for (i = 0; i < pixels; i++) 

{ 

/* calculate the average value of all neighbors to 
i (including i) */ 

avgs->array[i] = char_AVE(i, orig); 
} ; 

/* rho is the coefficient obtained by inverting the 
idealized power spectrum for halftones. */ 

double rho (double k, double pf) 
{ 

} 

double b, top, spikeup, spikedown, kp, r; 
double pi = 3.14159265; 

b = 0.8 * pf; 
top = ( 0 . 4 * ( sqrt (2 . 0) * pf + 1)) ; 
spikeup = 1.05 * pf; 
spikedown = 0.95 * pf; 
kp = k*pi; 

r = (sin(kp*spikeup) - sin(kp*spikedown)) / (4*kp); 
r += (cos (kp*top) - cos(kp*b)) / ((top-b)*kp*kp); 

return (r); 

87 



/* given two pixels i,j, and the matrix of average values, 
function find T calculates the value of the T matrix at i,j. 

Note in this implementation, the T matrix is not stored, but 
calculated as needed. 

Since the T matrix is an array of floating point values, 
indexed by the number of pixels times 40 (half the 
neighbors), the memory requirements for storage can be quite 
large. This method is a compromise of speed for efficiency. 

*/ 

double find_T(long int i, long int j, struct bm256 *avgs) 
{ 

} 

const double A = 0.15; 
const double B = 0.03; 
double k, mean, pfreq, T; 

if (!neighbor (i, j)) 
return (0.0); 

else 
{ 
k = distance (i, j); 

mean=O.S*(double_AVE(i,avgs)+double_AVE(j, avgs)); 
if (mean <= 0.5) 

pfreq = sqrt (mean) i 

else 
pfreq sqrt (1 - mean); 

} 

T = (A * rho(k, pfreq) - B / (k * k)); 
return(T) ; 

/* Function total_energy calculates and returns the energy 
for the supplied gray-scale image and its binary halftone. 

Note that the matrix of averages for all pixels must be 
calculated before the call */ 

88 



double total_energy(struct bm256 *orig, struct bm256 
*halftone, struct bm256 *avgs) 

{ 
long int i, j, pixels, count, height, first, last; 
long int xmax, ymaxj 
double energy; 

height = (XSIZE * RADIUS); 

energy == 0.0; 

xmax min(orig->xs, halftone->xs); 
ymax min (orig->ys, halftone->ys); 

/* total number of pixels in the image */ 
pixels = (xmax+1) * (ymax+1) ; 

/* First pass. 
This calculates the second term of the energy value: 

This term compares the similarity of each pixel in the 
halftone to its original gray scale value. */ 

for (i = 0; i < pixels; i++) 
{ 
energy -= (2* V(i, orig) - 1) * 

(2* w(i, halftone) - 1); 
} 

/* Second pass. 
This calculates the first term of the energy value: 

( T · . 1.,J * (2wi - 1) (2wj - 1) ) ) 

The purpose of this term is to measure the 'blue-noise' 
quality of the region around pixel i, and the overall 
intensity of the region. */ 

89 



} 

for (i OJ i < pixels; i++) 
{ 

/* The purpose of count, first, and last is simply 
to speed calculations. 

The algorithm states to sum for all i,j. But 
for a given pixel i, there can be no more than 80 
neighbors j (given the radius 5) . 

If i and j are not neighbors, then the energy 
cannot change. 
So using count, MAXNEIGHBORS, and first, and last 
are just some simple optimizations to speed things 
along. */ 

count = OJ 

first = max(O, i-height-l) j 

last = min (pixels, i+height+1); 

for (j=first; (j<last)&&(count < MAXNEIGHBORS) ij++) 

{ 
if (neighbor(i, j)) 

{ 
/* found a neighbor, increment count */ 
count++; 

/* the following is an optimized expression for: 

-(1/2) T· . * ~,J 
(2wi - 1) (2wj - 1) */ 

if (w(i, halftone) == w(j, halftone)) 
energy .5 * find_T(i,j, avgs); 

else 
energy += .5 * find_T(i,j, avgs) i 

} 
} 

} 
return (energy); /* done. return energy value */ 

90 



void 
{ 

bayer8(struct bm256 *source, struct bm256 *dest) 

int x, y, i, j , n· , 
unsigned char c; 
int xmax, ymax; 

/* matrix of weights for optimal ordered dither, 
determined by Bayer */ 

int D [8] [8] = { { 0, 32, 8, 40, 
{ 48, 16, 56, 24, 
{ 12, 44, 4, 36, 
{ 60, 28, 52, 20, 
{ 3 , 35, 11, 43, 
{ 51, 19, 59, 27, 
{ 15, 47, 7, 39, 
{ 63, 31, 55, 23, 

n = 8 ; 

xmax = min(source->xs, dest->xs); 
ymax = min(source->ys, dest->ys); 
copybitmap (source, dest); 

2, 
60, 
14, 
62, 
1, 

49, 
13, 
61, 

/* process each pixel in the bitmap. 
Note order is not important */ 

for (x = 0; x <= xmax; x++) 
for (y = 0; y <= ymax; y++) 

{ 

34, 10, 42 
18, 58, 26 
46, 6, 38 
30, 54, 22 
33, 9 , 41 
17, 57, 25 
45, 5 , 37 
29, 53, 21 

as 

} , 
} , 
} , 
} , 
} , 
} , 
} , 
} } ; 

/* determine position within the repeating 
ma t r i x D [] [] * / 

1 (x % n) ; 

j = (y % n) ; 

/* i 
/* j 

horizontal offset */ 
vertical offset */ 

/* get original pixel color */ 
c = findcolor(x, y, source); 

/* First scale the matrix value up from 0-63 
to 0-255. 

The 8x8 dither matrix can only produce 64 
intensity patterns. 

91 



} 

Next, use the value as a threshold. 
Then store the resulting 00 or FF. */ 

storecolor (x,y,dest, 
(c > (256/n/n) *D [i] [j] ) *255) ; 

} ; 

void jarvis(struct bm256 *source, struct bm256 *dest) 
{ 

int x, y; 
unsigned char c, newc; 
char error; 
int width, height; 
width = min(source->xs, dest->xs) 
height = min(source->ys, dest->ys); 
copybitmap (source, dest); 

/* process scan lines from top to bottom */ 
for (y = 0; Y <= height; y++) 

/* process each scan line from left to right */ 
for (x = 0; x <= width; x++) 

{ 
/* get pixel value from original image */ 
c = findcolor(x, y, dest); 

/* Use a simple threshold of 127. Determine 
the error value */ 

if (c > 127) 
{ 
newc = 255; 
error = c - 255; 
} 

else 
{ 
newc = O· , 
error = c· , 
} 

92 



} 

/* store the binary (00 or FF) value dictated 
by the threshold test */ 

storecolor (x, y, dest, newc); 

/* distribute error value to neighboring 
pixels. 

The Jarvis, Judice, and Ninke filter may be 
illustrated as: 

X 7 5 

35753 

13531 

increasecolor (x+l, y, dest, 
increasecolor (x+2, y, dest, 
increasecolor (x-2,y+l, dest, 
increasecolor (x-l,y+l, dest, 
increase color (x ,y+l, dest, 
increasecolor (x+l,y+l, dest, 
increasecolor (x+2,y+l, dest, 
increasecolor (x-2,y+2, dest, 
increasecolor (x-1,y+2, dest, 
increasecolor (x ,y+2, dest, 
increasecolor (x+1,y+2, dest, 
increasecolor (x+2,y+2, dest, 
} ; 

*/ 

(error) *7/48); 
(error) *5/48); 
(error) * 3 /48) ; 
(error) *5/48); 
(error) *7/48); 
(error) * 5/48) ; 
(error) *3/48); 
(error) *1/48); 
(error) *3/48); 
(error) *5/48); 
(error) *3/48) i 

(error) *1/48) i 

/*function random(x) returns an integer between 0 and x-l.*/ 
int random(int range) 
{ 

} 

float fi 

f = rand()/32768.0j 
return((int) (f*range)); 

93 



void rs50_floyd_steinberg(struct bm256 *orig, 

{ 
int x, y, XX; 

unsigned char c, newc; 
char error; 
int width, height; 
int rlarge, rsmall; 

struct bm256 *halftone) 

width = min(orig->xs, halftone->xs); 
height = min(orig->ys, halftone->ys) 
copybitmap (orig, halftone); 

/* process scan lines from top to bottom */ 
for (y = 0; Y <= height; y++) 

/* process pixels across the current scanline */ 
for (xx = 0; xx <= width; xx++) 

{ 
/* test for raster direction, to use 
'serpentine raster' */ 

if (y % 2) 

x xx; /* processing left to right */ 
else 

x width-xx; /* process right to left*/ 

/* get current color */ 
c = findcolor(x, y, halftone); 

/* apply threshold of 127, calculate error */ 
if (c > 127) 

else 

{ 
newc = 255; 
error = c - 255; 
} 

{ 
newc = 0; 
error = c; 
} 

/* store color dictated by threshold test */ 
storecolor (x, y, halftone, newc); 

94 



/* int from -5 to +5 */ 
rlarge = random(ll) - 5 i 

/* int from -1 to +1 */ 
rsmall = random(3) - 1· , 

/* distribute error value using randomized 
weights, to neighboring pixels. 

The Floyd-Steinberg filter is normally 
expressed as: 

X 7 

3 5 1 

Here, the weights are scaled by two to 
facilitate the 50% randomly perturbed 
weights, while still using integer 
arithmetic. The filter is therefore: 

X 14 

6 10 2 */ 

if (y % 2) /* test for raster direction */ 
{ 
increasecolor (x+l, y, halftone, 

(int) (error* (14+rlarge) /32) ) i 

increasecolor (x-l,y+l, halftone, 
( in t) (e r ro r * ( 6 + r sma 11) /3 2 ) ) i 

increase color ( x,y+l, halftone, 
(int) (error* (10-rlarge) /32)) i 

increasecolor (x+l,y+l, halftone, 
(int) (error* ( 2 -rsmall) /32) ) i 

} 
else 

{ 
increase color (x-I, y ,halftone, 

(int) (error* (14 +rlarge) /32) ) i 

increasecolor (x+l, y+l, halftone, 
(int) (error* ( 6+rsmall) /32)) i 

95 



} 

increasecolor (x , y+I, halftone, 
(int) (error* (IO-rlarge) /32)); 

increasecolor (x-I, y+I, halftone, 

} 
} ; 

( in t) (e rr 0 r * ( 2 - r small) /3 2) ) ; 

int main (void) 
{ 

struct bm2S6 bitmapI, bitmap2, avgs; 
unsigned long arraysize; 
double D; 

char filename [40] 
char filename2 [40] 

- 1111. - , 
- "". - , 

arraysize (unsigned long)XSIZE*(unsigned 
long)YSIZE*sizeof(unsigned char) i 

/* allocate memory to store the original gray-scale 
image */ 

if ((bitmapl.array 
(unsigned char *)malloc(arraysize)) == NULL) 
{ 
perror ("bitmapI [] memory allocation failed. ") ; 
return(O) ; /* exit on failure */ 
} 

bitmapI.xs 
bitmapI.ys 

XSIZE-l; 
YSIZE-I; 

/* allocate memory to store the binary halftone created 
from bitmapl 

NOTE: For simplicity, the binary halftone is still 
stored as an 8-bit per pixel array, but having only 
values 00 and FF */ 

if ((bitmap2.array = 
(unsigned char *)malloc(arraysize)) NULL) 

{ 

96 



perror ("bi tmap2 [] memory allocation failed.") i 

return (0); /* exit on failure */ 
} 

bitmap2.xs = XSIZE-l; 
bitmap2.ys YSIZE-l; 

/* allocate memory for the avgs[] array, used in energy 
calculations */ 

if ((avgs.array = (unsigned char *)malloc(arraysize)) 
== NULL) 

{ 
perror (" avgs [] memory allocation failed.") i 

return (0); /* exit on failure */ 
} 

/* avgs[] is same size as the bitmap being processed */ 
avgs.xs = XSIZE-l; 
avgs.ys YSIZE-li 

/* ask for the filename of the gray-scale image */ 
printf ("Enter byte array file name:") ; 
scanf ("%s" ,&filename) ; 

/* make a filename for recording the avgs[] array for 
the image */ 
strcpy(filename2, filename); 
strcat(filename2, ".avgs") i 

/* read the gray-scale image file */ 
readbytearray (filename, &bitmapl, XSIZE, YSIZE); 

/* if the avgs[] array has not been computed yet, do 
so, then save it so it doesn't have to be recalculated 
for every halftone of this image */ 

if (readbytearray(filename2, &avgs, XSIZE, YSIZE)) 
{ 
calc_avgs(&bitmapl, &avgs) i 

writebytearray(filename2, &avgs, XSIZE, YSIZE); 
} 

97 



} 

/* create the Bayer Dither halftone for the image */ 
bayer8(&bitmap1, &bitmap2); 
/* store the binary halftone */ 
writebytearray("bayer8", &bitmap2, XSIZE, YSIZE); 
/* calculate the energy for the image */ 
U = total_energy (&bitmap1, &bitmap2, &avgs); 
/* print the final energy value */ 
printf (out, "\nThe total Energy U = %16. 4lf\n\n", U); 

/* create the Jarvis, Judice, & Ninke halftone for the 
image */ 
jarvis(&bitmap1, &bitmap2); 
/* store the binary halftone */ 
writebytearray("jarvis", &bitmap2, XSIZE, YSIZE); 
/* calculate the energy for the image */ 
U = total_energy (&bitmap1, &bitmap2, &avgs); 
/* print the final energy value */ 
printf (out, "\nThe total Energy U = %16. 4lf\n\n", U); 

/* create the 50%-random-weighted Floyd-Steinberg 
halftone for the image */ 
rs50_floyd_steinberg(&bitmap1, &bitmap2); 
/* store the binary halftone */ 
writebytearray("rs_floyd", &bitmap2, XSIZE, YSIZE); 
/* calculate the energy for the image */ 
U = total_energy (&bitmap1, &bitmap2, &avgs); 

/* print the final energy value */ 
printf(out, "\nThe total Energy U = %16.4lf\n\n", U); 

/* free memory allocated for bitmaps */ 
free (bitmap1.array) ; 
free (bitmap2.array) ; 
free(avgs.array) ; 

return (0); 

/* end of file "energy.e" */ 

98 



/* Bitmap.h 

This is a set of routines for manipulating gray-scale 
bitmaps as arrays of character values. */ 

#ifndef BITMAP 

#define BITMAP 
#include <stdlib.h> 
#include <stdio.h> 

#define MAXXSIZE 512 

#define max (valuel,value2) «value1>value2) ? valuel:value2) 
#define min (valuel,value2) «value2>valuel) ? valuel:value2) 

/* store bitmaps as structures, containing the width, 
height, and a pointer to an array. Memory must be allocated 
for the array, since it is not static. */ 

struct bm256 { 
int xs, ys; 
unsigned char *arraYi 

} ; 

/* store the pixel value c in the bitmap, at x,y */ 
void storecolor (int x, int y, struct bm256 *bitmap, 

unsigned char c) 
{ 

} 

int xmax, ymax; 
unsigned long offset; 

xmax = bitmap->xs; 
ymax = bitmap->ys; 
if «x <= xmax) && (y <= ymax) && (x >= 0) && (y >= 0)) 

{ 
offset = (unsigned long)x + (unsigned long)y * 

(unsigned long) (xmax+1) ; 
bitmap->array[offset] = Ci 

} 

99 



1* increase (or decrease) the value of pixel x,y by the 
amount dcolor *1 

void increasecolor (int x, int y, struct bm256 *bitmap, char 
dcolor) 

} 

int xmax, ymax, C; 
unsigned long offset; 

xmax = bitmap->xs; 
ymax = bitmap->ys; 
if ((x <= xmax) && (y <= ymax) && (x >= 0) && (y >= 0)) 

{ 
offset = (unsigned long)x + (unsigned long)y * 

(unsigned long) (xmax+1) ; 

c = bitmap->array[offset] ; 
bitmap->array[offset]=max(O, min(255, (c+dcolor))); 
} 

/* retrieve the value of the pixel x,y in bitmap *1 

unsigned char findcolor (int x, int y, struct bm256 *bitmap) 
{ 

} 

int xmax, ymax; 
unsigned long offset; 

xmax = bitmap->xs; 
ymax = bitmap->ysi 
if (( x > xmax) I I ( y > ymax) ) 

else 

{ 
perror (" coordinate out of bitmap's range. \n") 
return (0); 
} 

{ 
offset = (unsigned long)x + (unsigned long)y * 

(unsigned long) (xmax+l) ; 
return (bitmap->array[offset]) i 

} 

100 



/* Copy one bitmap to another */ 
void copybitmap(struct bm256 *source, struct bm2S6 *dest) 
{ 

} 

int x, y; 
unsigned char c; 
int width, height; 
width = min (source->xs, dest->xs); 
height min(source->ys, dest->ys) i 

for (x 0; x <= width; x++) 
for (y 0; y <= height; y++) 

{ 
c = findcolor(x, y, source) 
storecolor (x, y, dest, c) i 

} ; 

/* Read a raw data file from disk into a bitmap array */ 
int readbytearray(char *filename, struct bm256 *bitmap, int 

xs, int ys) 
{ 

} 

int x, y, xmax, ymax; 
unsigned char buf[MAXXSIZE] 
FILE *fPi 
xmax bitmap->xs; 
ymax = bitmap->ys; 

if ((fp = fopen(filename, "rb")) == NULL) 
return (-1) i 

for (y = 0; y <= min(ys-l, ymax); y++) 
{ 
if (fread(buf, 1, xs, fp) <= 0) 

{ 
perror("readbytearray: bad read") ; 
re turn (- 1) ; 
} 

for (x = 0; x <= min (xmax, xS-1); x++) 
storecolor(x, y, bitmap, buf[x]); 

} 
fclose(fp) ; 
return (0) i 

101 



/* write a raw data file to disk from a bitmap array */ 

int writebytearray(char *filename, struct bm256 *bitmap, int 
xs, int ys) 

{ 

} 

int x, y, xmax, ymax; 
unsigned char buf[MAXXSIZE] 
FILE *fp; 

xmax 
ymax 

bitmap->xs; 
bitmap->ys; 

if (( fp = fopen (filename, "wb")) == NULL) 
return (-1); 

for (y = 0; Y <= min(ys-l, ymax)i y++) 
{ 
for (x 0; x <= min (xmax, xS-l); x++) 

buf [x] = (unsigned char)findcolor(x,y, bitmap); 
if (fwrite(buf, 1, xs, fp) <= 0) 

} 

{ 
perror ( "wri t ebytearray: bad write") i 

re turn (- 1) ; 

} 

fclose(fp) i 

return (0); 

#endif 

/* end of file "bitmap.h" */ 

102 





Calculation of the T-matrix is based on the desired spectral 

characteristics determined by Ulichney. This is the 

algorithm given by Geist, Reynolds, and Suggs. 

compute_T_matrix() 
{ 
#define A (0.15) 
#def ine B (0.03) 

for (I = 1; I <= PIXELS; I = 1+1) 
AVE i = average gray-scale intensity for all pixels in 

NEIGHBORS (I) ; 

for (I = 1; I <= PIXELS; I I+l) 
{ 
for (J E NEIGHBORS(I)) 

} 
} 

{ 
MEAN = (AVE i + AVE j ) /2; 
if (MEAN <= 0.5) then 

PFREQ square_root (MEAN) 
else 

PFREQ = square_root(l - MEAN); 

K = distance(1, J); 
T · . = A * rho(K,PFREQ) l,J 

} 

rho(K, PFREQ) 
{ 
base 
top 
spike_up 
spike_down 

kp = K * n; 

0.8 * PFREQ; 
0.4 * (square_root (2) * PFREQ + 1); 
1.05 * PFREQi 
0.95 * PFREQ; 

rho (sin (kp*spike_up) - sin(kp*spike_down)) / (4*kp); 
+ (cos (kp*top) - cos(kp*b)) / ((top-b)*kp*kp); 

} 

104 



APPENDIX F 

Error Diffusion Filters 

The standard error diffusion technique considers each 

pixel in the image moving from top to bottom, processing 

each line left to right. Each pixel is compared to a 

threshold. The "error," or difference between the desired 

intensity and the halftone intensity chosen, is distributed 

in a weighted fashion to adjacent pixels. Consider the 

Floyd-Steinberg filter (a matrix of weights) shown below. 

Floyd- Steinberg: • 7 

351 

The dot represents the pixel being half toned at a 

particular instant I and the numbers indicate the relative 

amount of error to distribute to neighboring pixels. Since 

the four numbers sum to sixteen in this filter, each weight 

must be divided by sixteen before multiplying by the error, 

thus distributing exactly 100% of the error each time. For 

example, the pixel immediately to the right will always 

receive 7/16 ths of the error, while the pixel straight below 

receives 5/16 ths of it. The other error diffusion fil ters 

work exactly the same way, but differ in the placement and 

amount of the error distribution. 

105 



Table VI. Error Diffusion Filters 

Floyd-Steinberg: 

Burkes 

Jarvis, Judice, & Ninke 

Stucki 

106 

• 7 

351 

• 8 4 

2 4 842 

• 7 5 

3 5 753 

1 3 531 

• 8 4 

2 4 8 4 2 

1 2 421 


	Energy-Based Evaluation of Digital Halftones
	Recommended Citation

	tmp.1446499872.pdf.U2S66

