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Abstract

A new class of error-correcting codes is created from a matrix op-
eration defined within. The matrix operation takes a point-block inci-
dence and produces a new point-block incidence with some desirable
properties, including a doubling of the girth of the Tanner graph of the
initial matrix. A specific example is created using PG(2, q), and the
results are generalized to any point-block incidence structure. These
codes are analyzed mathematically and through simulation via belief
propagation decoding.

1 Introduction to Error-Correcting Codes

Encoding a transmission is a method of increasing the reliability of a channel
by attempting to find and correct corruptions in a signal which might occur
during transmission. The applications for this technology are broad and
range from compact discs and cell phones to deep space communications. In
general, the idea is to add extra bits to an outgoing transmission cleverly, in
a fashion that will allow the receiving station to determine the occurrence of
an error, find the most likely site of the error, and possibly even correct it.
This concept was introduced by Shannon around 1950 [5].

Binary linear coding is a method of implementing Shannon’s ideas, and
since we currently live in a world dominated by digitally represented data,
the restriction to binary is logical. In this setup, encoding is accomplished
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via discrete packets of information of length n. A binary linear code is
represented by a generator matrix whose entries are only 0s and 1s, a so
called (0, 1)-matrix. The message to be encoded is made up of codewords,
each one a linear combination of rows from this matrix, with the addition
performed modulo two. This implies that the generator matrix for a code of
length n will have n columns.

The dimension, k, of a code is equal to the dimension of the row-space
of the generator matrix. Each codeword is pre-assigned a unique meaning,
so a code of dimension k is equivalent to having a 2k messages. We often
view this information in terms of the information rate, given by the ratio of
the code’s dimension to its length: k

n
. The closer this ratio is to one, the

more data is being passed in each packet; the closer the ratio is to zero, the
more error correction information is being passed in each packet. In order
to optimize codes, we would like to see codes with a high information rate
which still correct many errors.

Another vital measure of a code is its minimum distance, d. Minimum
distance measures how “far apart” the two closest codewords are, and is, in
general, difficult to calculate, especially for longer length codes (in fact, this
problem is known to be NP-hard). In a code with minimum distance d, any
two most similar codewords will have exactly d positions different. Hence,
the sum of these two codewords will give a codeword with exactly d 1s in it,
or a codeword of weight d.

The code can also be represented by the dual of the generator matrix, also
known as the parity check matrix. This matrix also has n columns, and every
row is orthogonal to the rows of the generator matrix. Since the row-space
of the parity check matrix is the dual of the code, it has dimension equal to
n− k, by the dimension theorem from linear algebra.

For a more complete treatment of the theory of error-correcting codes,
see [3], and for information on linear algebra, see [7].

2 Preliminaries

We start with some general constructions of codes using incidence structures.
Here we introduce the terminology used to do so.

An incidence structure D is a set P of points, and a set B of blocks,
where a block in B is a set of points from P . Blocks are further constrained
to contain a fixed number of points, greater than or equal to two, and we
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assume that there are at least two blocks containing each point. Note that
an incidence structure can be represented as a k-uniform hypergraph, which
is a graph whose edges all have k vertices as constrained by the condition
on blocks given above. Here we will use the terms incidence structure and
hypergraph interchangeably, and mean a k-uniform hypergraph.

We say that a point is incident with a block if the block contains the
point, and a flag is a single such incidence in D. A flag can be represented as
an ordered pair (pi, bj), where the block bj contains the point pi. By assigning
each point in the set P to a row of a matrix M , and each block in B to a
column in M , we create an incidence matrix by entering 1s in the matrix
entries corresponding to flags, and 0s everywhere else.

We also add some terminology borrowed from graph theory, and modify
it to apply to an incidence structure or hypergraph, as defined here.

A path from p1 to pn is an alternating sequence of points and blocks p1,
b1, p2, b2, ... ,bn−1, pn such that bi contains both pi and pi+1. Just as for
a regular graph, a hypergraph is connected if and only if for any points pi

and pj there exists a path from pi to pj. With the concept of a path, we can
define a polygon, or n-gon, as a path from pi back to pi with no blocks or
points repeated except pi. Note that an n-gon will have both n points and
n blocks.

It has been conjectured that the decoding algorithm that we will use for
our codes benefits from parity check matrices whose Tanner graphs have high
girth, where the girth of any graph is the length of the shortest cycle in the
graph, or infinity in a cycle-less graph. The Tanner graph of a matrix M , GM ,
is the bipartite graph with vertex set V , one partition class corresponding
to the points in D, and the other corresponding to the blocks in D. Edges
between vertices in GM exist if and only if there is a 1 in the corresponding
row and column. Consider the following matrix and its Tanner graph:




1 0
1 1
0 1


 7−→

For more information on the subject of Tanner graphs, see [6].
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3 Matrix Expansion

Our general technique in constructing our codes is to take an incidence struc-
ture, apply a matrix expansion operation to it, and then to use the resulting
expanded matrix as the parity-check matrix of the code.

Definition 3.1. Given an m × n (0, 1)-matrix M , with k non-zero en-
tries, let the matrix M be an (m + n) × k matrix whose rows are labeled as
p1, p2, ...pn, b1, b2, ...bm, and whose columns are labeled with all ordered pairs
(pi, bj) where Mij = 1. Furthermore, let M i,j = 1 if and only if the row label
is a coordinate of the column label, and M i,j = 0 otherwise. We say that M
has been expanded to M .

For example, below we see the expansion of a 2 × 3 matrix representing
four flags.




1 0
1 1
0 1


 7−→




1 0 0 0
0 1 1 0
0 0 0 1
1 1 0 0
0 0 1 1




.

Lemma 3.2. If a matrix M represents a point-block incidence structure D,
then a polygon of k sides in D corresponds to a cycle of length 2k in the
graph GM , and conversely.

Proof. Consider a k-gon in D. By definition, there are k blocks and, as
noted, k points which make up this k-gon. Without loss of generality, we
can describe the k-gon as a sequence of points and blocks {p1, b1, ..., pk, bk}
where each block bi contains the point pi and the point pi+1, with subscripts
read modulo k. Note that this is a 2k-cycle in the bipartite graph GM .

Now consider any cycle C in the graph GM . Since this graph is bipartite,
the length of C is even. Of the 2k points in C, k will be points from P , and
k will be blocks from B. Since edges in GM indicate incidence, any edge in
GM corresponds to a flag in D. Thus the cycle in GM represents a k-gon in
the incidence structure.
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Theorem 3.3. If a matrix M represents a point-block incidence structure,
then a cycle of length 2k in GM corresponds to a cycle of length 4k in the
graph GM , and conversely.

Proof. We have established that cycles in GM have length 2k, and represent
k-gons in the incidence structure. These cycles, in general, take the form {p1,
b1, ... pk, bk}. If we add the flags between each point and block, we have:
{p1, (p1, b1), b1, (p2, b1), p2, ... , bk, (p1, bk)}. Note that this cycle of GM has
4k unrepeated elements.

Now consider a cycle in the graph GM . Without loss of generality, the first
point will come from the set of points, and the second from the set of flags.
Then the third must come from the set of blocks, and the fourth from the set
of flags again. In general, we have {p1, (p1, b1), b1, (p2, b1), p2, ..., bk, (p1, bk)}.
If we remove the flags from this cycle, we have {p1, b1, ...pk, bk}, and also
the adjacent items in this list are incident because of the flags we removed.
Clearly this represents a cycle in GM .

Corollary 3.4. Let k be the number of sides of the smallest polygon in an
incidence structure D. Then the girth of GM is 4k.

Proof. Let C correspond to a minimum length cycle in GM with length r.
By the previous theorem, C corresponds to a cycle of length 1

2
r in GM , and

the corresponding cycle will have minimum length because C had minimum
length. Based on the results of the lemma, the minimum length cycle of
length 1

2
r in GM will correspond to a 1

4
r-gon in D. Letting r = 4k (the

smallest possible value for r), the girth of GM is 2k, and the girth of GM is
4k.

While this result is neither surprising nor difficult to prove, it is of sig-
nificant importance for our codes, especially considering belief propagation’s
conjectured preference for high girth. Consider an incidence structure where
the smallest polygon is a triangle. In the expanded matrix, the girth will be
twelve, a major improvement.

Since our goal is to create codes, we offer the following:

Definition 3.5. Let M be an incidence matrix and M be its expanded matrix.
We define the code CM to be the code generated by parity check matrix M .
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4 The Code Cπ

We now apply our results to a common incidence structure from finite geom-
etry [2]. The code Cπ is derived from π, the classical finite projective plane of
order q, also known as PG(2, q). A projective plane is a geometry consisting
of a set of “points” and “lines.” Much like Euclidean geometry, a projective
plane is built on a set of axioms.

Definition 4.1. A projective plane π is a set of points together with a
collection of subsets of these points, called lines, such that

1. every 2 distinct points determine a unique line,

2. every 2 distinct lines determine a unique point, and

3. there exist 4 points, no 3 of them collinear.

Note that the third axiom simply prevents degenerate examples. We now
add the additional condition that the plane contains a finite number of points.
In this setting, many of the standard properties of Euclidean geometry are
lost. For instance, there is no concept of one point being “between” two
other points, as there is no concept of “distance” between two points.

For any projective plane, there is an associated integer greater than 2
called the order of the plane. If the order is q, it can be shown that the plane
contains q2 +q+1 points and q2 +q+1 lines. Moreover, every point has q+1
lines passing through it, and every line has q + 1 points on it. One example
of a finite projective plane of order q is denoted PG(2, q) and is modeled by
the lattice of subspaces of the vector space of dimension 3 over the finite field
GF (q). There are other examples of projective planes of order q when q ≥ 9
and the problem of classifying all planes of a given order seems, in general,
to be quite difficult.

Returning to the construction of codes, let PG(2, q) be the incidence
structure with the points of the geometry as the points of D and the lines of
the geometry as the blocks of D, and with incidence matrix Mπ. We then
expand Mπ to Mπ. We will call the code with Mπ as its parity check matrix
Cπ.

The length of the code is q3 + 2q2 + 2q + 1, following directly from the
number of flags of D. Since there are q2 + q + 1 points each incident with
q + 1 lines, the number of flags is (q + 1)× (q2 + q + 1) = q3 + 2q2 + 2q + 1.
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As the flags are the columns of Mπ, the parity check matrix for Cπ, we see
that this immediately determines the length of the code.

Theorem 4.2. The dimension of Cπ is exactly q3.

Proof. Recall that Mπ, the parity check matrix for Cπ, has 2(q2 +q+1) rows,
with q2+q+1 of them representing points in PG(2,q), and the other q2+q+1
representing lines in the same plane. Note that the column weight for Mπ

is exactly 2, since each column corresponds to a specific point-line flag, say
(pi, lj), so there will be a 1 in the row corresponding to the point pi, and
another 1 in the row corresponding to the line lj. It follows that summing
the rows of Mπ modulo 2 will give the zero vector, and hence the rows of Mπ

are linearly dependent. Now, pick an arbitrary row in Mπ. Since points and
lines are interchangeable in PG(2, q) (see [2]), we can assume that this row
represents a point p, without loss of generality. Now we create the smallest
possible linearly dependent set of rows, U , which includes this row, that is,
the smallest set of rows which we can sum column-wise, with the zero vector
as the result.

Since this row represents a point, it will have q + 1 1s in it. In order
to cancel these 1s, we must include the q + 1 rows corresponding to those
lines, as these are the only rows which have 1s in the proper columns. By
the axioms of finite projective geometry, every two lines meet in exactly one
point and since these q + 1 lines all meet in exactly one point, the q other
points on each of those lines must be distinct. Hence, U must now include
the q(q + 1) rows which correspond to these points. Notice that these q2 + q
points, combined with the original point account for every point in PG(2, q).
Now the row-sum has a one in every column from the rows corresponding to
the points, necessitating the addition of all the remaining rows corresponding
to lines. Thus the smallest set of linearly dependent rows in Mπ is in fact all
of them, and therefore removing an arbitrary row will give a set of linearly
independent rows. Therefore, the rank of Mπ is 2(q2+q+1)−1 = 2q2+2q+1,
and so by the dimension theorem from linear algebra, the dimension of Cπ is
q3 + 2q2 + 2q + 1− (2q2 + 2q + 1) = q3.

In order to facilitate our proofs of minimum distance (here and elsewhere),
we introduce the concept of a representative vector. The representative vector
of a collection S of points and blocks in an incidence structure D is a vector
from the row space of M and has 1s in the entries corresponding the the
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columns in the matrix which represent the flags included in the collection
S. This definition is admittedly awkward, and so we include an example for
understanding.

Consider M =




1 0
1 1
0 1


, and M =




1 0 0 0
0 1 1 0
0 0 0 1
1 1 0 0
0 0 1 1




. The representative

vector of the set p1, b1, p2 would consist of the flags (p1, b1), (p2, b1) and be
equal to [1100].

Lemma 4.3. The representative vector of an n-gon in the incidence structure
D is a codeword of weight 2n in CM .

Proof. Let V be the representative vector of an n-gon from D. In an n-gon,
each point pi is incident with exactly two blocks, so there are exactly two
flags in V which have pi as a coordinate. Since there are n points in the n-
gon, there are exactly 2n flags in the representative vector. Notice that each
block bj is also incident with exactly two points, so similarly there will be
exactly two flags in V which have bj as a coordinate. Consider an arbitrary
row U in M . Assuming U represents a point pi, if pi is not in the n-gon,
none of the flags will have pi as a coordinate, and hence U will have zero 1’s
in common with V . If, on the other hand, pi is in the n-gon, then as noted
there will be two flags in V with pi in their coordinates, but U will also have
those same two 1s, so U and V share an even number of 1s. Similarly, if
U were to represent a block, U would share an even number of 1s with V .
Therefore V is orthogonal to every row of M , and is a codeword for CM .

Theorem 4.4. The minimum distance of Cπ is 6.

Proof. We show the upper bound on minimum distance by exhibiting a code-
word of weight 6. In PG(2, q), it is known that triangles exist. In a triangle,
there are 3 points, each incident with 2 lines. Hence a triangle has 6 flags.
By the previous lemma, every triangle represents a codeword of weight 6.

We show the lower bound by constructing a non-zero codeword of least
weight. Let c be the smallest possible codeword. Since c is non-zero, without
loss of generality, we can say that c has a one in the column corresponding to
(p1, l1). Since c is a codeword, c is orthogonal to every row of Mπ, specifically
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the row corresponding to p1. Since c shares a 1 with this row in the column
(p1, l1), then c must also share another 1 with this row, and without loss of
generality, that 1 is in the column (p1, l2). Based on this information, we
know that c shares a 1 with both the rows l1 and l2, and so must also share a
second one with each of these rows. It is impossible that these two lines could
be incident with another point, because every two lines determine exactly one
point, and l1 and l2 determine p1. So l1 is incident with some point p2 6= p1,
and so both of those rows have a 1 in the column corresponding to (p2, l1).
Now c is orthogonal to the row l1, though the row p2 must share some other
1 with c. Furthermore, it is impossible that p2 could be incident with l1,
because we would arrive at the same contradiction as before. So p2 must be
incident with l3, and now, having a 1 in the column (p2, l3), the row p2 is
orthogonal to c. Both of the rows l2 and l3 need another 1 in order to be
orthogonal to c. Let p3 be incident with both these lines. Now c has a 1 in
the columns corresponding to (p1, l1), (p1, l2), (p2, l1), (p2, l3), (p3, l2), (p3, l3),
and a zero in every other column, and thus has weight 6.

As outlined in this section, Cπ is a [q3 + 2q2 + 2q + 1, q3, 6] code. The
information rate, k

n
, is very high for Cπ, in fact, it approaches 1 as q grows.

However, the minimum distance is fixed at 6, the price for such a high infor-
mation rate.

5 General Results on CM

As mentioned before, the results we have obtained for Cπ can be applied to
incidence structures in general.

For an arbitrary incidence structure D with incidence matrix M , the
length of CM will always be exactly the number of flags of the incidence
structure, the number of 1s in the matrix M or the number of columns in
the matrix M . Let B be the set of blocks of D, P be the set of points of D,
and F the set of flags of D.

Theorem 5.1. If D is connected, then the dimension of CM is exactly k =
|F | − |B| − |P |+ 1

Proof. We create the smallest possible linearly dependent set of rows of M .
Assume, without loss of generality that p1 is in this set. As D is connected,
then for any i, there exists a path from p1 to pi. Since p1 is in this set, the only
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way to cancel out all of the 1’s in the row corresponding to p1 is to introduce
all of the rows corresponding to the blocks which contain p1, including b1.
Now, to cancel out the 1s in the row corresponding to b1, we must introduce
all of the rows corresponding to the points contained in b1, including p2. In
this manner, the rows corresponding to the members of the path from p1

to pi must be included in our linearly dependent set of rows. Since pi is
arbitrary we must include every point, and because every block contains at
least one point, then we must include all of the rows corresponding to blocks.
Then the smallest possible linearly dependent set of rows, is in fact, all of
them. So the largest set of independent rows of M is all of the rows, minus
any one. So the rank of M is |B| + |P | − 1. Thus the dimension of CM is
|F | − [|B|+ |P | − 1].

Porism 5.2. If D has K components, then the dimension of CM is exactly
|F | − [|B|+ |P | −K]

Proof. Let C1, C2, ..., CK be the K connected components of D. As seen
in the proof of the last theorem, the rows of a connected component are
independent if one row is removed. Since none of the components can pos-
sibly interact to create a linearly dependent set of rows, removing one row
from each component (K rows in total) will leave behind a maximal set of
independent rows.

Theorem 5.3. The minimum distance of CM is exactly 2k, where k is the
size of smallest polygon in D.

Proof. We create the smallest codeword in CM , say c. Without loss of gen-
erality, c contains the flag (p1, b1). So now c has a single 1 in common with
both the rows p1 and b1. The flag (p1, b2) must be added to c so that row
p1 shares an even number of 1’s with c. Likewise, we must add (p2, b1) so
row b1 will be orthogonal to c. Thus any point in D which shares a flag
with c must in fact share two flags, hence there are two blocks included for
each point. Similarly, any block which shares a flag with c must actually
share two flags, so there will be two points included for each block included.
Clearly then, c must contain a set of flags which forms a polygon: this is the
only way to guarantee that each block contains two points from c, and each
point is contained by two blocks from c. Since c is the least-weight code-
word, c must contain the flags corresponding to the smallest polygon, say
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(p1, b1), (p2, b1), (p2, b2), ..., (pk, bk), (p1, bk). This set clearly has 2k elements.
Thus the minimum distance of CM is 2k where k is the number of sides in
the smallest polygon in D.

With CM , codes with a large variety of parameters can be generated by
choosing M in a clever fashion. Perhaps the most notable feature follows
from Corollary 3.4, which explains how the girth of a Tanner graph doubles
after matrix expansion. For decoding algorithms which favor high girth, this
provides an easy way to capitalize on that advantage.

6 Simulation Data

To demonstrate the effectiveness of the codes we have developed, we used an
iterative probabilistic decoding algorithm published in [4] and freely avail-
able on the Internet1. The algorithm “sends” a large number of randomly
generated codewords with errors, then attempts to decode them using belief
propagation and counts the number of errors that are still present after a
certain number of iterations. The initial incidence structures were created
with the software package Magma [1].

As an aid to understanding, Figure 1 shows the performance of five codes
of various length, all generated by the method described in Section 3, the code
Cπ. Along the x-axis, we have the signal to noise ratio, or simply the relative
signal strength, where 6 is a relatively strong signal, and 1 is relatively noisy.
On the y-axis we have the rate of errors getting past the error correction
at any given signal to noise ratio. Note that the y-axis is a logarithmic
scale, indicating that dropping one major unit on the axis is equivalent to
a ten-times decrease in errors. For comparison, the dashed line indicates an
uncoded signal run through the decoding algorithm. We conclude that our
codes are performing at an acceptable level, as they consistently outperform
the uncoded signal.
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