

IMPLEMENTING DELAY-TOLERANT NETWORKING AT MOREHEAD STATE

UNIVERSITY

A Thesis

Presented to

the Faculty of the College of Science

Morehead State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Nathaniel J. Richard

April 28, 2017

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10276232

10276232

2017

Accepted by the faculty of the College of Science, Morehead State University, in partial

fulfillment of the requirements for the Master of Science degree.

Jeffrey A. Kruth

Director of Thesis

Master’s Committee: ________________________________, Chair

 Dr. Charles D. Conner

Dr. Benjamin K. Malphrus

 Kevin Z. Brown

Date

IMPLEMENTING DELAY-TOLERANT NETWORKING AT MOREHEAD STATE

UNIVERSITY

Nathaniel J. Richard

Morehead State University, 2017

Director of Thesis: __

Jeffrey A. Kruth

Implementing Delay-Tolerant Networking at Morehead State University consists of the

demonstration of delay-tolerant communication between Morehead’s ground station and a small

spacecraft telemetry emulator. Delay-tolerant networking or DTN is defined as a set of

communication protocols that allow for the extension of Internet-like communication to systems

that would otherwise operate on an ad-hoc basis because of disruptions in communication or

operations over distances that are measured in light-seconds. A small spacecraft telemetry

emulator is defined as one that utilizes a standard the same set of commands and telemetry

responses as the complete spacecraft but exists as either a piece of software or a set of

components on a benchtop. DTN has been tested before with spacecraft, such as NASA’s EPOXI

mission and the International Space Station, but these have only served as technology

demonstrations and have not been an integral part of the spacecraft’s operation. Implementing

DTN at Morehead will show the capability of using DTN on a small spacecraft as an integral

part of the spacecraft’s operations. Furthermore, NASA is exploring having DTN as an integral

part of spacecraft operations and has contracted Morehead to serve as a test case and serve to

reduce risk. The NASA-developed implementation of DTN called the Interplanetary Overlay

Network (ION) will serve as the primary means of using DTN at Morehead. Initial work has

been performed locally and with the DTN Experimental Network (DEN) to test the functionality

of operating DTN at Morehead’s. A trade study and experimentation was done to select a

network emulator that would simulate the connection between the ground station and the

spacecraft. With support from the Jet Propulsion Laboratory (JPL) work is being done to test if it

is possible to interface DTN with Morehead’s ground station software. Development of the

spacecraft emulator is still ongoing, but the requirements for it have been defined and

Morehead’s Lunar Ice Cube spacecraft will serve as a basis for the development of the emulator.

The ongoing work to put in place DTN at Morehead will prove the possibility of operating a

small spacecraft via DTN and serve as a low-cost risk reduction for future NASA capabilities.

Accepted by: ______________________________, Chair

 Dr. Charles D. Conner

Dr. Benjamin K. Malphrus

 Kevin Z. Brown

ACKNOWLEDGEMENTS

 I would like to thank Leigh Torgerson, Greg Miles, and Scott Burleigh at JPL for all their

help getting the DTN node setup and running, without them this project would have taken a lot

longer. I also need to thank Dennis Iannicca for his help connecting the node to the DEN and

tolerating all my networking questions. I owe Dr. Malphrus, Jay Wyatt, and Tim Pham for the

internship at JPL that led to this project. I want to thank my family for all their love and support

throughout the years. Lastly, I want to thank anyone I may have forgotten that helped me during

this project.

Terminology

AMMOS Advanced Multi-Mission Operations System

BP Bundle Protocol

CCSDS Consultative Committee on Space Data Systems

CFDP CCSDS File Delivery Protocol

CGR Contact Graph Routing

cm centimeter

CRC Cyclic Redundancy Check

DEN DTN Experimental Network

DINET Deep Impact Network Experiment

DIXI Deep Impact eXtended Investigation

DSOC Deep Space Operations Center

DSN Deep Space Network

DTE Direct to Earth

DTN Delay/Disruption-Tolerant Networking

EM-1 Exploration Mission-1

EPOCH Extrasolar Planet Observations and Characterization

EPOXI EPOch and diXI

GEO Geostationary Earth Orbit

GHz gigahertz

GT Ground Terminal

ION Interplanetary Overlay Network

IP Internet Protocol

ipn Interplanetary Network

IPsec Internet Protocol Security

ISS International Space Station

JAXA Japanese Aerospace Exploration Agency

JPL Jet Propulsion Laboratory

kg kilogram

LEO Low Earth Orbit

LTP Licklider Transmission Protocol

mm millimeter

MOC Mission Operations Center

MSPA Multiple Spacecraft Per Aperture

NASA National Aeronautics and Space Administration

PDU Payload Data Unit

RF Radio Frequency

SDR Software Defined Radio

SELinux Security-Enhanced Linux

SLS Space Launch System

TCP Transmission Control Protocol

UT Unitdata Transport

UDP User Datagram Protocol

VPN Virtual Private Network

WAN Wide Area Network

X-band radio frequency that ranges from 8 to 12 GHz

Table of Contents

CHAPTER I INTRODUCTION ... 10

1.1 General Area of Concern... 10

1.2 Objectives .. 12

1.3 Significance of the Study .. 12

1.4 Definition of Terms ... 13

1.5 Summary ... 14

CHAPTER II REVIEW OF LITERATURE .. 15

2.1 Background ... 15

2.2 Space Communication Literature Review... 19

2.3 Summary ... 21

CHAPTER III METHODOLOGY ... 22

3.1 Overview ... 22

3.2 System Overview .. 23

3.2.1 Project Architectures .. 23

3.2.1. File Transfer .. 23

3.2.1.2 Telemetry Exchange ... 23

3.2.2 VPN Tunnel .. 24

3.2.3 WAN Emulator ... 24

3.2.4 Space Packets ... 25

3.3 Summary ... 26

CHAPTER IV FINDINGS AND ANALYSIS ... 27

4.1 Overview ... 27

4.2 Results ... 27

4.2.1 DTN Node Configuration Files .. 27

4.2.1.1 bprc ... 27

4.2.1.2 cfdprc .. 28

4.2.1.3 imrc ... 29

4.2.1.4 ionconfig ... 29

4.2.1.5 ionrc .. 29

4.2.1.6 ionsecrc ... 30

4.2.1.7 ipnrc .. 30

4.2.1.8 ltprc ... 30

4.2.1.9 global.rc .. 31

4.2.2 Test Results... 31

4.3 Summary ... 32

CHAPTER V CONCLUSION .. 33

5.1 Discussion of Results .. 33

5.2 Future Work .. 33

5.3 Summary ... 34

REFERENCES ... 35

APPENDICES .. 37

A. WAN Script .. 37

B. Space Packets Code .. 42

C. Node Files ... 45

C1. ionstart... 45

C2. ionstop ... 46

C3. node2.bprc ... 46

C4. global.rc .. 47

D. Watch Characters ... 47

10

CHAPTER I

INTRODUCTION

1.1 General Area of Concern

In the past decade, the use of CubeSats has exploded with many applications in low Earth

orbit, from simple experiments to constellations mapping the globe. Now many are looking

beyond low Earth orbit to the Moon and elsewhere for applications of CubeSats. These CubeSats

would join the family of spacecraft already exploring our solar system that is supported by

NASA’s Deep Space Network (DSN). The DSN is busy communicating with spacecraft across

the solar system and the possibility of sending CubeSats beyond low Earth orbit will start to

strain the DSN capabilities because a single launch can carry many CubeSats. So, JPL is looking

at several ways to expand the DSN’s capacity to support all these new spacecraft.

NASA is taking a three-prong approach to expanding the DSN’s capacity. The first

avenue is increasing automation of the DSN’s capabilities. It starts with improving human

interaction between the operators and the systems they are managing (Wyatt & Malphrus, 2016).

By having displays that summarize the data coming, operators can better react to the information

they have at hand and have a more hands-off approach. The DSN’s automation infrastructure is

25 years old and needs updating, so it will be augmented to reduce an operator’s workload

(Wyatt & Malphrus, 2016). The last part of the DSN’s automation is scheduling operators based

on how many simultaneous passes can be run by an operator without taxing their abilities (Wyatt

& Malphrus, 2016). These automations with help with additional capabilities being added to the

DSN to support small spacecraft, especially CubeSats.

 The next part of the DSN upgrades is adding to capabilities to the DSN to support small

spacecraft. One part of increasing the DSN capabilities is adding university partners with

11

antennas to the DSN. Morehead State University is one such university with its 21-meter antenna

(Wyatt & Malphrus, 2015). Next, the DSN will be adding a capability called Opportunistic

Multiple Spacecraft Per Aperture, Opportunistic MSPA. It is the ability to downlink data from

multiple spacecraft with the view of one antenna. One spacecraft is defined as the “host”

spacecraft, it is the one that is scheduled with the DSN (Wyatt & Malphrus, 2016). All spacecraft

within the view of the antenna transmit down to the receiver and those transmissions are

recorded to be later processed for telemetry extraction (Wyatt & Malphrus, 2016). The last part

of the new capabilities is creating a fully-automated prioritized scheduling system for the DSN.

The new scheduling system will allow mission critical phases to take priority over standard

spacecraft operations (Wyatt & Malphrus, 2016). All these new capabilities will allow the DSN

to reliable downlink telemetry from CubeSats without increasing strain on the DSN, but these

capabilities can only go so far.

 The last part of expanding the DSN’s capacity is to add support for networked space

missions and emerging communication standards (Wyatt & Malphrus, 2016). Networked space

missions would mean spacecraft could be treated as another computer on a network instead of

how they are treated now where each spacecraft is a unique entity that must have direct

communication with Earth. The problem with creating networked space missions is the

spacecraft is not always in view of Earth and transmissions can take a significant amount of time

to propagate between Earth and the spacecraft. To solve these problems a new method of

networking is being developed, called delay/disruption tolerant networking which can handle

these problems inherent in space communication. NASA is supporting the development of this

method of networking the underlying protocols needed for it to function.

12

1.2 Objectives

The objectives of this project are:

1. Configure and setup a DTN node at Morehead State University

2. Demonstration DTN communication between at node at Morehead and a node at JPL

3. Provide risk-reduction for NASA’s future implementation of DTN within the DSN

1.3 Significance of the Study

EM-1 is the first launch of the SLS and it will be carrying CubeSats as thirteen secondary

payloads (Evans, 2016). Morehead State is one of those payloads (Evans). To support its payload

Morehead will be using its 21-meter antenna. Morehead’s mission, Lunar Ice Cube, requires

ranging information to enter lunar orbit, but the 21-meter antenna does not have that capability,

so it is being upgraded to DSN capabilities (Wyatt & Malphrus, 2015). Morehead is now amid

upgrading it to be DSN compatible. The process of becoming DSN compatible includes

upgrading the RF feed to be able to transmit and receive at X-band frequencies, adding RF

equipment capable of measuring the distance to spacecraft, connecting the antenna’s systems to

the NASA’s network so information received at Morehead can be transferred to their destination,

and acquiring a hydrogen MASER to provide precise timing signals to the new equipment. In

addition to upgrading the RF capabilities of the antenna, a DTN node will be added to

Morehead’s antenna to provide DTN capabilities.

Lunar Ice Cube will be carrying an SDR capable of operating in X-band called IRIS.

Because IRIS is an SDR it can be programmed to have the capabilities required for the mission it

is on. In this case, Lunar Ice Cube will be serving as a demonstration of DTN on a CubeSat, so

IRIS will be delivered with the capability to serve as a DTN node. It will not be an integral part

of the mission, but it will be part of the secondary mission goals. For the DTN demonstration to

13

be successful, there needs to be a DTN node on the ground. Setting up one at Morehead’s

antenna, an asset Morehead controls, would allow the demonstration to have a higher chance of

success because both assets are well understood at Morehead, which would allow for quicker

problems resolution.

1.4 Definition of Terms

CubeSats are those satellites that have a mass of under 1.33 kg per 10 cm x 10 cm x 10

cm volume otherwise known as One Standard Unit, or 1U (CubeSat Design Specification (CDS)

REV 13, 2014). This satellite classification was developed at California Polytechnic State

University (Cal Poly) in 1999 as a means of standardizing small satellite architectures across the

entire small satellite industry. This served to facilitate reduced costs and time associated with the

development of small satellite missions, thus allowing for organizations that would have

Figure 1: 3U CubeSat Architecture

14

previously not been able to develop and launch small spacecraft (Such as Universities and

Privately Funded Corporations) to launch scientifically significant, impactful, low-cost missions.

Nanosatellites come in several different sizes, ranging from 1U to 6U. An example of 3U

nanosatellite architecture, as defined by the CubeSat Design Specification Document, Rev 13 is

shown in Figure 1. Though the vertical dimension of each configuration depends on its type, the

width of any CubeSat is limited to 100 mm, thus imposing a limit on the size that a given

nanosatellite can occupy (CubeSat Design Specification (CDS) REV 13, 2014).

 A DTN node can refer to any number of things. DTN has the capability to run on

anything from cell phones to Martian rovers, it can even be setup to be used with flash drives. It

is a computer that takes bundles from another computer that is part of a delay-tolerant network

and then if there is a link available will send it to the next part of the network, otherwise, it will

hold onto the bundles until a link becomes available. Throughout this paper whenever a DTN

node is mentioned, it will mean a Linux server running CentOS 7 with DTN running on it.

1.5 Summary

 Chapter I provides an introduction into this thesis project be describing the general area

of concern for implementing DTN at Morehead State University, the objectives of the project,

and the projects significance. Also, provided in Chapter I was a brief outline of terms that the

reader will encounter in this thesis report.

15

CHAPTER II

REVIEW OF LITERATURE

2.1 Background

What has allowed the Internet to become so ubiquitous is a standard set of protocols

everyone must follow to transfer data. A couple of problems with those protocols is they were

not designed to handle any disruptions in communication or operate over distances that are

measured in light-seconds. Because of these problems deep space missions need to communicate

directly through whichever DSN antenna complex is visible. DTN tries to overcome these

problems and offer a way to bring the Internet to deep space.

The Internet uses an architecture that consists of several levels sometimes called a stack

because of its graphical representation. It consists of four levels; the application level, the

transport level, the network level, and the physical level (Mohr, 2009). The application level is

where the user operates, such as sending emails or chatting online. The next level is the transport

level, this level handles transportation of the data, ensuring all data arrives at its destination

without errors (Mohr). The protocol the Internet uses is called Transmission Control Protocol

(TCP) (Mohr). Underneath the transport level is the network level. The network level handles the

routing of the data, and it ensures that all data arrives at the correct network address (Mohr).

Internet Protocol (IP) is the network level protocol used by the Internet (Mohr). The final level is

the physical level; this level is what physically connects the computers to each other (Mohr). It is

sometimes referred to as the bit level, where the ones and zeroes exist. The transport and network

layers together are referred to as the TCP/IP protocol (Mohr). DTN shares many similarities with

the TCP/IP protocol.

16

The DTN stack is comparable to TCP/IP

protocol stack, except below the application layer is

another protocol called the bundle protocol (BP).

The DTN protocol stack compared with the Internet

protocol stack can be seen in Figure 2 (Burleigh,

2016). BP serves as an overlay protocol to connect

other networks including networks using TCP/IP

and networks using space communication protocols

(Burleigh). Packets in a DTN are referred to as

bundles and they serve the same purpose as IP

packets, moving data between BP endpoints (Burleigh). To ensure transmission reliability, like

TCP, DTN uses LTP (Burleigh). LTP offers reliability over delayed links such as

communicating with deep space spacecraft. The approach to using these protocols is different

than the TCP/IP protocol.

While TCP/IP and DTN share similar protocol architectures, DTN has a different

implementation. TCP is conversational because there are many messages passing between the

source and destination as data is transmitted (Warthman, 2012). Acknowledgment messages and

data transfers are handled by the source and destination with the intermediate nodes handling

only the routing (Warthman). Because of the nature of delay-tolerant networks, the direct

communication between the source and destination might not be possible. To ensure that data is

reliably transmitted from the source to the destination, DTN implements store-and-forward

message switching (Warthman). Each node in a delay-tolerant network not only routes data but

also stores it when the next node in the route is unavailable. So, when a node receives data but

Figure 2: DTN Protocol Stack

17

does not receive an acknowledgment from the next node in the route it will hold it until it can

forward the data. To provide reliability to this method the bundle protocol uses custody transfer,

which is shown in Figure 3 (Warthman). When the node sends a bundle to the next node, a

custody transfer is requested and a time-to-acknowledge retransmission timer starts (Warthman).

If custody is accepted, the receiving node sends an acknowledgment to the sending node

(Warthman). If the sending node does not receive an acknowledgment before the time-to-

acknowledge timer expires, it will retransmit the bundle (Warthman). The store-and-forward

capability also serves as a backup, if the data is lost in transit the receiving node can request the

data again without asking the source. DTN nodes can serve in two different capacities. They can

be a source/destination node or a forwarding node (Warthman). The forwarding node can also

act in two different capacities. It can just route data from one network to another with both using

the same underlying protocols or it can serve as a gateway where it transfers the data from one

network to another, but the networks use different underlying protocols (Warthman).

Requirements needed at each node location will affect which type of node is deployed there.

Figure 3: DTN Custody Transfer

18

NASA’s implementation of DTN is called ION. The basis of ION is both BP and LTP,

but there are several other protocols included with it. One of the protocols is CFDP, it is a file

delivery protocol that transfers files using the underlying DTN protocols to provide reliability.

The file is broken up into payload data units, PDUs, and transmitted via the underlying DTN

protocols to the destination to be reassembled into the file (Burleigh, 2016). There is a protocol

included with ION that is in its early stages called the bundle security protocol that provides

security to the bundles to prevent those who are not the intended recipient from reading the

bundles. Along with these other protocols, ION has something called contact graph routing,

CGR. CGR defines what DTN nodes are available for a node to contact, how long that contact

will last, what data rate is between the two nodes, and how long the light time delay is between

the nodes. A CGR is a predefined configuration file, which is fine for small networks but large

networks will cause the configuration file to grow quite large. Since, storage space on DTN

nodes can be sometimes be limited, such as on spacecraft, large configuration files are not

desired. So, something called opportunistic CGR is being developed to support larger networks.

In its current implementation, CGR is deterministic where the contact is known when it will

happen with 100% certainty. Opportunistic CGR will include contacts that may or may not

happen mean they have a probability of making contact less than one (Araniti, et al., 2015). Then

copies of the bundles are forwarded to the nodes of all the opportunistically discovered routes

that increase the probability of the bundles being delivered by more than a predefined threshold

(Araniti, et al.). ION has already seen limited use in space with spacecraft and the International

Space Station.

19

2.2 Space Communication Literature Review

 DTN has had a limited demonstration in space

with a demonstration with the EPOXI spacecraft, a

demonstration with JAXA’s GEO relay satellite, and

providing some support to experiments on the ISS.

EPOXI was a JPL mission that reused the Deep Impact

spacecraft, which had previously visited comet Temple 1, to visit another comet, Hartley 2

(Jpl.nasa.gov, 2017). The name EPOXI originated from the name of the two missions that would

be conducted during the cruise and the flyby of Hartley 2, Extrasolar Planet Observations and

Characterization (EPOCh) and Deep Impact eXtended Investigation (DIXI) (Discovery.nasa.gov,

2017). The demonstration of DTN with the EPOXI spacecraft was called Deep Impact Network

Experiment, DINET, and took place during the cruise between Temple 1 and Hartley 2 (Wyatt,

et al., 2009). JPL used it as a technology validation experiment of JPL’s DTN implementation,

ION. The experiment was designed to have a minimal impact on EPOXI’s primary mission, so

the software was installed on the backup flight computer within the backup software partition.

EPOXI was the only on orbit node in DINET; the

rest were simulated on Earth. The topology of

DINET are shown in Figure 5 (Wyatt, et al.). It

consisted of two surface assets, one on Mars and

the other on Phobos; an orbital relay satellite,

EPOXI; and the Earth ground station. Image files

would be sent from “Mars” or “Phobos” and then

relayed via EPOXI to Earth. As Figure 5 shows,

Figure 4: EPOXI Spacecraft

Figure 5: DINET Topology

20

there was also a crosslink that would be available at times for “Mars” and “Phobos” to

communicate with each other. The EPOXI demonstration has so far been the only deep space

demonstration of DTN and it was with artificial telemetry.

 DTN has had one other

demonstration with spacecraft in

GEO with JAXA’s Data Relay

Test Satellite. There were seven

nodes which can be seen in

Figure 6 on the right (Araniti, et

al., 2015). It consisted of a relay

spacecraft and a LEO spacecraft

with two direct to Earth

connections were the LEO

spacecraft communicated with a ground station and two ground terminals that communicated

with the relay satellite. This demonstration was used to show how CGR can deliver data to its

destination and conform to the contact plans that were defined.

 While in space demonstrations have improved the technology readiness level of DTN,

using DTN for actual missions shows how capable it is. DTN is currently being used on the ISS

to support some science experiments. DTN has been implemented across all parts of the ISS

program from flight and ground systems to testing and simulation (Willman & Davidson, 2014).

It provides increased reliability to payload data transfers during signal acquisition/loss transitions

(Willman & Davidson). DTN also provides better automation for data transfers from payloads on

the ISS (Willman & Davidson). Using DTN relieves the support required to plan data transfers

Figure 6: JAXA DTN Topology

21

during signal acquisition/loss transitions and when those transfers require operators (Willman &

Davidson). DTN has come to allow payload developers to retrieve their experiment data from the

ISS like they would a file from Dropbox.

2.3 Summary

 This chapter provides a technical background of how DTN operates and differentiate it

from the architecture used by the Internet. It also tries to explain DTN in a way that someone

unfamiliar with networking can understand. Chapter II also shows how NASA has already

demonstrated DTN and its current use in space.

22

CHAPTER III

METHODOLOGY

3.1 Overview

 To demonstrate the DTN interface is two part. The first part is showing file transfers are

possible. This is a simple test to demonstrate that it is possible to transfer a file comparable to

what Lunar Ice Cube would do while orbiting the Moon. The second part of the test would

demonstrate telemetry exchange capability between applications that can write Space Packets to

a socket, and applications that can read Space Packets from a socket, Space Packets are

described below. This test would seek to demonstrate both the ability to send commands and

receive streamed telemetry from Lunar Ice Cube. While these tests are straight forward there are

several things to be done before the tests could be carried out.

 There were several things that had to be done to prepare before any DTN testing could be

done. To simulate light-time distances that would be experienced during spacecraft operations a

WAN emulator had to be selected that could simulate the delays the data being transferred would

experience. The node that simulates JPL’s DSOC is at JPL and it requires a secure connection.

NASA supports a DTN experimental network, known as the DEN, and will provide a secure

connection to the JPL. Connecting to the DEN requires a VPN tunnel to it. So, a VPN tunnel had

to be setup for the Morehead node. The IRIS radio will be the node on Lunar Ice Cube and it

expects the data to be formatted into Space Packets. Space Packets are a CCSDS standard that

was developed to transfer spacecraft telemetry and commands over a space link (Space Packet

Protocol, 2003). To generate these Space Packets would either require Lunar Ice Cube or code

that would generate faux Space Packets like what Lunar Ice Cube would generate. Lunar Ice

Cube is not in at a point to generate telemetry, so code needed to be written to generate faux

23

Space Packets. In addition, the ground station software used by Morehead, AMMOS, needed to

be installed. With these components in place, the project could continue.

3.2 System Overview

3.2.1 Project Architectures

3.2.1. File Transfer

The file transfer test only required

ION and a file to be transferred. The format

of the file does not matter. Figure 7 shows

the connections for the demonstration. Once ION is started on both nodes, the file transfer can be

run with an included command called cfdptest. Before a file can be sent cfdptest must be told the

destination node, the file name on the source node, what the file should be named on the

destination node, and the light-time delay between the nodes. cfdptest is not required to be run on

both nodes, but running it on the destination node serves as a check on receiving the file.

3.2.1.2 Telemetry Exchange

 The telemetry exchange test requires

AMMOS to be installed on both nodes. Figure

8 shows the connection for the demonstration.

The JPL node uses the command chill_send_to_socket to send some pre-generated telemetry to

the Morehead node. The command requires the port number that the telemetry will be sent out,

the IP address of the Morehead node, and the name of the file to be sent. Since the JPL node will

be treated as a client sending to a remote server, it must also be specified to run

chill_send_to_socket in client mode. The Morehead node uses the command

chill_get_from_socket to receive the telemetry. The requirements for this command are the same

Figure 7: File Transfer Demonstration

Figure 8: Telemetry Exchange

Demonstration

24

as chill_send_to_socket, it requires the port number that the telemetry will be coming from, the

IP address of the JPL node, and what to name file that will be received. It has the option to run in

the default mode of running as a server or it can be run as a client. The Morehead node is treated

as the server, so the default mode was used.

3.2.2 VPN Tunnel

 The VPN tunnel is required to connect

the Morehead node to the DEN. The SG-2220

was selected to serve as the gateway between

the Morehead node and the DEN based off

recommendation from a colleague at NASA

because it is like hardware used there. It was configured to use IPsec to provide the VPN tunnel.

In addition to configuring the VPN tunnel, a route had to be added to allow the use of both

Ethernet ports on the Morehead node. The route was added using the Linux route command. It

defines that all packets destined for the DEN need to go through one Ethernet port and all other

packets go through the other Ethernet port. Related to the VPN tunnel was turning off a Linux

security feature, called SELinux, included in the node’s version of Linux. With it on DTN

bundles could not go through the node’s firewall.

3.2.3 WAN Emulator

 Some research was done to select a WAN emulator that would work for the project. A

hardware solution would require at least $1,000, which the project did not have. So, a software

solution was explored. There are a few software solutions available, but the one selected was

already included with the Linux installation on the Morehead node. The WAN emulator is a

built-in Linux command called netem it can add delay, packet loss, and other characteristics to

Figure 9: SG-2220 Gateway for VPN tunnel

25

packets going out a selected Ethernet port. A script was adapted to make it easier to use the

command that adds delay and loss to packets leaving an Ethernet port. The script requires the

input arguments of which Ethernet port to use, the packets destination that require the delay and

loss, how long to delay the packets, and the percentage of packets to lose. See Appendix A for

the code. During testing it was found to fail after having it run for days, but a cause could not be

determined. The best course of action was to limit the length of the test runs.

3.2.4 Space Packets

 The data format that is

sent to the IRIS radio is in Space

Packets. Figure 10 shows the

structure of a Space Packet. It

consists of a primary header,

secondary header, and the user

data field which contains the

telemetry and science data.

The total size of a Space

Packet is 65.54 kilobytes

including the header. At the

time of this project Lunar Ice

Cube was not using the secondary header. So, the header consists of 6 bytes and the user data

field is rest of the packet. Figure 11 shows what is in the header. Code was written based on C++

header files to create Space Packets in the formats seen in Figures 10 and 11. It fills a user

Figure 10: Space Packet Structure

Figure 11: Space Packet Header Structure

26

specified number of packets with random numbers and sends it out a port using UDP. See

Appendix B for the code.

3.3 Summary

 This chapter covered several aspects of the configuration and setup of the project. It

described the setup for the two tests and what was needed to support them. Also described is this

chapter was how the support equipment was setup and the code that was needed to support the

tests.

27

CHAPTER IV

FINDINGS AND ANALYSIS

4.1 Overview

 With ION installed and the hardware configured both tests could be run. Part of running a

node is the configuration files. The configuration files define the contacts available to the node,

what underlying protocols to use with the contacts, and defining the storage for the node. The

configuration file for a node consist of nine files and two scripts that start and stop the node.

These configuration files are management commands that are to their respective administration

interfaces, for example the commands contained in a .bprc file are passed to bpadmin which

manages the BP operations for the node. It is important to have a standard naming convention for

all the configuration files, especially if multiple nodes exist on one machine. For this project, all

the configuration files were called node2, e.g. node2.bprc. The commands used for Morehead’s

node are discussed in the following section. Refer to Appendices C1 and C2 for the ION start

and stop scripts.

4.2 Results

4.2.1 DTN Node Configuration Files

4.2.1.1 bprc

The first config file to consider is the .bprc file

that commands bpadmin, the process that runs the BP

functions. It is broken up into several commands, which

a portion of the .bprc file can be seen to the right. The

rest of the .bprc file can be found in Appendix C3. The

first command of the file is 1 this initializes bpadmin so

1

a scheme ipn 'ipnfw' 'ipnadminep'

a endpoint ipn:2.0 x

a protocol ltp 1400 100

a induct ltp 2 ltpcli

a outduct ltp 1 ltpclo

r 'ipnadmin node2.ipnrc'

w 1

s

28

BP operations can function. The second command adds a scheme, which creates a naming

scheme for endpoints similar to a socket. So, a scheme is the command, ipn is the naming

scheme, ipnfw starts the daemon, or process, that will forward bundles, and ipnadminep will

process custody signals and bundle status reports. The next command, a endpoint, creates an

endpoint called ipn:2.0 and x ends the command. The endpoints are what are used to transfer to

other nodes. There can be multiple endpoints. After the endpoint command is the define a

protocol command, a protocol, which is what type of transmission protocol it should expect to

receive. In the case above it is expecting LTP packets and it should expect them to contain 1400

bytes of payload per frame and 100 bytes of overhead per frame. The other protocols are TCP

and UDP. a induct tells bpadmin to treat node 2 as an ingress point using the LTP convergence

layer adapter. a outduct tells bpadmin to treat node 1 as an egress point using the LTP

convergence layer adapter. The next .bprc command tells bpadmin to run the node2.ipnrc with

ipnadmin, r can be used with commands not defined for bpadmin. bpadmin can display status

characters, known as watch characters, to the command line and to initialize that function the

commands w 1 are used. See Appendix D for the watch characters. The last command s starts

everything that was initialized before it. It must be the last command.

 4.2.1.2 cfdprc

 Some configuration files are simpler than others.

The .cdfprc file is one such file, the whole file is on the

right. The first command of the file is 1 this initializes

cfdpadmin so CFDP operations can function. The next command, w 1, will display watch

characters on the command line when CFDP is used. m requirecrc 1 is the command to enable

1

w 1

m requirecrc 1

s bputa

29

CRC, which is have CRCs on all PDUs that are sent by the local node. The final command, s

bputa, starts the UT-layer service that adapts it to BP.

 4.2.1.3 imrc

 The .imrc file is not currently used, but it is included for future use.

 4.2.1.4 ionconfig

 The .ionconfig file defines the ION parameters

for the local node. The first command defines which

configuration of the simple data recorder (SDR)

database to use for the local node. For this node, the SDR is implemented in a region of shared

memory, transfer of data to/from the SDR are written ahead to a log, which makes the them

reversible, and updates to the SDR heap are not allowed to cross object boundaries. heapWords

defines the number of words (64 bits each on Morehead’s node) of non-volatile storage to use for

the SDR’s database. The next command defines the path were the file to be used as heap space

for the SDR is located and the file to be used to log the database updates to reflect the transfer of

data to/from the SDR. sdrWmSize defines how large the dynamic memory in bytes will be for the

SDR’s private working memory. wmSize defines how large the dynamic memory in bytes will be

for the node.

 4.2.1.5 ionrc

 The .ionrc is another simple configuration file.

The first command initializes node 2 using the

parameters defined in node2.ionconfig. The node starts

with the s command. The final command starts a management command that searches for

configFlags 13

heapWords 50000000

pathName /tmp/

sdrWmSize 500000000

wmSize 10000000

1 2 node2.ionconfig

s

m horizon +0

30

possible bundle congestions from the start of the node to infinity this is to prevent the filling up

of bundle storage.

 4.2.1.6 ionsecrc

 This configuration file only consists of one command because it is not fully implemented

in ION. The command is 1 and that initializes ionsecadmin to prevent an error being sent to the

log file.

 4.2.1.7 ipnrc

 For this project the configuration file is simple

with only one command because there is only one other node connected to it. This command

defines a plan to use for the ipn scheme. In this case, all bundles destined to node 1 will be sent

to the neighboring node 1 using LTP.

 4.2.1.8 ltprc

 A .ltprc configuration file defines how to

manage LTP for the node. The first command initializes

the node and tells the node how many export sessions it

can have running. The next command, a span, defines a link, or span, between nodes. The

command above says that the span for node 1 can have a max of 2000 export sessions and a max

of 2000 import sessions, it can export blocks that are no larger than 1400 bytes at one time, there

can only be one LTP packet placed in one block, after one second has passed the block is sent

even if it is not full, and it sends a command to ltpadmin that it must use the UDP link-service

output task to send to node 1’s IP address at a rate of 10000000 bits per second. After the a span

command, the w 1 command tells ltpadmin to send watch characters to the command line. The

a plan 1 ltp/1

1 4000

a span 1 2000 2000 1400 1 1

'udplso ip_addr 10000000'

w 1

s 'udplsi ip_addr'

31

final command tells ltpadmin to start the node with the UDP service layer input task using the

local nodes IP address.

 4.2.1.9 global.rc

 The final configuration file is what defines the

CGR. There is a portion of it to the right, see Appendix

C4 for the rest. The first command tells the node that a

contact will appear at the time the node starts and lasts for 345600 seconds. The contact is

between 1 and 2 and there is a 2 second one way light time delay. The second command tells the

node that during this contact communication node 1 can communicate with itself at 10000000

bits per second.

4.2.2 Test Results

 The first test was file transfer, using the ION command cfdptest, was performed several

times to verify repeatability. It was able to transfer a text file and a .seq file successfully. There

were a few instances of the files not being sent. Those instances were either because of

configuration file changes that occurred in between tests or the node firewall preventing packets

from being sent. These problems were rectified by fixing mistakes in the configuration files and

adjusting firewall rules by opening some ports. The file transfers were performed again. The

second test was a file transfer with AMMOS. A file containing a set of example raw packets that

would come from a spacecraft was sent through AMMOS. The file was transferred successfully

from JPL node to the Morehead node. Then the received file was run through the AMMOS

command chill to verify that the received packets were valid. These steps were performed

several times to verify repeatability. One problem that occurred was a database that supports

AMMOS on Morehead’s node would crash occasionally and the reason could not be identified.

a range +0 +345600 1 2 2

a contact +0 +345600 1 1

10000000

32

It was possible to run the test without the database crashing during the test, but it would crash

between tests.

4.3 Summary

 Chapter IV described the configuration files that were created for this project. It

described how the commands in each configuration file were used. It also described the results of

the CFDP file transfer test and the AMMOS test and the problems that occurred during the tests.

33

CHAPTER V

CONCLUSION

5.1 Discussion of Results

 The results of the tests show that the node can handle sending bundles to other nodes

successfully and that AMMOS can be interfaced with node. Because the node can transfer files

successful this demonstrates that the node was configured properly and that the connection to the

DEN is functioning. With a functioning DTN node, the Morehead node could be connected to

other nodes to expand the network and provide support to Lunar Ice Cube’s flatsat once it has an

IRIS radio that is DTN capable. The AMMOS test shows that Morehead’s node can interface

with AMMOS and AMMOS at JPL. It lays the ground work for integrating with DTN with

AMMOS. DTN integrated with AMMOS means that telemetry can be sent with DTN directly to

the mission operations center for processing and commands can be sent from the mission

operations center to the spacecraft with DTN. The completion of these tests brings the node one

step closer to providing significant risk reduction for NASA.

5.2 Future Work

 The bulk of this project was taken up setting up the node, troubleshooting it, and getting

it connected to the DEN. More work can be done to provide risk reduction for NASA. A socket

to BP adapter will need to be developed to connect DTN with AMMOS to connect the mission

operations center to DTN. A block diagram for this demonstration can be seen on the next page

in Figure 12. To demonstrate DTN’s capabilities with spacecraft it will need to be connected to

Lunar Ice Cube’s flatsat once it is ready. A good demonstration of a complete DTN link would

be to connect the DTN node to the ground station once and the upgrades are complete and have

Lunar Ice Cube transmit to the 21-meter antenna. A recommended intermediate step would be to

34

connect just the node to the ground station and perform a loopback test to show the node

interfacing with the ground station. Completing these tasks would be a good demonstration for

NASA.

5.3 Summary

 Chapter V discussed the results and what they mean for Morehead. It also discussed what

future steps could be taken now that the node is running and what they would demonstrate. By

presenting the methodology of the project along with the test results, this report can demonstrate

why this project can serve as a basis for future risk reduction for NASA and Morehead’s Lunar

Ice Cube. The objective outlined in Chapter I of this report were achieved.

Figure 12: Future AES Demonstration

35

REFERENCES

Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., Feldmann, M.,

Marchese, M., Segui, J. and Suzuki, K. (2015). Contact graph routing in DTN space

networks: overview, enhancements and performance. IEEE Communications Magazine,

[online] 53(3), pp.38-46. Available at:

https://www.researchgate.net/publication/273836227_Contact_Graph_Routing_in_DTN_Sp

ace_Networks_Overview_Enhancements_and_Performance.

Burleigh, S. (2016). Interplanetary Overlay Network (ION) Design and Operation. 3rd ed. [pdf]

JPL, Caltech, pp.8, 22, 23. Available at: https://sourceforge.net/projects/ion-dtn/ [Accessed

11 Apr. 2017].

CubeSat Design Specification (CDS) REV 13. (2014). 13th ed. [pdf] The CubeSat Program, Cal

Poly SLO. Available at:

https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a

655a/1458157095454/cds_rev13_final2.pdf [Accessed 11 Apr. 2017].

Discovery.nasa.gov. (2017). DISCOVERY ::: EPOXI. [online] Available at:

https://discovery.nasa.gov/epoxi.cfml [Accessed 11 Apr. 2017].

Evans, B. (2016). NASA Announces Payloads for First SLS Mission. [online] AmericaSpace.

Available at: http://www.americaspace.com/?p91175 [Accessed 11 Apr. 2017].

Jpl.nasa.gov. (2017). Deep Impact - EPOXI. [online] Available at:

https://jpl.nasa.gov/missions/deep-impact-epoxi/ [Accessed 11 Apr. 2017].

36

Mohr, J. (2009). Linux Knowledge Base and Tutorial. [online] Linux-tutorial.info. Available at:

http://www.linux-tutorial.info/modules.php?nameMContent &ob.page&pageid142

[Accessed 2 Aug. 2016].

pfSense, (2017). SG-2220 pfSense® Security Gateway Appliance. [image] Available at:

https://store.pfsense.org/SG-2220/ [Accessed 12 Apr. 2017].

Space Packet Protocol CCSDS 133.0-B-1 Blue Book. (2003). 1st ed. [pdf] CCSDS. Available at:

https://public.ccsds.org/Pubs/133x0b1c2.pdf [Accessed 11 Apr. 2017].

Warthman, F. (2012). Delay- and Disruption-Tolerant Networks (DTNs) A Tutorial. 2nd ed.

[pdf] Warthman Associates. Available at: http://ipnsig.org/wp-

content/uploads/2012/07/DTN_Tutorial_v2.05.pdf [Accessed 11 Apr. 2017].

Willman, B. and Davidson, S. (2014). International Space Station (ISS) and Delay/Disruption

Tolerant Networking. [online] ipnsig.org. Available at: http://ipnsig.org/wp-

content/uploads/2014/02/ISS-DTN-Presentation-IPNSIG.pdf [Accessed 11 Apr. 2017].

Wyatt, J. and Malphrus, B. (2016). DSN DTN Integration Plans.

Wyatt, J. and Malphrus, B. (2015). Morehead State University 21 meter Antenna Upgrade to

DSN Compatibility. [online] deepspace.jpl.nasa.gov. Available at:

https://deepspace.jpl.nasa.gov/files/dsn/IND_CubeSat_Comm_TIM Wyatt.pdf [Accessed 4

Aug. 2016].

Wyatt, J., Burleigh, S., Jones, R., Torgerson, L. and Wissler, S. (2009). Disruption Tolerant

Networking Flight Validation Experiment on NASA's EPOXI Mission. 2009 First

International Conference on Advances in Satellite and Space Communications.

37

APPENDICES

A. WAN Script

#!/bin/sh

root qdisc handle

r_handle=1

netem qdisc handle

n_handle=2

interface=

delay=

dstip=

qdpresent=

loss=

delete=false

verbose=false

error() {

 printf "%s\n" "$1" >&2

}

log() {

 if [$verbose == true]; then

 printf "%s" "$1"

 if ["$2" != false]; then

 printf "\n"

 fi

 fi

}

Ish...

isip () {

 if ! echo "$1" | grep -E '([0-9]{1,3}[.]){3}[0-9]{1,3}(/[0-9]{1,2})?' > /dev/null; then

 return 1

 fi

 return 0

}

iptohex () {

 printf '%02x' `echo "$1" | sed 's/\./ /g'`

}

usage() {

38

 echo "$0 -i <interface> -d <ip> -m <milliseconds> -l <loss percentage> [start|stop]"

 exit 1

}

while getopts ":hi:d:m:l:v" opt; do

 case "${opt}" in

 h)

 usage

 ;;

 i)

 interface="${OPTARG}"

 ;;

 d)

 dstip="${OPTARG}"

 ;;

 m)

 delay="${OPTARG}"

 if ! echo "$delay" | grep -E '^[0-9]+$' > /dev/null; then

 error "-m must be an interger value, got '$delay'"

 usage

 fi

 ;;

 l)

 loss="${OPTARG}"

 ;;

 v)

 verbose=true

 ;;

 *)

 usage

 ;;

 esac

done

shift $((OPTIND-1))

if ["$interface" == '']; then

 error "No interface specified"

 usage

fi

if ["$1" == 'stop']; then

 delete=true

elif ["$1" != 'start']; then

 error "Invalid operation '$1', expected start or stop"

 usage

fi

39

Play nice with FQDNs too (IPv4 only)

if ["$dstip" != '']; then

 if ! isip "$dstip"; then

 ret=`host $dstip`

 rsv=`echo "$ret" | tail -n 1 | grep -o -E '([0-9]{1,3}[.]){3}[0-9]{1,3}'`

 if [$? -ne 0] || ! isip "$rsv"; then

 error "Failed resolving $dstip: $ret"

 exit 1

 fi

 dstip=$rsv

 fi

fi

Check if we have our queue discipline already added to the target inerface

let's hope nothing else if using this handle

log "Checking if root qdisc already added to $interface... " false

if tc qdisc show dev "$interface" | grep "qdisc prio $r_handle:" > /dev/null; then

 log "yes"

 qdpresent=true

else

 log "no"

 qdpresent=false

fi

Were we told to stop delaying packets?

if [$delete == true]; then

 if [$qdpresent == true]; then

 log "Removing qdisc with handle $r_handle... " false

 if tc qdisc del dev "$interface" root handle $r_handle:; then

 log "ok"

 else

 log "failed ($?)"

 exit 1

 fi

 fi

 exit 0

fi

Nope, first add the new root queue discipline if required

if [$qdpresent != true]; then

 log "Adding qdisc with handle $r_handle... " false

 if tc qdisc add dev "$interface" root handle $r_handle: prio; then

 log "ok"

 else

 log "failed ($?)"

40

 exit 1

 fi

fi

Add any IP filters these classify the traffic and limit what's delayed

if ["$dstip" != '']; then

 log "Checking if IP is already in filter... " false

 if ! tc filter show dev "$interface" parent $r_handle:0 | grep -E 'match.*'`iptohex "$dstip"`

> /dev/null; then

 log "no"

 log "Adding IP $dstip to filter... " false

 # Add a filter to device $interface

 # - attach it to qdisc $r_handle:0

 # - apply it to IP packets

 # - with a prio/pref (priority) of 1 (this is arbitrary as all filters have the same

priority)

 # - use the u32 classifier

 # - match on ip dst $dstip

 # - forward matching packets to flowid $n_handle:1

 if tc filter add dev "$interface" parent $r_handle:0 protocol ip prio 1 u32 match ip

dst $dstip flowid $n_handle:1; then

 log "ok"

 else

 log "failed ($?)"

 exit 1

 fi

 else

 log "yes"

 fi

fi

This is the destination for the filters we added above

Delay

if ["$delay" != '']; then

 log "Checking if netem qdisc has been added (and has correct delay)... " false

 netem=`tc qdisc show dev "$interface" | grep "netem.*$n_handle:"`

 if [$? -ne 0]; then

 log "no"

 log "Adding qdisc netem with handle $n_handle (delay ${delay}ms)... " false

 if tc qdisc add dev "$interface" parent $r_handle:1 handle $n_handle: netem delay

${delay}ms loss ${loss}% 25%; then

 log "ok"

 else

 log "failed ($?)"

41

 exit 1

 fi

 elif ! echo "$netem" | grep "delay ${delay}.*ms" > /dev/null; then

 log "yes"

 log "Changing qdisc netem delay to ${delay}ms... " false

 if tc qdisc change dev "$interface" parent $r_handle:1 handle $n_handle: netem

delay ${delay}ms loss ${loss}% 25%; then

 log "ok"

 else

 log "failed ($?)"

 exit 1

 fi

 else

 log "yes"

 fi

fi

Loss

if ["$loss" != '']; then

 log "Checking if netem qdisc has been added (and has correct loss)... " false

 netem=`tc qdisc show dev "$interface" | grep "netem.*$n_handle:"`

 if [$? -ne 0]; then

 log "no"

 log "Adding qdisc netem with handle $n_handle (loss ${loss}%)... " false

 if tc qdisc add dev "$interface" parent $r_handle:1 handle $n_handle: netem loss

${loss}%; then

 log "ok"

 else

 log "failed ($?)"

 exit 1

 fi

 elif ! echo "$netem" | grep "loss ${loss}.*%" > /dev/null; then

 log "yes"

 log "Changing qdisc netem loss to ${loss}%... " false

 if tc qdisc change dev "$interface" parent $r_handle:1 handle $n_handle: netem

loss ${loss}%; then

 log "ok"

 else

 log "failed ($?)"

 exit 1

 fi

 else

 log "yes"

 fi

fi

42

B. Space Packets Code

#include <iostream>

#include "CCSDS.hh"

#include <vector>

#include <random>

#include <climits>

#include <algorithm>

#include <functional>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <iomanip>

#define SERVERPORT "51718"

using namespace std;

int apid = 0b10000000000;

int category = 0;

int aduCount = 0;

const char* ip = "127.0.0.1";

int16_t pktnumber;

int numbytes;

struct addrinfo hints, *servinfo, *p;

int rv;

int sockfd;

vector<uint8_t> smcpByteArray(2036);

using random_bytes_engine = independent_bits_engine<

 mt19937, 8, uint8_t>;

string createPacket(int16_t sequenceCount, int16_t maxpkts)

{

random_bytes_engine rbe;

generate(begin(smcpByteArray), end(smcpByteArray), ref(rbe));

 //constructs an empty instance

 CCSDSSpacePacket* ccsdsPacket = new CCSDSSpacePacket();

43

 //set APID

 ccsdsPacket->getPrimaryHeader()->setAPID(apid);

 //set Packet Type (Telemetry or Command)

 ccsdsPacket->getPrimaryHeader()->

 setPacketType(CCSDSSpacePacketPacketType::TelemetryPacket);

 //set Secondary Header Flag (whether this packet has the Secondary Header part)

 ccsdsPacket->getPrimaryHeader()->

 setSecondaryHeaderFlag(

 CCSDSSpacePacketSecondaryHeaderFlag::NotPresent

);

 //set segmentation information

 if(sequenceCount == 0 && maxpkts > 1){

 ccsdsPacket->getPrimaryHeader()->

 setSequenceFlag(

 CCSDSSpacePacketSequenceFlag::TheFirstSegment

);

 }

 else if(sequenceCount > 0 && sequenceCount != (maxpkts - 1)){

 ccsdsPacket->getPrimaryHeader()->

 setSequenceFlag(

 CCSDSSpacePacketSequenceFlag::ContinuationSegment

);

 }

 else if(sequenceCount > 0 && sequenceCount == (maxpkts - 1)){

 ccsdsPacket->getPrimaryHeader()->

 setSequenceFlag(

 CCSDSSpacePacketSequenceFlag::TheLastSegment

);

 }

 else{

 ccsdsPacket->getPrimaryHeader()->

 setSequenceFlag(

 CCSDSSpacePacketSequenceFlag::UnsegmentedUserData

);

 }

 //set Category

 ccsdsPacket->getSecondaryHeader()->setCategory(category);

44

 //set secondary header type (whether ADU Channel presence)

 ccsdsPacket->getSecondaryHeader()->

 setSecondaryHeaderType(

 CCSDSSpacePacketSecondaryHeaderType::ADUChannelIsUsed

);

 //set ADU Channel ID

 ccsdsPacket->getSecondaryHeader()->setADUChannelID(0x00);

 //set ADU Segmentation Flag (whether ADU is segmented)

 ccsdsPacket->getSecondaryHeader()->

 setADUSegmentFlag(

 CCSDSSpacePacketADUSegmentFlag::UnsegmentedADU

);

 //set counters

 ccsdsPacket->getPrimaryHeader()->setSequenceCount(sequenceCount);

 ccsdsPacket->getSecondaryHeader()->setADUCount(aduCount);

 //set absolute time

 uint8_t time[4];

 ccsdsPacket->getSecondaryHeader()->setTime(time);

 //set data

 ccsdsPacket->setUserDataField(smcpByteArray);

 ccsdsPacket->setPacketDataLength();

 //get packet as byte array

 vector<uint8_t> packet = ccsdsPacket->getAsByteVector();

 string pkt = ccsdsPacket->toString();

 return pkt;

}

int main()

{

cout << "Expected number of packets: ";

cin >> pktnumber;

memset(&hints, 0, sizeof hints);

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_DGRAM;

if ((rv = getaddrinfo(ip, SERVERPORT, &hints, &servinfo)) != 0) {

 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));

45

 return 1;

}

for(p = servinfo; p != NULL; p = p->ai_next) {

 if ((sockfd = socket(p->ai_family, p->ai_socktype,

 p->ai_protocol)) == -1) {

 perror("talker: socket");

 continue;

 }

 break;

}

for(int i = 0; i < pktnumber; i++){

 string pt = createPacket(i, pktnumber);

 cout << pt;

 const char* t =pt.c_str(); // Used to send packet, know it works, but only can see header of

conversion to txt

 //char buffer = sizeof(pt);

// char n = sprintf(buffer, pt);

 if ((numbytes = sendto(sockfd, t, strlen(t), 0,

 p->ai_addr, p->ai_addrlen)) == -1) {

 perror("talker: sendto");

 exit(1);

 }

}

close(sockfd);

}

C. Node Files

C1. ionstart

#!/bin/bash

shell script to get node running

rm ion.log

sleep 1

ionadmin node2.ionrc

sleep 1

ionsecadmin node2.ionsecrc

sleep 1

ltpadmin node2.ltprc

sleep 1

bpadmin node2.bprc

46

sleep 1

cfdpadmin node2.cfdprc

sleep 1

imcadmin node2.imcrc

sleep 1

ionadmin global.rc

sleep 1

bpecho ipn:2.3 &

C2. ionstop

#!/bin/bash

echo "IONSTOP will now stop ion and clean up the node for you..."

echo "bpadmin ."

bpadmin .

sleep 1

echo "cfdpadmin ."

cfdpadmin .

sleep 1

echo "ltpadmin ."

ltpadmin .

sleep 1

echo "ionadmin ."

ionadmin .

sleep 1

echo "global.rc ."

ionadmin .

sleep 1

echo "killm"

killm

echo "ION node ended. Log file: ion.log"

C3. node2.bprc

1

a scheme ipn 'ipnfw' 'ipnadminep'

add ION utility endpoints

a endpoint ipn:2.0 x

a endpoint ipn:2.1 x

a endpoint ipn:2.2 x

a endpoint ipn:2.3 x

a endpoint ipn:2.4 x

a endpoint ipn:2.5 x

a endpoint ipn:2.6 x

a endpoint ipn:2.7 x

47

a endpoint ipn:2.8 x

a endpoint ipn:2.10 x

a endpoint ipn:2.11 x

a endpoint ipn:2.12 x

add AMS endpoints

a endpoint ipn:2.9 x

a endpoint ipn:2.15 x

add CFDP-1 endpoints

a endpoint ipn:2.64 x

a endpoint ipn:2.65 x

add lgagent endpoint

a endpoint ipn:2.127 x

#add procotols/ducts

a protocol ltp 1400 100

a induct ltp 2 ltpcli

a outduct ltp 1 ltpclo

a outduct ltp 3 ltpclo

load ipn parameters

r 'ipnadmin node2.ipnrc'

#start watch characters

w 1

#start the daemons

s

C4. global.rc

a range +0 +345600 1 2 2

a contact +0 +345600 1 1 10000000

a contact +0 +345600 1 2 10000000

a contact +0 +345600 2 1 10000000

a contact +0 +345600 2 2 10000000

D. Watch Characters

a new bundle is queued for forwarding

b bundle is queued for transmission

c bundle is popped from its transmission queue

m custody acceptance signal is received

48

w custody of bundle is accepted

x custody of bundle is refused

y bundle is accepted upon arrival

z bundle is queued for delivery to an application

˜ bundle is abandoned (discarded) on attempt to forward it

! bundle is destroyed due to TTL expiration

& custody refusal signal is received

bundle is queued for re-forwarding due to CL protocol failure

j bundle is placed in ‘‘limbo’’ for possible future re-forwarding

k bundle is removed from ‘‘limbo’’ and queued for re-forwarding

d bundle appended to block for next session

e segment of block is queued for transmission

f block has been fully segmented for transmission

g segment popped from transmission queue

h positive ACK received for block, session ended

s segment received

t block has been fully received

@ negative ACK received for block, segments retransmitted

= unacknowledged checkpoint was retransmitted

+ unacknowledged report segment was retransmitted

{ export session canceled locally (by sender)

} import session canceled by remote sender

[import session canceled locally (by receiver)

] export session canceled by remote receive

p CFDP PDU transmitted

q CFDP PDU received

