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IMPULSIVE DIFFERENTIAL EQUATIONS
WITH NON-LOCAL CONDITIONS

Robert Knapik1

Department of Mathematics and Statistics, James Madison University,

Harrisonburg, VA 22807.

In this article, we extend existence and uniqueness results of classical dif-

ferential equations with initial conditions to some new type of equations called

impulsive di�erential equations with non-local conditions.

The classical di�erential equation, given by

x
0(t) = f(t; x(t)); 0 � t � T; x(0) = x0; x(t) 2 <n

; (1)

describes a system where the initial condition is given by x(0) = x0, and a so-

lution x(t) is a continuous function under appropriate assumptions.

Recently, we have seen articles dealing with the equations where the systems

are allowed to undergo some abrupt perturbations (harvesting, diseases, wars,

etc.) whose duration can be negligible in comparison with the duration of the

process. Therefore, in this case, a solution x(t) may have jump discontinuities

(to be called impulses for general equations) at times t1 < t2 < � � � , given in the

form of

x(t+
i
)� x(t�

i
) = Ii(x(ti)); i = 1; 2; : : : (2)

where Ii; i = 1; 2; : : : , are some functions. (Of course, Ii may be identically

zero, in which case there are no impulses.)

The di�erential equations incorporating jump discontinuities (steps) for their

solutions are called impulsive di�erential equations. For example, Freedman,

Liu and Wu [1991] studied models of single species growth with impulsive ef-

fect; Zavalishchin [1994] studied impulsive dynamic system for mathematical

economics. See Rogovchenko [1997], Lakshmikantham, Bainov and Simeonov

[1989] and Liu [1999] for more details.
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We have also seen articles dealing with non-local conditions. That is, the

classical initial condition (also called \local condition") x(0) = x0 is extended

to the following non-local condition

x(0) + g(x(�)) = x0 2 <
n
; (3)

where x(�) is a solution and g is a mapping de�ned on some function space

into <n. (Of course, g may be identically zero, in which case it reduces to the

local condition x(0) = x0.) The advantage of using non-local conditions is that

measurements at more places can be incorporated to get better models.

For example, for a non-uniform rod, g(x(�)) may be given by

g(x(�)) =

qX
i=1

cix(si); (4)

where ci; i = 1; : : : ; q; are given constants and 0 < s1 < s2 < � � � < sq. In this

case, (4) allows the additional measurements at si; i = 1; 2; : : : ; q: A formula

similar to (4) is also used in Deng [1993] to describe the di�usion phenomenon

of a small amount of gas in a transparent tube. In general, g may be an integral

and may be non-linear. See Byszewski and Lakshmikantham [1990], and Lin

and Liu [1996] for further studies of non-local conditions.

However, to our knowledge, we have not seen articles dealing with the com-

bination of impulsive and non-local conditions; and there is some evidence that

impulsive di�erential equations with non-local conditions should be investigated.

For example, if a sound wave travels through a non-uniform rod (where non-local

conditions can be applied), and if the wave's amplitude or frequency (parame-

ter) changes in a piecewise continuous fashion with steps, then the vibration in

the rod will also contain steps. So the merging of the impulsive and non-local

conditions would be helpful in modeling this system.

Therefore, it is our purpose here to study the existence and uniqueness of

solutions for the following impulsive di�erential equation with non-local condi-

tions,8<
:

x
0(t) = f(t; x(t)); 0 � t � T; t 6= ti;

x(0) + g(x(�)) = x0;

�x(ti) = Ii(x(ti)); i = 1; 2; : : : ; p; 0 < t1 < t2 < � � � < tp < T;

(5)

in <n, where f is a continuous function, �x(ti) = x(t+
i
) � x(t�

i
), and Ii's are

some functions.

To make things more precise, we de�ne the collection of piecewise continuous

functions as

PC([0; T ];<n) = fx : x is a mapping from [0; T ] into <n such that x(t) is

continuous at t 6= ti and left continuous at t = ti; and

the right limit x(t+
i
) exists (�nite) for i = 1; 2; : : : ; p

	
:
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Then, one can verify that PC([0; T ];<n) is a Banach space under the norm

kxkPC = sup
t2[0;T ]

jx(t)j; (6)

where j � j is a norm in <n.

De�nition 1. A solution of Eq.(5) is a function

x(�) 2 PC([0; T ];<n) \ C
1([0; T ] n ft1; t2; : : : ; tpg;<

n);

which satis�es Eq.(5) on [0; T ].

Similar to the treatment for classical di�erential equations with initial con-

ditions, let's reduce Eq.(5) to an integral form.

Theorem 1. A function x in PC([0; T ];<n) is a solution of Eq.(5) if and only

if

x(t) = [x0 � g(x(�))] +

Z
t

0

f(s; x(s))ds+
X

0<ti<t

Ii(x(ti)); t 2 [0; T ]: (7)

Proof. If x is a solution of Eq.(5), then for t 2 (tj ; tj+1],Z
t

0

f(s; x(s)) ds =

Z
t

0

x
0(s) ds

=

Z
t1

0

x
0(s) ds+

Z
t2

t1

x
0(s) ds+ � � �+

Z
t

tj

x
0(s) ds

= [x(t�1 )� x(0+)] + [x(t�2 )� x(t+1 )] + � � �+ [x(t�)� x(t+
j
)]

= [x(t�1 )� x(0)] + [x(t�2 )� x(t+1 )] + � � �+ [x(t)� x(t+
j
)]

= �x(0)� [x(t+1 )� x(t�1 )]� [x(t+2 )� x(t�2 )]�

� � � � [x(t+
j
)� x(t�

j
)] + x(t);

hence

x(t) = x(0) +

Z
t

0

f(s; x(s)) ds+ [x(t+1 )� x(t�1 )] + [x(t+2 )� x(t�2 )] +

� � �+ [x(t+
j
)� x(t�

j
)]

= x(0) +

Z
t

0

f(s; x(s))ds+
X

0<ti<t

�x(ti)

= [x0 � g(x(�))] +

Z
t

0

f(s; x(s))ds+
X

0<ti<t

Ii(x(ti)): (8)

On the other hand, let x(�) 2 PC([0; T ];<n) be a function satisfying Eq.(8).

First, note that for this �xed function x(�), g(x(�)) is a �xed element in <n,
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and for t 2 (tj ; tj+1);
P

0<ti<t
Ii(x(ti)) =

P
j

i=1 Ii(x(ti)) is a constant; thus
d

dt
g(x(�)) = 0 and d

dt

P
0<ti<t

Ii(x(ti)) = 0 for t 6= ti; i = 1; 2; : : : ; p. Hence, we

deduce that x0(t) = f(t; x(t)); t 6= ti; x(0) = x0 � g(x(�)), and

�x(ti) = x(t+
i
)� x(t�

i
)

=

2
4x(0) + Z ti

0

f(s; x(s))ds+

iX
j=1

Ij(x(tj))

3
5

�

2
4x(0) + Z ti

0

f(s; x(s))ds+

i�1X
j=1

Ij(x(tj))

3
5

= Ii(x(ti));

which completes the proof. �

Hence, for x0 �xed, (7) leads us to the de�nition of a mapping

P : PC([0; T ];<n)! PC([0; T ];<n)

such that

(Px)(t) = [x0 � g(x(�))] +

Z
t

0

f(s; x(s))ds +
X

0<ti<t

Ii(x(ti)): (9)

Based on this, we list the following conditions so that the Contraction Map-

ping Principle can be applied to establish the existence and uniqueness for

Eq.(5).

(H). f : [0; T ]�<n ! <n, g : PC([0; T ];<n)! <n, and Ii : <
n ! <n

;

i = 1; 2; : : : ; p, are continuous functions and there exist constants

L > 0; K > 0; hi > 0; i = 1; 2; : : : ; p, such that

jf(t; u)� f(t; v)j � Kju� vj; t 2 [0; T ]; u; v 2 <n
; (10)

jg(x(�))� g(y(�))j � Lkx(�)� y(�)kPC ;

x(�); y(�) 2 PC([0; T ];<n); (11)

jIi(u)� Ii(v)j � hiju� vj; u; v 2 <n
; (12)

and that

L+KT +

pX
i=1

hi < 1: (13)

Theorem 2. Let Assumption (H) be satis�ed. Then for every x0 2 <
n, Eq.(5)

has a unique solution on [0; T ], satisfying

x(t) = [x0 � g(x(�))] +

Z
t

0

f(s; x(s))ds+
X

0<ti<t

Ii(x(ti)): (14)
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Proof. Let x0 2 <n be �xed, and consider the mapping P : PC([0; T ];<n) !
PC([0; T ];<n) de�ned by (9). Then we have, for v; w 2 PC([0; T ];<n),

j(Pv)(t) � (Pw)(t)j

� jg(v(�))� g(w(�))j +

Z
t

0

jf(s; v(s))� f(s; w(s))j ds

+
X

0<ti<t

jIi(v(ti))� Ii(w(ti))j

� Lkv(�)� w(�)kPC +K

Z
t

0

jv(s)� w(s)j ds

+
X

0<ti<t

hijv(ti)� w(ti)j

� Lkv(�)� w(�)kPC +KTkv(�)� w(�)kPC +

 X
0<ti<t

hi

!
kv(�)� w(�)kPC

�

(
L+KT +

pX
i=1

hi

)
kv(�)� w(�)kPC ; t 2 [0; T ]; (15)

or

kPv � PwkPC �

(
L+KT +

pX
i=1

hi

)
kv � wkPC : (16)

Now, from Assumption (H), we conclude that P is a contraction mapping on

PC([0; T ];<n). Therefore, the Contraction Mapping Principle can be applied

to obtain a unique �xed point for the mapping P , which, according to Theorem

1, gives rise to a unique solution of Eq.(5) on [0; T ]. This completes the proof.

�

Remark. Theorem 2 includes the classical di�erential equations with initial

conditions (that is, without impulsive and non-local conditions) as special cases

of Eq.(5), in which L = 0 and hi = 0; i = 1; 2; : : : ; p, and hence (13) reduces to

KT < 1, which is the requirement using the Contraction Mapping Principle for

classical di�erential equations with initial conditions.

ACKNOWLEDGMENTS: The authors thank the referees for carefully read-

ing the manuscript and making valuable comments.

REFERENCES

1. L. Byszewski and V. Lakshmikantham [1990], Theorem about the existence

and uniqueness of a solution of a nonlocal abstract Cauchy problem in a

Banach space, Applicable Anal., 40, 11-19.



Knapik 6

2. K. Deng [1993], Exponential decay of solutions of semilinear parabolic

equations with non-local initial conditions, J. Math. Anal. Appl., 179,

630-637.

3. E. Freedman, X. Liu and J. Wu [1991], Comparison principles forimpulsive

parabolic equations with applications to models of single species growth, J.

Australian Math. Soc., Series B, 32, 382-400.

4. Y. Lin and J. Liu [1996], Semilinear integrodi�erential equations with non-

local Cauchy problem, Nonlinear Anal., 26, 1023-1033.

5. J. Liu [1999], Nonlinear impulsive evolution equations, Dynam. Conti.

Discr. Impul. Sys., 6, 77-85.

6. V. Lakshmikantham, D. Bainov and P. Simeonov [1989], Theory of Impul-

sive Di�erential Equations, World Scienti�c, Singapore.

7. Y. Rogovchenko [1997], Impulsive evolution systems: main results and new

trends, Dynamics Contin. Discr. Impulsive Sys., 3, 57-88.

8. A. Zavalishchin [1994], Impulse dynamic systems and applications to math-

ematical economics, Dynam. Systems Appl., 3, 443-449.


