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Implementing Delay-Tolerant Networking at Morehead State University consists of the 

demonstration of delay-tolerant communication between Morehead’s ground station and a small 

spacecraft telemetry emulator. Delay-tolerant networking or DTN is defined as a set of 

communication protocols that allow for the extension of Internet-like communication to systems 

that would otherwise operate on an ad-hoc basis because of disruptions in communication or 

operations over distances that are measured in light-seconds. A small spacecraft telemetry 

emulator is defined as one that utilizes a standard the same set of commands and telemetry 

responses as the complete spacecraft but exists as either a piece of software or a set of 

components on a benchtop. DTN has been tested before with spacecraft, such as NASA’s EPOXI 

mission and the International Space Station, but these have only served as technology 

demonstrations and have not been an integral part of the spacecraft’s operation. Implementing 

DTN at Morehead will show the capability of using DTN on a small spacecraft as an integral 



part of the spacecraft’s operations. Furthermore, NASA is exploring having DTN as an integral 

part of spacecraft operations and has contracted Morehead to serve as a test case and serve to 

reduce risk. The NASA-developed implementation of DTN called the Interplanetary Overlay 

Network (ION) will serve as the primary means of using DTN at Morehead. Initial work has 

been performed locally and with the DTN Experimental Network (DEN) to test the functionality 

of operating DTN at Morehead’s. A trade study and experimentation was done to select a 

network emulator that would simulate the connection between the ground station and the 

spacecraft. With support from the Jet Propulsion Laboratory (JPL) work is being done to test if it 

is possible to interface DTN with Morehead’s ground station software. Development of the 

spacecraft emulator is still ongoing, but the requirements for it have been defined and 

Morehead’s Lunar Ice Cube spacecraft will serve as a basis for the development of the emulator. 

The ongoing work to put in place DTN at Morehead will prove the possibility of operating a 

small spacecraft via DTN and serve as a low-cost risk reduction for future NASA capabilities. 
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Terminology 

AMMOS  Advanced Multi-Mission Operations System 

BP   Bundle Protocol 

CCSDS  Consultative Committee on Space Data Systems 

CFDP   CCSDS File Delivery Protocol 

CGR   Contact Graph Routing 

cm   centimeter 

CRC   Cyclic Redundancy Check 

DEN   DTN Experimental Network 

DINET   Deep Impact Network Experiment 

DIXI   Deep Impact eXtended Investigation 

DSOC   Deep Space Operations Center 

DSN   Deep Space Network 

DTE   Direct to Earth 

DTN   Delay/Disruption-Tolerant Networking 

EM-1   Exploration Mission-1 

EPOCH  Extrasolar Planet Observations and Characterization 

EPOXI   EPOch and diXI 

GEO   Geostationary Earth Orbit 

GHz   gigahertz 

GT   Ground Terminal 

ION   Interplanetary Overlay Network 

IP   Internet Protocol 

ipn   Interplanetary Network 

IPsec   Internet Protocol Security 

ISS   International Space Station 

JAXA   Japanese Aerospace Exploration Agency 

JPL   Jet Propulsion Laboratory 

kg   kilogram 

LEO   Low Earth Orbit 

LTP   Licklider Transmission Protocol 

mm   millimeter 

MOC   Mission Operations Center 

MSPA   Multiple Spacecraft Per Aperture 

NASA   National Aeronautics and Space Administration 

PDU   Payload Data Unit 

RF   Radio Frequency 

SDR   Software Defined Radio 

SELinux  Security-Enhanced Linux 

SLS   Space Launch System 

TCP   Transmission Control Protocol 

UT   Unitdata Transport 

UDP   User Datagram Protocol 

VPN   Virtual Private Network  

WAN   Wide Area Network 

X-band   radio frequency that ranges from 8 to 12 GHz 
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CHAPTER I 

INTRODUCTION 

1.1 General Area of Concern 

In the past decade, the use of CubeSats has exploded with many applications in low Earth 

orbit, from simple experiments to constellations mapping the globe. Now many are looking 

beyond low Earth orbit to the Moon and elsewhere for applications of CubeSats. These CubeSats 

would join the family of spacecraft already exploring our solar system that is supported by 

NASA’s Deep Space Network (DSN). The DSN is busy communicating with spacecraft across 

the solar system and the possibility of sending CubeSats beyond low Earth orbit will start to 

strain the DSN capabilities because a single launch can carry many CubeSats. So, JPL is looking 

at several ways to expand the DSN’s capacity to support all these new spacecraft. 

NASA is taking a three-prong approach to expanding the DSN’s capacity. The first 

avenue is increasing automation of the DSN’s capabilities. It starts with improving human 

interaction between the operators and the systems they are managing (Wyatt & Malphrus, 2016). 

By having displays that summarize the data coming, operators can better react to the information 

they have at hand and have a more hands-off approach. The DSN’s automation infrastructure is 

25 years old and needs updating, so it will be augmented to reduce an operator’s workload 

(Wyatt & Malphrus, 2016). The last part of the DSN’s automation is scheduling operators based 

on how many simultaneous passes can be run by an operator without taxing their abilities (Wyatt 

& Malphrus, 2016). These automations with help with additional capabilities being added to the 

DSN to support small spacecraft, especially CubeSats. 

 The next part of the DSN upgrades is adding to capabilities to the DSN to support small 

spacecraft. One part of increasing the DSN capabilities is adding university partners with 
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antennas to the DSN. Morehead State University is one such university with its 21-meter antenna 

(Wyatt & Malphrus, 2015). Next, the DSN will be adding a capability called Opportunistic 

Multiple Spacecraft Per Aperture, Opportunistic MSPA. It is the ability to downlink data from 

multiple spacecraft with the view of one antenna. One spacecraft is defined as the “host” 

spacecraft, it is the one that is scheduled with the DSN (Wyatt & Malphrus, 2016). All spacecraft 

within the view of the antenna transmit down to the receiver and those transmissions are 

recorded to be later processed for telemetry extraction (Wyatt & Malphrus, 2016). The last part 

of the new capabilities is creating a fully-automated prioritized scheduling system for the DSN. 

The new scheduling system will allow mission critical phases to take priority over standard 

spacecraft operations (Wyatt & Malphrus, 2016). All these new capabilities will allow the DSN 

to reliable downlink telemetry from CubeSats without increasing strain on the DSN, but these 

capabilities can only go so far. 

 The last part of expanding the DSN’s capacity is to add support for networked space 

missions and emerging communication standards (Wyatt & Malphrus, 2016). Networked space 

missions would mean spacecraft could be treated as another computer on a network instead of 

how they are treated now where each spacecraft is a unique entity that must have direct 

communication with Earth. The problem with creating networked space missions is the 

spacecraft is not always in view of Earth and transmissions can take a significant amount of time 

to propagate between Earth and the spacecraft. To solve these problems a new method of 

networking is being developed, called delay/disruption tolerant networking which can handle 

these problems inherent in space communication. NASA is supporting the development of this 

method of networking the underlying protocols needed for it to function. 
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1.2 Objectives 

The objectives of this project are: 

1. Configure and setup a DTN node at Morehead State University 

2. Demonstration DTN communication between at node at Morehead and a node at JPL 

3. Provide risk-reduction for NASA’s future implementation of DTN within the DSN 

1.3 Significance of the Study 

EM-1 is the first launch of the SLS and it will be carrying CubeSats as thirteen secondary 

payloads (Evans, 2016). Morehead State is one of those payloads (Evans). To support its payload 

Morehead will be using its 21-meter antenna. Morehead’s mission, Lunar Ice Cube, requires 

ranging information to enter lunar orbit, but the 21-meter antenna does not have that capability, 

so it is being upgraded to DSN capabilities (Wyatt & Malphrus, 2015). Morehead is now amid 

upgrading it to be DSN compatible. The process of becoming DSN compatible includes 

upgrading the RF feed to be able to transmit and receive at X-band frequencies, adding RF 

equipment capable of measuring the distance to spacecraft, connecting the antenna’s systems to 

the NASA’s network so information received at Morehead can be transferred to their destination, 

and acquiring a hydrogen MASER to provide precise timing signals to the new equipment. In 

addition to upgrading the RF capabilities of the antenna, a DTN node will be added to 

Morehead’s antenna to provide DTN capabilities. 

Lunar Ice Cube will be carrying an SDR capable of operating in X-band called IRIS. 

Because IRIS is an SDR it can be programmed to have the capabilities required for the mission it 

is on. In this case, Lunar Ice Cube will be serving as a demonstration of DTN on a CubeSat, so 

IRIS will be delivered with the capability to serve as a DTN node. It will not be an integral part 

of the mission, but it will be part of the secondary mission goals. For the DTN demonstration to 
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be successful, there needs to be a DTN node on the ground. Setting up one at Morehead’s 

antenna, an asset Morehead controls, would allow the demonstration to have a higher chance of 

success because both assets are well understood at Morehead, which would allow for quicker 

problems resolution. 

1.4 Definition of Terms 

CubeSats are those satellites that have a mass of under 1.33 kg per 10 cm x 10 cm x 10 

cm volume otherwise known as One Standard Unit, or 1U (CubeSat Design Specification (CDS) 

REV 13, 2014). This satellite classification was developed at California Polytechnic State 

University (Cal Poly) in 1999 as a means of standardizing small satellite architectures across the 

entire small satellite industry. This served to facilitate reduced costs and time associated with the 

development of small satellite missions, thus allowing for organizations that would have 

Figure 1: 3U CubeSat Architecture 
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previously not been able to develop and launch small spacecraft (Such as Universities and 

Privately Funded Corporations) to launch scientifically significant, impactful, low-cost missions. 

Nanosatellites come in several different sizes, ranging from 1U to 6U. An example of 3U 

nanosatellite architecture, as defined by the CubeSat Design Specification Document, Rev 13 is 

shown in Figure 1. Though the vertical dimension of each configuration depends on its type, the 

width of any CubeSat is limited to 100 mm, thus imposing a limit on the size that a given 

nanosatellite can occupy (CubeSat Design Specification (CDS) REV 13, 2014). 

 A DTN node can refer to any number of things. DTN has the capability to run on 

anything from cell phones to Martian rovers, it can even be setup to be used with flash drives. It 

is a computer that takes bundles from another computer that is part of a delay-tolerant network 

and then if there is a link available will send it to the next part of the network, otherwise, it will 

hold onto the bundles until a link becomes available. Throughout this paper whenever a DTN 

node is mentioned, it will mean a Linux server running CentOS 7 with DTN running on it.  

1.5 Summary 

 Chapter I provides an introduction into this thesis project be describing the general area 

of concern for implementing DTN at Morehead State University, the objectives of the project, 

and the projects significance. Also, provided in Chapter I was a brief outline of terms that the 

reader will encounter in this thesis report. 
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CHAPTER II 

REVIEW OF LITERATURE 

2.1 Background 

What has allowed the Internet to become so ubiquitous is a standard set of protocols 

everyone must follow to transfer data. A couple of problems with those protocols is they were 

not designed to handle any disruptions in communication or operate over distances that are 

measured in light-seconds. Because of these problems deep space missions need to communicate 

directly through whichever DSN antenna complex is visible. DTN tries to overcome these 

problems and offer a way to bring the Internet to deep space. 

The Internet uses an architecture that consists of several levels sometimes called a stack 

because of its graphical representation. It consists of four levels; the application level, the 

transport level, the network level, and the physical level (Mohr, 2009). The application level is 

where the user operates, such as sending emails or chatting online. The next level is the transport 

level, this level handles transportation of the data, ensuring all data arrives at its destination 

without errors (Mohr). The protocol the Internet uses is called Transmission Control Protocol 

(TCP) (Mohr). Underneath the transport level is the network level. The network level handles the 

routing of the data, and it ensures that all data arrives at the correct network address (Mohr). 

Internet Protocol (IP) is the network level protocol used by the Internet (Mohr). The final level is 

the physical level; this level is what physically connects the computers to each other (Mohr). It is 

sometimes referred to as the bit level, where the ones and zeroes exist. The transport and network 

layers together are referred to as the TCP/IP protocol (Mohr). DTN shares many similarities with 

the TCP/IP protocol. 
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The DTN stack is comparable to TCP/IP 

protocol stack, except below the application layer is 

another protocol called the bundle protocol (BP). 

The DTN protocol stack compared with the Internet 

protocol stack can be seen in Figure 2 (Burleigh, 

2016). BP serves as an overlay protocol to connect 

other networks including networks using TCP/IP 

and networks using space communication protocols 

(Burleigh). Packets in a DTN are referred to as 

bundles and they serve the same purpose as IP 

packets, moving data between BP endpoints (Burleigh). To ensure transmission reliability, like 

TCP, DTN uses LTP (Burleigh). LTP offers reliability over delayed links such as 

communicating with deep space spacecraft. The approach to using these protocols is different 

than the TCP/IP protocol. 

While TCP/IP and DTN share similar protocol architectures, DTN has a different 

implementation. TCP is conversational because there are many messages passing between the 

source and destination as data is transmitted (Warthman, 2012). Acknowledgment messages and 

data transfers are handled by the source and destination with the intermediate nodes handling 

only the routing (Warthman). Because of the nature of delay-tolerant networks, the direct 

communication between the source and destination might not be possible. To ensure that data is 

reliably transmitted from the source to the destination, DTN implements store-and-forward 

message switching (Warthman). Each node in a delay-tolerant network not only routes data but 

also stores it when the next node in the route is unavailable. So, when a node receives data but 

Figure 2: DTN Protocol Stack 
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does not receive an acknowledgment from the next node in the route it will hold it until it can 

forward the data. To provide reliability to this method the bundle protocol uses custody transfer, 

which is shown in Figure 3 (Warthman). When the node sends a bundle to the next node, a 

custody transfer is requested and a time-to-acknowledge retransmission timer starts (Warthman). 

If custody is accepted, the receiving node sends an acknowledgment to the sending node 

(Warthman). If the sending node does not receive an acknowledgment before the time-to-

acknowledge timer expires, it will retransmit the bundle (Warthman). The store-and-forward 

capability also serves as a backup, if the data is lost in transit the receiving node can request the 

data again without asking the source. DTN nodes can serve in two different capacities. They can 

be a source/destination node or a forwarding node (Warthman). The forwarding node can also 

act in two different capacities. It can just route data from one network to another with both using 

the same underlying protocols or it can serve as a gateway where it transfers the data from one 

network to another, but the networks use different underlying protocols (Warthman). 

Requirements needed at each node location will affect which type of node is deployed there. 

Figure 3: DTN Custody Transfer 
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NASA’s implementation of DTN is called ION. The basis of ION is both BP and LTP, 

but there are several other protocols included with it. One of the protocols is CFDP, it is a file 

delivery protocol that transfers files using the underlying DTN protocols to provide reliability. 

The file is broken up into payload data units, PDUs, and transmitted via the underlying DTN 

protocols to the destination to be reassembled into the file (Burleigh, 2016). There is a protocol 

included with ION that is in its early stages called the bundle security protocol that provides 

security to the bundles to prevent those who are not the intended recipient from reading the 

bundles. Along with these other protocols, ION has something called contact graph routing, 

CGR. CGR defines what DTN nodes are available for a node to contact, how long that contact 

will last, what data rate is between the two nodes, and how long the light time delay is between 

the nodes. A CGR is a predefined configuration file, which is fine for small networks but large 

networks will cause the configuration file to grow quite large. Since, storage space on DTN 

nodes can be sometimes be limited, such as on spacecraft, large configuration files are not 

desired. So, something called opportunistic CGR is being developed to support larger networks. 

In its current implementation, CGR is deterministic where the contact is known when it will 

happen with 100% certainty. Opportunistic CGR will include contacts that may or may not 

happen mean they have a probability of making contact less than one (Araniti, et al., 2015). Then 

copies of the bundles are forwarded to the nodes of all the opportunistically discovered routes 

that increase the probability of the bundles being delivered by more than a predefined threshold 

(Araniti, et al.). ION has already seen limited use in space with spacecraft and the International 

Space Station. 
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2.2 Space Communication Literature Review 

 DTN has had a limited demonstration in space 

with a demonstration with the EPOXI spacecraft, a 

demonstration with JAXA’s GEO relay satellite, and 

providing some support to experiments on the ISS. 

EPOXI was a JPL mission that reused the Deep Impact 

spacecraft, which had previously visited comet Temple 1, to visit another comet, Hartley 2 

(Jpl.nasa.gov, 2017). The name EPOXI originated from the name of the two missions that would 

be conducted during the cruise and the flyby of Hartley 2, Extrasolar Planet Observations and 

Characterization (EPOCh) and Deep Impact eXtended Investigation (DIXI) (Discovery.nasa.gov, 

2017). The demonstration of DTN with the EPOXI spacecraft was called Deep Impact Network 

Experiment, DINET, and took place during the cruise between Temple 1 and Hartley 2 (Wyatt, 

et al., 2009). JPL used it as a technology validation experiment of JPL’s DTN implementation, 

ION. The experiment was designed to have a minimal impact on EPOXI’s primary mission, so 

the software was installed on the backup flight computer within the backup software partition. 

EPOXI was the only on orbit node in DINET; the 

rest were simulated on Earth. The topology of 

DINET are shown in Figure 5 (Wyatt, et al.). It 

consisted of two surface assets, one on Mars and 

the other on Phobos; an orbital relay satellite, 

EPOXI; and the Earth ground station. Image files 

would be sent from “Mars” or “Phobos” and then 

relayed via EPOXI to Earth. As Figure 5 shows, 

Figure 4: EPOXI Spacecraft 

Figure 5: DINET Topology 
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there was also a crosslink that would be available at times for “Mars” and “Phobos” to 

communicate with each other. The EPOXI demonstration has so far been the only deep space 

demonstration of DTN and it was with artificial telemetry. 

 DTN has had one other 

demonstration with spacecraft in 

GEO with JAXA’s Data Relay 

Test Satellite. There were seven 

nodes which can be seen in 

Figure 6 on the right (Araniti, et 

al., 2015). It consisted of a relay 

spacecraft and a LEO spacecraft 

with two direct to Earth 

connections were the LEO 

spacecraft communicated with a ground station and two ground terminals that communicated 

with the relay satellite. This demonstration was used to show how CGR can deliver data to its 

destination and conform to the contact plans that were defined. 

 While in space demonstrations have improved the technology readiness level of DTN, 

using DTN for actual missions shows how capable it is. DTN is currently being used on the ISS 

to support some science experiments. DTN has been implemented across all parts of the ISS 

program from flight and ground systems to testing and simulation (Willman & Davidson, 2014). 

It provides increased reliability to payload data transfers during signal acquisition/loss transitions 

(Willman & Davidson). DTN also provides better automation for data transfers from payloads on 

the ISS (Willman & Davidson). Using DTN relieves the support required to plan data transfers 

Figure 6: JAXA DTN Topology 
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during signal acquisition/loss transitions and when those transfers require operators (Willman & 

Davidson). DTN has come to allow payload developers to retrieve their experiment data from the 

ISS like they would a file from Dropbox. 

2.3 Summary 

 This chapter provides a technical background of how DTN operates and differentiate it 

from the architecture used by the Internet. It also tries to explain DTN in a way that someone 

unfamiliar with networking can understand. Chapter II also shows how NASA has already 

demonstrated DTN and its current use in space. 
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CHAPTER III 

METHODOLOGY 

3.1 Overview 

 To demonstrate the DTN interface is two part. The first part is showing file transfers are 

possible. This is a simple test to demonstrate that it is possible to transfer a file comparable to 

what Lunar Ice Cube would do while orbiting the Moon. The second part of the test would 

demonstrate telemetry exchange capability between applications that can write Space Packets to 

a socket, and applications that can read Space Packets from a socket, Space Packets are 

described below. This test would seek to demonstrate both the ability to send commands and 

receive streamed telemetry from Lunar Ice Cube. While these tests are straight forward there are 

several things to be done before the tests could be carried out. 

 There were several things that had to be done to prepare before any DTN testing could be 

done. To simulate light-time distances that would be experienced during spacecraft operations a 

WAN emulator had to be selected that could simulate the delays the data being transferred would 

experience. The node that simulates JPL’s DSOC is at JPL and it requires a secure connection. 

NASA supports a DTN experimental network, known as the DEN, and will provide a secure 

connection to the JPL. Connecting to the DEN requires a VPN tunnel to it. So, a VPN tunnel had 

to be setup for the Morehead node. The IRIS radio will be the node on Lunar Ice Cube and it 

expects the data to be formatted into Space Packets. Space Packets are a CCSDS standard that 

was developed to transfer spacecraft telemetry and commands over a space link (Space Packet 

Protocol, 2003). To generate these Space Packets would either require Lunar Ice Cube or code 

that would generate faux Space Packets like what Lunar Ice Cube would generate. Lunar Ice 

Cube is not in at a point to generate telemetry, so code needed to be written to generate faux 



23 

 

Space Packets. In addition, the ground station software used by Morehead, AMMOS, needed to 

be installed. With these components in place, the project could continue. 

3.2 System Overview 

3.2.1 Project Architectures 

3.2.1. File Transfer 

The file transfer test only required 

ION and a file to be transferred. The format 

of the file does not matter. Figure 7 shows 

the connections for the demonstration. Once ION is started on both nodes, the file transfer can be 

run with an included command called cfdptest. Before a file can be sent cfdptest must be told the 

destination node, the file name on the source node, what the file should be named on the 

destination node, and the light-time delay between the nodes. cfdptest is not required to be run on 

both nodes, but running it on the destination node serves as a check on receiving the file. 

3.2.1.2 Telemetry Exchange 

 The telemetry exchange test requires 

AMMOS to be installed on both nodes. Figure 

8 shows the connection for the demonstration. 

The JPL node uses the command chill_send_to_socket to send some pre-generated telemetry to 

the Morehead node. The command requires the port number that the telemetry will be sent out, 

the IP address of the Morehead node, and the name of the file to be sent. Since the JPL node will 

be treated as a client sending to a remote server, it must also be specified to run 

chill_send_to_socket in client mode. The Morehead node uses the command 

chill_get_from_socket to receive the telemetry. The requirements for this command are the same 

Figure 7: File Transfer Demonstration 

Figure 8: Telemetry Exchange 

Demonstration 
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as chill_send_to_socket, it requires the port number that the telemetry will be coming from, the 

IP address of the JPL node, and what to name file that will be received. It has the option to run in 

the default mode of running as a server or it can be run as a client. The Morehead node is treated 

as the server, so the default mode was used. 

3.2.2 VPN Tunnel 

 The VPN tunnel is required to connect 

the Morehead node to the DEN. The SG-2220 

was selected to serve as the gateway between 

the Morehead node and the DEN based off 

recommendation from a colleague at NASA 

because it is like hardware used there. It was configured to use IPsec to provide the VPN tunnel. 

In addition to configuring the VPN tunnel, a route had to be added to allow the use of both 

Ethernet ports on the Morehead node. The route was added using the Linux route command. It 

defines that all packets destined for the DEN need to go through one Ethernet port and all other 

packets go through the other Ethernet port. Related to the VPN tunnel was turning off a Linux 

security feature, called SELinux, included in the node’s version of Linux. With it on DTN 

bundles could not go through the node’s firewall. 

3.2.3 WAN Emulator 

 Some research was done to select a WAN emulator that would work for the project. A 

hardware solution would require at least $1,000, which the project did not have. So, a software 

solution was explored. There are a few software solutions available, but the one selected was 

already included with the Linux installation on the Morehead node. The WAN emulator is a 

built-in Linux command called netem it can add delay, packet loss, and other characteristics to 

Figure 9: SG-2220 Gateway for VPN tunnel 
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packets going out a selected Ethernet port. A script was adapted to make it easier to use the 

command that adds delay and loss to packets leaving an Ethernet port. The script requires the 

input arguments of which Ethernet port to use, the packets destination that require the delay and 

loss, how long to delay the packets, and the percentage of packets to lose. See Appendix A for 

the code. During testing it was found to fail after having it run for days, but a cause could not be 

determined. The best course of action was to limit the length of the test runs. 

3.2.4 Space Packets 

 The data format that is 

sent to the IRIS radio is in Space 

Packets. Figure 10 shows the 

structure of a Space Packet. It 

consists of a primary header, 

secondary header, and the user 

data field which contains the 

telemetry and science data. 

The total size of a Space 

Packet is 65.54 kilobytes 

including the header. At the 

time of this project Lunar Ice 

Cube was not using the secondary header. So, the header consists of 6 bytes and the user data 

field is rest of the packet. Figure 11 shows what is in the header. Code was written based on C++ 

header files to create Space Packets in the formats seen in Figures 10 and 11. It fills a user 

Figure 10: Space Packet Structure 

Figure 11: Space Packet Header Structure 
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specified number of packets with random numbers and sends it out a port using UDP. See 

Appendix B for the code. 

3.3 Summary 

 This chapter covered several aspects of the configuration and setup of the project. It 

described the setup for the two tests and what was needed to support them. Also described is this 

chapter was how the support equipment was setup and the code that was needed to support the 

tests. 
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CHAPTER IV 

FINDINGS AND ANALYSIS 

4.1 Overview 

 With ION installed and the hardware configured both tests could be run. Part of running a 

node is the configuration files. The configuration files define the contacts available to the node, 

what underlying protocols to use with the contacts, and defining the storage for the node. The 

configuration file for a node consist of nine files and two scripts that start and stop the node. 

These configuration files are management commands that are to their respective administration 

interfaces, for example the commands contained in a .bprc file are passed to bpadmin which 

manages the BP operations for the node. It is important to have a standard naming convention for 

all the configuration files, especially if multiple nodes exist on one machine. For this project, all 

the configuration files were called node2, e.g. node2.bprc. The commands used for Morehead’s 

node are discussed in the following section. Refer to Appendices C1 and C2 for the ION start 

and stop scripts. 

4.2 Results 

4.2.1 DTN Node Configuration Files 

4.2.1.1 bprc 

The first config file to consider is the .bprc file 

that commands bpadmin, the process that runs the BP 

functions. It is broken up into several commands, which 

a portion of the .bprc file can be seen to the right. The 

rest of the .bprc file can be found in Appendix C3. The 

first command of the file is 1 this initializes bpadmin so 

1 

a scheme ipn 'ipnfw' 'ipnadminep' 

a endpoint ipn:2.0 x 

a protocol ltp 1400 100 

a induct ltp 2 ltpcli 

a outduct ltp 1 ltpclo 

r 'ipnadmin node2.ipnrc' 

w 1 

s 
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BP operations can function. The second command adds a scheme, which creates a naming 

scheme for endpoints similar to a socket. So, a scheme is the command, ipn is the naming 

scheme, ipnfw starts the daemon, or process, that will forward bundles, and ipnadminep will 

process custody signals and bundle status reports. The next command, a endpoint, creates an 

endpoint called ipn:2.0 and x ends the command. The endpoints are what are used to transfer to 

other nodes. There can be multiple endpoints. After the endpoint command is the define a 

protocol command, a protocol, which is what type of transmission protocol it should expect to 

receive. In the case above it is expecting LTP packets and it should expect them to contain 1400 

bytes of payload per frame and 100 bytes of overhead per frame. The other protocols are TCP 

and UDP. a induct tells bpadmin to treat node 2 as an ingress point using the LTP convergence 

layer adapter. a outduct tells bpadmin to treat node 1 as an egress point using the LTP 

convergence layer adapter. The next .bprc command tells bpadmin to run the node2.ipnrc with 

ipnadmin, r can be used with commands not defined for bpadmin. bpadmin can display status 

characters, known as watch characters, to the command line and to initialize that function the 

commands w 1 are used. See Appendix D for the watch characters. The last command s starts 

everything that was initialized before it. It must be the last command. 

 4.2.1.2 cfdprc 

 Some configuration files are simpler than others. 

The .cdfprc file is one such file, the whole file is on the 

right. The first command of the file is 1 this initializes 

cfdpadmin so CFDP operations can function. The next command, w 1, will display watch 

characters on the command line when CFDP is used. m requirecrc 1 is the command to enable 

1 

w 1 

m requirecrc 1 

s bputa 
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CRC, which is have CRCs on all PDUs that are sent by the local node. The final command, s 

bputa, starts the UT-layer service that adapts it to BP. 

 4.2.1.3 imrc 

 The .imrc file is not currently used, but it is included for future use. 

 4.2.1.4 ionconfig 

 The .ionconfig file defines the ION parameters 

for the local node. The first command defines which 

configuration of the simple data recorder (SDR) 

database to use for the local node. For this node, the SDR is implemented in a region of shared 

memory, transfer of data to/from the SDR are written ahead to a log, which makes the them 

reversible, and updates to the SDR heap are not allowed to cross object boundaries. heapWords 

defines the number of words (64 bits each on Morehead’s node) of non-volatile storage to use for 

the SDR’s database. The next command defines the path were the file to be used as heap space 

for the SDR is located and the file to be used to log the database updates to reflect the transfer of 

data to/from the SDR. sdrWmSize defines how large the dynamic memory in bytes will be for the 

SDR’s private working memory. wmSize defines how large the dynamic memory in bytes will be 

for the node. 

 4.2.1.5 ionrc 

 The .ionrc is another simple configuration file. 

The first command initializes node 2 using the 

parameters defined in node2.ionconfig. The node starts 

with the s command. The final command starts a management command that searches for 

configFlags 13 

heapWords 50000000 

pathName /tmp/ 

sdrWmSize 500000000 

wmSize 10000000 

1 2 node2.ionconfig 

s 

m horizon +0 
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possible bundle congestions from the start of the node to infinity this is to prevent the filling up 

of bundle storage. 

 4.2.1.6 ionsecrc 

 This configuration file only consists of one command because it is not fully implemented 

in ION. The command is 1 and that initializes ionsecadmin to prevent an error being sent to the 

log file.   

 4.2.1.7 ipnrc 

 For this project the configuration file is simple 

with only one command because there is only one other node connected to it. This command 

defines a plan to use for the ipn scheme. In this case, all bundles destined to node 1 will be sent 

to the neighboring node 1 using LTP. 

 4.2.1.8 ltprc 

 A .ltprc configuration file defines how to 

manage LTP for the node. The first command initializes 

the node and tells the node how many export sessions it 

can have running. The next command, a span, defines a link, or span, between nodes. The 

command above says that the span for node 1 can have a max of 2000 export sessions and a max 

of 2000 import sessions, it can export blocks that are no larger than 1400 bytes at one time, there 

can only be one LTP packet placed in one block, after one second has passed the block is sent 

even if it is not full, and it sends a command to ltpadmin that it must use the UDP link-service 

output task to send to node 1’s IP address at a rate of 10000000 bits per second. After the a span 

command, the w 1 command tells ltpadmin to send watch characters to the command line. The 

a plan 1 ltp/1 

1 4000 

a span 1 2000 2000 1400 1 1 

'udplso ip_addr 10000000' 

w 1 

s 'udplsi ip_addr' 
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final command tells ltpadmin to start the node with the UDP service layer input task using the 

local nodes IP address. 

 4.2.1.9 global.rc 

 The final configuration file is what defines the 

CGR. There is a portion of it to the right, see Appendix 

C4 for the rest. The first command tells the node that a 

contact will appear at the time the node starts and lasts for 345600 seconds. The contact is 

between 1 and 2 and there is a 2 second one way light time delay. The second command tells the 

node that during this contact communication node 1 can communicate with itself at 10000000 

bits per second. 

4.2.2 Test Results 

 The first test was file transfer, using the ION command cfdptest, was performed several 

times to verify repeatability. It was able to transfer a text file and a .seq file successfully. There 

were a few instances of the files not being sent. Those instances were either because of 

configuration file changes that occurred in between tests or the node firewall preventing packets 

from being sent. These problems were rectified by fixing mistakes in the configuration files and 

adjusting firewall rules by opening some ports. The file transfers were performed again. The 

second test was a file transfer with AMMOS. A file containing a set of example raw packets that 

would come from a spacecraft was sent through AMMOS. The file was transferred successfully 

from JPL node to the Morehead node. Then the received file was run through the AMMOS 

command chill to verify that the received packets were valid. These steps were performed 

several times to verify repeatability. One problem that occurred was a database that supports 

AMMOS on Morehead’s node would crash occasionally and the reason could not be identified. 

a range +0 +345600 1 2 2 

a contact +0 +345600 1 1 

10000000 
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It was possible to run the test without the database crashing during the test, but it would crash 

between tests. 

4.3 Summary 

 Chapter IV described the configuration files that were created for this project. It 

described how the commands in each configuration file were used. It also described the results of 

the CFDP file transfer test and the AMMOS test and the problems that occurred during the tests. 
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CHAPTER V 

CONCLUSION 

5.1 Discussion of Results 

 The results of the tests show that the node can handle sending bundles to other nodes 

successfully and that AMMOS can be interfaced with node. Because the node can transfer files 

successful this demonstrates that the node was configured properly and that the connection to the 

DEN is functioning. With a functioning DTN node, the Morehead node could be connected to 

other nodes to expand the network and provide support to Lunar Ice Cube’s flatsat once it has an 

IRIS radio that is DTN capable. The AMMOS test shows that Morehead’s node can interface 

with AMMOS and AMMOS at JPL. It lays the ground work for integrating with DTN with 

AMMOS. DTN integrated with AMMOS means that telemetry can be sent with DTN directly to 

the mission operations center for processing and commands can be sent from the mission 

operations center to the spacecraft with DTN. The completion of these tests brings the node one 

step closer to providing significant risk reduction for NASA. 

5.2 Future Work 

 The bulk of this project was taken up setting up the node, troubleshooting it, and getting 

it connected to the DEN. More work can be done to provide risk reduction for NASA. A socket 

to BP adapter will need to be developed to connect DTN with AMMOS to connect the mission 

operations center to DTN. A block diagram for this demonstration can be seen on the next page 

in Figure 12. To demonstrate DTN’s capabilities with spacecraft it will need to be connected to 

Lunar Ice Cube’s flatsat once it is ready. A good demonstration of a complete DTN link would 

be to connect the DTN node to the ground station once and the upgrades are complete and have 

Lunar Ice Cube transmit to the 21-meter antenna. A recommended intermediate step would be to 
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connect just the node to the ground station and perform a loopback test to show the node 

interfacing with the ground station. Completing these tasks would be a good demonstration for 

NASA.  

5.3 Summary 

 Chapter V discussed the results and what they mean for Morehead. It also discussed what 

future steps could be taken now that the node is running and what they would demonstrate. By 

presenting the methodology of the project along with the test results, this report can demonstrate 

why this project can serve as a basis for future risk reduction for NASA and Morehead’s Lunar 

Ice Cube. The objective outlined in Chapter I of this report were achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Future AES Demonstration 
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APPENDICES 

A. WAN Script 

#!/bin/sh 

# root qdisc handle 

r_handle=1 

# netem qdisc handle 

n_handle=2  

 

interface= 

delay= 

dstip= 

qdpresent= 

loss= 

delete=false 

verbose=false 

 

error() { 

 printf "%s\n" "$1" >&2 

} 

 

log() { 

 if [ $verbose == true ]; then 

  printf "%s" "$1" 

  

  if [ "$2" != false ]; then 

   printf "\n" 

  fi 

 fi 

} 

 

# Ish... 

isip () { 

 if ! echo "$1" | grep -E '([0-9]{1,3}[.]){3}[0-9]{1,3}(/[0-9]{1,2})?' > /dev/null; then 

  return 1  

 fi 

  

 return 0 

} 

 

iptohex () { 

 printf '%02x' `echo "$1" | sed 's/\./ /g'` 

} 

 

usage() { 
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 echo "$0 -i <interface> -d <ip> -m <milliseconds> -l <loss percentage> [start|stop]" 

 exit 1 

} 

 

while getopts ":hi:d:m:l:v" opt; do 

 case "${opt}" in 

  h) 

   usage 

   ;; 

  i) 

   interface="${OPTARG}" 

   ;; 

  d) 

   dstip="${OPTARG}" 

   ;; 

  m) 

   delay="${OPTARG}" 

   if ! echo "$delay" | grep -E '^[0-9]+$' > /dev/null; then 

    error "-m must be an interger value, got '$delay'" 

    usage 

   fi 

   ;; 

  l)  

   loss="${OPTARG}" 

   ;; 

  v) 

   verbose=true 

   ;; 

  *) 

   usage 

   ;; 

 esac 

done 

shift $((OPTIND-1)) 

 

if [ "$interface" == '' ]; then 

 error "No interface specified" 

 usage 

fi 

 

if [ "$1" == 'stop' ]; then 

 delete=true 

elif [ "$1" != 'start' ]; then 

 error "Invalid operation '$1', expected start or stop" 

 usage 

fi 
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# Play nice with FQDNs too (IPv4 only) 

if [ "$dstip" != '' ]; then 

 if ! isip "$dstip"; then 

  ret=`host $dstip` 

  rsv=`echo "$ret" | tail -n 1 | grep -o -E '([0-9]{1,3}[.]){3}[0-9]{1,3}'` 

  if [ $? -ne 0 ] || ! isip "$rsv"; then 

   error "Failed resolving $dstip: $ret" 

   exit 1 

  fi 

  dstip=$rsv 

 fi 

fi 

 

# Check if we have our queue discipline already added to the target inerface 

# let's hope nothing else if using this handle 

log "Checking if root qdisc already added to $interface... " false 

if tc qdisc show dev "$interface" | grep "qdisc prio $r_handle:" > /dev/null; then 

 log "yes" 

 qdpresent=true 

else 

 log "no" 

 qdpresent=false 

fi 

 

# Were we told to stop delaying packets? 

if [ $delete == true ]; then 

 if [ $qdpresent == true ]; then 

  log "Removing qdisc with handle $r_handle... " false 

  if tc qdisc del dev "$interface" root handle $r_handle:; then 

   log "ok" 

  else 

   log "failed ($?)" 

   exit 1  

  fi 

 fi 

 exit 0   

fi 

 

# Nope, first add the new root queue discipline if required 

if [ $qdpresent != true ]; then 

 log "Adding qdisc with handle $r_handle... " false 

 if tc qdisc add dev "$interface" root handle $r_handle: prio; then 

  log "ok" 

 else 

  log "failed ($?)" 
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  exit 1 

 fi 

fi 

 

# Add any IP filters these classify the traffic and limit what's delayed 

if [ "$dstip" != '' ]; then 

 log "Checking if IP is already in filter... " false 

 if ! tc filter show dev "$interface" parent $r_handle:0 | grep -E 'match.*'`iptohex "$dstip"` 

> /dev/null; then 

  log "no" 

 

  log "Adding IP $dstip to filter... " false 

 

  # Add a filter to device $interface 

  # - attach it to qdisc $r_handle:0 

  # - apply it to IP packets 

  # - with a prio/pref (priority) of 1 (this is arbitrary as all filters have the same 

priority) 

  # - use the u32 classifier 

  # - match on ip dst $dstip 

  # - forward matching packets to flowid $n_handle:1 

  if tc filter add dev "$interface" parent $r_handle:0 protocol ip prio 1 u32 match ip 

dst $dstip flowid $n_handle:1; then 

   log "ok" 

  else 

   log "failed ($?)" 

   exit 1 

  fi 

 else 

  log "yes" 

 fi 

fi 

 

# This is the destination for the filters we added above 

# Delay 

if [ "$delay" != '' ]; then 

 log "Checking if netem qdisc has been added (and has correct delay)... " false 

 netem=`tc qdisc show dev "$interface" | grep "netem.*$n_handle:"` 

 if [ $? -ne 0 ]; then 

  log "no" 

  log "Adding qdisc netem with handle $n_handle (delay ${delay}ms)... " false 

  if tc qdisc add dev "$interface" parent $r_handle:1 handle $n_handle: netem delay 

${delay}ms loss ${loss}% 25%; then 

   log "ok" 

  else 

   log "failed ($?)" 
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   exit 1 

  fi 

 elif ! echo "$netem" | grep "delay ${delay}.*ms" > /dev/null; then 

  log "yes" 

  log "Changing qdisc netem delay to ${delay}ms... " false 

  if tc qdisc change dev "$interface" parent $r_handle:1 handle $n_handle: netem 

delay ${delay}ms loss ${loss}% 25%; then 

   log "ok" 

  else 

   log "failed ($?)" 

   exit 1 

  fi 

 else 

  log "yes" 

 fi 

fi 

 

# Loss 

if [ "$loss" != '' ]; then 

 log "Checking if netem qdisc has been added (and has correct loss)... " false 

 netem=`tc qdisc show dev "$interface" | grep "netem.*$n_handle:"` 

 if [ $? -ne 0 ]; then 

  log "no" 

  log "Adding qdisc netem with handle $n_handle (loss ${loss}%)... " false 

  if tc qdisc add dev "$interface" parent $r_handle:1 handle $n_handle: netem loss 

${loss}%; then 

   log "ok" 

  else 

   log "failed ($?)" 

   exit 1 

  fi 

 elif ! echo "$netem" | grep "loss ${loss}.*%" > /dev/null; then 

  log "yes" 

  log "Changing qdisc netem loss to ${loss}%... " false 

  if tc qdisc change dev "$interface" parent $r_handle:1 handle $n_handle: netem      

loss ${loss}%; then 

   log "ok" 

  else 

   log "failed ($?)" 

   exit 1 

  fi 

 else 

  log "yes" 

 fi 

fi 
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B. Space Packets Code 

#include <iostream> 

#include "CCSDS.hh" 

#include <vector> 

#include <random> 

#include <climits> 

#include <algorithm> 

#include <functional> 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <errno.h> 

#include <string.h> 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

#include <netdb.h> 

#include <iomanip> 

 

#define SERVERPORT "51718" 

 

using namespace std; 

 

int apid = 0b10000000000; 

int category = 0; 

int aduCount = 0; 

const char* ip = "127.0.0.1"; 

int16_t pktnumber; 

int numbytes; 

struct addrinfo hints, *servinfo, *p; 

int rv; 

int sockfd; 

vector<uint8_t> smcpByteArray(2036); 

 

using random_bytes_engine = independent_bits_engine< 

    mt19937, 8, uint8_t>; 

 

string createPacket(int16_t sequenceCount, int16_t maxpkts) 

{ 

random_bytes_engine rbe; 

generate(begin(smcpByteArray), end(smcpByteArray), ref(rbe)); 

 

   //constructs an empty instance 

    CCSDSSpacePacket* ccsdsPacket = new CCSDSSpacePacket(); 
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    //set APID 

    ccsdsPacket->getPrimaryHeader()->setAPID(apid); 

 

    //set Packet Type (Telemetry or Command) 

    ccsdsPacket->getPrimaryHeader()-> 

        setPacketType(CCSDSSpacePacketPacketType::TelemetryPacket); 

 

    //set Secondary Header Flag (whether this packet has the Secondary Header part) 

    ccsdsPacket->getPrimaryHeader()-> 

        setSecondaryHeaderFlag( 

            CCSDSSpacePacketSecondaryHeaderFlag::NotPresent 

        ); 

 

    //set segmentation information 

    if(sequenceCount == 0 && maxpkts > 1){ 

    ccsdsPacket->getPrimaryHeader()-> 

        setSequenceFlag( 

            CCSDSSpacePacketSequenceFlag::TheFirstSegment 

        ); 

    } 

 

    else if(sequenceCount > 0 && sequenceCount != (maxpkts - 1)){ 

    ccsdsPacket->getPrimaryHeader()-> 

        setSequenceFlag( 

            CCSDSSpacePacketSequenceFlag::ContinuationSegment 

        ); 

    } 

 

    else if(sequenceCount > 0 && sequenceCount == (maxpkts - 1)){ 

    ccsdsPacket->getPrimaryHeader()-> 

        setSequenceFlag( 

            CCSDSSpacePacketSequenceFlag::TheLastSegment 

        ); 

    } 

 

    else{ 

       ccsdsPacket->getPrimaryHeader()-> 

        setSequenceFlag( 

            CCSDSSpacePacketSequenceFlag::UnsegmentedUserData 

        ); 

    } 

 

    //set Category 

    ccsdsPacket->getSecondaryHeader()->setCategory(category); 
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    //set secondary header type (whether ADU Channel presence) 

    ccsdsPacket->getSecondaryHeader()-> 

        setSecondaryHeaderType( 

            CCSDSSpacePacketSecondaryHeaderType::ADUChannelIsUsed 

        ); 

 

    //set ADU Channel ID 

    ccsdsPacket->getSecondaryHeader()->setADUChannelID(0x00); 

 

    //set ADU Segmentation Flag (whether ADU is segmented) 

    ccsdsPacket->getSecondaryHeader()-> 

        setADUSegmentFlag( 

            CCSDSSpacePacketADUSegmentFlag::UnsegmentedADU 

        ); 

 

    //set counters 

    ccsdsPacket->getPrimaryHeader()->setSequenceCount(sequenceCount); 

    ccsdsPacket->getSecondaryHeader()->setADUCount(aduCount); 

 

    //set absolute time 

    uint8_t time[4]; 

    ccsdsPacket->getSecondaryHeader()->setTime(time); 

 

    //set data 

    ccsdsPacket->setUserDataField(smcpByteArray); 

    ccsdsPacket->setPacketDataLength(); 

 

    //get packet as byte array 

    vector<uint8_t> packet = ccsdsPacket->getAsByteVector(); 

 

    string pkt = ccsdsPacket->toString(); 

    return pkt; 

} 

 

int main() 

{ 

 

cout << "Expected number of packets: "; 

cin >> pktnumber; 

 

memset(&hints, 0, sizeof hints); 

hints.ai_family = AF_UNSPEC; 

hints.ai_socktype = SOCK_DGRAM; 

 

if ((rv = getaddrinfo(ip, SERVERPORT, &hints, &servinfo)) != 0) { 

        fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv)); 
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        return 1; 

} 

 

for(p = servinfo; p != NULL; p = p->ai_next) { 

    if ((sockfd = socket(p->ai_family, p->ai_socktype, 

         p->ai_protocol)) == -1) { 

            perror("talker: socket"); 

            continue; 

        } 

 

    break; 

} 

 

for(int i = 0; i < pktnumber; i++){ 

 

 string pt = createPacket(i, pktnumber); 

 cout << pt; 

 const char* t =pt.c_str(); // Used to send packet, know it works, but only can see header of 

conversion to txt 

 //char buffer = sizeof(pt); 

// char n = sprintf(buffer, pt); 

 if ((numbytes = sendto(sockfd, t, strlen(t), 0, 

      p->ai_addr, p->ai_addrlen)) == -1) { 

        perror("talker: sendto"); 

        exit(1); 

    } 

 

} 

close(sockfd); 

} 

 

C. Node Files 

C1. ionstart 

#!/bin/bash 

# shell script to get node running 

rm ion.log 

sleep 1 

ionadmin        node2.ionrc 

sleep 1 

ionsecadmin     node2.ionsecrc 

sleep 1 

ltpadmin        node2.ltprc 

sleep 1 

bpadmin         node2.bprc 
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sleep 1 

cfdpadmin       node2.cfdprc 

sleep 1 

imcadmin       node2.imcrc 

sleep 1 

ionadmin        global.rc 

sleep 1 

bpecho ipn:2.3 & 

 

C2. ionstop 

#!/bin/bash 

echo "IONSTOP will now stop ion and clean up the node for you..." 

echo "bpadmin ." 

bpadmin . 

sleep 1 

echo "cfdpadmin ." 

cfdpadmin . 

sleep 1 

echo "ltpadmin ." 

ltpadmin . 

sleep 1 

echo "ionadmin ." 

ionadmin . 

sleep 1 

echo "global.rc ." 

ionadmin . 

sleep 1 

echo "killm" 

killm 

echo "ION node ended. Log file: ion.log" 

 

C3. node2.bprc 

1 

a scheme ipn 'ipnfw' 'ipnadminep' 

 

# add ION utility endpoints 

a endpoint ipn:2.0 x 

a endpoint ipn:2.1 x 

a endpoint ipn:2.2 x 

a endpoint ipn:2.3 x 

a endpoint ipn:2.4 x 

a endpoint ipn:2.5 x 

a endpoint ipn:2.6 x 

a endpoint ipn:2.7 x 
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a endpoint ipn:2.8 x 

a endpoint ipn:2.10 x 

a endpoint ipn:2.11 x 

a endpoint ipn:2.12 x 

 

# add AMS endpoints 

a endpoint ipn:2.9 x 

a endpoint ipn:2.15 x 

 

# add CFDP-1 endpoints 

a endpoint ipn:2.64 x 

a endpoint ipn:2.65 x 

 

# add lgagent endpoint 

a endpoint ipn:2.127 x 

 

#add procotols/ducts 

 

a protocol ltp 1400 100 

a induct ltp 2 ltpcli 

a outduct ltp 1 ltpclo 

a outduct ltp 3 ltpclo 

 

# load ipn parameters 

r 'ipnadmin node2.ipnrc' 

 

#start watch characters 

w 1 

 

#start the daemons 

s 

 

C4. global.rc 

a range +0 +345600 1 2 2 

a contact +0 +345600 1 1 10000000 

a contact +0 +345600 1 2 10000000 

a contact +0 +345600 2 1 10000000 

a contact +0 +345600 2 2 10000000 

 

D. Watch Characters 

a  new bundle is queued for forwarding 

b  bundle is queued for transmission 

c  bundle is popped from its transmission queue 

m  custody acceptance signal is received 
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w  custody of bundle is accepted 

x  custody of bundle is refused 

y  bundle is accepted upon arrival 

z  bundle is queued for delivery to an application 

˜  bundle is abandoned (discarded) on attempt to forward it 

!  bundle is destroyed due to TTL expiration 

&  custody refusal signal is received 

#  bundle is queued for re-forwarding due to CL protocol failure 

j  bundle is placed in ‘‘limbo’’ for possible future re-forwarding 

k  bundle is removed from ‘‘limbo’’ and queued for re-forwarding 

d  bundle appended to block for next session 

e  segment of block is queued for transmission 

f  block has been fully segmented for transmission 

g  segment popped from transmission queue 

h  positive ACK received for block, session ended 

s  segment received 

t  block has been fully received 

@  negative ACK received for block, segments retransmitted 

=  unacknowledged checkpoint was retransmitted 

+  unacknowledged report segment was retransmitted 

{  export session canceled locally (by sender) 

}  import session canceled by remote sender 

[  import session canceled locally (by receiver) 

]  export session canceled by remote receive 

p  CFDP PDU transmitted 

q  CFDP PDU received 


