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1. CHAPTER 1 

1.1. Executive summary 

Cubesat developers can choose different approaches in designing their space systems. As 

small satellite industry continues to grow, there is a variety of commercial off the shelf products 

that can be used to fulfil most missions’ needs. Companies that produce t 

heir own universal components offer all kinds of products like electric power systems, 

electric generation systems, radios, antennas, magnetorquers, reaction wheels, propulsion 

systems, sun or horizon sensors, star trackers, optical and RF imaging devices, deployment 

systems, structures, etc., for CubeSats for either LEO or deep space. Spacecraft can be built 

using purchased subsystems and accessories and actual designing step can be skipped. 

However, at Morehead State University, Space Science Center takes its own approach. 

CXBN-2 is a bright example of spacecraft with every subsystem being developed and assembled 

in-house. Space system development in-house is possible thanks to two main reasons. First 

reason is presence of crucial equipment for manufacturing and extensive testing like clean room, 

vibration stand, thermo-vacuum chamber, EMI/EMC testing chamber, solar simulator, anechoic 

chamber and a big collection of lab equipment like network analyzers, oscillographs, 

programmable power supplies, programmable loads, SMD soldering stations and software 

packages. The second and more important reason is powerful workforce as students that have 

unlimited desire to learn and experience building a space system. 

CXBN-2 is a 2U CubeSat which carries novel payload of two CZT detectors facing opposite 

directions to observe Cosmic X-Ray Background. This mission sets a list of requirements that 

corresponds to necessity to develop custom subsystem. 
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To solve this issue, newly designed structure is proposed. Using some experience gained in 

previous work, it is possible to create more reliable and more cost-effective supporting structure 

that meets all the CubeSat specifications and copes with launch stresses. After sophisticated 

research, design, analysis and testing, simple to assemble structure for universal application and 

with spare internal space was created. 

 

1.2. Introduction 

1.2.1. Motivation 

A lot of significant research has been done in testing and revealing the capabilities of X-ray 

medical imaging device. This detector was taking images in different part of spectra but it proved 

to work in 20-50 keV energy detection regime. This meant that payload for CXBN-2 was found. 

Development of all the subsystems started almost at the same time. ADCS, EPS, C&DH, 

communication system and structure to support all had to be developed in-house under 

requirements established by new payload. With a set of requirements structure for CXBN-2 had 

to be developed from scratch which was quite challenging because all of subsystems were 

developed at the same time and design changes were happening very often. When working on 

this project there were a lot of opportunities to learn about specifics of designing, manufacturing 

and assembly of systems for space applications, extensive team work, experiencing and learning 

about spacecraft as a system. 

 

1.2.2. CubeSat 

Year 1999 was a start point for CubeSat standard development as a collaborative effort of 

Prof. Bob Twiggs at Stanford University's Space Systems Development Laboratory (SSDL) and 
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Prof. Jordi Puig-Suari at California Polytechnic State University (Cal Poly), San Luis Obispo. 

The intention of creating this standard was to provide a standard for design of picosatellites to 

reduce cost and development time, increase accessibility to space, and sustain frequent launches. 

It is a great platform for educational institutions to learn every aspect of space missions. A 

CubeSat as a U-class spacecraft is a 100x100x100mm cube with a mass up to 1.33kg per unit. 

Since this standard was introduced to space community it has started changing space industry 

for small satellites. In the beginning, it was considered as “toy” and later on with developing 

technology and miniaturization of electronics it became more popular as a serious tool for space 

exploration that could compete with bigger satellites. 

CubeSats let you develop systems for space application that are faster and cheaper to design 

and fabricate that is crucial for space mission engineering.  

 

1.2.3. CXBN-2 

CXBN-2 (Cosmic X-Ray Background Nanosatellite-2) is a 2-U CubeSat mission that was led 

and operated by staff and students of the Space Science Center at Morehead State University, 

Morehead, KY. It is a follow-on of the CXBN mission that was launched on September 13, 2012 

as a secondary payload on the NASA ELaNa VI OUTSat mission. CXBN-2 will improve the 

precision of the scientific measurement and improves the reliability of the spacecraft bus. 

Scientific purpose is measurements of the Cosmic X-Ray Background in the 30-50 keV 

range top with a precision of <5%, thereby constraining models that attempt to explain the 

relative contribution of proposed sources lending insight into the underlying physics of the early 

universe. The goal is to collect one million seconds of data in one year of operation. 
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Figure 1.2.3 CXBN-2 CAD model 

CXBN-2 in comparison with CXBN is a completely new system that has every components 

and subsystem redesigned and improved for higher reliability and better performance. It is going 

to be launched on April 18, 2017 from Cape Canaveral, Florida as part of OA-7 mission atop 

ULA’s Atlas V rocket. Then it is being deployed from International Space Station in June 2017. 

As soon as satellite deployes mission operations begin. 

 

1.2.4. Proposal 

In this thesis, 2U CubeSat structure and its integration is proposed. By using CAD modelling 

and CAE tools for analysis, cost effective and high reliability frame for CXBN-2 is designed. 

Systems engineering skills are applied to create structure that fits all mission requirements and 

makes integration simpler. Mission-specific design and integration processes are described in 

details. 
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2. CHAPTER 2. Previous Work. 

Before CXBN-2 there were several other spacecrafts that were built at Space Science Center, 

Morehead State University. Two of the most outstanding missions are described below. 

CXBN is a nanosatellite mission with the objective to make precise measurements of the 

cosmic X-ray background in the 30-50 keV range. The mission addresses a fundamental science 

question central to our understanding of the structure, origin, and evolution of the universe by 

potentially lending insight into the high energy background radiation. 

 

Figure 2-1: CXBN (Cosmic X-ray Background Nanosatellite)  

CXBN was accepted by NASA’s ELaNa program, devoted to observe improved 

measurements of the extragalactic DXRB (Diffuse X-Ray Background), with a new gamma ray 

detector system based on a CZT (Cadmium Zinc Telluride) array.  

Morehead State University was responsible for the engineering of all spacecraft subsystems, 

and the detector was being designed by UCB, LLNL (Lawrence Livermore National 
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Laboratory), and Noqsi Aerospace. CXBN features many unique systems, including sun sensors, 

a star sensor system, an ARM-7 Coretex processor, and an articulating solar array. 

Structure on this spacecraft was also made of hard anodized aluminum 6061-T6. It serves as 

a chassis to accommodate a monofilament cutter system that retains four deployable solar panels 

and blade antennas in the stow configuration. The structures and cutter system also control the 

deployment in compliance with the NASA LSP (Launch Services Program) secondary payload 

deployment restrictions. This spacecraft has a well-designed structure that met mission 

requirements and accommodated all of the subsystems successfully. At integration stage, several 

issues were revealed which included problems with hinged solar panel deployment system, 

complicated assembly, low accessibility to subsystems test points, cutouts in frame for antennas. 

KySat-2 is the CubeSat nanosatellite designed, built, and tested by students of Morehead 

State University and the University of Kentucky.  Development of the satellite began in 2011.  

KySat-2 features a 5 megapixel digital camera, a temperature sensor, a 3-axis MEMS rate 

gyroscope, a 3-axis magnetometer, and a “stellar gyroscope” which was developed by University 

of Kentucky. Morehead State University designed and developed structure, electric power 

system, deployable solar panels for this satellite, assembled it in the clean room and provided 

some of the testing. Design decisions were leveraged from experience gained with CXBN 

mission. 

KySat-2 demonstrates key technologies developed by Morehead State University and 

University of Kentucky students.  These include a “stellar gyroscope” for attitude determination, 

a distributed network computing architecture, power and radio systems. 

Both missions were successful. By the time they flown in space there were more than 

hundred CubeSats already launched. Today there are more than 1600 nanosatellites built and 
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around 550 are going to be launched in 2017. There are more than 200 companies that make all 

kind of different parts, subsystems, kits, accessories and provide different services for 

nanosatellites. 

 

Figure 2-2: KySat-2 

After reviewing previous work and looking at some of the experience of other spacecraft 

developers it is more feasible to design and build a whole new system that would be of higher 

performance, increased reliability and more cost-effective. 
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3. CHAPTER 3. BUS DESIGN 

Subsystems can not be designed independently from each other in a highly integrated 

miniaturized satellite platform. This section describes each subsystem after all the design 

iterations were completed. Here are described decisions whether COTS or custom-made 

components are preferred or could be used and if parts could be manufactured in-house or this 

service to be requested in other companies. Process of designing of spacecraft structure and its 

key points is described in details. 

3.1. COTS structures 

Before starting development of CXBN-2 structure different packages that are already built 

and available for purchase were considered. The CubeSat standard motivated many companies to 

design and build universal structures with additional features and that meet specifications.  

The most popular companies that have structure kits available are Pumpkin, ISIS and Clyde 

Space. They have quite similar approaches, use the laser-cut parts, have additional features like 

embedded separation switches and RBF pin switches. For their systems prices start at $5000 per 

kit. 

Though these options do not satisfy requirements for CXBN-2 mission for several reasons. 

First reason is price. As it was planned to have 3 sets of structures, one for structural model, 

second for engineering model, third for flight model and additional parts for spares, minimum of 

$15000 would be over mission’s budget. Second reason is that design is mission specific so there 

would still have to be modifications made to COTS components anyway. Last but not least 

reason is that this development process is an irreplaceable learning experience so it serves an 

educational purpose. 
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3.2. Design specification 

Every design starts with requirements. For structural design of CubeSat first specification 

that everyone have to refer to is a latest revision of CubeSat Design Specification, The CubeSat 

Program, Cal Poly SLO. They provide information about CubeSat standard and how to comply 

with it. For CubeSat Mechanical Requirements they describe coordinate systems, minimum rail 

dimensions, shape and surface roughness, clearances on each of the faces of SC that are limited 

with deployer, maximum allowed mass, position of CG, materials, anodization and separation 

springs. Appendices contain drawings that give more information about access ports, clearances 

and tolerances. 

Before exact launch provider was found, CalPoly’s CubeSat specification was the only 

relevant for the project. When NanoRacks was chosen as launch provider, main specification 

became their NanoRacks CubeSat Deployer (NRCSD) Interface Control Document (document 

NR-SRD-029). Generally, requirements are the same except for changes that included increased 

space allowed in X and Y axis, different clearances on +/-Z faces and need for extra separation 

switch and other safety features as CXBN-2 will be deployed from the International Space 

Station. 

Alongside with Interface Control Document goes Flight Acceptance Test Requirements for 

environmental testing in document NR-SRD-139, CubeSat Vibration Test Record of Assembly 

(ROA) and CubeSat Acceptance and Integration ROA. Environmental testing and fit-check will 

be discussed in more details in Testing section. 
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3.3. 3D printing technology for prototyping 

3D technology is a type of rapid prototyping that makes quick fabrication of a model of a 

physical part or assembly possible by using three-dimensional computer aided design (CAD) 

data. At Space Science Center 3D printer is used extensively. It is the Dimension 1200es printer 

by Stratasys which has sufficient capabilities to produce 3D models of 2U CubeSats.  

It helps to visualize the design as a physical object. All parts can be printed, assembled and 

analyzed. It allows to verify if design is going in desired direction. 3D CAD models on computer 

screen can not always represent all the details and impurities of real manufactured parts. With 

printed parts, it is possible to add and easily modify components and import changes to CAD 

models right away. This technique is very useful especially for testing mechanical systems that 

need to be evaluated in their ability to perform correctly. As an example, to see if deployment 

system design implementations take place and theoretical calculations work on practice.  

 

Figure 3.3 Fully 3D printed CXBN-2 model 

With 3D printed assemblies, it is useful to create hybrid models by adding real parts like 

subsystems PCBs to check if clearance between parts allow to manage cabling and if access to 
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test points on subsystems is available. While waiting for machined parts it is time-saving to use 

plastic ones to start assembly of separate components like payload. While work is done on actual 

hardware, other team members can work in parallel on a separate subsystem or for example, 

define length of each cable, etc. So, it also saves time on manufacturing and integration. 

A lot of fixtures like spacecraft assembly stands were 3D printed that saved a lot of time. 

Without templates for solar panel PCB modifications and templates for solar panel assembly it 

would not be possible to provide desired quality and accuracy of assembly. It is also a safe way 

to share design ideas between coworkers without even worrying about any possible damage of 

valuable hardware. 

Another important benefit of creation of prototyped plastic models is an opportunity to easily 

transport and showcase or promote engineering achievements. 

 

3.4. Subsystems 

Design of structure is very dependent on the subsystems that it is intended to support. In this 

case designing is happening from inside – out. Every subsystem has its own limitations, support 

requirements and heat dissipation requirements, has certain amount of mounting holes and 

specific shape, size, need for extra space for electrical connections and accessibility for testing 

purposes. Working back and forward between team members and defining optimal design for 

each part is what makes this spacecraft design robust and convenient for mission’s  needs. As the 

system is so compact it was crucial to accommodate allowed space inside the SC as efficient as 

possible.  
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Figure 3.4-1: Dependence of structure design on other subsystems 

Before all, payload was a defining subsystem that ruled design of a whole system.  Payload 

design team made a significant research and comparison of X-ray devices and REDLEN 

Technologies M1770 Gamma imaging module was found to be the most desirable. Though 

originally intended for room temperature medical physics and security imaging applications and 

detection of > 40 keV X/Gamma rays, it possessed the potential energy resolution and efficiency 

at the upper energy of interest that was most desirable for the mission while also giving the most 

promise to function at the lower energy portion of interest. To define if device would perform as 

wanted in the 20–50 keV energy detection regime, supporting electronics had to be developed in 

house at Morehead State University to meet the design constraints for space flight. To make this 

device operational and considering size limitations, power regulation, logic conversion and high 

voltage power supply were designed to support the M1770 module for space application in small 
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form factor in less than 40 mm2 in cross section. Then this assembly is inserted into another part 

that provides collimation and shielding of the detector system.  

 

Figure 3.4-2 REDLEN M1770 Gamma Imaging Module 

There are two detectors faced in opposite directions that allows to reduce time to get to 

mission success. Estimation of sky coverage was made by our colleagues from Keldysh Institute 

of Applied Mathematics in Moscow. In, approximately, one year of operation there will have 

been collected no less than 3 million seconds of good data, reaching a broadband S/N ~250. As a 

conclusion of their study, best way to control attitude of CXBN-2 is to ensure free flying. These 

results were driving requirements for ADCS design. 

Two back to back detectors with extra shielding in between needed to be mounted inside the 

SC body, have brackets that attach it to the main frame. Also, there was a requirement to have 

two openings or windows that would provide sufficient field of view. Payload support went 

through 3 major design changes that is described in further section. 

Position of payload was decided – it has a location in the bottom half of the SC body with 

detectors looking in opposite directions through structure openings. Then EPS and ACS 

subsystems were placed in the top half of the SC. 
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C&DH was first placed between collimators inside middle shield which would provide extra 

radiation protection for flight computer and SD card. But after purchasing radiation tolerant SD 

card and considering complicated assembly, C&DH was placed on the outside of payload 

assembly. C&DH has a square pattern for mounting holes with distance of 41mm between their 

centers, and 2.2mm diameter which is a clearance hole for M2 screw. Clearance between bottom 

of the PCB and closest surface should be 5mm for SD card slot. Mounting was achieved by using 

M2 screws and round spacers. 

 

Figure 3.4-3 Exploded view of CXBN-2 



21 

All subsystems were arranged in such order from +Z face to -Z face: ACS with air-cored 

magnetorquer on top, battery assembly, EPS, C&DH, payload assembly, radio, ADS, antenna 

plate. Body-mounted 2-cell solar panels are placed on each of four sides of the top part of body 

and do not block the FOV of detectors. Deployable solar panels are hinged at +Z face. 

Knowing all the components that are placed inside the structure between side panels, they 

needed to be supported. Crossmembers, payload support, antenna plate had to be designed and 

placed in the most favorable position. It was important to take into account that space has to be 

used as efficient as possible, remember that wires and electrical connections consume a lot of 

space, avoid interference and consider any possible changes that may occur. Description of 

supporting cross members and other supports can be seen in sections below. 

When design of subsystems was almost defined, mass of each component could be estimated 

and imported into the CAD model of the spacecraft. This allowed to have better understanding of 

where CG is located. Subsystems could be moved along Z axis to achieve optimal position of 

CG. And when subsystems design was finalized the same method was used to define location of 

screw holes on side panels. 

 

3.5. Structure components 

One of the main ideas of this structure design is to decrease number of parts and simplify 

manufacturing and assembly process. Lesser parts reduce points of failure, issues with 

tolerances, number of fasteners and reduce machining cost. Considering this idea and looking 

back at design decisions of CXBN mission, it was decided to choose a following approach of 

structure design for CXBN-2. 
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Structure consists of two main side panels, three crossmembers in between, two payload 

brackets, antenna plate, solar panels and deployment system. Extras are standoffs, spacers, pins, 

hinges, thread, monofilament, adhesives and fasteners that join everything together. 

Next subsections describe designing process for each of the structural components. Drawings 

for all structural components are present in Appendix A. 

 

3.5.1. Side panels 

Side panels play one of the most important roles in structure of the CXBN-2. They have a 

shape of a shell that gives the structure good stiffness, stability and shear force resistance. In this 

setup, all crossmembers, payload mounts, antenna plate, solar panels, deployment switches are 

attached directly to side panels. They have rails integrated into their design, which are only 

surfaces that limit movement of the SC in the canisterized deployer during launch. 

First designs of side panels were very different than what there is now. In the beginning, a 

top cap was considered just as CXBN had. It is a block that has end part of rails with 4 feet and 

solar panels are attached to it via hinges. This design was not approved. Approach that was taken 

afterwards was defining and hasn’t been changed. It was decided that side panels will have a 

shape of a thin-walled shell, with full length inseparable rails. Later parts of solar panel hinges 

were added to it. Design of this hinges was limited by CubeSat design specifications. Maximum 

extrusion of any part of SC from rail surface is 6.5mm in X and Y axis, that includes solar panel 

assemblies with hinges and fasteners, and the same limitation on +/-Z faces. So design of this 

hinge part is very compact, even though it includes SP deployment limiters and hinge pin 

capturing set screws. Hinging system is described in more details in solar panel section. 
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Figure 3.5.1: Final design of side panel 

On every side of side panel M2 counter sink holes for crossmembers are placed. They must 

be flush and position of these screws is moved on the rails to avoid interference with body-

mounted solar panels. The same screw holes are used for payload brackets on +/- Y faces and 

antenna plate on -Z face.  M1.6 threaded holes on +/-Y faces are for custom radiator hinges. 

There are M2 threaded holes for body-mounted solar panels, SP deployment limiting screws, 

servicing holes to securely mount spacecraft while testing, deployment switches, RBF pin switch 

and a hole for RBF pin. Solar panels have to have a restrictors form side to side movement when 

stowed and also spacers that keep distance between deployable SP and SC body constant. This 

was achieved by repurposing M3 set screws and using tapered cone surfaces for positioning. 

Threaded holes for set screws that align SP were added respectively. ADS M3 threaded 

mounting holes are located on +/-X faces just under collimators. There had to be found a way to 

limit movement of hinge pin and it was achieved by partially threading hinge sections for M3 set 

screws. It allows adjustment of clearance by screwing and unscrewing these set screws. Thermal 

regulation system needed a way to transfer extra heat from payload to deployable radiators which 
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was achieved by placing slots for heat paths from payload to external +/-Y faces. Additional are 

cutouts for SP connector, for antenna bend, and holes in feet for deployment switch pins. 

In the end, there are main structural parts as side panels that have universal design and this or 

similar design could be used for other missions that use 2U CubeSat form factor. 

 

3.5.2. Crossmember 

CXBN-2’s crossmember is a very important intermediate component that has to connect 

subsystems and transfers loads to the main frame – side panels. It has to provide structural 

integrity and stability, connects two side panels and supports subsystems. 

First designs of SC structure had four crossmembers. One for Z+ face where solar panel 

hinges are located, second for ACS, third for EPS and battery assembly and fourth for Z- face as 

antenna plate support. Forth crossmember was eliminated as its purpose was replaced after 

payload support and antenna plate were more defined. Having another square bracket at Z- face 

was excessive. 

Amount of material that is used in in crossmember allow heat flow between side panels and 

subsystems. Results of thermal analysis can be seen in simulation chapter.  

Top of a crossmember is a flat surface so that subsystems can have high contact area. This 

helps eliminate high amplitude vibrations and flexing of subsystem’s PCBs. In the middle of a 

square bracket is a cutout for fitment of all extruded soldered components. Two opposing sides 

have cutouts that let cables and wires to pass along the SC. These passages capture cables 

between a side panel and crossmember and don’t let any abnormal freedom of movement that 

could damage themselves or other subsystems, solar cells during launch vibrations. 
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If looking at a part from the bottom it has thin-walled extrusions that add stiffness in open 

areas that are not enclosed by the side panels. These extrusions have M2 threaded holes for 

attaching crossmembers to side panels with M2 flathead screws. For a crossmember that is at Z+ 

face it was required to make extra holes for avoiding interference with body-mounted solar 

panels’ fasteners. 

 

Figure 3.5.2: Crossmember 

Hole pattern that is on top of the square bracket was established as a standard together with 

other subsystems developers. Main four holes for EPS and ACS are M3, threaded. Spacing 

between them is 87mm. Other four threaded M3 holes are for battery rack only and with 80mm 

distance between them. 

This design makes it possible to use the same part multiple times in the structure of SC 

 

3.5.3. Antenna plate 

Area on the -Z face was reserved for antennas. Quadrature antenna array had to be securely 

mounted on the supporting structure. It had to be space efficient, have low mass, be simple and 

robust to provide dependable antenna fixturing and deployment. Design of an antenna plate shall 
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allow mounting of several systems on it. First designs considered mounting radio with standoffs 

on the bottom of the plate. But after some design iterations with payload mounts it was decided 

to move radio onto payload-C&DH subassembly. 

 

Figure 3.5.3-1: Manufactured antenna plate with switches 

Slots are added for cutter so it allows to be adjusted for the correct monofilament passing and 

tension. Cutter is secured with screws, washers and special nuts on the bottom. Nuts were 

modified so they slide into slots and do not spin freely while tightening screws after adjustment 

of cutter position is complete. 

When antenna is folded, it bends and creates a specific curve with minimal radius. If antenna 

blade is bent any further, then plastic deformation occurs and when deployed afterwards it’s not 

straight anymore. This should be avoided at any cost for the communication system 

performance. That minimum radius was measured and implemented in antenna plate design as 

cutouts on each of the sides with sufficient margin. 

Switches are placed on the bottom of a plate. They are used for sensing solar panel 

deployment and when solar panels are deployed it turns the cutter off. Honeywell 1SX1-T micro 
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switches and JX-40 lever attachments are used. When SP are in stowed position lever pushes on 

the surface of L-bracket and electrical circuit is closed. 

Originally plate had round holes in each corner for SC deployment switch pins. During 

integration, it was changed to cutouts as assembly process was too complicated and inconvenient 

as plate was interfering with pins. 

 

Figure 3.5.3-2:Antenna plate layout 

After all parts are mounted on the plate, it is covered with copper tape on the bottom for RF 

shielding purposes. For better grounding, tape is also being screwed down with screws. Then it is 

secured and insulated with Kapton tape. 

For cost reduction and simplification of manufacturing standard 1/16” aluminum sheet was 

chosen. Plate has M2 threaded holes along the edges that attaches it to the rest of a structure with 

M2 screws. Position of all mounting holes is symmetrical and doubled so that components could 

be rearranged in many ways in case any assembly issues may happen. This part is made in-house 

because of its simple design that is easy to machine and hand finish. 
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In final design antenna plate accommodates antennas with antenna mounts, switches that 

monitor SP deployment, monofilament cutter and resistor, antenna phase matching circuit for 

communication system and copper tape shielding that goes over RF parts. 

 

3.5.4. Solar panels 

Design of solar array depends on desired power generation. Number of solar cells that can be 

placed on the spacecraft is limited and depends on their shape and size. There were different 

options considered for solar cells that include: 

 Solar cells used for CXBN 

 Other cells that were in stock 

 Find and purchase new ones 

Third option was the most relevant and best solar cells that were available are AzurSpace 

3G30A. they are 28-30% Triple Junction GaAs Solar Cell. This cell type is an InGaP/GaAs/Ge 

on Ge substrate triple junction solar cell assembly (efficiency class 30%). The solar cell 

assembly has an improved grid-design and is equipped with an integral bypass diode, 

interconnectors and cover glass. They have higher fill-factor and solar cell efficiency than their 

competitors. 

 

Figure 3.5.4-1: Azur Space 30% Triple Junction GaAs Solar Cell 
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But even those were not enough if placed two on each side of the body of SC. Body mounted 

solar panels would not provide enough power generation so deployable solar panels became the 

only option. 

There had to be more than 7W of power generated to feed payloads and other subsystems. 

Body mounted solar panels could only fit two cells per side, 8 in total. Then single deployable 

solar array was proposed. With CZT detectors consuming around 1.5W each plus the rest of the 

subsystems there was still negative power margin considering only one side is illuminated at a 

time which is 6 cells. Extra cells had to be added to meet power budget requirements. Only 4 

solar cells could comfortably fit one deployable panel and space for body mounted solar cells 

was limited to two per side. It became a real challenge and it was decided to meet this 

requirement with double-deployable solar array. Each deployable solar panel could fit 4 solar 

cells when they are fitted very close to each other and letting some margin for attachment of 

hinges. This configuration resulted in 10 cells per side, as 40 total. This solar array could 

generate 10.6W per side (10 cells) and gave 33% power margin which was great. Deployable 

solar panel (panel #2) that is closer to body has hinge on each side. Deployable panel that opens 

first (panel #1) has brackets that were retained by the deployment monofilament while on the 

other side it had hinges that were attaching to second deployable and a simple but reliable 

deployment mechanism. This mechanism consists of a slot in the solar panel’s PCB and a screw 

on the body of SC. A screw keeps solar array closed until the top solar panel starts deployment 

and at certain angle releases from the screw which respectively lets second panel start deploying. 

Motion of panels is actuated by torsion springs that are embedded into hinges.  
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Figure 3.5.4-2: Double-foldout solar panel deployment mechanism 

When payloads went through extensive testing it was found that some noisy pixels had to be 

turned off. That radically changed power consumption and power budget was revised. Each CZT 

detectors now consume 1W. That gives 5.4W system average consumption per orbit and with 

single-deployable panels, usable solar power input per orbit is 6.4W so power budget margin is 

15%. As a result second deployable solar panel was unnecessary. This led to a complete change 

of the deployment system and solar array design. Monofilament restraint system had to be placed 

on a different side of spacecraft, on the antenna plate. Design was simplified again and became a 

lot more compact, reliable as number of moving parts was cut in half.  
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Figure 3.5.4-3: Layout of solar cells on solar panels 

As solar array deploys, it is pushed by the 3HPF2 torsion springs and it had to be stopped at 

some point. All four panels are deploying simultaneously and when they reach point of full 180-

degree deployment they may hit each other. SP opening angle limiters had to be added to avoid 

damage. 165-degree angle was found most optimal. Different variants were considered, like 

adding material on the part of a hinge that is closest to structure, making another machinable part 

that would get attached in the same position and similar ideas. But these options were very 

limiting. Considering imperfection of hinges and hinge pins, every solar panel would have 

different angle of deflection. So, deployment limiter have to be adjustable. And the best simplest 

and cheapest solution that was found is to use a flathead screw. It is M2 flat head screw that is 

screwed into hole on structure behind the hinge. Deflection angle is easily adjusted by turning 

this fastener. When solar panel deploys it hits this screw and stops at 15-degree angle. 

For moving parts, it is very important to have smooth motion without any interferences. For 

hinge as one of the most critical component of deployment system it was important to find high 

quality parts that would satisfy size limitations and have high reliability. Several types of piano 

hinges were taken under consideration, but only one was satisfying enough. It is a military 

specification piano hinge MS20001-2 made of extruded aluminum. It has several benefits. It is 

high quality extrude hinge which means that it doesn’t have a chance to unfold like other 
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stamped hinges. Hinge does not have mounting holes in it so they can be added wherever 

desired. It has a size that fits the system as required. Hinge is cut into pieces that fit panel’s PCB, 

epoxied onto PCB and then M1.6 screws are used for keep hinge from peeling off and for joint to 

be extra secure. Detailed process of assembly is described in manufacturing section. Military 

specification hinge was supplied with aluminum pin. This would not be applicable for design as 

aluminum tends to cold weld in vacuum. Steel pin was chosen instead. After some polishing and 

fitment, it can be slid into hinge on solar panel side and on side panel side together with spacers 

and torsion spring. 3HPF2 torsion spring has been chosen by geometrical parameters and force 

output. It has 270-degree angle between legs and torque at 1/2 leg length is 0.234 In-lbs. When 

pin is inserted it has to be restricted from sliding out that is achieved by using M3 set screws on 

each side of the side panel part of hinge. 

As mentioned in side panel section, solar panels have to be aligned when in stowed position 

to limit any side to side movement. This is achieved by using set screws on the side panels. Four 

holes are placed on each solar panel PCB that set screw can be aligned with its cone-shaped top. 

Under pressure that is provided by monofilament this connection stays stable until deployment. 

Two M2 clearance holes are placed on the end of panel for mounting L-bracket. The same holes 

are on the bottom and they are for increasing grip of epoxy with PCB. Deployable panel is made 

of gold plated 0.064in thick FR4 PCB, when body-mounted is 0.032in thick. Body mounted PCB 

has 4 holes for mounting with M2 screws to side panels and holes for places where aligning M3 

set screws ae located. Both PCBs have holes that allow access to RBF pin when solar array is in 

stowed position. 

Design of solar panels fits the requirements in power output and is being within size 

limitations. It is also a robust system where deployable panel can be easily and quickly replaced 
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if requested during integration. It was very useful to take an approach of using as many COTS 

parts as possible with minimal modifications as it helped to reduce cost and make parts easily 

replaceable. 

 

3.5.5. Deployment mechanism 

Deployment mechanism consist of L-brackets on solar panels, switches, monofilament as 

main restraining element and monofilament heated cutter. 

 

Figure 3.5.5-1: Deployment mechanism 

There is a countersunk hole placed on the top of the L-bracket’s flange. It is used for a flat 

head 6-32 screw and a PEM F-632-1 self-clinching 6-32 nut. This self-clinching nut is 

repurposed to serve as a hook for monofilament. It has a smooth sliding surface and does not let 

monofilament to get unhooked during launch vibrations. Combination like this is simple, saves a 

lot of space and securely restraints the system. To mount this L-brackets to solar panels there are 

two mounting threaded M2 holes made on the other flange. It is designed to serve 2 purposes: 

restrain solar panels and antennas from deployment. When solar panel is stowed, and antennas is 
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captured between SP and body of the SC, L-bracket pushes on top of bent antenna. This doesn’t 

let antenna get unfolded until solar panels are deployed. 

Monofilament that restrain solar array is a Spectra thread that is rated to 20lbs. For previous 

missions like CXBN it was common to use nylon line. It is able to degrade in vacuum and under 

UV light which is a level of redundancy if Nichrome cutter fails. Negative side of nylon is that it 

stretches a lot under stress and in spacecraft case – under launch vibrations. After short research 

the solution was found. Spectra threads is a very strong monofilament that almost does not 

stretch. It is very flexible, easy to cut with heated cutter and has very smooth surface that lets it 

slide through hooks and not get caught. 

Heated cutter is a repurposed cauterizing tip from Bovie. Cutting element is a high resistance 

heating wire made of Kanthal A-1 alloy. Wire is crimped in two brass tubes. For monofilament 

cutter purpose, excess tubes were cut and rest of it was bent the at 45-degree angle. After that it 

is soldered onto PCB with mounting holes and power cables and then mounted on the antenna 

plate. 

 

Figure 3.5.5-2: Monofilament cutter 

There are six switches in CXBN-2. One for RBF pin, three separation switches that cut 

power to EPS and two solar array deployment switches that turnoff cutter circuit. All switches 

are Honeywell 1SX1-T micro switches and all except for RBF pin switch have JX-40 lever 
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attachment. It is a miniature switch that can handle high electrical loads and has very reliable 

actuation system with steel lever. All switches have two mounting holes and are attached to side 

panels and antenna plate with shortened M2 screws and washers. Three separation switches are 

actuated by push pins that are installed in respectively three holes in feet of -Z face. When pin is 

actuated, it pushes on switch lever and then switch and opens an electrical circuit. 

 

Figure 3.5.5-3: RBF pin and switch 

This design of deployment system showed its reliability and ease of operation. During all of 

the tests that were conducted for spacecraft, deployment system has 0% failure. 

 

3.5.6. Battery assembly 

Powering spacecraft in shaded parts of orbit can be achieved by using sufficient amount of 

energy storage units, batteries. They have to be safely installed in the satellite body, placed next 

to power management and generation systems to reduce wire resistance losses and CG location 

has to be within specified limits.  

First design of battery mounts was just the same as CXBN had. Four 18650 type batteries 

placed in clamps and mounted on a crossmember with 2S2P connections method. This would 
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have not required any extra manufacturing or designing as parts were available from previous 

mission. 

Part of a team that was responsible for EPS found better solution for a battery. This battery is 

Swing 5300. It was chosen because it had longer lifespan as maximum number of charge-

discharge cycles is significantly higher (>3000 cycles) than competitors. It has the same voltage 

and higher capacity, also has different form factor just like two 18650 batteries were put together 

in parallel. These Swing 5300 batteries were connected in series. 

What became challenging in mounting of Swing 5300 is that main outside casing is positive. 

While the rest of subsystems use structure as negative pole (GND), only way was to design 

battery mounts that isolate it from the rest of the structure. 

 

  

Figure 3.5.6-1 Battery assembly design progression 
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New design started with isolative blocks that were clamping batteries and then all together 

attached to crossmember. There were several designs as you can see on a picture below. All of 

them required machining and had to be made of dielectric material. This could be satisfactory but 

didn’t meet philosophy of simplicity at all. 

As EPS system was developing, there was a need to place a resettable fuse for battery circuit 

safety so a separate PCB had to be added. And this was a point when important decision was 

made. Primary support for the batteries became FR4 PCB. This material was a great solution. It 

is relatively lightweight, easily available, modifiable, non-conductive and has good mechanical 

properties as it is a glass fiber composite. 

Adding all parts together was PCB one side and on the other 2 aluminum blocks that were 

fastened with M2.5 screws and standoffs. Batteries had to be wrapped in Kapton tape and placed 

in such position so that fastener for standoffs didn’t have a chance to get grounded. This was 

easily achieved as crossmember was being designed at the same time. 

 

Figure 3.5.6-2 Final battery assembly design 

During assembly and integration process it was noticed that two top blocks of aluminum 

weight as much as one PCB. PCB was fitted on top of the batteries and this change was kept. 
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This had several benefits. Two separate machined parts were eliminated, it saved some space 

inside the SC, reduced pressure on the surface of batteries and simplified integration process 

In the end two batteries are covered in double-sided tape and sandwiched between 2 PCBs 

with standoffs and screws. 

 

3.5.7. Payload support/structure and shielding 

It was previously described how payload should be a positioned and oriented in the CXBN-2. 

Two back to back detectors point in opposite direction through openings in frame. When it came 

to payload support design, a list of requirements was set for correct payload operation.  

Design of collimator greatly depended on the material that could be used. Based on the mass 

limitations, X-ray fluorescence characteristics, and need to shield the detector to allow absolute 

background X-ray emission detection two high z materials where considered. Pure lead was the 

first choice as it has a high density of 11 g/cm3 which would serve as sufficient shielding for the 

detection energy of interest by using a thickness of about 2mm. The problem with pure lead is 

that it difficult to machine and as does, not have the rigidity needed for the vibrations levels 

expected during launch of the satellite when, only 2mm thick. Even if pure lead was chosen, it 

would require complex supporting fixturing. The other issue is that when looking at other lead 

alloys many of the materials used in the alloys produced fluorescence in the energy range of 

interest. 

Another option for high density material was tungsten. Tungsten’s density is 19.3 g/cm3 

which would provide excellent shielding per volume and unlike lead has appropriate rigidity, 

though because of its high density it too is extremely difficult and expensive to machine.  
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Given the nature of the collimator high precision was needed on the individual openings for 

each pixel allowing uniformity of collimation angle. The thickness of material between each 

pixel was a mere 0.5mm. 

Taking this into account several companies where contacted to see if and for what price such 

a part would cost to manufacture. There were several companies willing to machine tungsten, 

such as Plansee Corp, though the cost was US $4,900 per unit. For such a complex part it was 

even considered to create an assembly of tungsten stripes that would lay in two layers to create 

grid. After some research and brainstorming, 3D printing technology came to mind. This part can 

be printed with tungsten polymer blend and after long research H.C. Stark of Euclid Ohio was 

found. The production price of the collimators was quoted for US $400 per unit. The only 

drawback of this was the company could not guarantee quite the tolerances desired for the design 

as manufacturing method with this material was experimental. Then it could have any shape 

requested and final design of collimator was a grid of 256 holes with shielding extrusion on the 

perimeter that ends with mounting flange with 8 holes. 

 

Figure 3.5.7-1: 3D CAD models and 3D printed collimator 
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When collimator and part of shield were designed, next step was a design of structural 

support of payload. Main requirements for this fixturing were structural stiffness, universality for 

supporting several subsystems, heat dissipation, to be safe from incident photons, compactness 

with minimum mass and ease of integration. 

First prototypes were very complex machining vise as they were mounting between 

collimators and rails of the main frame and had a lot of ribbing to ensure stiffness. It was also 

taking a lot of space as there were two parts on top and bottom and two parts that were capturing 

payloads. Later design was changed to a mount that attaches payload assembly to walls of side 

panels. 1.5mm of wall thickness was sufficient to mount relatively heavy payload assembly to. 

 

Figure 3.5.7-2: First design of payload mount 

Next designs were a lot simplified and consisted of only two identical parts for support. For 

weight reduction, it had cutouts which were later changed to thin walls. It had a set of mounting 

holes for collimator, lead shields and C&DH that at that time was placed in between detectors 

behind shielding for extra radiation protection. 
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Figure 3.5.7-3: Payload mount design progression, version 5 and version 7 

This design was satisfied until it was experimentally discovered that the 3D printed 

collimators were very fragile. During assembly, it was found that mounting holes and flanges 

were cracking under light torque from fasteners, even with bigger washers.  Next, aluminum 

rings were tried that would distribute load more evenly, which also failed. 

Considering this problem, redesign of payload mounts started again. An extrusion that 

collimator can be slid in was created. Its purpose is to support thin and fragile collimator walls. 

On the side where collimator goes, a flat flange is located for positioning via holes. When parts 

are aligned, they are epoxied together. More detailed process is described in integration section. 

This connection has several benefits. Collimator is completely secure from vibrational breakage, 

heat transfer from collimator to structure is a lot greater and further assembly process is a bit 

simpler.  
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Figure 3.5.7-4: Final payload mount design, version 8 

Required shielding had to be designed for the open area between detectors. Pure lead was 

used this time as it was a lot easier to machine and bring to desired shape. Payload mounts 

already had all needed threaded holes for mounting lead pieces. To ensure correct reading by 

detectors it was required to make sure that incident photons do not have any path to hit CZT 

sensor from any other angle but front, through collimator. Incident photon angles were modelled 

and lead shielding in conjunction with collimator parts were placed in such a way that incident 

photon lines did not reach back faces of CZT detectors. There are in total 6 lead pieces that go on 

payload assembly. Two bigger lead pieces on top and bottom, two pieces with holes for wires on 

sides and two extra pieces to cover those holes. Each piece had two aluminum stripes with holes 

going with them. They are for load distribution as lead is very soft material and screws just sink 

in it when tightened. 
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Figure 3.5.7-5: Cross-section of payload assembly for analysis 

of incident angle of photons 

C&DH was moved outside the lead shielding. Reasons for that are purchasing radiation 

tolerant SD card, avoiding complicated assembly and desired increase of accessibility. After 

C&DH was placed on the top of payload assembly, radio was moved radio from antenna plate to 

payload mounts as well. It is settled on the bottom of payload assembly and has three hole sets 

for different mounting positions. This change resulted in better heat dissipation from radio, more 

reliable mechanical connection, more efficient use of space and simpler assembly process. 

Negative side in this change is that payload and radio as relatively high heat generation units are 

bound together and require sufficient heat dissipation as performance of these systems is 

temperature-dependent. 
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Figure 3.5.7-6: Payload assembly with C&DH and Radio 

Design of payload support went through a lot of iterations and finally it serves primary 

purpose and allows mounting several other components on it: 

 Detector assemblies 

 Collimator 

 Lead shielding 

 C&DH 

 Radio 

Detailed assembly algorithm is described in integration section. 

 

3.6. Thermal control system 

Requirements for thermal regulation system were set by payload. CZT detectors performance 

depends significantly on their temperature. Higher temperature cause appearance of noisy pixels 
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and data acquired gets distorted. Each detector generates 1W of heat that needs to be dissipated. 

First solution that was found is double-deployable radiators on opposite sides of SC. Radiators 

were located on side panels and connected with custom-made miniature hinges with springs. 

Thermal path from walls of collimators to radiators was provided by flexible copper foil. 

Thermal analysis was provided by Yendler Satellite Propellant Management (YSPM) that 

showed that this setup would work but there was high probability of overcooling the system in 

shaded regions of orbit. Then Phase Changing Material (PCM) pouch was suggested. PCM 

would provide smoother temperature change in transition between shaded and illuminated parts 

of orbit and change in payload operation cycles. Unfortunately, only PCM that was available at 

needed temperature range was a toxic material. As long as satellite is deployed from the ISS, 

manned space station, PCM option was eliminated.  

 

Figure 3.7-1: Deployable radiators 

In the end, only thermal regulation method that remained and was evaluated as sufficient was 

radiative emission of heat from surfaces of spacecraft side panels. This let to decision of color of 

anodization which is black. 
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Figure 3.7-2: Radiator with PCM 

To ensure thermal conductivity between CZT detectors and collimators, thermal gap pads 

were used and process of installation is discussed in integration section. Heat from collimators to 

payload mount is conducted through aluminum filled epoxy. 

 

3.7. Materials 

All materials were chosen in accordance with Outgassing Data for Selecting Spacecraft 

Materials prepared by NASA. Its database contains information on materials used by Goddard 

Space Flight Center and information about properties like outgassing, operational temperatures, 

and its applications. 

Aluminum alloy 6061-T6 was chosen for frame parts because it is easier to machine. Kapton 

tape with acrylic adhesive is commonly used in space industry for its low outgassing. Other 

adhesives used were aluminum filled epoxy and threadlocking anaerobic liquid compounds like 

Loctite and Vibrotite which are also commonly used. All fasteners are 318 stainless steel. 

Deployment switch pins are 3D printed ABS plastic. Collimator was 3D printed of tungsten 
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powder with polymer filling. Shielding was made of lead. Copper tape was used for RF shielding 

and for protection of some internal components from direct sunlight and atomic oxygen. Wires 

and cables have Teflon insulation. PCBs for all subsystems is glass fiber composite. Thermal 

pads are Bergquist Gap Pad. Switches housing is phenolic. 

 

3.8. Fasteners 

When structure is being designed, proper fasteners have to be used for mechanical 

connections. Some of the fasteners were used for alternative purposes, which are hook for 

monofilament, solar panel alignment cones, solar panel deployment angle limiters, spacers as 

fillers for cutouts on SP hinges, RBF pin. This is done to use and repurpose as much COTS parts 

as possible for price reduction and avoiding extra manufacturing. Fasteners that are used for 

CXBN-2 are mostly made of 318 stainless steel, spacers and standoffs that are made of 2011 

aluminum alloy and electrically insulative phenolic washers. Structure designing includes an idea 

to use as least amount of fasteners as possible. This made integration easier and reduced overall 

mass. Appendix B has a list of fasteners, their types and masses and purposes they served. 
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4. CHAPTER 4. 

4.1. Manufacturing 

 Machining 

Every part design went through thorough adaptation for machining. Parts do not have sharp 

inside corners so that 4mm mill cutting bit could be used for most of the geometry. Thickness of 

walls is at least 1.5mm. Number of different hole diameters, thread sizes and screw hole types is 

minimized. Crossmembers are the same and two side panels are identical, as well as payload 

mounts. Machining in-house was not possible because experience and equipment would result in 

lead time that was too long for this project. Side panels, crossmembers and payload mounts were 

machined out of 6061-T6 aluminum alloy. 

During integration payload mounts were redesigned and it was important to machine it as fast 

as possible. All local shops were booked for weeks and closest estimated delivery was in one 

month. Those who offered faster machining were requesting prices that were above budget. 

Foreign machining shops were researched as well and one of Chinese machining company called 

Smart Prototyping agreed to machine payload mount with lead time 10 days including shipping. 

Parts were received on time. Six parts were ordered and only four were of sufficient quality but 

still required some finishing. 

L-bracket was intended to be machined out of a standard 1”x1” 1/8” thick extruded 

aluminum angle for cost reduction and time saving. After several failing attempts to perform this 

job at machine shop at the SSC, 8 pieces were machined at Rowan Campus of Maysville 

Community&Technical College using FANUC Robocut wire EDM. 
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Antenna plate was machined out of aluminum in-house. It was made of standard 1/16” sheet 

and had pattern of cutouts for antenna blocks, for monofilament cutter and a set of threaded M2 

holes. After several attempts, it was successfully machined and matched requirements. 

 

3D printing 

Because of complicated design of collimator, 3D printed collimator as the only one 

reasonable solution for this mission. After long research H.C. Stark of Euclid Ohio was found. 

They concluded that this part could be printed with tungsten polymer blend. The only drawback 

of this was the company could not guarantee quite the tolerances desired for the design as 

manufacturing method with this material was experimental. But after several attempts company 

managed to produce eight collimators though some of them had different masses and properties 

as tungsten powder/polymer mixture was changed. 

Pins for deployment switches were also 3D printed which was the easiest and fastest solution 

for such a simple part that also had to be lightweight. 

 

Post-machining 

Even though this part was machined by another company professionally, it required post-

machining modifications that simplified machining process and reduced overall cost for the 

service. For side panels, hinges were drilled and tapped to fit hinge pin and edge where antenna 

bends and touches was rounded. For crossmember, additional modification that was made during 

integration by request of subsystems developers is two cutouts for connector extensions on the 

top crossmember. Cutout is placed in the way that it would be impossible to incorrectly connect 

special JTAG connector for EPS programming port. Second connector is only for charging 
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batteries. Polarity was controlled by filling empty pin slots with epoxy in a way that inserted 

connector had only one possible position. Both cable extensions were then inserted in slots and 

secured with strong thread. Thread is used instead of epoxy because it is strong enough, takes 

very little time to be wrapped and tightened and is easily removable for disassembling. The rest 

of modifications are described in integration section. 

 

Anodization 

Side panels of the spacecraft had to be hard anodized per requirements of NanoRacks 

Deployer ICD. Parts were sent to Fort Wayne Anodizing and received black Type III hard 

anodization. Later anodization was removed from some areas of frame to provide better 

electrical connectivity between structural members. Anodization removal process is described in 

integration section. 

 

4.2. Integration 

Space Science Center has a Space Systems Development Laboratory. It is 5000 sq.ft. area 

that is called High Bay. It accommodates a lot of work benches for different processes of 

development and fabrication of space systems and components. Testing equipment like vibration 

table, EMI/EMC testing Faraday cage, thermo-vacuum chamber are standing along the perimeter 

of the room. In the middle of High Bay is a Class 10000/1000 Clean Room. It is a 2000 sq.ft. 

Clean Room where all integration and final assembly of spacecraft take place.  
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Figure 4.2: Morehead State University’s 

Spacecraft Environmental Testing Laboratory (SETL) 

Clean Room went through preparation before beginning of CXBN-2 integration. It was 

cleaned one more time, air filters were changed and after several weeks of blowing air out it 

went into clean mode. After that team members were required to be extra cautious like wearing 

shoe covers or being barefoot, controlling contamination of work area with dust or other 

contaminants. Specific procedures like epoxying, soldering, adhesive application and 

cutting/grinding had to be conducted in dedicated work areas. Sufficient ventilation over work 

stations was critical as highly volatile cleaning chemicals and solvents were used extensively. 

Following ESD protocol was most critical. Every electronic component of the system is 

extremely ESD-sensitive as it is custom made without intended internal protection. Each member 

of integration team had to go through ESD safety training and be prepared to be extremely 

cautious. Wearing ESD wristbands was mandatory at all times while directly working on 

assembly or being even close to SC electronics. Every work bench was covered with ESD mats 

that are made of electrostatic dissipative material. All mats were grounded and each of them had 

several wristbands connected to it. Clean room was equipped with ESD-safe furniture as well as 

tools that were reducing risks of generation and accumulation of electrostatic charges.  
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To make any assembly process go a lot smoother and even enjoyable a good set of tools must 

be present. A set of tools was prepared that included ESD-safe screwdriver sets, different types 

of pliers, xacto knives, different types of alligator forceps, files, soldering stations, scales, 

accessories for mixing epoxy, lights for extra illumination and even dental teeth pullers were 

used to safely remove connectors. To help organizing parts, fasteners and tools, several boxes 

and labeled hardware storage cabinets were used. For some volatiles and chemicals like MEK, 

epoxy hardeners, liquid threadlockers, isopropyl, safety items like gloves, respirators and 

goggles were required. 

Section 3 of NanoRack ICD has a list of general requirements for CubeSats. Section 3.5 says 

that CubeSats shall use a secondary locking feature for fasteners external to the CubeSat chassis 

and that acceptable secondary locking compound is Loctite. At Structural Engineering Division – 

Material Branch at Johnson Space Center - Houston, Texas was created a report by Rajib 

Dasgupta “Fastener Retention Requirements and Practices in Space Flight Hardware”. This 

report described different fastener retention methods and conclusions that were taken from there 

say that lock washers are not efficient locking method and shall not be used for space 

applications. Also, comparison of Loctite and Vibrotite thread adhesives showed that Loctite has 

good locking characteristics and Vibrotite ones are not recommended for use. NASA-STD-5020 

“Requirements for Threaded Fastening Systems in Spaceflight Hardware” describes methods of 

fastener retention and best applicable for CXBN-2 design are anaerobic adhesives. They cover 

threads and limit fasteners from getting undone. So, two features used on all screws are 

preloading and use of anaerobic adhesive like Loctite 272 Red and Loctite 290 Green. Bottoming 

holes shall be avoided as it doesn’t let adhesive to dry. 
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For making assembly process easier, having better access to most parts inside the SC, testing 

the deployment system, vertical and horizontal assembly stands were 3D printed. Horizontal 

stand is used for most of the assembly procedures when one of the side panels is not attached. 

Horizontal stand is used mostly for final solar panel assembly steps, testing of the deployment 

system and observation of the whole system while verifying correct operation of subsystems. 

Before actual assembly of the whole satellite several structural components were put together 

with subsystems models. First reason is to check again if everything fits together without any 

problems. Second reason is to understand the best sequence of putting everything together and 

create assembly algorithm. 

 

4.2.1. Assembly process 

Solar array 

Whole process starts with assembling solar panels. PCBs and hinges had to be epoxied to 

each other. This required a high level of accuracy. For this purpose, several assembly templates 

were made. First type of template is used for adding a chamfer on the edge of PCB. It is a 3D 

printed block that has a big chamfer on one side that aligns PCB at an angle. Second type of 

template is an assembly template for epoxying stage. It is 3D printed and has all features to align 

hinge with PCB like extrusions that match holes on the PCB and cutouts for steel pins that align 

hinge. 

Solar panel assembly starts with preparation of parts. PCBs are first being covered with 

painters tape to protect its surface from any damages as it needs to stay clean and smooth for 

later application of solar cells. When PCB is placed on template it stops at an angle of 12.5 

degrees. Holding part at the same angle, it is being sanded with a sand paper to achieve 1.3-
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1.4mm thickness of material on that edge. These manipulations are made for best fitment of 

hinge on PCB because shape of that hinge doesn’t allow them to be flush to each other. PCBs are 

being sanded to achieve required chamfer. Hinge that was delivered as a big assembly with pin, 

gets disassembled and cut into pieces to match width of solar panel which is 82mm. Three 

knuckles are left on each hinge so that center of middle one is aligned with a center of symmetry 

of the hinge and a center of symmetry of the PCB. When part is cut, it is being tested with the 

pin for resistance when turning. If even small resistance is present, hinge is either discarded or 

fixed by bending or enlarging knuckle hole diameter. After that all selected hinged go through 

surface roughening. Adjacent with PCB surface receives a set of cuts that increases grip in epoxy 

joint. 

 

Figure 4.2.1-1: Solar panel preparation stages prior to epoxying 

When epoxying of solar panels, templates are covered with epoxy release solution. Mixed 

epoxy is pre-applied to PCBs and hinges. Then using 60 grit sand paper, adjacent surfaces of 

either parts are being wet-sanded. This steps adds roughness to surfaces and removes oxide layer 

from aluminum hinge that increases bonding strength. Excess epoxy is removed and parts are 
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placed on the assembly template. Then it is pressed with C-clamps. Extra epoxy is squeezed out 

and need to be removed. After epoxy cures for 18-24 hours, parts can be extracted from 

templates and alignment pins can be removed. This assembly the goes through cleaning and 

removal of rests of epoxy and epoxy release. 

Several tests showed that this epoxy joint is not strong enough when flexing deformations of 

PCB occur. Hinge peels off when applying enough force to the edge. This problem has been 

solved by threading and tabooing holes in aluminum hinge and adding M1.6 screws with Red 

Loctite. 

It his point panels are ready for solar cells. AzurSpace solar cells are being mounted onto 

PCBs with double-sided Kapton tape and then tabs being soldered to terminals. This is done for 

both deployable and body-mounted solar panels. Then they go through bake-out in thermo-

vacuum chamber. When bake-out is complete, each panel is reverse-based to verify correct and 

proper connection and reject non-working solar panels. 

After solar panels are tested, assembled L-bracket with clinching nut and a screw are 

mounted onto solar panel with two M2 screws. Then both two- and four-cell panels are installed 

on a SC frame. Jumper cables are soldered between panels’ terminals and shaped so that they 

don’t brake and avoid contact with solar cells when folding solar array. Final step in assembly of 

solar array is angle-limiting screws. They are screwed into the structure and adjusted so that 

deployables stay at 15-degree angle to the frame. Then epoxy is applied to screws to keep them 

in the same position. 

This algorithm can be simplified to these steps: 

1) Preparing PCBs - sanding, rounding edges, fitting to hinge curvature. 

2) Cutting hinges to the width of solar panel 
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3) Roughening surface of hinge 

4) Epoxying 

a) Wet sanding 

b) Using 3D printed templates for correct pcb-hinge positioning  

c) Checking if pin slides freely 

5) Drilling and taping hinges and installation of small screws with red Loctite 

6) Cleaning and preparation for solar cells 

7) Soldering solar cells 

8) Bakeout 

9) Reverse bias 

10) Screwing down the L-bracket retainer with Loctite 

11) Mounting all solar panels on frame 

12) Solder cables 

13) Adjust angle limiters 

When the rest of structure was being put together with 3D printed subsystem models, it was 

proven that assembly had to be performed in a specific order. Assembly algorithm of CXBN-2 

frame was created as a list of actions that should be performed to assemble a whole spacecraft. 

 

Side panels 

When side panels were received from machining company, they went through extra post-

machining modifications. Hinge extrusions had holes that were not wide enough for hinge pins. 

They were widened to fit pin without any play. Pin had to be retained from sliding out of the 

hinge and it was achieved by placing set screws in each of the ends of these hinge extrusions. 
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Drill bit increased a size of that hole and went only 3mm in depth of pin hole. Then bottoming 

tap was used to make M3 thread for set screws. Additional hole was made and tapped where 

RBF pin switch went. It was made to attach switch in different orientation that would give extra 

room for changes in battery board. Another modification was made to a cutout where folded 

antenna goes. An edge where antenna lies in folded position was too sharp and could 

permanently damage it. Edge was filed and sanded down to create smooth curved contact surface 

for antenna blade. 

 

Switches with cables 

RBF pin controls main power switch of the satellite. It is mounted on +Y side panel. 

Separation switches were mounted on side panels, two on +Y side panel and one on -Y. When 

approximate diagram of cables was created, cables between switches were laid out so that their 

length is minimal. Then cables were soldered to common and normally closed terminals so that 

when spacecraft is deployed, switches close circuit between batteries and EPS. All deployment 

switches and RBF switch are connected in series in the same circuit. 

 

Figure 4.2.1-2: 1SX1-T Honeywell microswitch 

RBF pin was made of brass screw and a rounded nut. End of a screw was tapered that 

allowed to use it to push on RBF pin switch actuator smoothly. This design has several benefits. 
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It is very simple and inexpensive, compact; pin can not be accidentally removed but has to be 

unscrewed. 

 

ACS 

Because of a specific shape of magnetorquer brackets, ACS had to be placed on 

crossmember so that it’s flush with PCB. Then ACS is turned 90 degrees to normal position so 

that cutouts on PCB align with wire cutouts on crossmember. Then it is secured with four M3 

screws, washers and green Loctite. 

 

EPS 

Batteries were cleaned from factory insulative coating and wrapped with Kapton tape. Six 

M2.5 hex male standoffs were mounted on the PCB. Two pieces of double-sided tape were 

placed on the circuit board. Batteries were oriented between standoffs and adhered to the PCB, 

so that each negative terminal was pointing in opposite direction. On top of batteries were 

mounted two aluminum blocks to standoffs with M2.5 screws. To reduce risk of shorting two 

batteries, these aluminum blocks were removed and the same PCB was mounted on top with use 

of double-sided tape to batteries and M2.5 screws to standoffs. Then battery assembly is placed 

on the inside of crossmember with M3 screws, washers and green Loctite. 

EPS board was designed without considering space limitations and shape of crossmember 

cutouts, so it was impossible to be mounted flush to the top of square bracket. Round spacers 

were used to offset EPS board. And it was mounted with M3 screws, washers and green Loctite. 

EPS together with battery assembly were mounted on side panels in orientation that EBS was 

facing in +Z direction and batteries were closer to payload. This orientation didn’t allow access 
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any cable connections on EPS as it was blocked by side panels and body mounted solar panels 

when spacecraft was assembled and was going through testing. So this assembly was reoriented. 

It was a very simple change because hole pattern on side panels allows crossmembers to be 

flipped. As a result, access to connectors was open, length of most cables from EPS to other 

subsystems decreased significantly. 

 

Payload/C&DH/Radio assembly 

During first steps of integration, a CZT mount version 7 was used. At that time, it was 

impossible to use collimators with detectors as they were still being tested and in pre-assembly 

stage. When payloads were ready for attachment, another problem was revealed. It was 

experimentally discovered that 3D printed collimators are very fragile. Mounting holes and its 

flange were cracking under light torque from fasteners even with bigger washers. When 

aluminum rings were tried that would distribute load more evenly, it didn’t work either. 

Considering this problem, redesign of payload mounts started again. An extrusion that 

collimator can be slid in was created. Its purpose is to support thin and fragile collimator walls. 

On the side where collimator goes, a flat flange is located for positioning via holes. This change 

didn’t leave any space for C&DH board inside the shielding, so it was placed on the top of 

payload bracket. But now there was no space for cabling from C&DH as EPS was too close after 

EPS/Battery assembly was flipped. Payload mount went through more design changes that 

moved payloads further in -Z direction. Thus, Payload mount version 9 was created. After 10 

days of lead time, 6 new parts from Chinese machinists were received. Only 4 parts were barely 

fitting correctly and were of sufficient quality. 
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Preparation for payload assembly started with extra modifications for payload mount. Before 

epoxying parts together, they have to have their surfaces roughened to make bonding stronger. 

On the inside on the opening of mount, several cuts were made just like previously for solar 

panel hinges. Then all holes were covered with small pieces of Kapton tape to protect threads 

from epoxy. M2 set screws were inserted for aligning collimator in its desired position and 

protection of threaded holes from epoxy. Collimator and mounts were thoroughly cleaned with 

MEK. Areas of collimator that had to be protected from epoxy were covered with painters tape. 

After mixing epoxy and waiting for 10 minutes to let it become more viscous, it was spread on 

bondable surfaces of both parts. Then collimator was slid inside the opening. Set screws were 

removed and covered with epoxy release gasket and aluminum ring were put on top with M2 

screws to compress collimator in its place. Then this assembly was flipped and extra epoxy was 

added to the joint, creating a smooth chamfer around the edge. Excessive epoxy was cleaned 

with MEK and parts were let sit for 24 hours until curing was complete. Now masking tape, 

screws and gasket could be removed. Parts required extra cleaning. Same process was repeated 

for another mount and collimator. This method also let cracked collimator to be used for EM as 

its flange was no longer a main stress point. 

 

Figure 4.2.1-3: Epoxied collimators 
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When collimators are epoxied with payload mounts, they’re ready for installation of CZT 

detectors. During operation detectors generate 1W of heat each which has to be dissipated 

through structure to external surfaces and radiated into space. To make this happen, thermal pads 

were chosen for heat conduction from detector to internal collimator walls. Four walls of 

detector where CZT material is exposed were covered with thermal pads. On the bottom of 

collimator, a thin sheet of aluminum was placed to protect detector from damage from atomic 

oxygen and direct sunlight. Afterwards detectors were slid into collimators and secured with 

little drops of epoxy. 

 

Lead Shield 

After detectors are settled in collimators, they need to be shielded. Cables are connected to 

epoxied Payload A (PL-A) and Payload B (PL-B) which are cables 1, 1a, 2, 2a, 3, 4. Each cable 

connector is secured with a little drop of epoxy. Then top and bottom lead pieces are put in place 

on PL-A with aluminum strips, M2 washers and threadlock-covered screws (except for the screw 

holes for side-cap smaller shield). Screws are not tightened yet and left loose. Wires from PL-A 

and PL-B are drawn through wire hole in Side Lead Shields. PL-B is slid onto the PL-A with 

Shield. Aluminum strips with M2 washers and threadlock-covered screws are put on PL-B 

(except for the screw holes for side-cap smaller shield) and left loose too. Then two payload 

assemblies PL-A and PL-B are together screwed on the side panel using 3 M2 flathead screws 

for each. This side panel also has two crossmembers mounted on it already. Second side panel is 

put over it. All these structural components are screwed down completely. At this step bottom 

and top lead pieces are screwed down tight. Now side panels can be removed and side lead 

pieces screwed down. Cables in holes are being rearranged to stay flat and small lead pieces are 
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mounted over wires and secured using washers and threadlock-covered M2 screws. All these 

manipulations with side panels and loose screws were made to ensure correct alignment of 

payload brackets. If these steps were left out and lead shield mounted as is, payload mounts 

would be out of alignment an attachment to the rest of a frame would be impossible. 

 

Final assembly 

C&DH had to go through one upgrade. It was decided to mount it on top of payload 

assembly. As there was very little space between bottom of C&DH and brackets, bottom 

connector was removed and wires pigtailed to pads on PCB. After they were soldered, epoxy 

was applied to insure safe connection and protect wires from braking off of soldering 

connections. Epoxy should not be applied to actual soldering connection but further between 

wires and free PCB surface because as experience says, if desoldering is needed -  it is very hard 

to do carefully without damaging tabs on PCB. SD Card was installed and epoxied as well. 

Inserted cables received a drop of epoxy for the same security reason. Then C&DH is being 

attached to Payload assembly with screws, washers and standoffs with application of Loctite. 

Radio took its place on the bottom of payload brackets where 12 holes were available for 6 

possible positions. it was mounted with M2 screws and washers. 

Assembly of antenna plate starts with installing antennas with antenna blocks. Phasing board 

is mounted using the same screws as for antenna blocks. Then solar panel deployment switches 

are mounted in dedicated places. Monofilament cutter is built out of cauterizing tip and small 

PCB. Cauterizing tip is placed in vice and brass tubes are bent at a 45-degree angle then being 

cut off and soldered to PCB. Cutter is placed on top of antenna plate and secured with M2 screws 

and modified nuts. Then wires are soldered between switches and cutter. 



63 

Now there is a set of subassemblies that can be finally put together into the frame. This part 

of integration was done on horizontal stand. All cross members and payload mounts are mounted 

on +Y side panel where RBF and deployment switches already located. First goes bare 

crossmember on +Z face of side panel. Second, ACS with crossmember is mounted further down 

Z axis with PCB facing +Z direction. Third goes EPS assembly with batteries facing +Z 

direction. Then fourth subassembly mounted is payload assembly that screwed down with six 

M2 fathead screws. Two ADS boards that have standoffs soldered on them are mounted so that 

ADS-A board is on the side where PL-A is and ADS-B is on the PL-B side. Antenna plate is the 

last internal subassembly that was attached inside the frame. 

And this is a good moment to start putting cables in. All wires and cables were cut to their 

possible minimal length and their path was chosen accordingly. Most cables were captured by 

structural members. They were passing along side walls between cross members and side panels, 

and between payload mounts. This kept cables from excessive freedom of movement that could 

cause damage to any internal components. Cables from deployment switches are soldered to 

battery terminals. Second side panel is held closely for soldering cable from third deployment 

switch. For extra security, cables were tied together with strong thread. All cables were secured 

with a drop of epoxy including RF cable connection. 
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Figure 4.2.1-4: All subsystems mounted on side panel 

After all internal subsystems were placed on the first side panel, second side panel could be 

mounted on and screwed down with M2 flathead screws and Loctite. This closed the structure 

and next steps of assembly of external parts could be started. 

Attachment of solar panels is performed in several steps. Spacecraft body was placed on the 

horizontal stand. Torsion springs legs receive several bends to have better connectivity with 

surfaces that are being pushed on. Each one of four solar panel assemblies are laid on the table. 

Three ¼ inch spacers and torsion spring are put in the openings between hinge knuckles. Then 

plastic tube or rod is inserted in place of hinge pin. Diameter of flexible tube should be smaller 

than diameter of pin. Then SP assembly together with spacers, spring and tube is placed on the 

top of the satellite body. Free part of tube is being slid into hinge hole on side panel. When SP 

hinge aligns with hinge part on side panel and torsion spring is in correct position, then tube is 

replaced by sliding in steel hinge pin. Then pin is secured with two M3 set screws. 2-cell solar 

panel is attached to frame with four M2 screws. In the opening on +Z face cables can be 

connected to solar panels and secured with a drop of epoxy. This sequence have to be repeated 

for each solar panel assemblies. This completes assembly of solar array. 
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Figure 4.2.1-5: Solar panels are attached 

At this point integration could be called complete. But there were several problems of 

different level of difficulty that required disassembly of spacecraft. These problems are discussed 

below. 

 

4.2.2. Problems and solutions 

One of the first tests that were conducted after assembly was a cutter test. After a delay of 30 

minutes cutter was supposed to receive full power from batteries and cut monofilament. When 

this happened, cutter tip heated up and cut monofilament which was followed with self-

destruction of the tip itself. As it was found out, cutter was not able to withstand supplied current 

and just melted. This problem was solved by adding resistor to cutter circuit and changing duty 

cycle. Resistor was placed on antenna plate where two additional holes were made. 

Second problem was related to battery charging. There was no access to battery terminals 

when all solar panels were attached. Temporary solution was charging batteries with solar panels 

by using several high-power lamps. This method was not very efficient as required a lot of time 

and was heating up the satellite and everything around significantly. Solution was found and 
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additional cable just for charging batteries was added. One end was soldered directly to battery 

terminals, and another end with connector settled on the crossmember at +Z face. This required 

crossmember modification in form of a little cutout where connector could be mounted and 

secured with strong thread. Thread was used instead of epoxy because it was easy joint to make, 

it was fast and strong enough. Only 4 pins were used on connector and to make sure polarity was 

always correct, it was protected by closing some pin holes with epoxy and making a male 

connector with specific position of pins so that it could be connected in only one position. 

Charging cables were marked as positive and negative. 

Third problem was with EPS. It didn’t work correctly and had to be replaced. Testing 

showed that several components on PCB were burned. 

Fourth problem that was found in a bit was related to EPS programing port. When latest 

version of EPS was installed, its programming port appeared to be hidden behind structure wall. 

As software bugs were fixed on-the-go, access to programming port was critical. Attempts to 

stick cable in very small space were unsuccessful. Then solution was found. Extension cable to 

programming port was added. Cable was connected to PCB and epoxied to it. Other side of cable 

was drawn to crossmember on +Z face and connector was mounted in the same fashion as 

battery charging port. 
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Figure 4.2.2-1: Arching issue with CZT detector 

Fifth problem was about performance of payloads. When satellite was tested after SP 

deployment, it was sending beacons that besides from telemetry contained data from payload. 

Data was not as expected, and it was evident that detectors have issues. All spacecraft was taken 

apart and payload was tested on the bench. When it was operating, clicking noise was present 

and it was decided to extract detectors from collimators. On the edges and corners of detector 

were noticed dark spots that was a sign of arcing. High voltage power supply generates 600V 

and when detector was placed inside tungsten collimator without insulation, a spark was created 

between parts. Also thermal pads were sliding off and thermal conduction was poor. This was 

solved by putting Kapton tape on detector, aluminum piece and thermal pad was secured on 

walls of collimator with Kapton tape as well. When parts were assembled back again, detector 

was fit snugly and secured with drops of epoxy. To add extra security to prevent detectors from 

sliding out, several layers of thermal pad was added on backs of high voltage power generators 

so they were pushing against each other when lead shielding was installed. 
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Figure 4.2.2-2: CZT detector and collimator insulated with Kapton tape 

Sixth problem was related to performance of communication system. When satellite was 

assembled and beacons were transmitted, the signal was relatively weaker that it should have. 

With oscilloscope, it was discovered that a lot of interference was present. A lot of time was 

spent defining the source of problem. Reason for this interference was bad grounding connection 

in frame. As side panels were anodized, there was a very insufficient if any conductivity between 

structural parts. So, solution was to remove anodization layer in places where contact between 

metal parts of structure was occurring. First it was suggested to mechanically remove oxide layer 

with dremel tool. But there was a risk to cut too much material off that would change critical 

tolerances of structural dimensions. Then better solution was found – to remove oxide layer 

chemically. Simplest and cheapest solution was to use heavy duty oven cleaner. Side panels were 

masked with painters tape except for the areas that needed to be treated. In four stages of 

application anodization was removed from needed areas. And as a result, every structural 

component was properly grounded. It helped significantly reduce interference but some 

interference was still present. Then additional actions were made one at a time. RF cable 

received ferromagnetic bead, antenna plate components were shielded with grounded copper tape 
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and power and data cables that went from radio to EPS and C&DH were covered with grounded 

shielding braid. This finally solved the problem, interference was dramatically reduced and 

signal strength increased to match what was expected. 

 

Figure 4.2.2-3: Removal of anodization 

This are the biggest problems that appeared but there were a lot of other smaller issues like 

parts were not fitting properly with each other because of machining quality that required 

grinding and filing, Vibrotite VC-3 threadlocking compound was not performing well enough 

and caused tolerance problems, connectors were falling apart because of multiple connections-

disconnections and other fitment issues as a result of unexpected design changes during 

integration. Each of the problems was discovered separately that led to complete disassembly 

and assembly of spacecraft. 

Assembly process and problem solving discussed above was mostly experienced with 

engineering model which purpose is to find all possible design and integration issues, eliminate 

them and proceed with integration of flight model without any complications. Integration of 

flight model was conducted in the same sequence after all issues were already solved and taken 

into account.  



70 

5. CHAPTER 5 

5.1. Testing and results 

Day in life testing 

One of the main requirements for the mission is to ensure the safety of all satellites during 

launch, deployment and extremely early operations. "Day in the life" test procedures have been 

developed to simulate on-orbit deployment of the satellite allowing to test compliance with the 

following requirements: 

• Deployables Constraint 

• Deployables Time Delay 

• Electrical Power State 

• Deployment Switch Function 

• Remove Before Flight Pin Functionality 

• Transmit Telemetry and Data Over RF 

• Receive Commands and Execute Over RF 

The testing requirements described would verify that the CXBN-2 spacecraft would not fail 

under the flight environmental conditions as defined by the NanoRacks CubeSat Deployer 

(NRCSD) Interface Control Document (ICD). 

The CXBN-2 functional testing was conducted at Morehead State University’s Spacecraft 

Environmental Testing Laboratory (SETL). The spacecraft was maintained in the onsite class 

10,000/100,000 clean rooms while a simulated UHF Earth station was set up approximately 15 

meters from the spacecraft. 
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Contamination and ESD requirements were established. To ensure mission success every 

action was taken to keep the spacecraft free of contamination. With this in mind all day in the 

life testing occurred within the SETL. 

A system verification testing procedure were conducted both before and after day in the life 

testing to ensure functionality. Both pre- and post-verifications were included in the final test 

reports.   

All data from testing was captured by technicians running the day in the life test to ensure 

verification of the ICD state requirement.  

Simulated mission benchmarks and spacecraft systems deployment events (antenna and solar 

panel deployment) were videotaped with an experiment clock running in the background to 

document and verify mission times associated with specific events. 

 

Figure 5.1-1: CXBN-2 in Magneto box. Day in life testing 

Data from the simulated Earth station (UHF beacon, data packets, and telemetry packets) 

were recorded and submitted in the final test report. 
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Day in the Life Testing was conducted in accordance with prepared procedure: 

1. Transfer spacecraft to roof of SSC in Magneto Box 

2. Prepare spacecraft for testing- mount on vertical stand 

3. Initiate start-up procedures of Simulated Earth station- GSW installed 

4. Initiate Earth station software 

5. Set external mission time clock to T = 0 

6. Initiate videotaping of test 

7. Ensure spacecraft is ready for testing- FSW installed 

8. Depress spacecraft footswitch and secure in locked position with Kapton tape 

9. Remove RBF pin 

10. Record Beginning Time of Test 

11. Simulate deployment by removing Kapton Tape from deployment pins. Simultaneously 

initiate external mission time clock 

12. At T +32 minutes verify that cutter actuated, heats up and releases deployables by cutting 

monofilament restrain 

13. Acquire spacecraft beacon with simulated Earth station 

14. Record State of charge 

15. Mount Horizontally and cover with Magneto Plastic box 

16. Simulate 92 minute orbit using sunlight and cover- Expose to Sun for 50 minutes to 

simulate sunlight component of orbit 

17. Cover for 40 minutes to simulate eclipse 

18. Uncover and reposition to maximize sun angle 

19. Repeat as many times as possible during sunlight hours 
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20. Ensure telemetry and science data is received 

21. Expose Detectors Periodically with Radioactive Sources 

22. Power down system  

23. Record Stop Time of Test 

24. Analyze telemetry 

25. Complete end-to-end data processing- produce spectrum from raw data 

After test is complete, UHF Antennas was wrapped and secured in stow configuration. Solar 

panel array was folded and secured in stow configuration. Deployment timer in EPS was reset as 

soon as system was powered down. RBF pin was reinstalled and spacecraft was configured for 

storage. Then spacecraft was removed from the Test Setup and placed in clean, ESD-safe 

containment. 

 

Fit-check 

For acceptance of integration into NRCSD and acceptance for flight, CXBN-2 had to go 

through fit-check and vibrational testing. Testing procedures and requirements were obtained 

from NanoRacks-NRCSD CubeSat Acceptance and Integration Record of Assembly (ROA) and 

NanoRacks-NRCSD CubeSat Vibration Test ROA documents. The tests outlined in the ROA 

document were performed by NanoRacks representative, Henry Martin. 

Photos were taken at all applicable steps of testing. Strict compliance with safe ESD 

processes was maintained at all times as required. 

Testing started with CubeSat Inspection: 

1. Perform a visual examination and note any abnormalities or damage of deployer and 

CXBN-2 with noting all details if damage is present. 
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2. Remove the CubeSat from any bagging material and place on the integration workbench on 

the CubeSat RAIL ENDS. 

3. Take pictures of each face of the CubeSat (-X, +X, -Y, +Y, -Z, +Z) using the NRCSD 

coordinate system. 

4. Perform dimensional inspection of CubeSat and record following dimensions: 

 Width Rail to Rail Dimension measured from outside rails. 

 Length Rail to Rail Dimension measured from end of rails. 

 Rail Width. 6mm Minimum. 

 Rail end clearance with CubeSat. 6.5mm Minimum. Dimension should be measured from 

closest feature to plane of rail ends.  

5. Record locations of separation switches.  

6. Verify the separation switch pins are captive and when compressed are contained within the 

maximum rail length. 

7. Verify the electrical design incorporates a minimum of 3 inhibit switches that can be 

activated by physical deployment.  

8. Obtain Go/No-Go Fit Gage P/N 100271 (Gen2, 3U), 100646 (Gen3, 3U), or 100649 (Gen3, 

6U) from controlled storage or shipping container.  

9. Verify fit gauge cleanliness. If necessary, clean fit gauge with alcohol.  

10. Slide CubeSat through the Fit Gage to verify clearance. CubeSat should not bind through 

complete length of Fit Gage. Record video of fit check. 
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Figure 5.1-2: Fitcheck 

11. Record the final mass of the CXBN-2 including information of scale model number / serial 

number and scale calibration date. 

 

Figure 5.1-3:  CXBN-2 on scales 
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12. Verify that CubeSat flight model matches design documented in safety data submittal. In 

particular, verify that CubeSat has no propulsive capability (i.e. thrusters).  

Fit-check was complete. CXBN-2 went through all measurement and fitting process without 

any issues and was accepted for further integration and vibrational testing. 

 

CubeSat Integration into NRCSD 

Following procedures describe process of CubeSat integration into NRCSD and preparation 

for vibrational test. 

1. Verify handling procedures for CubeSat and planned positioning and orientation of the 

CubeSat inside the NRCSD (making sure to integrate in the identical orientation that the 

deployment test or analysis was conducted in).  

2. Verify the RBF pin position and that it can remain in place during integration to NRCSD.  

3. Obtain flight NRCSD from controlled storage or shipping container. Then serial number, 

quad-pack configuration of NRCSD, and Pin Puller serial number are recorded. 

4. Verify cleanliness of NRCSD qualification unit. If necessary, clean NRCSD unit with 

alcohol. 

5. Remove the front and rear NRCSD access panels on the +Y face using a 5/64” hex head 

wrench. Set aside access panel screws in separate containers for the front and back access 

panel. 

6. Verify that NRCSD pusher plate assembly is in the restrained configuration. Ensure that the 

retainer thumb screw is fully engaged before proceeding (turn clockwise by hand until 

screw bottoms out). 

7. Remove the baseplate retainer screws (QTY: 8) using a 5/64” hex head wrench.  
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8. Remove the baseplate / pusher plate assembly by pulling on the baseplate retainer bolt.  

9. Inspect the inside of the NRCSD through the access ports and baseplate opening and verify 

cleanliness. If necessary, clean with alcohol.  

10. Now NRCSD is ready for CubeSat integration.  

11. Insert CubeSat from the back of the deployer (opposite side of the doors). Make sure to load 

the CubeSat in the identical configuration that is planned for flight. In case of CXBN-2, 

coordinate system of the satellite is collinear with coordinate system of deployer. 

12. Verify that CubeSat slides freely along rails. Slide the CubeSat all the way to the front of the 

deployer and then back again. 

13. Manipulate the CubeSat to extreme positions within the rails and verify that any deployment 

switches along the rails cannot disengage (listen for mechanical ‘click’).   

14. Verify that there is acceptable envelope clearances between the deployer side walls and the 

CubeSat side panels. Take pictures of all 4 sides.  

15. Insert CubeSat from the back of the deployer (opposite side of the doors). Make sure to load 

the CubeSat in the identical configuration that was planned for flight and fit-checked. Take 

picture of this configuration.  

16. Slide the CubeSat to the front of the NRCSD so that it is coincident with the doors. 

17. Insert the flight spacer into the back of the deployer (opposite side the doors) and slide along 

the rails until it is coincident with the adjacent CubeSat.  
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Figure 5.1-4: Satellites integrated into NRCSD prior to vibrational testing 

18. Obtain base plate / pusher plate assembly and ensure that the retainer thumb screw is fully 

engaged. Reinstall the base plate assembly with the eight (8) base plate retainer screws and 

torque to specification 6 in-lbs using a 5/64” hex head wrench. Note, there are six (6) 

countersunk / flat head screws and two (2) button head screws. Install button head screws 

into holes with no recess.  

19. Remove pusher plate retainer bolt by rotating the thumb screw counter-clockwise until it is 

no longer engaged with the pusher plate.  

20. Install NRCSD jack screw into the center of the baseplate (5/16”-24 set screw) using a 5/32” 

hex bit. Record the length of jack screw used. Size the jack screw length by minimizing the 

amount of exposed threads beyond the jam nut (that will be installed). Torque jack screw to 

specification 2 in-lbs.  

21. Install NRCSD Jam Nut (P/N: MS51972-2D) onto jack screw. During installation, first hand 

tighten the jam nut while using a 5/32” hex key to hold the jack screw in position. While 

using the hex key to secure the jack screw, torque the jam nut to specification 30 in-lbs with 

a 1/2” wrench. Note, if torque wrench not available, hand tighten (~1/4 turn past snug).  
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22. Inspect the integrated system and ensure that the CubeSats cannot move within the NRCSD 

(especially in direction of pre-load; Z-axis). Pick NRCSD up and bias in each direction to 

verify CubeSats cannot move.  

23. Take several pictures of the integrated assembly through the access panels of the NRCSD. 

Verify that RBF has been removed. Verify final position of CubeSats / spacers inside 

NRCSD.  

24. Install front and rear NRCSD access panels with 5/64” hex wrench. Torque to specification 

6-in-lbs.  

25. End of integration procedure. 

CXBN-2 was integrated into NRCSD following all procedures and verifications and was 

ready for vibration testing. 

 

Vibration testing 

To proceed to vibration test, all procedure had to be repeated and mass model or second 

CubeSat had to be integrated instead of spacer. Then loaded deployer was moved from clean 

room and placed on the vibration table. Special adapter plate was made to mount deployer on 

vibration slip table in different orientations. Bolts were tightened to 55 in-lbs. 

Vibration levels and duration for each independent axis were taken from the NR-SRD-139 

Flight Acceptance Test Requirements for Lithium-ion Cells and Battery Packs document. 

Testing was performed in 3 steps which included random vibration tests of the X, Y, and Z 

axes. 
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Figure 5.1-5 : Morehead State University Environmental Testing Laboratory (SETL) 

Table 1 below lists the instrument names and descriptions of the hardware used for vibration 

testing. 

Shaker system amplitude uncertainties: 

 10 Hz to 2kHz: +/- 2.1% 

 2 kHz to 4 kHz: +/- 2.4% 

 > 4 kHz: increasing to +/- 3.3% at 10 kHz 

Table 1: Vibration Testing Equipment 

Instrument Name Description 

Shaker System 
Unholtz Dickie Electro-Mechanical Shaker & Slip Table 

DAQ System & 

Controlling Software 
Unholtz Dickie VinW II 

NanoRacks Provided 

Interface Plate 

Aluminum Plate used as an interface between provided test 

pod and slip table 

Data was obtained from two accelerometers. First was threaded into slip table and used as 

reference accelerometer. Second was fastened to test pod during each test and was used as 

measurement accelerometer. 

Testing was done in the following order: X axis, Z axis, Y axis. 
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The vibration test parameters are sourced directly from the NR-SRD-139 Flight Acceptance 

Test Requirements for Lithium-ion Cells and Battery Packs document. 

Table 2: Test Parameters 

Frequency (Hz) ASD (G2/Hz) dB/Octave Grms 

20.00 0.028800 * * 

40.00 0.028800 0.00 0.76 

70.00 0.072000 4.93 1.43 

700.00 0.072000 0.00 6.89 

2000.00 0.018720 -3.86 9.65 

 

Vibration testing procedures, equipment and report document were prepared by Graduate 

Research Assistant Jennafer Grindrod. Test report is described in 161118-CXBN2-VIBTR 

document. 

 

Figure 5.1-6:  Engineering and Flight models after successful environmental testing 



82 

Post vibration 

After vibration testing was complete, these procedures were followed: 

1. Remove the CubeSat from the NRCSD and place on workbench on vertical stand. 

2. Inspect the inside of the NRCSD through the access ports and baseplate opening. Identify 

any FOD or loose components present inside the NRCSD and take multiple pictures.  

3. Perform a complete post-vibration test inspection of the CubeSat. At a minimum verify 

the following: 

a. All deployables stowed and retention mechanisms intact. 

b. All external fasteners remain intact and torqued.  

c. All frangible materials (such as solar arrays) are free of any cracks or damage. 

d. Deployment switches are both electrically and mechanically functional (all 

switches have sufficient travel and perform their intended function) 

4. Take photos of all six external faces of CubeSat and compare to pre-vibe photos.   

5. End post-vibe inspection.  

 

After vibrational testing was complete, satellite went through visual and physical inspection. 

Hardware was not visibly damaged, was not audibly damaged and was not warped or otherwise 

compromised. CXBN-2 went through vibrational testing and passed all inspection and 

functionality was successfully tested. 
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Figure 5.1-7: CXBN-2 Flight model ready for delivery 

 

When all testing and final preparations on satellite were complete, batteries were fully 

charged, RBF pin was installed, deployables were put in stowed position and secured with 

monofilament. CXBN-2 flight model was cleaned with alcohol, put into ESD safe bag and 

packaged in stress-resistant case. Then it travelled to launch provider facility where NanoRacks 

representatives did final integration into flight NRCSD and was ready for launch to the ISS on 

April 18, 2017. At a time when this thesis paper was written, CXBN-2 was already on the ISS 

waiting for deployment in June 2017. 
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Figure 5.1-8: CXBN-2 is packaged and ready for shipment 

 

5.2. Conclusions and lessons learned 

Design 

When designing any mechanical structure, it is crucial to have mechanical engineering 

background. During design process, it was noticed that lack of basic engineering knowledge may 

influence quality of final product significantly. Experience with CAD modelling and CAM is 

important as time spent on designing parts can vary significantly. 

It is very important to work as a team while designing space system. Team leads on each 

subsystems should have separate meetings to discuss critical design solutions, examples: hole 

pattern location and size for mounting subsystems PCFs to crossmembers; location of 
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programming ports as for latest EPS version JTAG connector appeared to be hidden behind the 

side panel wall; strength of collimator walls and flange was not sufficient for mounting on 

payload mount that led to redesign of payload bracket and extra machining. Team working was 

still on high level that is representative for space systems engineers. But members of a team 

especially subsystem team leads have to be even more careful and more attentive to small details. 

Design of current structure can be made even more universal. Issues during integration 

showed that there have to be flexibility of positon of subsystems. Extra mounting holes for 

crossmembers shall be placed on side panels so crossmembers can be repositioned if any 

unpredictable fitment issues are discovered. Any possible integration issues shall be considered 

on design stage. 

 

Manufacturing 

For future missions, it is important to increase professionalism of machining personnel if any 

parts are planned to be machined in-house. There should be established professional 

manufacturing environment. There should be people who design, people who prepare detailed 

machining process and people who do actual machining. Machining technologist should be 

responsible for preparation of technology of machining of each part. This person shall decide 

which tools to use, which method and approach to take as well as checking drawings for any 

issues. 

There are a lot of different machining companies. And every company gives different 

machining prices and lead time. The shorter lead time the higher the price. For missions with 

limited budgets it is important to consider that lead times are at least 4-6weeks and plan 

machining order accordingly with time margin before integration process. 
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For best results and quality of machining, companies with sufficient experience and 

reputation should be chosen.  

 

Integration 

It is important to have a log document that is used to note if a part or tool or anything else has 

been taken away from main assembly table. It should include person’s name, time, reason, 

destination where a part goes and any extra information needed to avoid misplacement. 

Workbench where any highly volatile, toxic, dangerous chemicals are being used needs 

sufficient ventilation. It needs to be directly under the fan. Safety goggles, respirators, gloves and 

other protection shall be used at any time while using those chemicals. 

System has to go through extensive functional testing before any fit checks and vibrational 

testing. Otherwise if spacecraft has to be taken apart, it validates all environmental testing. 

It was discovered that some threadlocking compounds like Vibratite VC-3 should not be used 

on threads of small fasteners like M2 and M3. It dries too fast and its application is very 

complicated. An example was discussed in integration section. Vibratite VC-3 is good for use 

over tightened fasteners and as bonding material for parts or wires that need extra support and 

movement limitation. Loctite green and red are preferred. High Strength Red Loctite creates very 

strong bonding and shall be used only for highly stressed threads and fasteners that will never be 

taken out. Otherwise, tempering with fasteners that used Red Loctite results in stripped threads 

and damaged parts. Medium strength Green Loctite was used for most connections. It provided 

sufficient bonding and at the same time fasteners could be removed if needed.  

Integration is a constant work with sensitive electronics, expensive and unique components. 

It requires a lot of patience and steadiness while fully understanding of process of assembly. 
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Confidence should be present in every movement. Otherwise a person should not be allowed to 

be a part of integration team as it could lead to accidental damage or destruction of spacecraft. 

Budget for structure development is shown in Appendix D. It is almost impossible to 

calculate labor because a lot of people worked and helped at different stages of project 

progression. Also, timeline of the CXBN-2 project of the last several month is shown in 

Appendix C. 
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7. APPENDICES 

Appendix A: Drawings of structural components 
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Appendix B: List of fasteners 
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Appendix C: Final timeline of CXBN-2 project 
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Appendix D: Budget 

Machining $3,000 3 sets + extra crossmembers

Anodization $250

3D printing collimators ~$3500 8pcs

Solar panel PCBs ~$600

Fasteners and other hardware ~$1000

Labor per person ~$70000

Total $78,350

Margin +20% $94,020

Total, excluding labor ~$10000 For 3 fulll sets of structure  
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