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ABSTRACT 

Anomaly detection in user access patterns using artificial neural networks is a novel way of 

combating the ever-present concern of computer network intrusion detection for many entities 

around the world. Anomaly detection is a technique in network security in which a profile is built 

around a user's normal daily actions. The data collected for these profiles can be as following: 

file access attempts; failed login attempts; file creations; file access failures; and countless 

others. This data is collected and used as training data for a neural network. 

There are many types of neural networks, such as multi-layer feed-forward network; recurrent 

networks; support vector machines; and others. For our study, we implemented our own self¬ 

organizing map (SOM), which we found to not be as heavily researched as other neural network 

approaches. Using the KDD Cup 99 dataset, we compared our own SOM implementation against 

other neural network implementations and determine the effectiveness of such an approach. 

INDEX WORDS: Neural Networks, Self-Organizing Map, Anomaly Detection, KDD Cup 99 
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INTRODUCTION 

Anomaly detection is a form of Intrusion Detection that is based off users' normal 

actions on a network system. Anomaly detection is done by observing the network and 

notifying the appropriate personnel when abnormal actions are being taken on the said 

network. Artificial neural networks (ANN) are able to excel in this type of environment because 

of the classification nature of anomaly detection. After being trained on testing data that was 

collected over a certain time, which is generally the most expensive and difficult part of a 

neural network based anomaly detection system, a trained neural network will be set on 

monitoring a network for misuse or irregularity in activity, thus classifying the traffic behavior 

as normal or abnormal. This allows for adaptability to new and different attacks if they do not 

fit the normal activity of the network. 

PROJECT GOAL AND METHODOLOGY 

We created a Self-Organizing Map (SOM), a type of artificial neural network with 

unsupervised learning, using the Python programming language. We chose Python because of 

its wide array of deep learning libraries that were very helpful in implementing our SOM. 

Python also has a variety of tools available for data processing which needed to be done to our 

data before using it for training. We also chose the KDD Cup 99 dataset for our training and 

testing. It is widely used by researchers of neural network anomaly detection implementations 

which creates a benchmark for our SOM when compared to other implementations. The 
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dataset also comes with training and testing data which makes it very convenient for our use. 

We will have to normalize the data before using it for training and testing. Due to our use of the 

KDD Cup 99 dataset, we will have ample amount of other experiments to compare ours against. 

Our goal was to have a reasonably accurate and novel solution to anomaly detection. 

ARTIFICIAL NEURAL NETWORKS IN ANOMALY DETECTION 

There are many different types of neural networks, and all of them have many situations 

where they are either more effective than, or not as effective, as another neural network. This 

section will provide an overview of the types of neural networks used by researchers for 

anomaly detection, and their advantages or shortcomings. 

Multi-layer feed forward neural networks have a layered structure, allowing for a variety 

of complex tasks to be accomplished. They have the ability to find errors in the hidden layers by 

back-propagating the units of the output layer, therefore creating a more accurate model than 

a simple one-layer network (Krose & van der Smagt, 1996). One such use of this model used by 

the Georgia Technical Research Institute involved "4 fully connected layers, 9 input nodes and 2 

output nodes (normal and attack)" (Philippe, 2001). Their model was successful in identifying 

each attack tested. MIT also used this model, which had k input nodes, 2k hidden nodes, and 2 

outputs (normal and attack). Using the DARPA database, it detected 17 out of the 20 attacks, 

and one false alarm when monitoring UNIX host attacks through 30 keywords (Philippe, 2001). 

This model does not allow for feedback connections, thus it lacks the ability to dynamically alter 

and evolve to rapidly changing inputs. So, while this one might be the one of the simplest to 

create and use, its inability to be adapted to different events until it is retrained is a huge 
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drawback to this type of design, making this model very expensive to implement in a real-world 

situation (Cannady). 

Recurrent neural networks have cycles built into them so that values - which can be 

either an extra set of input units that are fed some of the hidden unit activation values (an 

Elman network), or output values that are fed back into hidden units (Jordan network) - are run 

through the network as many possible times as until a stable point is reached (Krose & van der 

Smagt, 1996). The experiment results in 1998 and 1999 discovered the Elman network to be 

superior compared to Multilayer perceptron networks in anomaly detection. Recurrent 

networks were found to be quite expensive to train and required a large number of neural 

networks to be effective (Patcha & Park, 2007). A variation of this model is called the Long Term 

Short Memory Recurrent network. This network is trained on normal data, but is capable of 

performing live predictions for each time-step by "remembering" the preceding inputs and 

outputs, and adjusting its weights to the predicted output (Bontemps, Loi Cao, McDermott, & 

Le-Khac, 2017). In the experiment performed by researchers at University College Dublin, a 

100% detection rate was achieved, but at the cost of a high false alarm trigger (Krose & van der 

Smagt, 1996). 

Support Vector Machines are neural network models based more on a data mining 

approach. This allows them to detect new types of attacks because they do not depend on past 

patterns; however, the downside of this is the very high false positive rate (Patcha & Park, 

2007). 
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Self-Organizing Maps (SOM) are networks that are trained to do their own mapping. A 

network like this is needed where there is no training data of inputs and the desired output 

pairs, for a given input the output is not known, and the only information is a set of input 

patterns (Krose & van der Smagt, 1996). This method of training is called unsupervised learning. 

Self-Organizing Maps were used by Luc Girardin of UBILAB laboratory. The network performed 

clustering of network traffic and displayed the events on a 2D space for visualization, while 

those images were displayed to a network administrator who could see the deviations. This 

network was successful against IP spoofing; FTP password guessing; and network scanning and 

network hopping (Philippe, 2001). This technique was also used by Ohio University, through 

which they created a neural network for each of the network services being monitored. In their 

case, DNS and HTTP services were monitored (Patcha & Park, 2007). 

We found that there is a lack of research on using SOMs, and we hypothesized that a 

SOM would be the novel solution to anomaly detection. With new attacks being invented at a 

rapid rate, a SOM will not have to be retrained with the new data, it will only have to know 

what normal behavior is to be able to detect anomalies. 

SELF-ORGANIZING MAPS 

Invented by Tuevo Kohonen, SOMs map multi-dimensional data into a two-dimensional 

grid or map, and is, in essence, a clustering algorithm (Kohonen & Honekla, 2007). In the 

application of a SOM to anomaly detection, normal behavior will be "clustered" together with 

abnormal behavior. This is done by adjusting the weight of the output neurons in order to 

become more like the data inputs. After a pre-determined amount of training iterations, with 
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each iteration causing the weights to be adjusted, clusters will be formed of similar data around 

neuron of best-fit through a method called competitive learning (Kohonen & Honekla, 2007). 

The process of mapping to a two-dimensional space also allows for a simple visualization 

of highly complex data, making it much easier for a network administrator to see the patterns 

of all the data produced in a network. Otherwise, it would be incredibly difficult for an 

administrator to look at a vast set of unmapped data and deduce a meaningful conclusion. A 

SOM will be able to present this complex data in simpler and more visual way that the human 

brain can better comprehend (Guthikonda, 2005). 

The SOM algorithm is presented as follow: 

1. The SOM's nodes' weights are initialized. (A node is a location on the 2-D grid; there can 

be as many as desired, but they have to be fully connected to the input nodes.) 

2. An input vector is randomly selected and given to the network. 

3. Each network node is examined, and its weight is compared to the input vector. The 

winning node is called the Best Matching Unit (BMU). The BMU is usually calculated 

using the Euclidian distance formula. 

4. Radius of the neighborhood is calculated, and is reduced every time-step using a decay 

function. 

5. Any nodes within the radius of the BMU are adjusted to be more like the input vector. 

The closer the node is to the BMU, the more drastic the change is. 

6. Repeat from step 2 for pre-determined iterations. 

(Guthikonda, 2005) 
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As mentioned before, Self-Organizing Maps take advantage of a type of learning 

called unsupervised learning. Unsupervised learning means that a neural network is 

given only input data and no output data. The neural network does not need to know 

what the output of each input access pattern is, because it is instead finding the 

underlying inherent structure of the access patterns and clustering the into like groups. 

While unsupervised learning is in itself a rare quality, what truly makes Self- 

Organizing maps unique is to take N-dimensional data and map it to a 2D map. The 

figure below is a visual representation of how the inputs dimension N are mapped to a 

2D plane with each input vector being of N-dimensions. Each input vector is compared 

against other input vectors in a competitive learning style to get the resulting map 

(Joglekar, 2015). 

*2 . xn SOM EXAMPLE v-i---^ 
input vector 

EXPERIMENT AND RESULTS 

For our experiments and implementation of our Self-Organizing Map, we used the 

following parameters: 
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• SOM Size: 7x7 map 

• Training Iterations: 2,000 

• Initial Learning Rate: .01 

• Number of KDD99 Cup Training Records: 250,000 

• Training Features: 38 

We decided on a 7x7 map because of our hardware limitations, and the processing 

power that would be required in order to use a bigger map would beyond our capabilities. We 

also believed that a smaller map, like a 3x3 or 5x5, would not be as effective with such a large 

dataset, while a 10x10 or 15x15 would much too large for the computer equipment we have. 

Map size is also not an exact science in the realm of SOMs. There has been no clear method for 

choosing the map size other than it must not have more nodes then data points. 

We also chose the training iterations to be 2,000, and an initial learning rate of .01, since 

these are default parameters in the training phase, and we did not want to put too many 

variables into the training process or training time. Our main focus of the experiments were 

SOM map size. 

The first training run with the SOM, the entire kdddcup.data_10_percent_corrected 

data set was used as the training set. With 494,021 records, the whole dataset, the amount of 

records caused the computer it was running on to crash and not work whatsoever. This was 

also only a 10 percent sampling of the original training set. With this in mind, different training 

amounts were tested in order to find a training amount that had a reasonable training time. 

Using 250,000 records were found to have an average training time of 9 minutes and 11 
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seconds, and was determined to be a fair time investment for each trained network for the 

purposes of the experiment. 

At the beginning of the training, 38 of 42 features were selected creating a 38 

dimensional training set. Normalization of the data was also required in order to get all of the 

data on a common scale. This was needed to stop certain data points from overtaking the other 

data points, and causing inaccurate clustering. 

As a way to validate the clustering performance of the SOM, training of the SOM needs 

to occur multiple times with the same data. Comparisons of the clustering performance of the 

SOM was done visually. If the clustering of the data looks very similar across the produced 

SOMs, then the SOM could be considered validated. 

The training was done 10 times with the 10th network chosen to take to testing. The 

SOMs show in FIGURES 1, 2, and 3 below are the networks that most closely resembled each 

other. There were several others that also looked very similar to these, but these ANNs were 

the closest matching. These SOMs are the visualization of two clusters representing "normal" 

and "attack" access pattern inputs in the SOM's output layer. The darker the shading, the more 

strongly the neuron has responded to "attack" access pattern units. The lighter the shading, the 

neuron more strongly responded to "normal" access pattern inputs. 
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Self_Organizing Map after 2000 iterations and a learning rate of 0 010000 
8 

0 

1ST NETWORK 
2 3 4 5 6 7 8 

FIGURE 3 
Self_Organizing Map after 2000 iterations and a learning rate of 0.010000 
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FIGURE 4 
Self_Organizing Map after 2000 iterations and a learning 
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The use of the training data set allowed there to be a controlled mix of normal and abnormal 

behavior. Extracting this behavior from the data set, the 250,000 record sampling used in the 

training had a mix of: 

• Abnormal Behavior: 178,775 records, 71.51% 

• Normal Behavior: 71,225 records, 28.49% 

We can visually see from the trained maps, that most of the behavior has been correctly 

clustered, with the black being the clustered attacks and the shades of gray being normal 

behavior. Due to the results of training, the SOM can be considered validated and ready for 

testing. 

Using the records not employed in the training portion of the experiment, testing was 

done on the 10th produced SOM. Fortesting, the SOM was analyzed on the accuracy of the 

clustering it performed. Attack, Normal, False Positives, and False Negatives were kept tracked 

of. The outline of the testing process is presented below: 
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1. Find the two nodes in the 7x7 network that corresponds to the max output of "attack" 

and "normal" behavior. These nodes are identified by calculating the centroids of the 

two clusters. The formulas for finding these centroid nodes are given below. Cax = X 

coordinate of "Attack" Centroid; Cav=Y coordinate of "Attack" Centroid; Cnx = X 

coordinate of "Normal" centroid; Cny= Y coordinate of "Normal" centroid. 

_X xi*(l-grayScaleVaV) 
• Cax - 

Cay — 
X xi*(l-grayScaleVal) 

• CnX — 

X xi*(grayScaleVal) 

X xi*(grayScaleVal) 
-ny 

2. For each of the records used in testing, find its Best Matching Unit (BMU) and its 

corresponding coordinates on the SOM. 

3. Calculate the Euclidean distance between the corresponding record BMU and the 

"Attack" and "Normal" centroids. 

4. If Attack is closest to "Attack" centroid, it is classified as attack; If Normal is closest to 

"Normal" centroid, it is classified as normal; if Attack is closest to "Normal" centroid, it is 

classified as False Negatives; if Normal is closest to "Attack" centroid, it is classified as 

False Positives. 

Using these steps and the testing portion of the dataset, a 100% accurate clustering rate 

was achieved. There were no false negatives or false positives detected, and all attacks and 

normal behaviors were correctly clustered. 
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CONCLUSION AND FURTHER WORK 

It can be seen that the Self-Organizing Map has a promising future in anomaly detection, 

and by extension computer network intrusion. However, there are some drawbacks of using 

such an approach, and many ways the method proposed in this paper could be improved on as 

discussed below. 

One of the most obvious obstructions of using and SOM as an intrusion detection tool is 

that it is really expensive to train. For the research conducted in this paper, only half of the 

training dataset provided was able to be used without crashing the computer; this training 

dataset was also only 10% of the original training dataset. Using the whole training data set 

would have resulted in a training size of 4,940,220 records. This would have been far too much 

for our resources to handle, and for a large corporation, it might be an expensive investment. 

While it might be an expensive investment, if a corporation is looking for solution to a problem 

that can cause massive financial losses, the corporation would be willing to make that 

investment. In fact, computation time is considered the biggest drawback for SOMs in general 

(Palomo, Dominguez, Luque, & Munoz, 2008). This brings up the biggest barrier to using an 

SOM as part of an intrusion detection system, training data gathering. This is by far the most 

expensive process of the SOM training algorithm, because the organization that would try to 

implement this would have to collect their own data. A dataset found online would not be an 

accurate description of the network patterns that would occur on their own network, and 

therefore be completely useless to the organization. Data collecting is not an easy or cheap task 

to accomplish for a large organization and might be the biggest barrier to entry for this 

approach. 
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Personnel would also need to be trained in reading the produced Self-Organizing map. 

This is because the map does not produce results that are easy to read, or concrete numbers 

that can be easily understood. A network administrator will have to be tasked with looking the 

SOM and correctly inferring what the clusters mean. 

In future work the following improvements and tasks would need to be done. Further 

techniques validating the produced SOM in order to have more confidence in the results. A 

more powerful machine would be required in order to process more data, and could make it 

possible to try increased complex configurations of the SOM like map size; training iterations, 

and training set size. More techniques that could analyze the clusters in order to create a higher 

confidence in the produced SOM. These other validation techniques could be K-Fold validation 

and the silhouette coefficient. These techniques would be very helpful if using unlabeled data, 

because these validations techniques were specifically created in order to validate 

unsupervised learning algorithms, which SOMs are a part of. 

Despite all these criticisms, this implementation of Self-Organizing Maps performed 

remarkably well, even when compared to other neural network anomaly detection 

implementations. This SOM implementation would be tied for highest performing in clustering 

with accuracy when compared to these prior mentioned neural networks that include recurrent 

neural networks, multi-layer perceptron neural networks, support vector machines, and other 

SOMs. It is on par with the performance of a Bayesian network classifier by M. Bode that also 

used the KDD Cup 99 dataset (Flodo, Bellekens, Flamilton , Tachtatzis, & Atkinson). A 100% 

accurate clustering is a very good sign that this approach to anomaly detection in computer 
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network intrusion detection is a valid approach, and worth further pursuing with the proposed 

additions and improvements. 
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