

Tough, Dan, Board, Elisabeth M. and Barry, Gillian (2018) Assessing the Physiological Cost and Intrinsic Motivation of Multiplayer versus Single Player Active Videogames in Young Healthy Males. In: British Association of Sport and Exercise Sciences Student Conference, November, Newcastle, UK. (Unpublished)

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/10894/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively contact sure@sunderland.ac.uk.

Assessing the Physiological Cost and Intrinsic Motivation of Multiplayer

versus Single Player Active Videogames in Young Healthy Males

Tough, D.¹, Board, E.M.², Barry, G.³

1 School of Health and Social Care, Teesside University 2 Department of Sport and Exercise Sciences, University of Sunderland

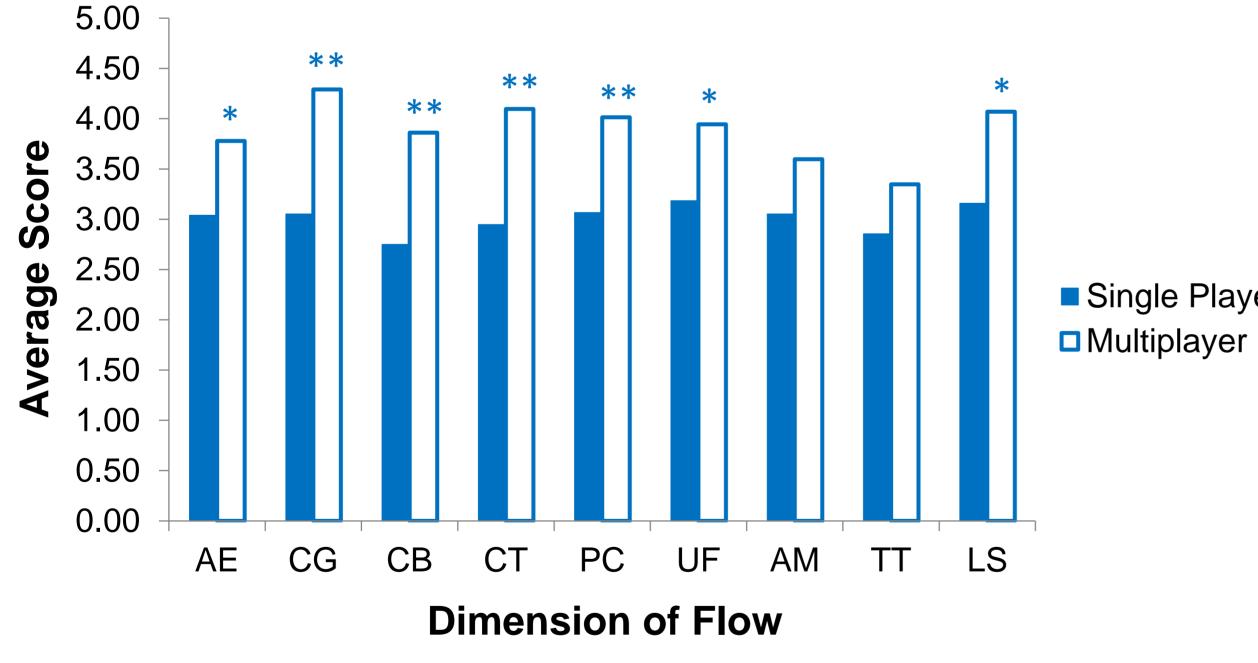
3 Department of Sport, Exercise and Rehabilitation, Northumbria University

Introduction

- \geq Almost one third of 2 to 15 year olds are overweight in the UK ^[1].
- \geq Within the UK, video games are played for over 12 hours per week ^[2].
- > Active videogames (AVGs) may have the potential to be used to increase physical activity levels of individuals, used in combination with other sources of activity ^[3].

Aims

- To assess the physiological cost of AVGs in a multiplayer mode, in comparison to 1) single player.
- 2) To assess intrinsic motivation of participants during each game mode.


Method

Reflex Ridge Single Player N=19 Heart rate (HR) and oxygen One exergaming (age, 23 ± 3 years; uptake $(\dot{V}O_{2})$ recorded session (Single stature, 178 ± 6 cm; continuously. player only) body mass, 79 ± 15 kg) Boxing RPE taken every 3 minutes. ^{VO}_{2max} Energy Expenditure (METs) test calculated. <u>Multiplayer</u> N=18 Two exergaming Flow State Scale (FSS) **River Rush** (age, 24 ± 5 years; sessions (Single administered after each stature, 180 ± 7 cm; and Multiplayer) game mode. body mass, 81 ± 13 kg)

AVGs

Results

Figure 1. Flow scoring during AVGs between single player gaming (N=19) and multiplayer gaming (N=18). * *p*≤0.05, ** *p*≤0.01

Table 1. Average physiological and subjective data for AVGs between single (N=19) and multiplayer (N=18) gaming

		RPE	%HR _{max}	%ΫO _{2max}	METs
yer r	Single Player	12 ± 1	68 ± 9	49 ± 12	7 ± 2
	Multiplayer	11 ± 2**	62 ± 8**	41 ± 13**	6 ± 1**
	* <i>p</i> ≤0.05, ** <i>p</i> ≤0.01				

Conclusion

- During AVGs, participants displayed greater motivation whilst playing with a human opponent.
- \geq Despite greater motivation during multiplayer gaming, single player gaming showed significantly greater physiological and cardiorespiratory responses.

References

Conolly, A. (2016) Health Survey for England 2015: Children's body mass index, overweight and obesity. 1. Statista (2018) Time children spend gaming weekly in the United Kingdom (UK) 2013-2017, by age. 2. O'Donovan, C. and Hussey, J. (2012) Active video games as a form of exercise and the effect of gaming 3. experience: a preliminary study in healthy young adults. Physiotherapy, 98(3), 205-210. D.Tough@tees.ac.uk