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Abstract

Alternans is an abnormal cardiac rhythm in which action potential duration alternates from beat-to-beat. In order

for an implanted pacemaker to successfully seize control of the heart rhythm, its electrical stimuli have to be carefully

timed relative to the firing of the heart’s specialized pacemaker cells. In this manuscript, we use mathematical

techniques to analyze a novel feedback control algorithm for suppressing alternans. We model the cardiac rhythm

and the effect of the controller using a system of two nonlinear difference equations. Our analysis reveals that it is

often advantageous not to allow the pacemaker to intervene in every beat when attempting to control alternans.

Keywords: Difference equations; Cardiac Arrhythmia; Feedback Control.

1 Introduction

Cardiac arrhythmias kill hundreds of thousands of people in the United States every year.
Since the heart’s job is to pump oxygenated blood to the body’s vital organs, it is not
surprising that any rhythm that interferes with pumping performance may be fatal. For
example, it is believed that over two-thirds of ventricular fibrillation victims die before even
reaching the hospital [32]. Early detection of an arrhythmia can allow time for an implantable
pacemaker or defibrillator to intervene, thereby improving the patient’s chances of survival.

Mechanical contraction of cardiac muscle occurs in response to electrical signals that
propagate through the tissue. To understand the nature of cardiac electrical activity, it
is convenient to focus on a single cardiac cell. Positively charged ions such as sodium,
potassium, and calcium can pass through channels in the cell membrane. The movement of
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ions gives rise to ionic currents through the cell membrane, which in turn cause the trans-
membrane voltage v to change. In the absence of electrical stimulation, a cell maintains a
constant resting voltage of about -80 mV by expending energy to pump positively charged
ions out of the cell. However, if a sufficiently well-rested cell is stimulated by an electrical
current, a sudden and dramatic change in v may result (see Figure 1). Namely, v experiences
a rapid rise (upstroke), followed by a prolonged period of elevation (plateau), and finally a
recovery phase in which v decreases to the resting voltage while the cell awaits further
stimulation. This prolonged elevation of v in response to an electrical stimulus is called an
action potential. Figure 1 illustrates two consecutive action potentials in a single cardiac
cell. For an introduction to mathematical models of the action potential, see [21, 25].

Pacing (repeated stimulation of cardiac tissue) results in a sequence of action potentials.
If the interval between consecutive stimuli, or basic cycle length (BCL), is constant, the
tissue may exhibit several types of responses:

• Normal 1:1 response. Slow pacing (large BCL) generally yields a response in which
each action potential is identical (Figure 2a).

• Alternans. Faster pacing (smaller BCL) can sometimes cause action potential duration
(APD) to alternate in an abnormal long-short pattern (Figure 2b).

• 2:1 response. After an action potential, a cardiac cell requires a certain amount of
recovery time before it can generate another action potential. Very rapid pacing (small
BCL) can lead to an abnormal pattern in which the cell “ignores” every other stimulus.
We will not consider 2:1 responses in this study.

Alternans is viewed as a precursor to deadly arrhythmias [10, 20, 24, 26, 27, 31], and therefore
it is desirable to suppress alternans by using a computerized pacemaker to control the beating
of the heart.

One method of controlling alternans is a feedback control technique known as extended
time-delay auto-synchronization (ETDAS) [28, 29]. Despite the daunting name, ETDAS
is based upon a relatively simple idea: by making small adjustments to the timing of the
electrical stimuli, the amplitude of APD alternation can be gradually diminished, leading to
a normal response in which all APD values are identical (as in Figure 2a). Special cases of
ETDAS have been used to control alternans experimentally [7, 8, 16, 17].

It is important to note that an implanted pacemaker (henceforth, the controller) must
compete with the heart’s native electrical stimuli in order to gain control of the rhythm.
In an intact heart, stimuli are usually supplied by a cluster of specialized pacemaker cells
known as the sino-atrial (SA) node. The SA node sets the BCL, and it is not possible to
prolong the interval between stimuli [7, 11]. In other words, the controller is restricted in
that it must always preempt the stimuli from the SA node. Mathematically, this imposes a
constraint on the ETDAS control algorithm in that lengthening the BCL is not allowed.
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In this study, we analyze a modified version of the ETDAS technique in which the con-
troller can be turned off during beats that would require lengthening BCL. Prior stud-
ies [7, 12, 15] suggest that the control domain (i.e., the range of system parameters for which
the controller successfully suppresses alternans) is actually larger if the algorithm is restricted
to allow only shortening of the BCL. Through numerical simulations, we find that it is often
advantageous if the controller does not intervene in every beat. We observe various on/off
patterns for the controller—in particular, it is easy to choose ETDAS parameters in such a
way that the controller exhibits (i) an on-off pattern in which the controller intervenes in
every other beat; (ii) an on-off-off pattern in which the controller intervenes in every third
beat; and (iii) a pattern in which the controller intervenes in every beat. Additionally, we
expand upon a prior mathematical analysis [2] of ETDAS in that case that the controller is
always on.

The remainder of the paper is organized as follows. In Section 2, we provide a background
on restitution, a feature of cardiac tissue that forms the basis of our model of paced tissue
dynamics. Because we use a discrete model of the beating heart, Section 3 includes a brief
overview of the analysis of discrete systems. Specifically, we discuss local stability of fixed
points of mappings and explain how these mathematical results can be applied in the present
context of alternans control. Section 4 introduces the ETDAS technique and provides an
algorithm by which this control technique can be used to suppress alternans. We include
mathematical analysis of the algorithm, yielding estimates on the ETDAS parameters for
which the algorithm succeeds if the controller always remains on. In Section 5, we impose
the restriction that the controller is not allowed to lengthen the underlying BCL. Through
computer simulations of the model, we determine ranges of the ETDAS parameters for which
various on/off controller patterns are observed. Finally, Section 6 includes a brief summary
of our findings and a discussion of the limitations of the present study.

2 Background on Cardiac Restitution

We now establish terminology and notation that will be useful in our study of paced cardiac
cells. The reader is encouraged to refer to Figure 1 as needed. Action potential dura-
tion (APD) is defined as the amount of time that v remains elevated above some specified
threshold voltage vthr during an action potential. The diastolic interval (DI) is the amount
of recovery time during which v < vthr between consecutive action potentials. When mathe-
matical notation is required, we will use the symbols in Table 1 (see also Figure 1). Observe
that Bn = An + Dn represents the amount of time between the nth and (n + 1)th stimuli.
In situations when the pacing interval Bn is constant, we will write Bn = B and refer to this
interval as the basic cycle length (BCL).

Generally, the longer the DI, the longer the APD that follows; i.e., more rest yields longer
action potentials. This important feature of cardiac cells, known as APD restitution, can be
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Figure 1: Action potentials generated by numerical simulation of a cardiac membrane model [22]. Stimuli
are indicated by bold dots. The notation is explained in Section 2.
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Figure 2: (a) A normal rhythm in which action potential duration is the same in each beat. (b) Alternans.
Stimuli are indicated by bold dots.
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Symbol Meaning
An duration of action potential following nth stimulus
Dn diastolic interval between nth and (n + 1)th action potentials
Bn interval between nth and (n + 1)th stimuli

Table 1: Notation relating to paced cardiac cells.
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Figure 3: Restitution curve given by Equation (2).

modeled mathematically via the following relationship [23]:

An+1 = f(Dn). (1)

The function f is known as the restitution function, and its graph is called the restitu-
tion curve. In the remainder of this paper, when simulations are required we will use the
restitution function

f(Dn) = 392− 525e−Dn/40, (2)

the graph of which appears in Figure 3. This restitution function was used to fit experi-
mentally obtained bullfrog restitution data [17]. For more information on the importance of
APD restitution, see for example [1, 3, 5].

3 Mappings, Fixed Points, Stability and Bifurcations

We now provide a brief overview of discrete dynamical systems such as (1). For additional
details, see Chapter 10 of Strogatz [30]. In what follows, we will assume that f is a smooth
(i.e., repeatedly differentiable) function.
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Definition 3.1. Suppose f : R 7→ R. A relationship of the form

xn+1 = f(xn) (3)

is called a one-dimensional mapping, or simply a map.

Definition 3.2. A fixed point of the map (3) is any number x∗ such that x∗ = f(x∗). We
say that a fixed point x∗ is isolated if there exists δ > 0 such that x∗ is the only fixed point
in the open interval (x∗ − δ, x∗ + δ).

A fixed point of a map is analogous to an equilibrium of an ordinary differential equation
and, like equilibria, fixed points can be either attractors or repellers. If we start from an
initial point x0 that is “close” to a fixed point x∗, it is natural to ask whether the subsequent
iterates of (3) converge to x∗ or are repelled by x∗. The following Lemma, the proof of which
appears in Strogatz ([30], page 349–350), provides a stability criterion for fixed points of
one-dimensional mappings:

Lemma 3.3. (Stability Criterion) A fixed point x∗ of the mapping (3) is a local attractor if
|f ′(x∗)| < 1 and a repeller if |f ′(x∗)| > 1. If |f ′(x∗)| = 1, this stability test is inconclusive.

For example, note that the mapping xn+1 = x2
n has two fixed points: x∗ = 0 and x∗ = 1.

In this case, f(x) = x2 and therefore f ′(x) = 2x. Since |f ′(0)| = 0 < 1, we conclude that 0
is an attractor and, since |f ′(1)| = 2 > 1, we conclude that 1 is a repeller. We remark that
the stability criterion given by this Lemma is local. Indeed, iterates of this mapping are only
attracted to 0 if the initial condition satisfies x0 ∈ (−1, 1).

One-dimensional mappings of the form xn+1 = f(xn; µ) where µ is a parameter may
exhibit a wide range of dynamical behavior. For example, let µ be a parameter between 0
and 4 and consider the discrete logistic mapping

xn+1 = f(xn) = µxn(1− xn). (4)

The reader will verify that this mapping has two fixed points: x∗ = 0 and x∗ = 1 − µ−1.
The former is an attractor if 0 < µ < 1 and a repeller otherwise. The latter is an attractor
if 1 < µ < 3 and a repeller otherwise. Since both fixed points are unstable for µ > 3,
one may ask what would happen if the mapping (4) is iterated for such values of µ. For
3 < µ < 1 +

√
6, one may show [30] that the mapping (4) has a stable 2-cycle. Indeed,

if x0 ∈ [0, 1]\ {0, 1− µ−1}, the iterates of (4) converge to a pattern of alternation between
two values. For 1 +

√
6 < µ < 3.544 . . . , the mapping has a stable 4-cycle. We say that

period-doubling bifurcations occur at µ = 3 and µ = 1 +
√

6. As explained in Strogatz [30],
this period-doubling cascade continues until µ = 1 +

√
8, at which point chaos ensues.

3.1 Application to Paced Cardiac Cells

As pacing becomes more rapid, alternans is sometimes initiated via a period-doubling bi-
furcation [13]. To see how, suppose that we pace with a constant period Bn = B. Since
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Figure 4: Bifurcation to alternans. For each fixed B < 455 ms, the iterates of the mapping (5) alternate
between long and short values, as illustrated for B = 430 ms.

An + Dn = B for all n, Equation (1) can be rewritten as

An+1 = f(B− An). (5)

Assuming that f is qualitatively similar to the function shown in Figure 3, it is easy to
argue that the mapping (5) has a unique fixed point A∗ satisfying A∗ = f(B − A∗). By
Lemma 3.3, the fixed point is an attractor if |f ′(B − A∗)| < 1. Inspecting Figure 3, one
expects that this criterion is satisfied if B is large, and this is indeed the case. However, as B
is decreased, we reach a point at which the slope of the restitution curve exceeds 1 at (B−A∗).
The mapping (5) experiences a period-doubling bifurcation, resulting in alternans. Figure 4
shows a bifurcation diagram for the mapping (5), using the restitution function given by
Equation (2). For B > 455 ms, the fixed point of (5) is an attractor. A period-doubling
bifurcation occurs at B = 455 ms, leading to alternans at shorter values of B. Observe that
the amplitude of alternans is small near the bifurcation point but becomes much larger as B
decreases.

3.2 Systems of Mappings

More generally, consider a system of two mappings of the form

xn+1 = Φ1(xn, yn)

(6)

yn+1 = Φ2(xn, yn),

where xn and yn are real numbers. Note that this system maps the vector (xn, yn) to the
vector (xn+1, yn+1).
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Definition 3.4. A fixed point of the system (6) is a vector (x∗, y∗) such that x∗ = Φ1(x
∗, y∗)

and y∗ = Φ2(x
∗, y∗). The fixed point is isolated if there exists δ > 0 such that the open disc

of radius δ centered at (x∗, y∗) contains no other fixed points.

We now wish to develop a stability criterion analogous to Lemma 3.3 for a fixed point
(x∗, y∗) of the system (6). To do so, we replace Φ1 and Φ2 by their tangent plane approxi-
mations in the vicinity of the fixed point. That is,

Φ1(x, y) ≈ Φ1(x
∗, y∗) +

∂Φ1

∂x
(x∗, y∗) · (x− x∗) +

∂Φ1

∂y
(x∗, y∗) · (y − y∗) (7)

Φ2(x, y) ≈ Φ2(x
∗, y∗) +

∂Φ2

∂x
(x∗, y∗) · (x− x∗) +

∂Φ2

∂y
(x∗, y∗) · (y − y∗). (8)

Now since (x∗, y∗) is a fixed point, we may replace Φ1(x
∗, y∗) = x∗ and Φ2(x

∗, y∗) = y∗ in
Equations (7)–(8). Inserting (7)–(8) into Equation (6) and introducing matrix notation, we
obtain the following linear approximation of our original system:




xn+1 − x∗

yn+1 − y∗


 ≈




∂Φ1

∂x
(x∗, y∗) ∂Φ1

∂y
(x∗, y∗)

∂Φ2

∂x
(x∗, y∗) ∂Φ2

∂y
(x∗, y∗)







xn − x∗

yn − y∗


 . (9)

Observe that Equation (9) expresses how “close” we are to the fixed point (x∗, y∗) at the
(n + 1)st time step in terms of how “close” we are to the fixed point at the nth time step.

Definition 3.5. Define the function Φ : R2 7→ R2 by

Φ(x, y) =

[
Φ1(x, y)
Φ2(x, y)

]
.

The 2× 2 matrix appearing in Equation (9) is called the Jacobian matrix of Φ evaluated at
(x∗, y∗). We will denote this matrix by JΦ(x∗, y∗).

The Jacobian matrix is a higher-dimensional analogue of the derivative of a function
f : R 7→ R. Consequently, it is not surprising that the stability criterion for fixed points of
systems of mappings involves JΦ(x∗, y∗), much as the stability criterion for the mapping (3)
involved a derivative f ′(x∗) (see Lemma 3.3).

Lemma 3.6. (Stability Criterion for Systems). Suppose (x∗, y∗) is an isolated fixed point of
the system (6), and let λ1 and λ2 denote the eigenvalues of the Jacobian matrix JΦ(x∗, y∗).
Then the fixed point is a local attractor if both |λ1| < 1 and |λ2| < 1. The fixed point is a
repeller if either |λ1| > 1 or |λ2| > 1. Here, | · | denotes modulus.
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Ultimately, we wish to apply Lemma 3.6 to a particular system of mappings that model
control of the cardiac rhythm with an implanted pacemaker (see Section 4.2). In doing
so, we wish to determine how the choice of parameters affects the stability of the targeted
(i.e., normal) rhythm. Fortunately, there is a simple test [19] for whether all eigenvalues
of a matrix have modulus less than one. We state this result for the special case of 2 × 2
matrices.

Lemma 3.7. (Jury Stability Test). Suppose J is any 2× 2 matrix, and let T and ∆ denote
the trace and determinant of J , respectively. Then both eigenvalues of J have modulus less
than 1 if and only if (i) T −∆ < 1, (ii) T + ∆ > −1, and (iii) ∆ < 1.

In the next section, we describe the ETDAS method of feedback control and apply Lem-
mas 3.6–3.7 to predict ranges of parameter values for which control is likely to suppress
alternans.

4 Controlling Alternans with ETDAS

Suppose a cell is paced with period B, resulting in alternans. To suppress alternans, we
will adjust B during each beat, choosing the “adjustments” in such a way that the sequence
{An} converges to the fixed point A∗ as n → ∞. If we let εn denote the adjustment to the
nth inter-stimulus interval, then we may write Bn = B + εn. The mapping (5) is modified
to read

An+1 = f(B + εn − An). (10)

There are many possible ways to choose εn—we will use a method known as extended
time-delay auto-synchronization (ETDAS) [2, 28, 29]:

εn+1 = γ (An+1 − An) + Rεn. (11)

Here, the non-negative parameter γ is called the feedback gain, and provides a measure of
the “strength” of the control. We refer to the non-negative parameter R as the history
parameter because it measures how much weight or influence past APD values have on the
controller. In the following subsection, we use Equations (10)–(11) to present an algorithm
for controlling alternans.

4.1 Computer Simulations with ETDAS

Figure 5 shows the results of computer “experiments” in which the ETDAS algorithm is
used to control alternans as follows. First, we induce alternans by iterating the mapping (5)
with B = 430, using the restitution function (3). Choosing the initial value A0 = 200, the
iterates rapidly settle into an alternating pattern between two values, Ashort and Along. After
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Figure 5: Initiation of ETDAS control after 50 beats of alternans (see text for details). (a) R = γ = 0.2.
Note that the sequence An alternates about A∗ as the convergence takes place. (b) R = γ = 0.8. After
control is initiated, An increases monotonically to A∗.

iterating Equation (5) for 50 beats (regions labeled “control off” in Figure 5), we find that
A50 = Ashort = 196.473. After the 50th beat, we suddenly initiate control by switching
from Equation (5) to Equations (10) and (11), using particular choices of the parameters R
and γ. (Note: In order to start the algorithm, we use ε49 = 0). Figure 5a illustrates the
sequence of APD values if R = γ = 0.2. In this case, ETDAS succeeds in stopping alternans
and the iterates exhibit damped oscillation as they converge to A∗ = 338.587. Figure 5b
shows the sequence of APD values if R = γ = 0.8. Again, ETDAS stops alternans, but this
time the iterates increase monotonically to A∗ after control is turned on. The reason for
distinguishing between the two types of convergence shown in Figure 5 will be explained in
the next section.

4.2 Mathematical Analysis of ETDAS

Using Lemmas 3.6–3.7, we can determine ranges of the parameters γ and R for which the
ETDAS algorithm successfully suppresses alternans. As usual, we let B denote the underlying
BCL and assume that A∗ is the corresponding fixed point of (5). We rewrite Equations (10)–
(11) in the form of the systems discussed in Section 3.2 above:

An+1 = f(B + εn − An)

(12)

εn+1 = γ [f(B + εn − An)− An] + Rεn.

Observe that the vector (A∗, 0) is a fixed point of this system. If γ = R = 0 (i.e., if the
controller is off), we would expect this fixed point to be unstable for values of B that promote
alternans. More generally, we may characterize the values of γ and R for which the fixed
point is stable:
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Theorem 4.1. Let s = f ′(B − A∗). Then the fixed point (A∗, 0) of the system (12) is a
(local) attractor if both 0 ≤ R < 1 and

(
R + 1

2

)(
1− 1

s

)
< γ < R +

1

s
. (13)

Note that s represents a slope of the restitution curve.

Proof. According to Lemma 3.6, we must compute the Jacobian matrix J associated with
the system (12), and evaluate it at the fixed point (A∗, 0). Computing all the necessary
partial derivatives, we find that

J =




−f ′(B− A∗) f ′(B− A∗)

−γ [f ′(B− A∗) + 1] γf ′(B− A∗) + R


 =




−s s

−γ(s + 1) γs + R


 . (14)

The trace T and determinant ∆ of J are given by

T = s(γ − 1) + R and ∆ = (γ −R)s. (15)

Invoking Lemma 3.7 with T and ∆ from (15), we see that requiring T − ∆ < 1 yields the
restriction R < 1. Similarly, straightforward algebra reveals that the lower inequality in (13)
follows from requiring T + ∆ > −1, and the upper inequality in (13) follows from requiring
∆ < 1. Finally, the restriction R ≥ 0 is a consequence of our earlier assumption that R is a
non-negative parameter.

Although Theorem 4.1 provides some insight as to what parameters we should use when
implementing the ETDAS algorithm experimentally, in the next section we shall see that
inequality (13) alone is not sufficient to guarantee that ETDAS successfully controls alternans
in a patient’s heart.

5 Restricting the Controller

The implanted controller must compete with the heart’s specialized pacemaker cells for
control of the rhythm. Assuming that the tissue is sufficiently well-rested, the first stimulus
that arrives at a given cell is the one that will initiate the action potential. Therefore, in
order for the controller to take over the rhythm, it must preempt the heart’s native electrical
stimuli [2, 7, 8]. Mathematically, this means that we should require εn ≤ 0 for all n.

Unfortunately, unless both R and γ are chosen large (i.e., close to 1), the ETDAS method
often generates positive values for εn. For example, suppose we iterate Equations (10)–(11)
using B = 430 and R = γ = 0.2. Recall from Figure 5a that the sequence {An − A∗}
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alternates as it converges to zero. The corresponding values of εn after initiation of control
are as follows:

31.9518, −9.69696, 8.47417, −6.78803, 5.95701, −4.93954, 4.33664, −3.658 . . .

Observe that every other number in this sequence is positive.
One way to avoid the issue of positive εn values is to simply turn the controller off during

beats that would require εn > 0. Several prior studies [7, 12, 15] suggest that doing so is
advantageous because it enlarges the range of parameter values for which feedback control
succeeds. Equation (11) is easily modified to yield the restricted ETDAS equation:

εn+1 = min {0, γ (An+1 − An) + Rεn} . (16)

The only difference between Equations (11) and (16) is that by taking the minimum in (16),
we do not allow for positive values of εn. In the following subsection, we show results of
numerical simulations of Equations (10), (16).

5.1 Computer Simulations

We performed numerical simulations of the restricted ETDAS algorithm to determine how
R and γ affect the on/off pattern of the controller. The details of the simulations are as
follows: First, alternans was initiated by iterating Equation (5) with BCL = 430 for 100
beats, using the restitution function in Equation (2). The resulting sequence of APD values
alternated between 196.473 and 390.469. After the 100th beat (a short action potential), we
suddenly turned on restricted ETDAS control—that is, we switched from Equation (5) to
Equation (10), with εn given by (16) for particular choices of R and γ. To help determine
the on/off pattern of the controller, we iterated Equations (10), (16) for many beats and
computed the percentage of beats in which the controller was turned on (i.e., the percentage
of beats in which Equation (16) returns a strictly negative number). This entire process was
repeated for various choices of R and γ—specifically, both parameters ranged from 0 to 1 in
steps of 0.01, yielding a total of 10000 data points.

The results of the simulations are displayed in Figure 6, which shows a color-coded plot
of the percentage of beats in which the restricted ETDAS algorithm (16) determined that
the controller should be on. Notably, the figure can be divided (roughly) into three large
zones, each with a corresponding on/off pattern for the controller. For small R and large
γ (upper left corner, dark blue), the controller should be turned on in every third beat,
resulting in an on-off-off pattern. Much of the light blue region corresponds to an on-off
pattern in which the controller should be turned on in every other beat. For large R and γ
(upper right corner, dark red), the controller should be turned on in every beat (i.e., εn < 0
for all n). Other patterns may be possible, as indicated by other colors in the plot. Table 2
summarizes the three most common patterns exhibited by the controller, and lists sample
parameter values than can be used to generate those patterns.
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Figure 6: Color-coded plot of percentage of beats in which the controller is on. The dark blue region in the
upper-left corner corresponds to the on-off-off pattern (i.e., controller on 33 1

3 % of the time). Much of the
light blue region corresponds to an on-off pattern, and the dark red region corresponds to a pattern in which
the controller is always on.

R γ controller pattern
0.2 0.2 101010101010
0.1 0.9 100100100100
0.85 0.85 111111111111

Table 2: On/off patterns for the controller for various choices of the ETDAS parameters. From top to
bottom: (i) Controller active in every other beat; (ii) Controller active in every third beat; (iii) Controller
active in every beat.
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6 Discussion and Conclusions

When a cardiac cell experiences alternans, it is possible to apply carefully timed electrical
stimuli in such a way that the cell resumes a normal rhythm. We have analyzed a particular
algorithm, known as ETDAS, for determining when an implanted pacemaker should intervene
by applying stimuli. By exploiting the feature of cardiac tissue known as APD restitution,
we derived conditions (Theorem 4.1) that that ETDAS parameters must satisfy in order for
the algorithm to succeed. However, since the stimuli applied by the controller must preempt
the heart’s native electrical stimuli, our algorithm must be constrained to obey εn ≤ 0 for all
n (see Section 5). Hence, Theorem 4.1 alone is not enough to characterize the set of ETDAS
parameters for which the algorithm would successfully stop alternans experimentally. We
address this problem by introducing the restricted ETDAS algorithm (Equation (16)), which
allows the controller to be turned off during beats that would require εn > 0. We find that
the restricted ETDAS algorithm produces several distinct on/off patterns as illustrated in
Figure 6 and Table 2. Notably, for most choices of parameters, it is to our advantage not to
let the controller intervene during every beat.

Limitations: One limitation of the present study concerns our assumption that APD
restitution can be modeled by a simple mapping of the form (5). In some circumstances,
such a mapping provides a reasonably accurate description of a paced cell. However, cardiac
cells exhibit memory in the sense that An+1 depends upon the recent pacing history of the
cell, not just the preceding DI. In other words, it may be more realistic to model restitution
with a mapping of the form

An+1 = f(Dn, An, Dn−1, An−1, . . . ...Dn−k, An−k), (17)

where k provides a measure of how much “memory” the cell has. We remark that the ETDAS
control algorithm can still be used even if a memory model such as (17) is used. However,
extending the analysis of Section 4.2 is not as straightforward. For more information on
short-term memory of cardiac cells and its implications, see [4, 6, 14].

Another limitation of the present study is that we consider only local control—that is, we
seek to control alternans in a single cell (or small patch of cells). However, each cardiac cell is
(electrically) coupled to its neighboring cells, and thus it is not clear that controlling alternans
locally is sufficient to prevent alternans from occurring elsewhere in the heart. Several
studies [9, 18] suggest that feedback control algorithms such as ETDAS can only terminate
alternans in the immediate vicinity of the implanted pacemaker electrode. Fortunately, the
restricted ETDAS algorithm discussed here is quite robust relative to other feedback control
algorithms [2], and this may help reduce the number of local controllers needed to terminate
alternans in the whole heart.

Finally, concerning Figure 6, we should point out that the percentage of beats in which
the controller is on provides only a rough measure of the underlying on/off pattern for the
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controller. To truly identify the controller’s on/off pattern, one must carefully inspect the
values of εn that are generated by the restricted ETDAS algorithm. For example, certain
parts of the orange region in Figure 6 correspond to a sustained on-on-off pattern, while
other parts of the orange region correspond to situations in which the controller is initially
always on, but eventually settles into an on-off pattern. Another complication arises from
the computer’s limited precision—namely, for certain choices of R and γ, the convergence
from alternans to a normal rhythm is so rapid that |εn| < 10−14 within a few dozen beats.
However, since double precision arithmetic on most desktop computers is accurate only to
about 10−14, it is likely that some of the patterns encoded in Figure 6 are merely consequences
of the computer’s limited accuracy. A more thorough study of the possible on/off patterns
would likely require (i) using higher precision arithmetic and (ii) automating the computer
to identify the long-term on/off pattern of the controller.
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