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ABSTRACT 26 

Global stakeholders including the World Health Organization rely on predictive 27 

models for developing strategies and setting targets for tuberculosis care and control 28 

programs. Failure to account for variation in individual risk leads to substantial biases 29 

that impair data interpretation and policy decisions. Anticipated impediments to 30 

estimating heterogeneity for each parameter are discouraging despite considerable 31 

technical progress in recent years. Here we identify acquisition of infection as the 32 

single process where heterogeneity most fundamentally impacts model outputs, due to 33 

selection imposed by dynamic forces of infection. We introduce concrete metrics of 34 

risk inequality, demonstrate their utility in mathematical models, and pack the 35 

information into a risk inequality coefficient (RIC) which can be calculated and 36 

reported by national tuberculosis programs for use in policy development and 37 

modeling. 38 

  39 
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INTRODUCTION 40 

Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide, 41 

accounting for over 10 million new cases annually1. Although allusions are often 42 

made to the disproportionate effect of TB on the poorest and socially marginalized 43 

groups2,3, robust metrics to quantify risk inequality in TB are lacking. Data reported 44 

by the World Health Organization (WHO), which mathematical models often rely on 45 

for calibrations and projections, are typically in the form of country-level averages 46 

that do not describe heterogeneity within populations. In keeping with the spirit of the 47 

Sustainable Development Goals agenda4, we postulate that mathematical models that 48 

account for heterogeneity and inequality may best reflect the potential impact of TB 49 

prevention and care strategies in achieving disease elimination. Further, we 50 

hypothesize that disease incidence patterns in a population reflect unobserved 51 

heterogeneity and may be used to inform model development and implementation. 52 

Variation in individual characteristics has a generally recognized impact on the 53 

dynamics of populations, and pathogen transmission is no exception5. In infectious 54 

diseases, heterogeneities in transmission have been shown to have specific effects on 55 

the basic reproduction number, R0, in ways which are unique to these systems6-10. In 56 

TB, as in other communicable diseases, this approach motivated the proliferation of 57 

efforts to collect data on contact patterns and superspreading events, to unravel 58 

processes that may affect transmission indices and models. The need to account for 59 

variation in disease risk, however, is not unfamiliar in epidemiology at large, where 60 

so-called frailty terms are more generally included in models to improve the accuracy 61 

of data analysis11. The premise is that variation in the risk of acquiring a disease 62 

(whether infectious or not) goes beyond what is captured by measured factors 63 
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(typically age, malnutrition, comorbidities, habits, social contacts, etc), and a 64 

distribution of unobserved heterogeneity can be inferred from incidence trends in a 65 

holistic manner. Such distributions are needed for eliminating biases in interpretation 66 

and prediction12,13, and can be utilized in conjunction with more common reductionist 67 

approaches, which are required when there is desire to target interventions at 68 

individuals with specific characteristics. 69 

Individual risk of infection or disease relates to a probability of responding to a 70 

stimulus and, therefore, direct measurement would require the recording of responses 71 

to many exposures to obtain the frequency at which the outcome of interest occurs. In 72 

TB, this is unfeasible due to the relatively low frequency of disease episodes and the 73 

extremely variable time period between exposure and disease development, but may 74 

be approximated by sub-dividing the population in sufficiently large groups and 75 

recording occurrences in each of them. Then incidence rates can be calculated per 76 

group, and ranked. Supplementary Fig. 1 illustrates the population of a hypothetical 77 

country comprising low and high risk individuals distributed geographically (but 78 

dividing by age or income level, for example, applied singly or in combination, could 79 

also serve our statistical purposes). Forasmuch as individuals are nonuniformly 80 

distributed, disease incidence will vary between groups and carry information about 81 

variation in individual risks.  82 

Here we adopt concepts and tools developed in economics to measure inequality in 83 

wealth, such as the Lorenz curve14 and the Gini coefficient15, and modify them into 84 

suitable indicators of disease risk inequality. We then calculate a risk inequality 85 

coefficient for three countries – Vietnam, Brazil and Portugal, representing high to 86 

low TB burdens – and derive country-specific risk distributions to inform 87 
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transmission models. The resulting models are applied to investigate the conditions 88 

for reducing TB incidence by 90% between 2015 and 2035, one of the targets set by 89 

the WHO’s End TB Strategy16. The results differ significantly from those obtained by 90 

a homogeneous approximation of the same models. We find that by considering 91 

heterogeneity, control efforts result in a lower impact on disease burden, except in 92 

special circumstances which we highlight. More generally, we elucidate how model 93 

predictability relies on certain forms of heterogeneity but not others, and propose a 94 

practical scheme for summarizing inequality in disease risk to be used in modeling 95 

and policy development for TB and other diseases. 96 

RESULTS 97 

Risk inequality coefficient (RIC) 98 

Fig. 1 depicts Lorenz curves14 for TB occurrences in the populations of Vietnam, 99 

Brazil and Portugal structured by municipalities (level 2 administrative divisions), 100 

enabling the calculation of a Gini coefficient15 that we refer to as the risk inequality 101 

coefficient (RIC) (Methods). To inform mathematical models of TB transmission with 102 

two risk groups12,17, we discretize risk such that 4% of the population experiences 103 

higher risk than the remaining 96%. This cut-off is consistent with previous 104 

studies17,18, although it could have been set arbitrarily as the procedure does not 105 

depend on how we discretize what is conceivably a continuous risk distribution. The 106 

Lorenz curves corresponding to the discretization, which are depicted by the dashed 107 

lines in Fig. 1a, are then used as an approximation to the original solid curves with the 108 

same RIC. 109 

RIC-compliant transmission models 110 
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Inequality in TB risk among individuals was implemented in three processes which 111 

were analyzed in alternation (Methods; parameters in Table 1): (i) contact rates; (ii) 112 

susceptibility to infection; and (iii) progression from primary infection to active 113 

disease. This study is primarily devoted to heterogeneity in contact rates, while the 114 

other two modalities are included for comparative purposes. Although the models 115 

differ in the precise implementation of the relative risk parameters (𝛼" and 𝛼#), in all 116 

three cases these can be calculated exactly and simultaneously with the mean 117 

effective contact rate (𝛽), so as to match the country-specific incidence patterns 118 

reported for the first year in the data series.  119 

The procedure was applied to data from Vietnam, Brazil and Portugal (Fig. 2, for 120 

heterogeneous contact rates), resulting in risk variances of 10.5 in Vietnam, 11.1 in 121 

Brazil and 5.63 in Portugal. Notice that these variances are consistently higher than 122 

the observed variances in TB incidence (2.3 in Vietnam, 5.1 in Brazil and 2.7 in 123 

Portugal), indicating that transmission masks risk heterogeneity to some extent and 124 

we need to resort to models for the inference of total variances11. Model outputs were 125 

then analyzed in-depth revealing a poor predictive capacity of homogeneous models 126 

and leading to the identification of acquisition of infection as the single most 127 

important process behind model disparities.  128 

The risk distributions represented inside the various epidemiological compartments in 129 

Fig. 2b, e, h, are key to understanding why model outputs diverge. Mean risks have 130 

been normalized to one in all countries (i.e. the distributions in Fig. 2a, d, g have 131 

mean one), but as the system runs to endemic equilibrium high-risk individuals are 132 

infected predominantly. In other words, high-risk individuals are selected out of the 133 

uninfected compartment when a force of infection is in operation. As a result, the 134 
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mean risk in the uninfected compartment decreases, decelerating the epidemic to the 135 

extent that the uninfected pool sustains transmission. This effect is greater for stronger 136 

forces of infection and larger risk variances, consistently with the mean risks 137 

displayed inside square brackets for the various epidemiological compartments. A 138 

similar process occurs for all epidemiological compartment where individuals are at 139 

risk of infection (i.e. uninfected (U) and latent (L) in the case of the model adopted 140 

here). 141 

Risk inequality as a compromiser of intervention impact 142 

The heterogeneous contact-rate model initiated according to 2002 incidences (Fig. 2) 143 

was run forward in time with a constant decay rate in reactivation to meet an arbitrary 144 

fixed target of halving the incidence in 10 years (Fig. 3b, d, f, black curves). If these 145 

estimations (exact calculations in this case) and projections had been made by the 146 

homogeneous model, the required control efforts would have been underestimated 147 

and the target systematically missed (Methods; Supplementary Table 1), with relative 148 

errors around 20-30% for Vietnam, 25-40% for Brazil and 10-20% for Portugal 149 

(colored curves). This is because the force of infection decreases as the intervention 150 

progresses, reducing the strength of selection described above, which in turn allows 151 

for increasing mean risks in compartments at risk of infection (Fig. 3a, c, e), 152 

counteracting the intended effects of the intervention. Homogeneous models 153 

artificially disable this selection process, creating an illusion that control targets are 154 

moving when observed from a homogeneous frame.  155 

This is a general phenomenon in infectious diseases, although there may be 156 

exceptional circumstances where the sign of the effect may be reversed as detailed 157 

below. In any case, it is a systematic error (bias) not to be confused with uncertainty 158 
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in parameter estimates19,20. 159 

Meeting WHO’s End TB incidence targets 160 

The models were used to reproduce reported country-level trends for TB incidence in 161 

Vietnam, Brazil and Portugal. Following initialization in 2002 as above, the model 162 

was fitted to the incidence declines reported by WHO until 2015. In the first instance 163 

we explored how much reactivation should have decreased had the observed 164 

incidence declines been attributed to changing this parameter alone at a constant rate 165 

(Supplementary Table 2). This was performed numerically by a binary search 166 

algorithm designed to meet 2015 incidences (Fig. 4). Trajectories were then 167 

prolonged until 2050 (dashed segments in the same figure) suggesting the need for 168 

increased efforts to meet the End TB incidence targets (2035 targets marked by dotted 169 

lines). This initial exploration was completed by the introduction of a scale-up 170 

parameter (𝜅) to account for increased reductions in reactivation from 2020 onwards 171 

and estimating the necessary scaling to meet the 2035 target in each country 172 

(displayed as “× 𝜅” in the figure). As above, the homogeneous model consistently 173 

underestimates the required control efforts. In the following we refer to this as the 174 

default expectation when comparing the outcomes of the same investigation strategy 175 

applied to more realistic scenarios where incidence declines are attributed to a 176 

combination of parameters. 177 

When incidence declines are attributed to reductions in the probability of progressing 178 

from primary infection to active disease (𝜙, with the remaining 1 − 𝜙 maintaining a 179 

latent infection) as well as reactivation (𝜔), estimating the two decay rates is not 180 

possible with a simple binary search algorithm and we use a Bayesian Markov Chain 181 

Monte Carlo (MCMC) approach (Methods). Fig. 5 depicts the declining annual 182 
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incidences and model trajectories, based on the means and 95% credible intervals of 183 

the posterior distributions of decay rates in 𝜙 and 𝜔 (Supplementary Table 3), 184 

prolonged until 2020. Also in this scenario, control measures must be intensified for 185 

meeting the ambitious End TB targets. We apply the scaling factor k uniformly to the 186 

decay rates of the two parameters and estimate the required effort intensification. 187 

Heterogeneous contact-rate (Fig. 5a, c, e) and homogeneous (Fig. 5b, d, f) models are 188 

similarly effective at capturing the data, but require significantly different scale-up 189 

efforts (Supplementary Table 4). In contrast with the case where only reactivation was 190 

reduced, we now get an indication that Brazil requires less effort intensification under 191 

heterogeneity (in relation to that predicted by the homogeneous model) while 192 

Vietnam and Portugal comply with the default expectation. Inspection into the percent 193 

reduction curves for the two parameters reveals that scale-up tends to be more 194 

effective when the initial decline (pre-scale-up) is predominantly attributed to 195 

reducing reactivation (homogeneous in Vietnam and Portugal; heterogeneous in 196 

Brazil). 197 

Under heterogeneous contact rates, the incidence declines observed in Vietnam and 198 

Portugal have been predominantly attributed to reducing progression to disease from 199 

recent infection (Fig. 5a, e; bottom panels show blue curve above red in pre-scale-up 200 

phase). Given the assumption of identical scaling factors for both processes, the 201 

reduction in 𝜙 (blue) reaches saturation soon after scale-up is initiated leaving most of 202 

the remaining effort to 𝜔 (red) and inflating the required scaling efforts. 203 

Contrastingly, in Brazil the incidence decline has been largely attributed to reducing 204 

disease arising from reactivation (Fig. 5c; bottom panel shows red curve above blue 205 

pre-scale-up) leaving the reduction in 𝜙 far from saturation and creates a scenario 206 

where reducing progression maintains substantial potential to generate further impact 207 
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after scaling. 208 

Naturally, there is no reason for scale-up factors to be the same for the two processes, 209 

and this result suggest that new ways to reduce reactivation are needed in Vietnam 210 

and Portugal. In relation to that, it also raises the importance of understanding what 211 

may have led to the declining reactivation rates in Brazil and how might other 212 

countries achieve similar goals. More detailed datasets should be interrogated in 213 

search for answers, but this is potentially due to especially intense social protection 214 

programs implemented over recent decades in Brazil21-25, leading to improved health 215 

conditions in population segments classically more at risk for TB. 216 

The parameters that have been most commonly varied to explain incidence trends in 217 

modeling studies are rates of successful treatment (𝜏) and mean effective contacts 218 

(𝛽)26. For completion and comparability with other studies we conceive additional 219 

scenarios where the observed declines in incidence are attributed to decays in 𝜏 and 220 

w (Supplementary Fig. 2 and Supplementary Tables 5 and 7) or 𝛽 and 221 

w (Supplementary Fig. 3 and Supplementary Tables 6 and 7), and infer the respective 222 

attributions as above. In both cases the scaling in control efforts required to meet End 223 

TB incidence targets appears lower under heterogeneity. This seems counter-intuitive 224 

at first but see the values of 𝑅- plotted as insets in Figs. 4, 5 and Supplementary Figs. 225 

2, 3. During the scale-up phase, this transmission index is consistently below one in 226 

the homogeneous implementation and above one when heterogeneity is considered. 227 

Since 𝜏 and 𝛽 relate to ongoing transmission, scaling changes in these parameters is 228 

not effective at reducing incidence when 𝑅- < 1 and, consequently, the homogeneous 229 

implementations must rely on the reduction in 𝜔 alone to meet the targets. This 230 

process results in the inflation of the scale parameter 𝜅 observed under homogeneity 231 
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and reversion of the default expectation. The sensitivity of our conclusions to which 232 

parameters are actually varying in each setting reinforces the need for more 233 

discriminatory data and dedicated studies.  234 

Results presented so far addressed heterogeneity in contacts rates, which implicitly 235 

considers that acquisition of infection is positively correlated with transmission to 236 

others5,8,9,10,12,18. But irrespective of how present heterogeneity in contact rates is in 237 

TB dynamics, there is a myriad of biological factors which contribute to making 238 

individuals different and may affect TB incidence patterns. 239 

Fig. 6 (and Supplementary Table 8) shows the results obtained by employing the 240 

same procedures as in Fig. 5 but assuming that heterogeneity affects susceptibility of 241 

infection given exposure, rather than the rate of contacts. The two variants are in fact 242 

described by the same model, except for how the force of infection is formulated 243 

(Methods). Essentially, if we write the force of infection as 𝜆 = 𝛽(𝜌"𝐼" + 𝜌#𝐼#), 244 

where the new parameters 𝜌" and 𝜌# represent the relative infectivities of individuals 245 

in risk groups 1 and 2, respectively,  heterogeneity in contact rates12 is retrieved when 246 

𝜌6 = 𝛼6 and heterogeneity in susceptibility17 is obtained by imposing 𝜌6 = 1, while a 247 

combination of the two would correspond to values in between. 248 

The agreement between Figs. 5 and 6 supports the notion that the results are mostly 249 

insensitive to whether heterogeneity affects primarily contact rates or susceptibility to 250 

infection, but the case of Vietnam deserves a special note. Under the heterogeneous 251 

susceptibility formulation, the contribution of reducing reactivation to the decline in 252 

incidence is more evident than under heterogeneous contact rates (Fig. 6b). As a result 253 

the scaling factor required to meet the 2035 incidence target is substantially reduced. 254 

This is not sufficient to reverse the default conclusion that the homogeneous model 255 
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underestimates control efforts (as it happens again in Brazil), but it brings the 256 

estimated scaling factor closer to that estimated by the homogeneous model. It 257 

follows that any combination of the two forms of heterogeneity is expected to lead to 258 

the same qualitative conclusions, whereas, quantitatively, the findings for Brazil and 259 

Portugal are confined to narrow ranges while for Vietnam they are highly sensitive to 260 

how individual predisposition to acquire infection correlates with propensity to infect 261 

others. In any case, all the results presented so far imply heterogeneity in acquisition 262 

of infection.  263 

The results presented are in stark contrast with forms of heterogeneity that do not 264 

affect acquisition of infection. Fig. 7 (and Supplementary Table 9) shows that when 265 

heterogeneity is in the probability of progression from primary infection to active 266 

disease, model outputs do not deviate from the homogeneous implementation. This is 267 

because progression is not under the selection mechanisms described earlier in the 268 

paper, as demonstrated by the mean risk among susceptible compartments remaining 269 

flat at the value one (Fig. 7b) by contrast with what has been noted under 270 

heterogeneous contact rates, for example (Fig. 3a, c, e). Similarly, heterogeneity in 271 

rates of reactivation or treatment success should generally not lead to different model 272 

outputs unless correlated with predisposition for acquiring infection. This confirms 273 

our earlier premise that variation in acquisition of infection is the single most 274 

important process behind the disparities between homogeneous and heterogeneous 275 

models, and hence the most important to estimate. 276 

In further account to sensitivity analysis we show that the original results of Fig. 5 are 277 

robust to whether individuals clear the infection upon treatment or maintain a latent 278 

infection (Supplementary Fig. 4 and Supplementary Table 10). 279 
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Prevalence of latent TB infection 280 

Prevalence of latent TB infection (LTBI) calculated from model trajectories generated 281 

by our heterogeneous models (27.0-28.9% in Vietnam, 15.2-16.1% in Brazil, and 282 

16.9-18.0% in Portugal, in 2014; Supplementary Table 11) are generally consistent 283 

with estimates from a recent study27. This is irrespective of whether heterogeneity is 284 

in contact rates or susceptibility to infection. Even though these percentages are 285 

somewhat smaller than those expected under the homogeneous model, the reservoir 286 

must nevertheless be contained in all three countries if incidence targets are to be met.  287 

DISCUSSION 288 

The notion that heterogeneity affects the results of population models and analyses is 289 

not new5,28-32, but we still face a general inability to measure it. We propose a 290 

concrete way forward for infectious disease transmission models, which is based on 291 

routinely collected data. Measures of statistical dispersion (such as Lorenz curves14 292 

and Gini coefficients15) are commonly used in economics to represent the distribution 293 

of wealth among individuals in a country and to compare inequality between 294 

countries, but rarely used in epidemiology33,34. Measuring disease risk of an 295 

individual is less direct than measuring income, but surely this can be overcome in 296 

creative ways for classes of diseases.  297 

We have focused on tuberculosis, and shown how to approximate distributions of 298 

individual risk from suitably structured disease notification and population data (Fig. 299 

1; Supplementary Fig. 1), and how to summarize the information into a simple risk 300 

inequality coefficient (RIC = 0.30 in Vietnam, RIC = 0.46 in Brazil, and RIC = 0.32 301 

in Portugal), analogous to the Gini coefficients calculated by the World Bank to 302 

describe inequality in the distribution of wealth (0.38 in Vietnam, 0.51 in Brazil, and 303 
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0.36 in Portugal). Because they are based on the use of disease estimates at the level 304 

of administrative divisions within countries, there are limits to the accuracy of the 305 

RIC estimates, especially due to misreporting, which may be more severe in some 306 

countries than others. Other uses of the Gini coefficient, however, face the similar 307 

limitations while the methodology is still used to drive policy and program decisions 308 

and is improved upon as better data and formalisms become available. Importantly, 309 

the availability of comparable inequality metrics in economics and health can pave 310 

the way to pertinent studies between income inequality and health and provide a basis 311 

for equity considerations in policy development35, a major component of the 312 

Sustainable Development Goals agenda4. In addition, we have demonstrated how to 313 

input this information into tractable mathematical models and why this is essential to 314 

accuracy and predictive capacity of these decision-making tools.  315 

The approach followed here is in sharp contrast with those based on explicit 316 

metapopulation models36-38. We use incidence data of a country stratified into its 317 

administrative (geographical) divisions as a means to infer variation in disease risk 318 

among individuals, rather than as a direct measure of variation between the divisions 319 

themselves. To highlight this distinction we built a metapopulation model consisting 320 

of two subpopulations (patches), each with its intrinsic individual variation, and 321 

constrain the outputs to be consistent with patch incidences (Methods; Supplementary 322 

Fig. 5), according to data from our study countries (Fig. 1). This sets a mathematical 323 

problem which can be solved over a range of country-level variances in individual 324 

risk (Supplementary Figs. 6 and 7), and for each variance there is an exact value of 𝑅- 325 

that makes the metapopulation model compatible with the stratified incidence data. 326 

The result is a curve describing 𝑅- as a function of variance in individual risk which 327 

is plotted in Fig. 8 together with the corresponding metrics obtained from the models 328 
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used in this study (circles). The common practice of implementing a metapopulation 329 

without individual variation within subpopulations (lower limit of the curve), disables 330 

the action of selection at the individual level and carries similar biases to those 331 

present in homogeneous models (open circles). As individual variation increases, the 332 

curve approaches our heterogeneous models (filled circles), supporting the notion that 333 

the models proposed in this paper represent the dynamics of an average location 334 

within a country (with variation captured down to the individual level), in contrast 335 

with standard metapopulation models which describe an entire country structured into 336 

patches (with differentiation between patches but neglecting individual variation 337 

within).  338 

Strikingly, the figure highlights an essential need for representing heterogeneity at the 339 

finest level if transmission indices are to be estimated accurately. In placing the 340 

models adopted here in the wider context of TB models with the same structure 341 

whose outputs are compatible with stratified incidence data for Vietnam, Brazil and 342 

Portugal, the figure also reveals one potential limitation of the approach. The range of 343 

variances (and associated 𝑅- values) compatible with the data is wide and this is 344 

arguably the greatest current attrition to reaching high levels of certainty on 345 

parameters and predictions. This can be improved by combining multiple schemes for 346 

stratifying country incidence data alongside the development of more sophisticated 347 

methods for inferring variation in individual risk from patterns in the data. 348 

In conclusion, the worldwide adoption of risk inequality metrics, such as the RIC 349 

proposed here or similar, has the potential to prompt an explosion of creativity in 350 

mathematical modeling, but it can also enable policymakers to assess risk inequality 351 

in each country, compare the metric across countries, and monitor the impact of 352 
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equalization strategies and targeted interventions over time. 353 

METHODS 354 

Lorenz curves and risk inequality coefficients 355 

Lorenz curves14 are widely used in economics to calculate indices of inequality in the 356 

distribution of wealth, known as Gini coefficients15. Although rarely used in 357 

epidemiology, similar metrics can be adopted to describe inequalities in disease 358 

risk33,34. Here we construct a Lorenz curve for each study country from TB 359 

notifications and population data structured by municipalities (level 2 administrative 360 

divisions). Municipalities are ordered by incidence rates (from low to high) and 361 

cumulative TB notifications are plotted against cumulative population (both in 362 

percentages). By construction, this results in a convex curve between (0,0) and 363 

(100,100), which would be a straight line in the absence of inequality. A risk 364 

inequality coefficient (RIC) can be calculated as the ratio of the area between the 365 

curve and the equality line, over the area of the triangle under the equality line. This 366 

gives a number between 0 and 1, which is analogous to the Gini coefficient 367 

commonly used to summarize income inequality, with the exception that while 368 

income can be measured at the individual level the assessment of TB risk cannot be 369 

made by analyzing individuals directly, but must be approximated from group 370 

measurements. 371 

Supplementary Fig. 8 compares alternative Lorenz curves generated for Vietnam, 372 

Brazil and Portugal to explore the effects of timespan and group size. As we must 373 

comply with the administrative divisions already established in each country, level 2 374 

appears to offer the best compromise between resolution (the smaller the units, the 375 

closer we get to measuring individual risk) and occurrences (the larger the units, the 376 
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larger the numbers and the more accurate the risk discrimination39). Regarding 377 

timespan, the longer the data series the better. We used 10 years (2006-2015) in 378 

Vietnam and 14 years (2002-2015) in Brazil and Portugal to generate the respective 379 

RIC values. 380 

We then use the RIC to inform risk distributions for TB transmission models. The 381 

Lorenz curves utilized to obtain RIC values consist of many segments (as many as 382 

administrative divisions; 696 in Vietnam, 5127 in Brazil and 308 in Portugal). To 383 

keep our models tractable and low dimensional without compromising the overall 384 

variance in risk we construct two-segment Lorenz curves with the same RIC as the 385 

original and use this approximation to infer risk distributions for our TB models. 386 

Mathematical models  387 

We adopt a TB transmission model which is adapted from previously published 388 

studies12,17, to represent risk heterogeneity in three alternative ways. 389 

(i) Heterogeneity in contact rates: 390 

𝑑𝑈6
𝑑𝑡 = 𝑞6𝜇 + 𝜃𝜏𝐼6 − 𝜆6𝑈6 − 𝜇𝑈6																																																																																					(1) 391 

𝑑𝑃6
𝑑𝑡 = 𝜆6(𝑈6 + 𝐿6) − (𝛿 + 𝜇)𝑃6																																																																																						(2) 392 

𝑑𝐼6
𝑑𝑡 = 𝜙𝛿𝑃6 + 𝜔𝐿6 − (𝜏 + 𝜇)𝐼6																																																																																							(3) 393 

𝑑𝐿6
𝑑𝑡 =

(1 − 𝜙)𝛿𝑃6 + (1 − 𝜃)𝜏𝐼6 − 𝜆6𝐿6 − (𝜔 + 𝜇)𝐿6,																																														(4) 394 

where subscripts i = 1,2 denote low and high risk groups that individuals enter at birth 395 

in proportions 𝑞" and 𝑞#, respectively. Within each group individuals are classified, 396 

according to their infection history, into uninfected (𝑈6), or infected in one of three 397 
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possible states: primary infection (𝑃6); latent infection (𝐿6); and active tuberculosis 398 

disease (𝐼6) which is the infectious state. The model parameters along with their 399 

typical values used herein are listed in Table 1. The force of infection upon uninfected 400 

individuals is 401 

𝜆6 =
𝛼6
〈𝛼〉 𝛽

(𝛼"𝐼" + 𝛼#𝐼#),																																																																																																		(5) 402 

where 𝛼6 is a modifier of risk (contact rate in this case) of individuals in group i in 403 

relation to the population mean 〈𝛼〉 = 𝑞"𝛼" + 𝑞#𝛼# = 1, and the basic reproduction 404 

number is 405 

𝑅- =
〈𝛼#〉
〈𝛼〉 N

𝜔 + 𝜇
𝜇(𝜏 + 𝜔 + 𝜇) + 𝜃𝜏𝜔O P

𝜙𝛿
𝛿 + 𝜇 +

(1 − 𝜙)𝛿𝜔
(𝛿 + 𝜇)(𝜔 + 𝜇)Q 𝛽,																										(6) 406 

Where 〈𝛼#〉 is the second moment of the risk distribution, i.e. 〈𝛼#〉 = 𝑞"𝛼"# + 𝑞#𝛼##. 407 

For simplicity we have assumed individuals to mix uniformly irrespectively of risk 408 

group.  409 

(ii) Heterogeneity in susceptibility to infection: 410 

When risk heterogeneity is attributed to susceptibility to infection the model is still 411 

written as in (1)-(4), but the force of infection upon uninfected individuals becomes 412 

𝜆6 = 𝛼6𝛽(𝐼" + 𝐼#),																																																																																																													(7) 413 

where 𝛼6 is the susceptibility of individuals in group i in relation to the population 414 

mean 〈𝛼〉 = 𝑞"𝛼" + 𝑞#𝛼# = 1. The basic reproduction number for this model is 415 

𝑅- = 〈𝛼〉 N
𝜔 + 𝜇

𝜇(𝜏 + 𝜔 + 𝜇) + 𝜃𝜏𝜔O P
𝜙𝛿
𝛿 + 𝜇 +

(1 − 𝜙)𝛿𝜔
(𝛿 + 𝜇)(𝜔 + 𝜇)Q 𝛽.																													(8) 416 

(iii) Heterogeneity in progression from primary infection to disease: 417 
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When risk heterogeneity is attributed to factors that affect the probability of progression 418 

from primary infection to active disease, the model takes the form 419 

𝑑𝑈6
𝑑𝑡 = 𝑞6𝜇 + 𝜃𝜏𝐼6 − 𝜆𝑈6 − 𝜇𝑈6																																																																																							(9) 420 

𝑑𝑃6
𝑑𝑡 = 𝜆(𝑈6 + 𝐿6) − (𝛿 + 𝜇)𝑃6																																																																																					(10) 421 

𝑑𝐼6
𝑑𝑡 = 𝜙6𝛿𝑃6 + 𝜔𝐿6 − (𝜏 + 𝜇)𝐼6																																																																																				(11) 422 

	
𝑑𝐿6
𝑑𝑡 =

(1 − 𝜙6)𝛿𝑃6 + (1 − 𝜃)𝜏𝐼6 − 𝜆𝐿6 − (𝜔 + 𝜇)𝐿6,																																											(12) 423 

with force of infection 424 

𝜆 = 𝛽(𝐼" + 𝐼#),																																																																																																																	(13) 425 

and 𝜙6 = 𝛼6𝜙, representing the probability of progression from primary infection to 426 

disease for individuals in group i in relation to the population mean 〈𝛼〉 = 𝑞"𝛼" +427 

𝑞#𝛼# = 1. The basic reproduction number for this model is 428 

𝑅- = N
𝜔 + 𝜇

𝜇(𝜏 + 𝜔 + 𝜇) + 𝜃𝜏𝜔O P
〈𝛼〉𝜙𝛿
𝛿 + 𝜇 +

(1 − 〈𝛼〉𝜙)𝛿𝜔
(𝛿 + 𝜇)(𝜔 + 𝜇)Q𝛽.																																(14) 429 

In all cases we use risk and risk distribution as generic terms to designate factors of 430 

variation in the predisposition of individuals to acquire infection or disease, which 431 

may be realized physically as rates of contacts with other individuals (i), or 432 

biologically as susceptibility to infection given exposure (ii) or progression to disease 433 

given infection (iii). We use the terminology epidemiological compartment to refer to 434 

the composite of all compartments for the same infection status (i.e. uninfected 435 

comprises both 𝑈" and 𝑈#, etc). We also introduce the notion of mean risk for each 436 

epidemiological compartment to track selection (e.g. the mean risk for 𝑈(𝑡) is 437 

calculated as (𝑈"(𝑡)𝛼" + 𝑈#(𝑡)𝛼#) (𝑈"(𝑡) + 𝑈#(𝑡))⁄ , etc). We adopt two risk groups 438 

for concreteness, but formalisms with more groups would essentially support the 439 
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same phenomena. Indeed, two recent studies implemented similar selection processes 440 

within populations structured into hundreds of risk groups40,41. 441 

The models accommodate an endemic equilibrium when R0 > 1, as displayed by the 442 

solution curves parameterized by 𝛽 in Supplementary Figs. 9, 10 and Fig. 7a. 443 

Incidence rates in each risk group are approximated from model outputs by adding the 444 

positive terms in 𝑑𝐼6 𝑑𝑡⁄  and dividing by the population in that group, i.e. 445 

V𝜙(6)𝛿𝑃6 + 𝜔𝐿6W 𝑞6⁄  per year, and for the entire population as the weighted sum of 446 

these over risk groups. 447 

Model initialization 448 

Model trajectories are initialized assuming equilibrium conditions in 2002. 449 

Parameters describing the rates of birth and death of the population, the probability of 450 

progression from primary infection to active disease, and the rate of successful 451 

treatment, are set at the same values for the three countries: 𝜇 = 1 80⁄ 	𝑦𝑟Z"; 𝜙 =452 

0.05 (Ref. 42),  𝜏 = 2	𝑦𝑟Z"(Ref. 43). The rate of reactivation is considered three 453 

times higher in South East Asian than in Western populations: 𝜔 = 0.0013	𝑦𝑟Z" in 454 

Brazil and Portugal; 𝜔 = 0.0039	𝑦𝑟Z" in Vietnam (Ref. 44). The mean effective 455 

contact rate (b) was calibrated to enable model solutions to meet country-level 456 

incidences estimated by the WHO for 2002 (Supplementary Figs. 9, 10 and Fig. 7a). 457 

Risk group frequencies are set at 𝑞" = 0.96, and 𝑞# = 0.04, and the relative risk 458 

parameters (𝛼" and 𝛼#) estimated as described below. The results are then displayed 459 

in terms of the non-dimensional parameter 𝑅-, which is linearly related to 𝛽 460 

according to (6), (8), (14). 461 
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The same procedure was carried out for the mean field approximations of the 462 

respective models. At this point it can be confirmed that 𝑅- estimates are typically 463 

higher under heterogeneity12. We adopt heterogeneity in contact rates (i) as the default 464 

model throughout the paper, and use the susceptibility (ii) and disease progression 465 

(iii) variants for completion. Hence, unless specified otherwise, the results shown in 466 

the paper refer to heterogeneity in contact rates. 467 

Risk distributions 468 

Given a Lorenz curve (Fig 1a), any discretization can be assumed to define how 469 

concentration of risk will enter the model. We adopt a division into 96% low-risk and 470 

4% high-risk groups, but the procedure is not specific to the chosen discretization. A 471 

distribution of incidences is then constructed as to produce the same RIC as the 472 

original curve: a segment 𝑞" = 0.96 of the population accounts for (100 − 𝑦)% of 473 

the incidence, while the remaining segment 𝑞# = 0.04 accounts for the remaining 𝑦% 474 

(Fig 1a). The transmission model is solved as above, and the relative risk parameters 475 

𝛼6 are calculated (Fig. 2a, d, g) so as to output the country-specific incidence 476 

distributions (see Fig. 2c, f, i). This was performed numerically by binary search to 477 

adjust the variance in the parameters 𝛼6 such that the variance in the output incidences 478 

agrees with the notification data.  479 

Under any positive force of infection, the two risk groups segregate differently to 480 

populate the various epidemiological compartments, as depicted in Fig. 2b, e, h, 481 

resulting in mean risks that differ from one for specific compartments, and thereby 482 

deviating from homogeneous approximations. Crucially, the mean risks among 483 

individuals that occupy the various epidemiological compartments (square brackets in 484 



	 22	

the figure) respond to dynamic forces of infection causing divergence from 485 

predictions made by homogenous models. 486 

Moving targets 487 

The model, with the estimated risk distributions, parameters, and initial conditions, 488 

fitting the 2002 incidences (189 in Vietnam, 52 in Brazil, and 49 in Portugal, all per 489 

100,000 person-years), is run forward in time with a constant decline in reactivation 490 

rate as to meet an arbitrarily fixed target of halving the incidence in 10 years. As in 491 

the calculation of risk variance above, also here we refer to a simple numerical 492 

calculation performed by binary search. We write the reactivation rate as 𝜔(𝑡) =493 

𝜔(0)e]̂ (_Z#--#) per year, and approximate 𝑟  in order to meet the desired incidence 494 

target by year 2012. 495 

Starting with initial reactivation rates of 0.0039 per year in Vietnam, and 0.0013 per 496 

year in Brazil and Portugal, we find that meeting the target by this strategy alone, 497 

would require values of  𝑟  as specified in the heterogeneous column of 498 

Supplementary Table 1, or equivalently a decline in reactivation by 1 − e]̂  each 499 

year. This is to say that, in 10 years, the reactivation rates would have been reduced to 500 

values also shown in the respective column of Supplementary Table 1. 501 

Suppose that these estimations and projections were being made by the mean field 502 

approximation of the same model, and the outcomes were monitored yearly and 503 

readjusted if necessary. The expectations would have been that lower absolute values 504 

would be required for the decay rate parameters 𝑟 . Since the real population is 505 

heterogeneous, however, we simulate this decline for the first year with the 506 

heterogeneous model. The result is that, instead of achieving the incidences projected 507 
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by the homogeneous model (“target” homogeneous column in Supplementary Table 508 

1), the reality would lag behind (“achieved” homogeneous column in Supplementary 509 

Table 1), a result that the homogeneous model would attribute to insufficient effort 510 

exerted in reducing reactivation. From the homogeneous frame, an observer would 511 

have likely concluded that the decline had been lower due to some implementational 512 

failure, would have re-estimated the effort to meet the target over the remaining 9 513 

years, now with an intensification to compensate for the lag of the first year. This 514 

process is simulated recursively for 10 years to populate Supplementary Table 1 and 515 

to generate Fig. 3. The insets in Fig. 3b, d, f, depict the relative error committed each 516 

year. 517 

The dynamics of the mean risk of infection in the uninfected and latent compartments 518 

as the described interventions proceeds are shown in Fig. 3a, c, e, to demonstrate the 519 

action of selection. This is the key process leading to the deviation between the 520 

homogeneous and heterogeneous models. 521 

Meeting End TB targets 522 

The model with initial conditions, parameters and distributions estimated for 2002, is 523 

used to reproduce reported country-level trends for TB incidence in Vietnam, Brazil, 524 

and Portugal. Incidence declines between 2002 and 2015, reported by WHO for each 525 

of the three countries, are assigned to changes in pre-specified parameters (here set as 526 

𝜙 and 𝜔 for illustrative purposes but alternative combinations have also been used). 527 

The decline is shared among the selected parameters as estimated below.  528 

As incidence declines we monitor the reductions being made on each parameter, 529 

namely, on the probability of progression from primary infection to active disease 530 

[1 − 𝜙(𝑡) 𝜙(2002)⁄ ] and on the reactivation rate [1 − 𝜔(𝑡) 𝜔(2002)⁄ ].  531 
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Parameter estimation 532 

Assuming that the incidence declines reported by WHO between 2002 and 2015 for 533 

Vietnam, Brazil and Portugal, are due to reducing 𝜙 and 𝜔 at constant rates (𝑟a and 534 

𝑟a, respectively), resulting in exponentially decaying parameters such that 𝜙(𝑡) =535 

𝜙(2002)e]b(_Z#--#)	 and 𝜔(𝑡) = 𝜔(2002)e]̂ (_Z#--#), we proceed to estimate 𝑟a and 536 

𝑟 . We used a Bayesian Markov Chain Monte Carlo (MCMC) approach to find 537 

posterior sets of these decay rates. We assume gaussian priors and base our likelihood 538 

on the weighted squared error function 539 

𝜒# = 	de
𝐵6g − 𝐵6	
𝜎6g

i
#j

6k"

																																																																																																				(15) 540 

where 𝐵6g are the data points, 𝐵6 are the model outputs, and 𝜎6g are the corresponding 541 

measurement errors. This is equivalent to using the likelihood (𝐿) such that 𝜒# =542 

	−2 log(𝐿), under the assumption of Gaussian noise45,46. In the absence of the 543 

sampling distribution for the data, the error variance is sampled as a conjugate prior   544 

specified by the parameters 𝜎- and 𝑛- of the inverse gamma distribution where 𝜎- is 545 

the initial error variance and 𝑛- is assumed to be 1 (as larger values limit the samples 546 

closer to 𝜎-) 47. We use the MATLAB MCMC package developed by Haario et al. 547 

(2006)48. We initially minimize the error function and use these local minima as 548 

initial values for the parameters in the MCMC run. We infer a MCMC chain of length 549 

105 and adopt a burn in of 2 × 10p  after assessing the Gelman-Rubins-Brooks 550 

potential scale reduction factor (psrf) plots of the posterior distributions (see 551 

Supplementary Figs. 11, 12). 552 

Comparison with metapopulation models 553 
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As implied by Supplementary Fig. 1, geographical units are not conceptualized as 554 

homogeneous patches but rather as harboring heterogeneity down to the individual 555 

level. The transmission dynamics represented in our models is that of a country’s 556 

average patch (with variation in risk among individuals) rather than a metapopulation 557 

consisting of multiple patches (each occupied by a homogeneous population and 558 

variation in risk among patches). To highlight this essential distinction, we have 559 

constructed a metapopulation model consisting of two subpopulations (A and B), each 560 

characterized by a distribution in individual risk (Supplementary Fig. 5).  561 

Subpopulations (or patches) in this toy model are composed of individuals drawn 562 

from a common pool of high and low risk individuals (in proportions 4% and 96%, 563 

respectively), and what characterizes each patch is the fraction of its individuals who 564 

are high-risk (rather than introducing patch-specific effective contact rates, 𝛽q and 𝛽r, 565 

explicitly as commonly practiced). We assume a single 𝛽 for the entire 566 

metapopulation and vary the proportion of individuals in A who are high risk (𝑞#q) 567 

and calculate the corresponding proportion in B (𝑞#r). Basically, we have a family of 568 

metapopulation models, parameterized by the proportion of high-risk individuals in 569 

one of the patches, that we can completely resolve to match the incidence and RIC for 570 

each of our study countries.  571 

We calculate relevant measures, such as variance in individual risk at the level of the 572 

entire metapopulation and 𝑅-. These two metrics are shown as functions of 𝑞#q in 573 

Supplementary Figs. 6 and 7 (for heterogeneous contact rates and heterogeneous 574 

susceptibility, respectively) and one versus the other in Fig. 8. Open and filled circles 575 

are added to Fig. 8 for comparison of the same metrics under the homogeneous and 576 

heterogeneous models used in this study. 577 
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For simplicity we did not include transmission between subpopulations in this 578 

exercise, but there is no reason to expect sudden changes in outcome when this is 579 

added. 580 
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 728 

 729 
Fig. 1: Risk inequality coefficient. a, Lorenz curves calculated from notification data 730 
stratified by level 2 administrative divisions (697 districts in Vietnam; 5127 municipalities in 731 
Brazil; 308 municipalities in Portugal). A risk inequality coefficient (RIC) was calculated for 732 
each country from Lorenz curves as in Methods. Country maps with administrative divisions 733 
for Vietnam (b), Brazil (c), and Portugal (d), colored by number of cases notified per 100,000 734 
person-years. 735 
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 737 

 738 
Fig. 2: Tuberculosis transmission model with distributed contact rates. a, d, g, Risk 739 
(contact rate) distributions inferred by fitting a mathematical model to notification data 740 
stratified in two risk groups (96% and 4% with risk factors 𝛼" and 𝛼#, respectively) as in 741 
Methods (𝛼" = 0.339 and 𝛼# = 16.9 in Vietnam [variance 10.5]; 𝛼" = 0.320 and 𝛼# = 17.3 742 
in Brazil [variance 11.1]; 𝛼" = 0.516 and 𝛼# = 12.6 in Portugal [variance 5.63]). b, e, h, 743 
Risk distributions in the various epidemiological compartments segregated by the 744 
transmission dynamics. Numbers in square brackets represent the mean baseline risk 〈𝛼〉 745 
among individuals populating each epidemiological compartment. c, f, i, Distribution of 746 
incidence rates calculated from stratified model outputs (𝑌" = 0.69 and 𝑌# = 8.5 in Vietnam 747 
[variance 2.3]; 𝑌" = 0.52 and 𝑌# = 12 in Brazil [variance 5.1]; 𝑌" = 0.67 and 𝑌# = 9.0 in 748 
Portugal [variance 2.7]). Model parameters as in Table 1. Clearance of infection upon 749 
successful treatment: 𝜃 = 1. Country-specific parameter values: 𝜔 = 0.0039	yrZ" and 𝛽 =750 
3.23	yrZ" in Vietnam; 𝜔 = 0.0013	yrZ" and 𝛽 = 2.94	yrZ" in Brazil; 𝜔 = 0.0013	yrZ" and 751 
𝛽 = 4.66	yrZ" in Portugal. Notice that observed incidence variances 〈(𝑌 − 1)#〉 indicate 752 
underlying risk variances 〈(𝛼 − 1)#〉 which are consistently higher11. 753 
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 756 
Fig. 3: Moving targets. How (b, d, f) and why (a, c, e) fixed targets appear to be moving 757 
when observed from a homogeneous frame (Methods, and Supplementary Table 1). The 758 
model adopted in this illustration concerns heterogeneity in contact rates as governed by 759 
equations (1)-(5). Mean risks among individuals in uninfected and latent compartments are 760 
calculated as (𝑈"𝛼" + 𝑈#𝛼#) (𝑈" + 𝑈#)⁄  and (𝐿"𝛼" + 𝐿#𝛼#) (𝐿" + 𝐿#)⁄ , respectively. Model 761 
parameters as in Table 1. Clearance of infection upon successful treatment: 𝜃 = 1. Country-762 
specific parameter values: 𝜔 = 0.0039	yrZ", 𝛽 = 3.23	yrZ" (heterogeneous) or 𝛽 =763 
10.7	yrZ" (homogeneous) in Vietnam; 𝜔 = 0.0013	yrZ", 𝛽 = 2.94	yrZ" (heterogeneous) or 764 
𝛽 = 17.3	yrZ" (homogeneous) in Brazil; 𝜔 = 0.0013	yrZ", 𝛽 = 4.66	yrZ" (heterogeneous) 765 
or 𝛽 = 17.1	yrZ" (homogeneous) in Portugal. 766 
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 769 
Fig. 4: Model trajectories with heterogeneity in contact rates and gradual decline in 770 
reactivation (𝝎). TB incidence from 2002 to 2015 (black dots) and model solutions under 771 
heterogeneous contact rates (a, c, e); homogeneous approximation (b, d, f). Initial parameters 772 
values calculated by adjusting the mean effective contact rates (𝛽) to fit 2002 incidence rates: 773 
𝛽 = 3.23	yrZ" (a) or 𝛽 = 10.7	yrZ" (b) in Vietnam; 𝛽 = 2.94	yrZ" (c) or 𝛽 = 17.3	yrZ" (d) 774 
in Brazil; 𝛽 = 4.66	yrZ" (e) or 𝛽 = 17.1	yrZ" (f) in Portugal. Incidence declines towards 775 
2015 attributed to reducing reactivation: 𝜔(𝑡) = 𝜔-e]̂ (_Z#--#) (where 𝜔- = 0.0039 in 776 
Vietnam and 𝜔- = 0.0013 in Brazil and Portugal), with constant rates 𝑟  adjusted to meet the 777 
incidences observed in 2015 (Supplementary Table 2). From 2020 onwards, the trajectories 778 
split to represent two scenarios: rates of parameter change are maintained (dashed); scale 𝑟  779 
by a factor 𝜅 (represented as “× 𝜅”) to meet WHO incidence targets for 2035 (solid). The 780 
bottom plots in each panel represent the cumulative reductions in reactivation required to 781 
meet the targets calculated as 𝜔w(𝑡) = 1 − 𝜔(𝑡) 𝜔(2002)⁄ . Clearance of infection upon 782 
successful treatment: 𝜃 = 1. Other parameters as in Table 1. Model described by equations 783 
(1)-(5), and 𝑅- given by (6). 784 
  785 

0

70

140

210

280

in
ci

de
nc

e
pe

r 1
00

,0
00

 p
-y

2035 target

 a

× 11

var(α ) = 10.5

 Vietnam

05 20 35 50
0

2

4

 R
0

2005 2020 2035 2050
year

0

50

100

pe
rc

en
t

re
du

ct
io

n

2035 target

× 6

 b homogeneous

05 20 35 50
0

1

 R
0

2005 2020 2035 2050
year

0

20

40

60

80

in
ci

de
nc

e
pe

r 1
00

,0
00

 p
-y

2035 target

× 21

 c var(α ) = 11.1

 Brazil

05 20 35 50
0

1

2

 R
0

2005 2020 2035 2050
year

0

50

100

pe
rc

en
t

re
du

ct
io

n

2035 target

× 8

 d homogeneous

05 20 35 50
0

1

 R
0

2005 2020 2035 2050
year

0

20

40

60

80

in
ci

de
nc

e
pe

r 1
00

,0
00

 p
-y

2035 target

× 2

 e var(α ) = 5.63

 Portugal

05 20 35 50
0

1

2

 R
0

2005 2020 2035 2050
year

0

50

100

pe
rc

en
t

re
du

ct
io

n

2035 target

× 2

 f homogeneous

05 20 35 50
0

1

 R
0

2005 2020 2035 2050
year



	 37	

 786 

 787 
Fig. 5: Model trajectories with heterogeneity in contact rates and gradual declines in 788 
disease progression (𝝓) and reactivation (𝝎). TB incidence from 2002 to 2015 (black dots) 789 
and model solutions under heterogeneous contact rates (a, c, e); homogeneous approximation 790 
(b, d, f). Initial parameters values calculated by adjusting the mean effective contact rates (𝛽) 791 
to fit 2002 incidence rates: 𝛽 = 3.23	yrZ" (a) or 𝛽 = 10.7	yrZ" (b) in Vietnam; 𝛽 =792 
2.94	yrZ" (c) or 𝛽 = 17.3	yrZ" (d) in Brazil; 𝛽 = 4.66	yrZ" (e) or 𝛽 = 17.1	yrZ" (f) in 793 
Portugal. Incidence declines towards 2015 attributed to reducing disease progression and 794 
reactivation: 𝜙(𝑡) = 0.05e]b(_Z#--#) and 𝜔(𝑡) = 𝜔-𝑒]̂ (_Z#--#) (where 𝜔- = 0.0039 in 795 
Vietnam and 𝜔- = 0.0013 in Brazil and Portugal), with constant rates 𝑟a and 𝑟  estimated 796 
using MCMC (Supplementary Table 3). From 2020 onwards, the trajectories split to represent 797 
four scenarios: rates of parameter change are maintained (dashed black); scale 𝑟a and 𝑟  by a 798 
factor 𝜅 (represented as “× 𝜅”) to meet WHO incidence targets for 2035 (solid black); apply 799 
the same scale up efforts to 𝑟a only (blue) or 𝑟  only (red). The bottom plots in each panel 800 
represent the cumulative reductions in disease progression and reactivation required to meet 801 
the targets calculated as 𝜙z(𝑡) = 1 − 𝜙(𝑡) 𝜙(2002)⁄  and 𝜔w(𝑡) = 1 − 𝜔(𝑡) 𝜔(2002)⁄ , 802 
respectively. Clearance of infection upon successful treatment: 𝜃 = 1. Other parameters as in 803 
Table 1. Model described by equations (1)-(5), and 𝑅- given by (6). 804 
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 807 
Fig. 6: Model trajectories with heterogeneity in susceptibility to infection and gradual 808 
declines in disease progression (𝝓) and reactivation (𝝎). TB incidence from 2002 to 2015 809 
(black dots) and model solutions under heterogeneous susceptibility to infection (a, c, e); 810 
cumulative reductions in disease progression and reactivation required to meet End TB 811 
incidence targets (b, d, f), calculated as 𝜙z(𝑡) = 1 − 𝜙(𝑡) 𝜙(2002)⁄  and 𝜔w(𝑡) = 1 −812 
𝜔(𝑡) 𝜔(2002)⁄ , respectively. Initial parameter values calculated by adjusting the mean 813 
effective contact rates (𝛽) to fit 2002 incidence rates: 𝛽 = 19.2	yrZ" in Vietnam (a); 𝛽 =814 
26.1	yrZ" in Brazil (c); 𝛽 = 21.6	yrZ" in Portugal (e). Incidence declines towards 2015 815 
attributed to reducing disease progression (𝜙) and reactivation (𝜔): 𝜙(𝑡) = 0.05e]b(_Z#--#) 816 
and 𝜔(𝑡) = 𝜔-e]̂ (_Z#--#) (where 𝜔- = 0.0039 in Vietnam and 𝜔- = 0.0013 in Brazil and 817 
Portugal), with constant rates 𝑟a and 𝑟  estimated using MCMC (Supplementary Table 8). 818 
From 2020 onwards, the trajectories split to represent four scenarios: rates of parameter 819 
change are maintained (dashed black); scale 𝑟a and 𝑟  by a factor 𝜅 (represented as “× 𝜅”) to 820 
meet WHO incidence target for 2035 (solid black); apply the same scale up efforts to 𝑟a only 821 
(blue) or 𝑟  only (red). Clearance of infection upon successful treatment: 𝜃 = 1. Other 822 
parameters as in Table 1. Model described by equations (1)-(4) and (7), and 𝑅- given by (8). 823 
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 826 
Fig. 7: Model trajectories with heterogeneity in disease progression and gradual declines 827 
in progression (𝝓) and reactivation (𝝎). TB incidence from 2002 to 2015 in Portugal (black 828 
dots) and model solutions under heterogeneous progression to disease (c); mean risk 829 
(progression fraction) among susceptible individuals 830 
[(𝑈"(𝑡) + 𝐿"(𝑡))𝛼" + (𝑈#(𝑡) + 𝐿#(𝑡))𝛼#] (𝑈"(𝑡) + 𝐿"(𝑡) + 𝑈#(𝑡) + 𝐿#(𝑡))⁄  (b); and 831 
endemic equilibrium parameterized by the mean effective contact rate (𝛽) plotted in terms of 832 
𝑅- for the heterogeneous (blue) and homogeneous (black) models (a). Initial parameter values 833 
calculated by adjusting 𝛽 to fit 2002 incidence rates as shown in (a): 𝛽 = 17.1	yrZ". 834 
Incidence declines towards 2015 attributed to reducing disease progression (𝜙) and 835 
reactivation (𝜔): 𝜙(𝑡) = 0.05e]b(_Z#--#) and 𝜔(𝑡) = 𝜔-e]̂ (_Z#--#) (where 𝜔- = 0.0039 in 836 
Vietnam and 𝜔- = 0.0013 in Brazil and Portugal), with constant rates 𝑟a and 𝑟  estimated 837 
using MCMC (Supplementary Table 9). From 2020 onwards, the trajectories split to represent 838 
four scenarios: rates of parameter change are maintained (dashed black); scale 𝑟a and 𝑟  by a 839 
factor 𝜅 (represented as “× 𝜅”) to meet WHO incidence target for 2035 (solid black); apply 840 
the same scale up efforts to 𝑟a only (blue) or 𝑟  only (red). Clearance of infection upon 841 
successful treatment: 𝜃 = 1. Other parameters as in Table 1. Model described by equations 842 
(9)-(13), and 𝑅- given by (14). 843 
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 846 
Fig. 8: One-parameter family of metapopulation models. (a) Heterogeneous contact rates; 847 
(b) heterogeneous susceptibility to infection. Each point along a solid curve represents one 848 
model that produces country incidences in agreement with RIC values calculated in Fig. 1 849 
(procedures described in Methods). Filled circles marks variances in individual risk and 𝑅- 850 
obtained for each country by the procedure utilized in this study, whereas open circles 851 
indicate 𝑅- estimated by homogeneous approximations.  852 
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Table 1: 854 
Parameters for tuberculosis transmission model.   855 
 856 
Symbol Definition Value 
b Mean effective contact rate estimated 
µ Death and birth rate 1 80⁄ 	yrZ"  
d Rate of progression from primary infection 2	yrZ"  
f Proportion progressing from primary 

infection to active disease 
0.05 

w Rate of reactivation of latent infection 0.0039	yrZ" (Vietnam); 
0.0013	yrZ" (Brazil, Portugal) 

t Rate of successful treatment 2	yrZ" 
q Proportion clearing infection upon treatment [0,1] 
𝛼6 Individual risk in relation to population 

average 
estimated 

𝑝6 Proportion of individuals in low and high risk 
groups, respectively 

𝑝" = 0.96; 𝑝# = 0.04 

 857 


