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ABSTRACT 

The objectives of this research include development and characterization of alumina 

supported palladium oxide catalysts for low temperature catalytic oxidation of methane. The 

catalysts were prepared by various methods and then characterized and screened to select the 

best catalyst for further studies. A 5% (wt/wt) Pd/y-AhCb catalyst prepared by an improved 

vortex-assisted incipient wetness method showed the best activity of 94% (mol/mol) methane 

conversion at 325 °C. The active surface species was found to be PdO and Pd native oxides 

(PdNtv) as confirmed by X-ray Photoelectron Spectroscopy and activity studies. The y-AhCb 

support played an integral role in the formation of Pd native oxides as well as a facilitator in 

oxygen mobility. 

INDEX WORDS: Supported Palladium Catalysts, Palladium Oxide, Palladium Native Oxide, 

Aluminum Oxide, Methane Oxidation, Methane Combustion 
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A. Introduction 

Methane is the second most prevalent greenhouse gas behind carbon dioxide with a global 

warming potential 25 times more.1 While there are a variety of naturally occurring sources that 

contribute significantly to the overall contribution of methane to the atmosphere, there are many 

anthropogenic sources which hold a special focus to researchers because the contribution from 

these sources can be mitigated. Within the U.S. in recent years, political conflict has led to 

legislation (i.e. the President’s Climate Action Plan: Strategy to Reduce Methane Emissions) 

aimed at moderating emission of greenhouse gases including methane.2"3 Most recently, courts 

ruled in favor of regulations that restrict any emissions of methane from natural gas wells on 

federal land. The solution to most recent legislation is the burning of that emitted methane.4 An 

agenda to control emissions has encouraged researchers to develop innovative techniques to lessen 

methane in the atmosphere. One technique involves use of catalysts to convert methane into a less 

harmful or shorter-lived species. Of these catalysts, palladium shows promise for conversion of 

methane at low-temperatures, lending hope to automakers and industries using turbines powered 

by natural gas.5 The development of improved catalysts entails understanding the mechanism of 

the surface reaction taking place in the conversion of one gas to another, as well as the constituents 

of the species involved. 

B. Atmospheric Methane 

Methane is a highly flammable, colorless, odorless gas with a melting point of -183 °C and 

a boiling point of-161 °C. At 20 °C, its solubility in water is 3.3ml per 100ml of water. It is lighter 

than air with a relative density of 0.6 (air = 1). Its auto ignition temperature is 537 °C, and its 

explosive limits are 5-15 vol% in air.6 It is listed among the top 5 greenhouse gases. 



3 

Greenhouse gases warm the Earth by trapping infrared radiation. This occurs either by 

directly absorbing radiation or through indirect radiative forcing when chemical reactions with one 

greenhouse gas (i.e., methane) produce other gases. Newly produced gases subsequently absorb 

radiation or disrupt other atmospheric gases and/or processes.1 Of the top greenhouse gases, 

methane is second behind carbon dioxide, followed by nitrous oxide and fluorine-containing 

halogenated substances. 

2015 Greenhouse Gases 2015 Top Methane Sources 
by Emissions 

Other 

16.0% Enteric 

Fermentation 

25.4% 

Natural 

Gas 

Systems 

24.8% 

Fig. 1.1: Top Greenhouse Gases and Top Anthropogenic Methane Sources1 

Petroleum 

Systems 

6.1% 

Manure 

Managemen 

10.1% 
Landfills 

17.6% 

In 2015 methane made up 10% of all U.S. anthropogenic greenhouse gas emissions1 and 15% 

globally.7 Its global warming potential (GWP) is 25 times greater than CO2 over a 100-year 

period,1 however, in the short term it poses a much higher threat with a GWP of 72, if considered 

over a 20-year period. In the short term, methane accounts for 35% of global greenhouse 

emissions,7 according to the monitoring methods currently used by the EPA. Critics of the EPA’s 

“bottom-up” method claim that the actual methane emissions could be double the EPA’s 

estimates. 
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C. Methane and the Automotive Industry 

Use of natural gas is considered to be a possible transition between carbon intensive fossil 

fuels and renewable energy systems. It has an advantage over coal and petroleum in that it releases 

approximately half of the CO2 emissions. However, there are methane leaks in the use of natural 

gas. Even leaks of only 1-5% could negate its green benefits because of methane’s own high GWP 

value.9 While methane was once ignored in clean air legislation, growing knowledge of its impact 

recently inspired closer inspection. A 2010 EPA report found that light-duty vehicles were 

responsible for 60% of all mobile greenhouse gas emissions. As a result, vehicles of year models 

2017-2025 have been given new standards to regulate greenhouse gas emissions, including 

methane.10 The rise of such regulations presents a critical need for methane-oxidation catalysts 

that help reduce emissions and improve performance. Currently employed catalysts are inefficient 

at reducing methane in exhaust streams. In addition, high temperature combustion leads to 

emissions of other undesirable gases like NOx and CO. However, methane combustion assisted by 

heterogeneous catalysts could yield two beneficial outcomes in the form of lowering combustion 

temperatures to increase performance, while also limiting emissions.11 Low-temperature methane 

combustion would also be of benefit in catalyst-assisted combustion within gas turbines fueled 

with natural gas. While the idea of low-temperature combustion is advantageous, finding a catalyst 

that can perform in such “lean-bum” conditions has been a challenge and little progress has been 

made over the course of 40 years of research.5 Catalysts used for lean-bum conditions would need 

to overcome multiple obstacles, including: 1) operating at temperatures <500 °C and under low 

concentrations of methane (500-1000 ppm), 2) withstanding large amounts of water vapor, CO2 

and oxygen concentrations, and 3) tolerating presence of SOx and NOx. Two families of catalysts 

studied in more recent decades are noble metals and transition metal oxides. Both have shown 
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ability to completely oxidize methane, but the noble metals hold an advantage because they have 

superior specific activity. This makes them the best candidate for hydrocarbon combustion, 

especially in the case of methane which is the most difficult to activate. Of the noble metals Pt and 

Pd are the most commonly studied, however supported palladium catalysts have the best 

performance under lean-bum conditions.12 Disputes exist over the most active phase of palladium 

as metallic Pd, palladium oxide (PdO), and non-stoichiometric PdxOy have been identified in 

research as having catalytic activity.13'15 

D. Palladium and Palladium (II) Oxides 

Palladium is a rare metal that is typically found in deposits of platinum, nickel, copper, 

silver, and gold. It is a silver, white, soft metal with a high resistance to corrosion, a quality which 

makes it ideal for electronic industries and dental alloys. It is widely used in the field of catalysis, 

from bulk production of nitric acid for fertilizers, to producing acetaldehyde as in the Wacker 

process, to reducing automobile exhaust emissions through heterogeneous catalysis.16 Palladium 

has two main oxidation states, Pd(0) and Pd(II).17 In its metallic state, palladium has a face- 

centered cubic structure as shown in Figure 1.2. The crystal structure of PdO is body-centered 

tetragonal, where each O ion is tetrahedrally coordinated to four Pd ions and each Pd ion is 

coordinated to four O ions in a square-planar orientation. The geometry of Pd in PdO is 4- 

coordinate, square planar as shown in Figure 1.3.18 
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Fig. 1.2: Face-centered Cubic 
Structure of Metallic Pd 

Fig. 1.3: Crystal Structure of PdO 

In addition to metallic Pd and stoichiometric PdO, palladium oxide also exists as non- 

stoichiometric PdxOy oxides also known as “native palladium oxide” (abbreviated as “PdNtv”). A 

native palladium oxide (PdNtv) is formed when palladium metal is exposed to the air for a few 

days. Most native oxides are not stoichiometric. A stoichiometric palladium oxide (PdO) is formed 

when a native palladium oxide is calcined. Due to its non-stoichiometric nature, native palladium 

oxide is often designated as PdOx. The surface of a solid catalyst can be very different than the 

“bulk” (or interior), due to the greater reactivity. For example, the bulk of a catalyst could be 

micro-structured with PdO, while the surface composition exists as non-stoichiometric (or native) 

palladium oxide.19 

E. Palladium for Low-Temperature Combustion of Methane 

In regard to catalyzing methane, palladium has been the element of choice in recent years, 

even though the mechanism of its action is still not fully understood. What is known, however, is 

that palladium is the best performer at low temperatures which are typical of lean-bum 

conditions.12 To date, an ideal catalyst that performs optimally under 300 °C is undiscovered, but 

palladium, supported on various materials comes close, as it has been shown to initiate oxidation 

at 400 °C.5 The support can be alumina, silica, carbon, or any material with high melting points 
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and decomposition temperatures.20 The role of the support is to provide an extensive surface area 

upon which the catalyst, in this case palladium, can be deposited. Palladium that enters the bulk is 

of no use catalytically, as it is not physically available to make contact with gaseous species, thus 

it is important to achieve thorough dispersion of the catalyst across the surface of whatever support 

is used. Another role of support materials is the potential to influence the reaction mechanism 

itself.21 Some supports contain promoters, such as alkali metals or barium or lanthanum oxides, 

which can assist the catalyst in product desorption by donating electron density.14’15 These are 

important concepts in catalysis as they affect a catalyst’s conversion and catalytic turn-over rates. 

Another consideration, is the possibility of the support to lend its constituents to the catalytic active 

site during the course of the reaction.21’22 For example, regarding aluminum oxide (AI2O3), under 

some situations, the oxygen from the aluminum oxide could migrate to the palladium, forming 

PdO or some form of PdOx and/or migrate to the gas-phase molecule providing oxygen for the 

combustion.23 This mechanism is under-explored and is one that this research seeks to advance 

evidence to support or reject. 

Aluminum oxide (alumina) is a favorable support for the combustion of methane. It is 

available in nature in bauxite and corundum,24 and can be made in the laboratory by the Bayer 

process.25 Alumina is favorable because its surface area and structural features create differing 

shapes of support. Independent studies have reported on the benefits of alumina for the combustion 

of methane.12,21’23’26"27 Alumina comes in many forms and particle sizes. Of interest to catalysis 

are the a- and y-alumina nanopowders. a-Alumina is the most stable form,28"29 but y-alumina is 

sufficiently porous, thus a preferred support for palladium.30'31 The structure of y-alumina is 

traditionally considered a cubic defect, in which the oxygen atoms are closely cubic packed and 

the aluminum atoms occupy octahedral and tetrahedral sites.31 
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Several methods exist for preparing a catalyst so that active sites are evenly dispersed on 

the surface.20’ 27 Of those methods, three are explored in the course of this research: incipient 

wetness, wet impregnation, and slurry. Incipient wetness method utilizes the capillary action of 

the pores in the dry alumina to draw in a precursor solution which is slowly added to the support 

and palladium gets dispersed across the surface of the alumina. Wet impregnation uses the same 

capillary action concept, but in the reverse, where the dry alumina is added to the palladium 

solution. With the slurry method, both support and precursor are combined in a liquid phase. All 

three methods require extensive mixing for sufficient dispersion.14 

Catalyst precursors are stable, solid or salt forms of the metal catalyst. The precursors 

themselves do not make for good catalysts, but they assist in precursor solubility so that the metal 

can be added to a support.20 To obtain the final active catalyst, the precursor and support mixture 

must go through a process of calcination. This process heats the dry precursor/support mixture up 

above the temperature of decomposition of any nitrate/carbonate components and helps form 

metal-oxide links with the support.14 All water and undesired compounds are removed, and 

remaining, are the final active catalytic sites on support material. In the case of the palladium 

precursor, Pd(N03)2 • xfhO, the nitrate and water are decomposed during calcination to result in 

Pd and/or PdO on the support. The temperature at which the calcination takes place must be 

carefully determined. If the temperature is not high enough, the necessary decomposition will not 

take place. If the temperature is too high, sintering is a risk when metallic particles, without 

melting, cohere together in larger particle sizes thus ruining ideal dispersion and greatly decreasing 

catalytic surface area. The temperature of calcination also effects the formation of metal oxides. 

In a review of noble metal catalysts, Gelin and Primet describe numerous preparations and 

calcination temperatures, reporting a trend among researchers where lower calcination 
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temperatures favor PdO formation and higher temperatures tend to form more metallic 

palladium.12 Several different calcination temperatures were explored in this research. 

F. Kinetics and Surface Reactions 

Even after a catalyst is determined which can catalyze within the optimal temperature 

range, to further develop it or improve reaction conditions, the mechanism of the surface reaction 

must be understood. The catalytic cycle might be described as a “black box,” but kinetics studies 

provide a glimpse inside that box that lend helpful mechanistic assumptions. Monitoring the 

kinetics of the reaction or the concentration of reactant, intermediates, and/or products, over time, 

can provide information regarding the mechanism, catalytic activity, and product selectivity. 

Several instruments can help with this (ex. gas chromatography, mass spectrometry), however this 

research utilizes gas chromatography (GC) to monitor the changing methane and carbon dioxide 

concentrations over time. Plotting the change in concentration over time yields a reaction profile 

that can facilitate formulation of a reaction mechanism that agrees with the experimental 

observations, often revealing a rate-determining step. Once a rate is determined, one can infer a 

reaction order, rate law and calculate a rate constant. Langmuir-Hinshelwood (L-H) kinetics 

provide an example model to describe common heterogeneous catalytic reactions following 

bimolecular surface reaction (Figure 1.4). This model assumes the gas phase reactants must first 

adsorb to catalytic active sites on the surface of the solid support. The reaction then takes place on 

the surface, followed by product desorption back to the gaseous phase.14 
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catalyst „ 
The reaction can be described as A + B -> P, and the rate as: r = k[A]a[B]p, where a 

and P indicate the order of the reaction. But the L-H model is highly dependent on sites available 

versus sites occupied, thus introducing two new characters: 9A and 9B, where 9A represents the 

fraction of sites occupied by A, and 9B likewise represents sites occupied by B. This means that 

the only available sites are those represented by: 1 — 9A — 9B, thus providing the following rates 

at equilibrium where ra = rp 

a) rate of adsorption of A: raA — kapA(l — 9A — 9B), where p refers to partial pressure (or 

cone.); 

b) rate of adsorption of B: rag = kapB{l — 9A — 9B); 

c) rate of desorption of A: rdA = kd9A, and 

d) rate of desorption of B: rdfi = kd9B. 

k 
If a new constant, K, is introduced to represent —, then by algebraically combining rate 

kd 

conditions for A and B, we eventually arrive at the following L-H rate law (Atkins): 

^2 KaVaKbPb 
r — k29A9B — 

(1 + KApA + KBpBy 

While the L-H mechanism is much more common in heterogeneous catalysis, another type of 

mechanism to consider is the Eley-Rideal mechanism. In this model, one gas phase reactant, A, 
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adsorbs on the surface of the catalyst and the gas-phase reactant, B, interacts with A independent 

of the catalyst surface, to form product P. 

catalyst 
In this mechanism where A + B-> P, the rate of formation is expected to be proportional 

to the partial pressure of B, pB, and the surface coverage is only represented by 0A, therefore the 

KT) a 

rate law in this case should be: r = k2pB^A^ where dA = . Therefore, the overall rate law 

according to Eley-Rideal is: 

k2 KPaPb r =- 
1 + KpA 

To complicate simple adsorption and desorption, factors in the catalytic cycle can decrease 

turnover number, which is the number of cycles before the catalyst deactivates. If a reactant does 

not adsorb strongly enough, the reaction may never occur. If a reactant or product adsorbs too 

strongly, available active sites will decrease, and the catalyst may be deactivated. These concepts 

are the basis behind Sabatier’s principle and can be illustrated in a volcano plot, which is a 

graphical representation of reaction rate versus heat of adsorption (Figure 1.6). 
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Fig. 1.6: Volcano Plot 

Besides the heat factor, the life of a catalyst can come to an end via deactivation, sintering, 

inhibition, or poisoning. Deactivation describes a circumstance in which a catalyst becomes less 

active, deviating from its ideal rate law. This deviation can also follow its own first or second- 

order rate law. A catalyst can be deactivated when products, by-products, or other compounds 

present in the gas mixture occupy active sites, lowering conversion rates. In an extreme case, the 

catalyst could be poisoned, in which the active sites are occupied irreversibly and thus destroyed. 

Active sites can also be destroyed by sintering, a type of thermal degradation in which high 

temperature cause either support pore collapse or the size of metal crystallites to change. Both 

processes result in loss of surface area. As a general rule, a metal will begin to sinter when the 

temperature is at roughly half of the metal’s melting point.14 These important factors must be 

considered when designing the catalyst and studying its kinetics. 
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G. Objectives of this Study 

This research aimed to achieve three specific objectives toward the advancement in 

catalyzed low-temperature combustion of methane. Firstly, it sought to identify a supported 

palladium catalyst that is suitable for complete combustion of methane below 400 °C, and a 

specific preparation method to develop such a catalyst. Secondly, this research sought to 

characterize the surface composition of both fresh and used catalysts, to aid in understanding 

potential surface reactions. Lastly, this research attempted to contribute on the kinetics and 

mechanism of the surface reactions in the catalytic oxidation of methane over supported palladium 

catalysts. 

In pursuit of the first objective, a palladium catalyst was sought through several 

preparations that displayed catalytic activity with over 80% methane conversion rates at 

temperatures <400 °C. In 2001, Gelin and Primet conducted a comprehensive review of Pt and Pd 

supported catalysts, many of which were using alumina supports.12 Over a decade later, recent 

literature continues to confirm aluminum oxide as an optimal support for palladium. Miller et. al 

conducted a study on the support effects where Pd is used for methane oxidation. In this study 

where AI2O3, Zr02-Ce02, and Ce02 were used for support, it was concluded that alumina 

outperformed all other catalysts.21 Schwarz and Pfefferle studied support interactions with AI2O3 

support and MgO supports, both of which showed combustion below 350 °C, but AI2O3 showed 

greater oxygen mobility across the surface.23 Cargnello et al. chose and functionalized AI2O3 as 

the support for their CeC>2 coated Pd due to its superior performance, which resulted in exceptional 

activity below 400 °C.n In addition, a collection of other researchers have chosen AI2O3 and 

benefitted from alumina as a quality support.22,26,29, 32-37 In their research several different 

preparation methods were explored. Cargnello reported use of a slurry-type method for preparation 
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of their reference sample on alumina, as well as calcination temps varying from 500 °C and 850 

°C.n Miller chose an impregnation method and calcination temps of 500 °C,21 and Schwarz chose 

incipient wetness with a slightly lower calcination temperature of 450 °C.23 Cargnello also 

discussed in their article the commonly observed tendency of PdO decomposing to metallic Pd in 

the 650 °C to 800 °C range, mentioning the inferior catalytic performance of metallic Pd to the 

PdO phase.11 In this research project, alumina supported Pd was prepared by methods of slurry, 

wet impregnation and incipient wetness. Several different calcination temperatures were also 

utilized to aid in selecting the best performing catalysts and for comparison of surface composition. 

The second objective of this research was to characterize the prepared catalysts and 

determine content of Pd vs. PdO, acknowledging the effects of preparation and catalytic activities 

on the surface species. As previously mentioned, Cargnello recognizes PdO as the active Pd 

species for methane oxidation.11 That opinion is shared by others, like Goodman who concludes 

that while bimetallic catalysts resist water poisoning, they have substantially lower rates than PdO 

phases.26 It is also the opinion of Stefanov et al. who also concludes PdO to be the active species 

in their cobalt bimetallic catalysts.37 However, there are others who dispute the PdO active phase, 

like Bychkov who finds highest catalytic activity over Pd metallic state in methane-rich 

conditions,13 or like Sadokhina who attributes low temperature activity to the evidence of available 

metallic Pd sites.36 In the midst of the Pd vs. PdO active phase dispute are those who hold the 

opinion that it is a transition species that displays activity, such as Kinnunen who finds it is the 

ratio of Pd to PdO that affects activity with PdOx (x>l) reducing to more catalytic species easier 

than stoichiometric PdO.1'’ The catalysts in this research were characterized primarily by XPS for 

surface composition with supporting characterization including STEM, EDX, and XRD. Surface 
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composition of the catalysts was compared against their activity and kinetic performance to 

establish a conclusion regarding the active Pd species. 

A kinetics study of the best performing catalyst was the third objective of this research and 

was necessary in suggesting a catalytic methane oxidation mechanism. Several recent publications 

also conducted kinetics studies. The particular kinetic studies referenced in this research project 

are those by Miller et al., Sadokhina et ah, and Stefanov et al., who provide adequate details 

supporting their conclusions.21, 36-37 All three publications apply an Langmuir-Hinshelwood type 

model to their kinetic findings and discuss why they chose the models for their research. Miller, 

who studied support effects on the oxidation of methane arrived at the conclusion that 

concentration of O2 is zero-order having no impact on the catalytic rate. Miller also emphasized 

that kinetics support an inhibitory effect of water, and the importance of both Pd and PdO sites be 

available for oxidation of methane to occur.21 Both Sadokhina and Stefanov’s work looks at several 

Langmuir-type surface reactions with respect to methane oxidation.36-37 Sadokhina corroborates 

Miller’s conclusion that O2 is zero-order, and adds that CO2 is also zero-order, but does not offer 

extensive details on nature of the active Pd surface species.36 Whereas Stefanov, like Miller points 

to oxygen mobility across the support, imparting balance to the PdO phase which plays into the 

kinetics. Stefanov goes on to reject the Eley-Rideal mechanism based on uniform oxygen reaction 

order and concludes that the oxidation of methane follows a more complex Mars-van-Krevelen 

model.37 The kinetics data, in combination with characterization, from this thesis research was 

compared to both L-H and E-R models to infer the best fit concerning our kinetic findings, and 

was used to elaborate on the most active Pd surface species. 
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A. Catalyst Preparation 

i. Preparation of 10% Palladium on 01-AI2O3 - Varying Calcination Temperatures 

Three 10 wt% Pd/AbCb catalysts were prepared by the incipient wetness impregnation 

technique at varying calcination temperatures. A solution was made by dissolving 1.0828 g of 

palladium (II) nitrate hydrate (Sigma Aldrich, Molar Mass: 230.43 anhydrous basis g/mol) in 3.05 

mL of deionized (DI) water. The solution was added to 5.0000 g of aluminum oxide nanopowder, 

(Sigma Aldrich, Molar Mass: 101.96 g/mol; 13 nm primary particle size; BET surface area, 85- 

115 m2/g) by slowly pouring under constant mixing by hand with a small metal spatula. Residual 

palladium nitrate solution was rinsed out of its beaker using a total of 2.9 mL of D.I. water which 

was added under mixing to the Pd/a-ATO?, mixture until the appearance of the mixture resembled 

small pea-size clumps. An electric kitchen hand mixer attached with only one mixing arm was 

used to continuously mix the Pd/a-AhCb mixture for 10 minutes until the mixture resembled a 

smooth, sticky paste. The mixture was transferred to a beaker and dried in an air oven overnight 

at 112-115 °C. The mixture was removed from the oven and placed in a desiccator to cool to room 

temperature. Sample was weighed on an analytical balance and found to have a mass of 5.2270 g. 

The dried Pd/a-ALCf mixture was divided into 3 even portions. Each portion was crushed and 

ground with a mortar and pestle and placed in a porcelain crucible. Each mixture was then calcined 

for 6 hours in a Benchtop Muffle Furnace (Thermolyne make) at corresponding temperatures listed 

in Table 2.1. 
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Table 2.1: 10% Pd/a-AhOs Catalysts - Varying Calcination Temperatures 

Catalyst Calcination Temperature (°C) Calcination Time Further 
Treatment 

CSU 1 600 6 hours none 
CSU la 750 6 hours none 
CSU lb 750 6 hours oxidation 
CSU lc 750 6 hours reduction 
CSU 2 900 6 hours none 

Fig. 2.1: 10% Pd/a-AhC>3 Catalyst Before Drying/Calcination 

CSU lb and CSU lc were obtained through further oxidation and reduction of CSU la. For 

CSU lb, 0.200g of CSU la was placed in the reactor as described in the activity procedure. For 

CSU lb, pure oxygen was passed over CSU la at 450 °C for 30 minutes, followed by cooling 

under flow of helium to room temperature. For CSU lc, pure hydrogen was passed over CSU la 

at 450 °C for 30 minutes, followed by cooling under flow of helium to room temperature, CSU lb 
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and CSU lc were only used for X-ray Photoelectron Spectroscopy (XPS) characterization, while 

CSU 1, CSU la, and CSU 2 were further studied for activity. A sample of CSU 1 was also sent to 

Georgia Tech for Scanning Transmission Electron Microscopy (STEM) and Energy Dispersive X- 

ray Spectroscopy (EDS) to determine bulk properties. Activity was performed on CSU 1, CSU la, 

and CSU 2 following the activity procedure described in another section. 

ii. Preparation of 10% Palladium on 01-AI2O3 - Varying Methods 

Three 10 wt% Pd/a-AhCh catalysts were prepared by three different methods: Incipient 

Wetness, Wet Impregnation, and Slurry. 

The incipient wetness catalyst was (Sigma Aldrich, MW: 266.46 g/mol; 40% Pd basis) in 3.0 

mL of DI water. The palladium solution was then added to 5.000 g of aluminum oxide (Sigma 

Aldrich, MW: 101.96 g/mol; nanopowder, 13 nm primary particle size) in 20 pL increments using 

a micropipette under manually stirring with a small spatula. An additional 1.0 mL DI water was 

added to the palladium beaker to clean any residual solution and added to the aluminum in 20 pL 

increments using a micropipette under manually stirring. Finally, another 1.5 mL was added by 

dropper to achieve the desired dough-like consistency needed for incipient wetness method. The 

mixture was then mixed with a kitchen hand-mixer for 10 minutes. 

The wet impregnation catalyst was prepared by dissolving 0.970 g palladium nitrate dihydrate 

in 4.0 mL of DI water. To the palladium nitrate solution, 5.000 g of aluminum oxide were added. 

An additional 2.0 mL of DI water were added to yield the necessary thick mixture needed for the 

wet impregnation method. The mixture was then stirred with a hand-mixer for 10 minutes. 

The slurry method catalyst was prepared by mixing 5.000 g of aluminum oxide in 11.0 mL of 

DI water to create a slurry. To that mixture a 3.0 mL solution containing 0.970 g of palladium 
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nitrate dihydrate was added. The resulting mixture was then stirred using a magnetic stirrer for 1.5 

hours. 

All three solutions were then dried at room temperature; however, the slurry catalyst needed 

an extra hour of drying in the oven at 105 °C. All three catalysts were then ground with a mortar 

and pestle and calcined at 500 °C for 6 hours in a Thermolyne Benchtop Muffle Furnace. 

Table 2.2: 10% Pd/a-AhCb Catalysts - Varying Preparation Methods 

Catalyst Preparation Method Calcination Temp (°C) Calcination Time 

CSU 5 Incipient Wetness 500 6 hours 
CSU 6 Wet Impregnation 500 6 hours 
CSU 7 Slurry 500 6 hours 

Fig. 2.2: 10% Pd/a-AhC>3 - Varying Preparation Methods 
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iii. Preparation of 5% Palladium on y-AkCb, Vortex Incipient Wetness (Palladium 

Nitrate Dihydrate Precursor) 

A 5 wt% Pd/y-AkCb catalyst was made using a palladium nitrate dihydrate precursor. A 

solution using 2.0 mL of DI water and 0.252 g of palladium nitrate dihydrate was added in 20 p.L 

increments to 1.750 g of gamma phase aluminum oxide nanopowder, (Sigma Aldrich; <50 nm 

particle size) under vortex mixing set to “3” speed setting for 2 hours. The thick mixture was dried 

in an oven at 105 °C overnight, crushed with a mortar and pestle, and then calcined at 500 °C for 

6 hours in a Thermolyne Benchtop Muffle Furnace. This catalyst was named “CSU 9” and sent to 

Auburn for XPS characterization. 

Fig. 2.3: Vortex Incipient Wetness 
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iv. Preparation of 5% Palladium on Y-AI2O3, Vortex Incipient Wetness (Palladium 

Nitrate Hydrate Precursor) 

A 5 wt% Pd/y- AI2O3 catalyst was made using a hydrate precursor. A solution of 3.0 mL D1 

water and 0.328 g of palladium(II) nitrate hydrate, (Sigma Aldrich, MW: 230.43g/mol; anhydrous 

basis) was added in 20 pL increments to 1.750 g of gamma phase aluminum oxide nanopowder, 

(Sigma Aldrich, <50nm particle size) under vortex mixing set to “3” speed setting for 2 hours. The 

resulting “ball” of dough-like mixture was then dried in an oven at 103 °C overnight, crushed with 

a mortar and pestle, and then calcined at 500 °C for 6 hours in a Thermolyne Benchtop Muffle 

Furnace. This catalyst was then passed through a sieve to achieve particle size of <150 pm, and 

named “CSU 10.” 

Table 2.3: 5 wt% Pd/y- AI2O3 

Catalyst Calcination Temp (°C) Calcination Time Variation 
CSU 10 500 6 hours Original 

CSU 11 500 6 hours 
CSU 10 reacted 80 minutes with 

2%CH4/4%02, balance He 

CSU 12 500 6 hours 
CSU 10 reacted 80 minutes with 

2%CH4/8%02, balance He 
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Fig. 2.4: 5 wt% Pd/y-AhCb 

v. Preparation of 20% Palladium on y~ AI2O3, Vortex Incipient Wetness (Palladium 

Nitrate Hydrate Precursor) 

A 20 wt% Pd/y-AbOs catalyst was made using a hydrate precursor. A solution of 0.65 mL DI 

water and 0.432 g of palladium(II) nitrate hydrate, (Sigma Aldrich, MW: 230.43g/mol; anhydrous 

basis) was added in 20 pL increments to 0.798 g of gamma phase aluminum oxide nanopowder 

(Sigma Aldrich, <50 nm particle size) under vortex mixing set to “3” speed setting for 2 hours. 

The resulting “ball” of dough-like mixture was then dried in an oven at 100 °C overnight, crushed 

with a mortar and pestle, and then calcined at 500 °C for 6 hours in a Thermolyne Benchtop Muffle 

Furnace. This catalyst was then passed through a sieve to achieve particle size of <150 pm and 

named “CSU 13.” 
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vi. Preparation of Standard Grade PdO 

Standard grade palladium (II) oxide (Sigma Aldrich) was used for reference. This sample 

was named “CSU 8.” 
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Table 2.4: Catalyst Inventory: A list of all catalysts with their preparation and characterization methods. 

Catalyst Composition Prep Method Precursor 
Calcination 
Temp (°C) 

Studies Done 

CSU1 10 M% MAI2O3 Incipient Wetness MU) nitrate 
hydrate 

600 
XPS, STEM, 
EDS, Activity 

CSUla 10 v&% MAI2O3 Incipient Wetness MU) nitrate 
hydrate 

750 
Activity 

CSU lb 10 MM2O3 Incipient Wetness, 
Oxidized 

MU) nitrate 
hydrate 

750 
XPS 

CSUlc 10 w{% MAI2O3 Incipient Wetness, 
Reduced 

MU) nitrate 
hydrate 

750 
XPS 

CSU 2 10 wi% MAI2O3 Incipient Wetness M(II) nitrate 
hydrate 

900 
Activity, XPS 

CSU 3 10 wf% MAI2O3 Incipient Wetness, 
Reacted: l%CH4/4%02 

MU) nitrate 
hydrate 

600 
XPS 

CSU 5 10 wj% Mai2o3 Incipient Wetness MU) nitrate 
dihydxate 

500 
Activity, XPS, 
EDX, SEM 

CSU 6 10 M% MAI2O3 Wetness Impregnation MU) nitrate 

ditote 
500 

XPS 

CSU 7 10 Wf% MAI2O3 Slurry MU) nitrate 
dihy.dxate 

500 
XPS 

CSU 8 Standard Ml n/a n/a n/a Activity, XPS 
CSU 9 5 M% My-A1203 Vortex Incipient Wetness MU) nitrate 

tUhydxaie 
500 

Activity, XPS 

CSU 10 5 wt% M7-AI2O3 Vortex Incipient Wetness MU) nitrate 
hydrate 

500 

Activity, 
Kinetics, XPS, 
EDS, SEM, 
XRD, 

ptasissElm 
chemisorption, 
TPR, TPO 

CSU 11 5 SKt% MY-AI2O3 Vortex Incipient Wetness, 
Reacted: 2%CH4/4%02 

MU) nitrate 
hydrate 

500 
XPS 

CSU 12 5 M% Mr-Ai203 Vortex Incipient Wetness, 
Reacted: 2%CH4/8%02 

MU) nitrate 
hydrate 

500 
XPS 

CSU 13 20 wt% My-ai2o3 Vortex Incipient Wetness MU) nitrate 
hydrate 500 

Activity, XPS, 
XRD, EDX, 
SEM 

CSU 14 20 wf/o MY-AI2O3 Vortex Incipient Wetness 
Reacted: 2%CH4/4%02 

MU) nitrate 
hydrate 

500 
XPS 

CSU 15 20 M% MY-AI2O3 Vortex Incipient Wetness, 
Helium (a), 275°C 

MU) nitrate 
hydrate 

500 
XPS 

CSU 16 Standard Ml Reacted: l%CH4/4%02 n/a 500 XPS 
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B. Activity and Kinetics Study 

i. Catalytic Activity Procedure 

The catalytic activity was monitored by passing a reaction gas mixture over a stationary 

catalyst bed, packed in a quartz tubular reactor between layers of glass wool, A picture of the 

catalyst bed is pictured in Figure 2.5. 

Fig. 2.5: Catalyst Bed in Reactor 

The reactor was first packed with a layer of silanized glass wool (Supelco), followed by 0.200 

g of catalyst, followed by another layer of glass wool, followed by a layer of 20-30 borosilicate 3 

mm glass beads (Sigma-Aldrich), followed by a final layer of glass wool to hold the bed stationary 

while allowing uninhibited gas flow. A gas mixture was passed through 1/8” diameter copper 

tubing, feeding into a Mass Flow Controller (Aalborg, GFC17) at a flow rate of 1.0 L/min. The 

gas mixture then travelled through a coil of more copper tubing to ensure proper mixing of the gas 

before entering the reactor which was placed in a temperature-controlled horizontal tube furnace. 

The gas mixture passed over the catalyst bed and the effluent gas exited the reactor through a 

plastic tubing fitted with glass T-junction and a rubber septum. A syringe was inserted through the 

septum to draw out samples of the effluent gas mixture. The temperature of the reactor was 
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monitored using an Omega thermocouple thermometer sheathed in a glass tube inserted into the 

entrance of the reactor, the tip situated directly at the catalyst bed. A picture of the reactor assembly 

is shown in Figure 2.6. 

Fig. 2.6: Reactor Assembly 

Fig. 2.7: Drawing a Sample 
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The sampled effluent gas was injected into a gas chromatograph (Buck Scientific Model 

310) fitted with a 6 ft. shincarbon packed column and a Thermal Conductivity Detector (TCD). 

The GC data was analyzed using PeakSimple software under the following temperature 

parameters: hold initial temperature for 5 minutes at 40 °C, then ramp at 20°C/min, until 

maximum temperature of 180 °C is reached, hold for 3 minutes, and then cool down to 40°C. 

The full cycle of one GC analysis takes 15 minutes to complete. A sample chromatogram 

produced by “PeakSimple” software is shown in Figure 2.8. 

Fig. 2.8: PeakSimple Chromatogram 

The retention time of the peaks indicates the identity of the compound, as each species has a 

varying affinity for the column and therefore travels its length at a different velocity, while the 

area of the peak is directly related to the concentration of the gas mixture. Prior to catalytic studies, 

a calibration curve was constructed by injecting varying volumes of a standard gas mixture of 
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1% CO/1% CH4/1% CO2 to provide a correlation between area and effluent gas concentrations. 

The calibration curve is given in Figure 2.9. 

Fig. 2.9: Calibration Curve 

ii. Kinetics Procedure 

Helium was passed over catalyst for 15 minutes until a temperature of 280 °C was obtained. 

Helium was turned off and a reaction gas was allowed to flow at a rate of 1.0 L/min through reactor 

assembly and over the catalyst. Samples of 0.5 mL product mixture were drawn out from the end 

of the reactor using a SGE Push-pull with Luer Lock lmL syringe at 5, 20, 35, 50, 65 and 80 

minutes of reaction time. A fixed volume of the gas mixture collected in the syringe was injected 

into the GC for analysis. 
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C. Characterization Techniques 

i. X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a technique that uses a “soft” x-ray source, usually 

A1 K«or Mg Ka, that penetrates the top few layers of atoms (~10 nm) of a substance. The excited 

photons from the x-ray interact at an atom’s core level and cause ejection of an electron with 

kinetic energy, Ek, which is detected by the instrument. An analyzer counts the number of electrons 

of various energies emitted. The difference of the X-ray energy and a photoelectron’s kinetic 

energy equals the binding energy of the ejected electron. Binding energies are unique to specific 

species and the resulting charge transfer determines the chemical shift of the XPS peaks produced. 

Chemical shifts can arise due to differences in oxidation states, electronegativity, lattice sites, etc., 

divulging specific information about the species’ chemical state.38 In the case of palladium, with 

an electron configuration of [Kr]5s24d8, XPS x-rays will interact with the 3d electrons resulting in 

a peak in the 335-340 eV range. Further deconvolution dissects the Pd3d peak into the minor shifts 

that occur due to changes in oxidation state and can infer percent composition of the particular Pd 

species that are present in the sample. XPS is intended to analyze surface composition to a depth 

of ~10 nm (100 A), however profiling can be achieved at depths of 100-200 nm (1000-2000 A) 

through a process referred to as “sputtering,” in which a beam of Ar+ ions is used to drill further 

into the sample and analyze slightly further below the surface. 

XPS is of particular use in the determination of metal oxides, which can occur either precisely 

stoichiometric (e.g. PdO), or can show stoichiometric variability over a range of compositions (e.g. 

PdOx). Transition elements with their variable oxidation states frequently show in their oxides and 

sulphides this non-stoichiometric behavior.38 In XPS terms, these non-stoichiometric oxides are 
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sometimes referred to as “native oxides” (e.g. Pd Native or PdNtv). Characterization by XPS for 

catalysts in this study was performed at Auburn University’s Center for Advanced Vehicle and 

Extreme Environment Electronics (Cave3). The procedure for analysis by XPS is as follows: 

Photoemission measurements were performed in a load-locked Kratos XSAM 800 

surface analysis system equipped with a hemispherical energy analyzer. The base 

pressure of this ion- and turbo-pumped system was 8 x 10~9 torr as read on a nude 

ion gauge. The XPS analyzer was a 127 mm radius double-focusing concentric 

hemispherical energy analyzer (CHA) equipped with an aberration compensated 

input lens (ACIL). XPS spectra were recorded in the fixed analyzer transmission 

(FAT) mode with a pass energy of 80 eV, appropriate for acquisition of medium 

resolution, high signal-to-noise spectra. The magnification of the analyzer in the 

FAT mode was selected to collect electrons from the smallest allowable (5 mm2) 

area on the specimen. The resolution of the instrument at the operating parameters 

was measuredfrom FWHM of the Ag3ds/2 peak to be 1.0 eV. The XPS energy scale 

was calibrated by setting the Ag3ds/2 line on clean silver to exactly 368.3 eV 

referenced to the Fermi level. Due to specimen charging during X-ray irradiation, 

the energy axis of each XPS spectra has been shifted to make the Cls binding 

energy line equal to 285.0 eV, which is a standard hydrocarbon energy (C-H and 

C-C bonds) used to reference charge affected materials. The potential measured 

on a typical sample was 0.5 V. The photoelectrons were excited by a water-cooled, 

conventional (i.e., non-monochromatic) dual anode X-ray gun equipped with anAl 

window. The angle of the incidence of the x-ray beam with the specimen normal 

was 51.5°. MgKa (1253.6 eV) radiation was used exclusively. In cases when the 
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peaks were low in amplitude, the Savitsky-Golay smoothing routine was used in 

order to help determine the peak binding energies. The XPS surface composition 

was calculated based on the Scofield cross-sectional values accounting for the 

instrumental transmission function in the FAT mode of operation. The specimen 

was pressed into double-sided carbon tape to a thickness which insured that the 

emitted photoelectrons would originate only from the specimen,39 

ii. X-ray Diffraction 

X-ray diffraction is a useful method for identifying the crystalline phases of a catalyst. The 

sample is hit with x-rays over a range of angles. The resulting elastic scattering of the x-ray photons 

is directly related to the spacing in the crystal lattice. It uses Bragg’s Law: nX = 2dsind, where 

n=l, 2,..., dis the spacing between atomic planes in the crystalline phase and 9 is the diffraction 

angle. Intensities of the diffracted x-rays are plotted as a function of the diffraction angle (29).14 

Well-defined diffraction peaks are associated with high-quality crystalline structure while diffuse 

diffraction peaks are associated with more amorphous structures. Because each substance has its 

own unique set of d-spacings, the diffraction peaks can be used to identify the compound and the 

phase that is present in the bulk of the sample. The 28 values can be matched up against the 

International Center for Diffraction Data (ICDD) database for identification.14 The diffraction 

peaks of interest for this research are those for metallic Pd, PdO and AI2O3. The ICDD shows 

matches for unsupported pure PdO having a strongest line at a 29 of 33.837°. This data is 

corroborated by other researchers conducting XRD on supported PdO catalysts.27, 40-42 The 

strongest peak for metallic Pd is expected to occur at a 29 of about 40° and that of AI2O3 at a 29 

of about 46° and 67°.21>41-42 
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XRD on CSU 13 and 14 was conducted in the Materials Science and Engineering Department 

of Auburn University. The instrument used was a Bruker D8 Discover diffractometer fitted with a 

ID detector using a Cu radiation source at 40 kV and 40 mA. Catalyst samples of approximately 

O.lg were prepared on a glass plate using another glass plate to press flat. The samples were then 

irradiated at a 29 range from 5-90° at a speed of 8°/min. 

X-ray analysis of CSU 10, standard PdO and standard Y-AI2O3 was done in the Department of 

Geosciences at Auburn University on a Bruker AXS D2 Phaser using a Cu radiation source at 

30kV and 10mA. Samples were irradiated at a 26 range from 15-90° at a speed of 2.4°/min. 

Samples were either applied to a zero-plate or to double-sided tape to ensure even application to 

the XRD slide. 

iii. Scanning Electron Microscopy, Scanning Transmission Electron Microscopy, 
and Energy Dispersive X-Ray Spectroscopy 

Two types of electron microscopy were used in this research. The first of these is Scanning 

Transmission Electron Microscopy (STEM). Transmission electron microscopy in principal works 

very similar to optical microscopy. However, instead of optical lenses, TEM uses electromagnetic 

ones. When an electron beam is directed at a thin preparation of the catalyst sample the resulting 

transmitted electrons are magnified by the electromagnetic lenses. Contrasts in the image are a 

result of different scattering processes that arise due to varying interactions with different atoms 

in the sample. Figure 2.10 illustrates the different types of scattering that can result when an 

electron beam hits a sample. Typically, the thicker electron density of the catalytic metal will 

appear darker than its support, providing a good visual image of the metal dispersion.14 Scanning 

electron transmission microscopy (STEM) works very similar to TEM, however STEM primarily 

uses the transmitted electrons to form the image. In STEM a small electron probe of focused 
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electrons scans across the sample. As the detector receives a signal, an image is formed based off 

that signal as a function of the probe’s position. Using a bright-field detector, the transmitted 

electrons can be collected on an axis.43 STEM studies along with EDS on CSU 1 were conducted 

at Georgia Institute of Technology. 

electron beam 

Fig. 2.10: Types of Scattering 

The second type of microscopy is Scanning Electron Microscopy (SEM). In this 

characterization technique, a high-energy electron beam is scanned across the surface of the 

catalyst sample, producing low energy secondary electrons. Some of the electrons from the beam 

will strike atomic nuclei and bounce back which is known as “back-scattering”. Back scattered 

electrons divulge information regarding surface topography and atomic number. Because 

secondary electrons originate from the surface and back-scattered electrons come from the bulk, 

the resulting SEM image is 3-dimensional.14 SEM and EDS for CSU 5, 10 and 13 were conducted 

at Auburn University. 

Electron Dispersive Spectroscopy (EDS) is obtained in correlation with SEM and/or TEM 

since it is a detector commonly fixed to both. When the electron beam hits the sample, atoms 
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whose inner-shell electrons have been promoted to a higher energy state release energy as their 

electrons drop back down to inner shell vacancies. This relaxation process can produce either low- 

energy Auger electrons or X-rays. Because atomic energy levels are well-defined, the energy and 

associated wavelengths identify the atomic species that emitted it. This provides an adequate 

representation of the bulk composition of the catalyst sample.43 

iv. Physisorption, Chemisorption, and Temperature-Programmed Techniques 

Physisorption and chemisorption are traditional characterization methods that yield 

information regarding catalyst surface area, pore volume, and pore size distribution. In 

physisorption, molecules are attached to the surface by Van der Waals interactions with low 

corresponding heats of adsorption. This method is used in determining total surface area and pore 

volume. Chemisorption, however, involves breaking and creation of adsorption bonds with heats 

of adsorption, higher than those of physisorption. Chemisorption is used for measuring the 

crystallite size (particle size), active surface area and metal surface area.14 

Temperature-programmed techniques measure the reactivity of a solid as a function of 

temperature under controlled conditions. The temperature at which species reacts on the surface 

reflects the bond strength of the species. The techniques used in this research are Temperature 

Programmed Reduction (TPR) and Temperature Programmed Oxidation (TPO). TPO and TPR 

give a good reflection of what the catalyst undergoes during calcination. In both techniques, a 

mixed gas of 10% oxygen in helium/argon or a 10% hydrogen gas in helium/argon is passed over 

the catalyst and the temperature is ramped up. The amount of hydrogen or oxygen adsorbed at 

different temperatures are determined by a thermal conductivity detector. Physisorption (by BET 
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method), chemisorption, TPO and TPR for this research were performed at Georgia Institute of 

Technology and the procedures were as follows: 

Chemisorption experiments including temperature programmed reduction (TPR) 

and pulse CO chemisorption were conducted in Micromeritics AutoChem II2920. 

For each TPR experiment, approximately 30 mg of sample was placed on top of a 

small bed of quartz wool in a quartz U-tube. In regard to the TPR experiment, the 

material was pretreated in 30 mL/min of He (Airgas, UHP) at 110° C for 1 hours to 

remove preadsorbed species. The sample was then cooled to 30°C and 20 mL/min 

of 10% H2 balance Ar was flown over the sample. The furnace was heated to 500 

°C at 5 °C/min while under the flow of 10% H2/Ar. The outlet gas passed through 

a liquid acetone/nitrogen trap, and then passed through a Thermal Conductivity 

Detector (TCD). 

For each TPO experiment, approximately 30 mg of sample was placed on top of a 

small bed of quartz wool in a quartz U-tube. In regard to the TPO experiment, the 

material was pretreated in 30 mL/min of He (Airgas, UHP) at 110°C for 1 hours to 

remove pre-adsorbed species. The sample was then cooled to 30°C and 20 mL/min 

of 10% O2 balance He was flown over the sample. The furnace was heated to 500°C 

at 5°C/min while under the flow of 10% 02/He. The outlet gas passed through a 

Thermal Conductivity Detector (TCD). 
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CO with Reduction: 

Approximately 30 mg catalyst sample was placed in the quartz tube held in place 

by quartz wool. The material was pretreated in 30 mL/min of He (Airgas, UHP) at 

110°C for 1 hour to remove pre-adsorbed species. During the reduction step (see 

TPR for gas flow rates) the sample was heated to 450°C at 5°C/min and held for 

30 min. The sample was then cooled to 400°C where He began to flow for 30 min 

to remove all adsorbed species. Afterwards the sample was cooled down to 30°C 

to begin pulse CO testing. Doses of 10% CO/He (Airgas) were passed over the 

sample and analyzed in the TCD. Once saturation was reached, He was flowed 

over the sample for 30 min to remove physisorbed species (50 mL/min). Finally, a 

second round of pulses was conducted to verify if there were any physisorbed 

species adsorbed, which was taken into consideration when calculating the active 

metallic surface area. 

CO without Reduction: 

Approximately 30 mg catalyst sample was placed in the quartz tube held in place 

by quartz wool, the material was pretreated in 30 mL/min of He (Airgas, UHP) at 

110°C for 1 hours to remove pre-adsorbed species. Afterwards the sample was 

cooled down to 3 0°C to begin pulse CO testing. Doses of 10% CO/He (Airgas) were 

passed over the sample and analyzed in the TCD. Once saturation was reached, He 

was flowed over the sample for 30 min to remove physisorbed species (50 mL/min). 



Finally, a second round of pulses was conducted to verify if there were any 

physisorbed species adsorbed, which was taken into consideration when 

calculating the active metallic surface area. ”44 
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A. Results 

i. STEM and SEM 

CSU 1 was sent to Georgia Institute of Technology for STEM. This catalyst was prepared 

by incipient wetness method with a calculated 10% (w/w) of Pd/a-AhCb. Figure 3.1 shows a 

magnified STEM image of the catalyst. The bright areas in the produced image correspond to Pd 

while the dull gray areas correspond to the support, AI2O3. 1'his image confirms that initial 

preparation method was depositing nanoparticles on the alumina surface. 

The contrast images in Figure 3.2 give better clarity on the dispersion of the Pd nanoparticles. In 

these images, green areas represent the alumina support and the red areas reveal the position and 

sizes of the Pd nanoparticles. Size of the particles in this first prepared catalyst shows significant 

variation, with some particles being smaller, but also some Pd showed agglomeration into 
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unfavorable large particles. Large particles are problematic in that available Pd surface area is 

decreased along with Pd-support interactions. This variation in particle size provided some of the 

reason behind seeking to improve the preparation method, on the suspicion that the catalyst was 

not being stirred thoroughly enough nor for a long enough period of time to ensure optimal 

dispersion. XPS results on this catalyst would provide further evidence of poor dispersion. 

Fig. 3.2: Contrast STEM of 10% Pd/a-AhOj 

In Fig 3.3, a specific Pd particle was isolated and the edge of the particle was further magnified 

through high-angle annular dark field (HAADF) STEM. In the highest resolution, the bright dots 

reveal the crystal lattice structure of the Pd atoms. However, moving towards the edge of the 

particle, the uniform structure disappears into an amorphous region, which could possibly 

represent surface oxides. 

Fig. 3.3: HAADF STEM Images of Pd Particle 
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Further evidence of crystal lattice can be seen in Figure 3.4, which shows a side-by-side 

comparison of HAADF and Bright-field STEM. Subtle parallel hashed lines in both images show 

areas with crystalline order, which mostly correspond to the bright spots, or the Pd particles. Some 

order can be seen in the alumina support as well. 

Fig. 3.4: HAADF and Bright-field STEM Images of Pd Particles. HAADF (right) and Brightfield (left) 

CSU 5 and 10 were sent to Auburn for SEM and EDS. The CSU 5 catalyst shown in Figure 

3.5 was prepared on alpha-aluminum oxide by incipient wetness at a calculated weight percent of 

10% Pd/AkCfi. The CSU 10 catalyst shown in Figure 3.6 was prepared on y-alumina by incipient 

wetness vortex method at a calculated weight percent of 5% Pd/y-AkCk. The SEM image of CSU 

10 is slightly distorted due to the instrumentation, but the porous nature of the catalyst surface can 

be observed. A visible difference between use of gamma phase alumina versus alpha phase 

alumina can be seen in the surface textures of CSU 5 versus CSU 10. The EDS analysis from these 

same samples provides more insight into the efficacy of their preparation methods by looking at 

the bulk composition of the catalysts. 
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1 2mm 1 Electron Image 1 

Fig. 3.5: SEM image of 10% Pd/a-AhOs 

1 200|jm 

Fig. 3.6: SEM image of 5% Pd/y-AhOj 

1 Electron Image 1 

ii. EDS 

EDS tests were run on three different areas of CSU 5 (10% Pd/a-AECb) to determine bulk 

composition of the catalyst. The EDS corresponding to the area in Fig. 3.5 is demonstrated in 

Figure 3.7. The composition average of the 3 areas found an atomic percent of 1.26% which 

corresponds to a weight percent of 6.41%. Because this catalyst was prepared as 10 wt% Pd, the 

EDS results raised concern as to the efficacy of the preparation method since a significant amount 
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of Pd was missing in the final catalyst, resulting in an error of 36%. One suspected cause for loss 

was that the hand-mixer used in preparation was not able to reach crevices in the mixture beaker, 

causing some palladium to adhere to the beaker and not transfer to the crucible for calcination into 

the final product. Some Pd could have also been lost by adhering to the mixing arm itself. Another 

suspected loss of Pd was the use of a dropper to incorporate the aqueous Pd precursor into the 

support. A dropper delivered approximately 50 jiL per drop and at inconsistent intervals which 

could have increased the amount of Pd adhering to the side of the beaker and on the mixing arm 

rather than incorporating into the support. 

) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
-ull Scale 11249 cts Cursor: 0.000 keV 

Fig. 3.7: EDS of CSU 5. Prepared as 10 wt% Pd, but analyzed as only 6.41 wt% Pd. 

EDS on CSU 10 is shown in Figure 3.8. This catalyst was prepared as 5 wt% Pd/y-AhCfi 

using an improved incipient wetness method using a vortex mixer over a duration of 2 hours and 

incorporating the precursor using a micropipette to deliver 20 /rL per drop. An average of 2 scanned 

areas resulted in a 0.93 atomic percent, which corresponded to a 4.3 wt% Pd. This analysis resulted 

in a weight percent much closer to the targeted weight percent, with a 14% error compared to the 

previous method with a 36% error. This improvement was attributed to the changes made to the 

preparation procedure. 
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Fig. 3.8: EDS of CSU 10. Prepared as 5 wt% Pd/y- Fig. 3.9: EDS of CSU 13. Prepared as 20 wt% Pd/y- 
AI2O3 and analyzed as 4.3 wt% AI2O3 and analyzed as 14.74 wt% 

EDS on CSU 13 is shown in Figure 3.9. This catalyst was prepared as 20 wt% Pd/y-AhOs 

mostly for the purpose of characterization. Catalysts prepared with very low Pd loadings result in 

increased “noise” in spectroscopic analysis, so a higher Pd loading was prepared to better 

determine percentages of surface compounds which could then be inferred on the lower Pd 

loadings. The bulk composition of Pd in this catalyst was found to be 2.95 at% and 14.74 wt%, 

which was a 26% error from the targeted preparation of 20% Pd. This catalyst was prepared in the 

same method as the 5% Pd catalyst, so the loss of Pd this time was attributed to the high 

concentration of the precursor solution. Any lost solution would have contained more Pd than the 

solution prepared for the 5% Pd catalyst. 

iii. XPS 

All XPS studies were conducted at the NSF Center for Advanced Vehicle and Extreme 

Environment Electronics (CAVE3) at Auburn University. A specimen containing Pd would 

produce a peak at a binding energy (BE) of 335-340eV as shown in the XPS of CSU 13 in Figure 

3.10.38 The concentration of the surface species would result in greater intensity, thus catalysts 

with much lower Pd loadings would result in lower resolution peaks than the one observed in Fig. 
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3.10. Once identified, the Pd peak could then be further deconvoluted to distinguish the types and 

percent of Pd phases present on the surface. 
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Fig. 3.10: XPS ofCSU13 

XPS on CSU 1 found the total surface Pd to be 2.19 wt%. The deconvoluted Pd3ds/2 peak 

for CSU 1, prepared as 10 wt% Pd/a-AhCb, is shown in Figure 3.11. The entire peak is centered 

over a BE of 336.77eV indicating that 100% of Pd on the surface is in the form of stoichiometric 

PdO. This is the amount present in the upper 10 nm of the catalyst. Upon sputtering with Ar+ to a 

depth of 1000A (100 nm), the peak shifts to concentrate over a BE of 336.OeV indicating a shift to 

100% “Pd native oxide” (PdNtv) and/or elemental Pd as shown in Figure 3.12. Further sputtering 

to a depth of 2000A (200 nm), maintains a composition of PdNtv and/or elemental Pd (Figure 

3.13). 



Fig. 3.12: XPS of CSU 1 - Sputtered 1000A. Pd3ds/2 peak deconvolution 

Fig. 3.13: XPS of CSU 1. Sputtered 2000A. Pd3ds/2 peak deconvolution 
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Two samples of the 10 wt% Pd/Ah03 catalyst were submitted to oxidation and reduction 

to observe the effects under XPS as shown in Figures 3.14 and 3.15. As expected, the oxidized 

sample produced a peak entirely positioned over the PdO region (Fig. 3.14), however the reduced 

catalyst produced peaks located over the metallic and native PdO regions with no indication of 

stoichiometric PdO present (Fig. 3.15). 

Fig. 3.14: XPS of CSU lb. Oxidized Specimen. Pd3ds/2 peak deconvolution 

Fig. 3.15: XPS of CSU lc. Reduced specimen. Pd3ds/2 peak deconvolution 

The purpose of submitting CSU 1 and 2 to XPS was to determine how the composition of 

surface species related to activity of the catalysts calcined at different temperatures. Unfortunately, 
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there was insufficient surface Pd within 10 nm to locate a peak on the catalyst calcined at 900 °C 

(CSU 2). The catalyst was sputtered to a depth of 2000A where a peak was found over the Pd 

native region, which supports the same findings as sputtering on CSU 1, however it does not 

divulge information regarding the surface species (Figure 3.16). 

Fig. 3.16: XPS of CSU 2 - Sputtered 2000A. 10 wt% Pd/a-AkOs calcined at 900 °C. Pd3d5/2 peak 

The purpose of sending CSU 3 for XPS was to determine the changes that occur to the 

surface species of the 10 wt% Pd/Ak03 catalyst after catalyzing a reaction mixture of 1% CPU/ 

4% O2. As shown in Figure 3.17, the surface PdO after reaction dropped to 52% PdO, and 48% of 

the surface Pd took on the phase of Pd native. Such an observation could possibly be explained by 

a theory that PdO converts to a species of Pd* serving as an “O-vacancy,” facilitating conversion.21 

However, the species of Pd native, or non-stoichiometric Pd is undefined, where the x in PdOx 

could be <1 or >1. In either condition it is evident the surface reaction changes the identity of the 

surface Pd species. 
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CPU/ 4% 02 

CSU 5, 6 and 7 were prepared with the intent to compare different preparation approaches 

and their effect on activity and surface Pd. XPS revealed varying Pd loadings due to each 

preparation method which can be found in Table 3.1. 

Table 3.1: Surface Pd of Various Preparation Methods 

Method Surface Pd wt% 

Incipient Wetness 1.63 

Wetness Impregnation 1.62 

Slurry 0.54 

The poor surface Pd content of the slurry method immediately ruled it out for any further use. Both 

impregnation techniques, incipient and wetness, were comparable in their surface Pd, however the 

actual surface wt% was lower than the other 10% Pd catalyst (CSU 1), adding to the doubt 

regarding the efficacy of the mixing procedure. The peak deconvolution of the three samples 

(Figures 18,19 and 20) showed the PdO:PdNtv ratio to be similar among the three methods at 

approximately 50:50, with the catalyst prepared by incipient wetness showing a slightly higher 

PdO content of 62% of total surface Pd. The incipient wetness method continued to be used as the 
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preparation of choice due to familiarity with it and the slightly higher PdO content, however 

amendments were made to the mixing after these XPS results. 

Fig. 3.19: XPS ofCSU 6. Wetness Impregnation Method. Pd3ds/2 peak deconvolution. 

Fig. 3.20: XPS of CSU 7. Slurry Method. Pd3ds/2 peak deconvolution. 



52 

After the undesirable Pd loadings confirmed by both XPS and EDS of catalysts CSU 1-7, 

the preparation was amended to improve the mixing technique with a vortex mixer. The target Pd 

wt% was also lowered to 5 wt% to conserve the Pd precursor and the support was changed to y- 

AI2O3 which has higher porosity.31 The XPS of the improved catalyst 5% Pd/y-AhCb (CSU 10) 

found the total surface Pd to be 1.64 wt%, which was comparable to the content of the catalyst 

made with twice the Pd precursor using the older mixing method and a non-specified phase of 

AI2O3. Deconvolution of the Pd3d peak of 5% Pd/y-AbCF in Figure 3.21 shows PdO to account 

for 38% and Pd native 62% of the total Pd content. Activity studies would also later confirm the 

enhanced catalytic properties of this catalyst. 

Fig. 3.21: XPS of CSU 10. Fresh 5% Pd/y-AbCb. Pd3ds/2 peak deconvolution 

After kinetics studies were performed over the 5% Pd/y-ATCf catalyst for a duration of 80 

minutes, the two used samples from combustion of 2% CH4/ 4% O2 and from 2% CH4/ 8% O2 

were submitted to XPS to determine the change of phase on Pd sites due to combustion of different 

O2 percentages. Figure 3.22 and 3.23 show the deconvolution of the Pd3d peaks after combustion 

of the two gases. After combustion of 2% CH4/ 4% O2, the CSU 10 catalyst showed a further shift 
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toward the Pd native region with the area increasing from 62% to 72% of the total Pd content, 

while the PdO content dropped to 28%. After CSU 10 facilitated combustion of the 2% CH4/ 8% 

O2 gas mixture, the peak shifted in the opposite direction, going from 38% PdO to 55%, and the 

PdNtv content dropped to 45%. To summarize, reaction with a stoichiometric mix of methane and 

oxygen resulted in an increase of Pd native surface species, whereas a reaction mixture containing 

excess oxygen resulted in an increase of PdO surface species. 

Fig. 3.22: XPS of CSU 11. Used 5% Pd/y-A1203 for combustion of 2% CH4/ 4% O2. Pd3d5/2 peak 
deconvolution 

Fig. 3.23: XPS of CSU 12. Used 5% Pd/y-A1203 for combustion of 2% CH4/ 8% O2. Pd3d5/2 peak 
deconvolution 
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As previously mentioned, the catalyst prepared as 20% Pd/y-AFO:, was made to compare 

the better spectroscopic resolution with catalysts of lower Pd loading, in expectation of the surface 

species percentages of the higher Pd loading validating the results of lower Pd loading. XPS found 

the 20% Pd/y-AbCb (CSU 13) catalyst to have 4.22 wt% of Pd on the surface. Figure 3.24 shows 

deconvolution of the Pd3d peak of the fresh catalyst. The peak was split into 39% PdO and 61% 

Pd native, only a 1% difference from the results of the fresh 5% Pd catalyst. This validated the 

surface composition obtained from catalysts with decreased resolution due to lower Pd loadings. 

Fig. 3.24: XPS of CSU 13. Fresh 20% Pd/y-AkOs. Pd3d5/2 peak deconvolution 

When 20% Pd/y-AbCb facilitated combustion of the 2% CPU/ 4% O2 gas mixture, like the 

5%Pd catalyst, it caused the composition of surface Pd to shift toward formation of Pd native. 

However, in the case of the 20% Pd catalyst the shift was more pronounced with Pd native 

comprising 100% of total surface Pd after reaction. The XPS of the peak deconvolution of the 

catalyst after reaction is shown in Figure 3.25. 
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Fig. 3.25: XPS of CSU 14. Used 20% Pd/y-AkCb for combustion of 2% CH4/ 4% O2. Pd3d5/2 peak 
deconvolution 

To ensure that the changes to the surface were indeed occurring due to reaction mixture 

and not by temperature effect, the 20% Pd catalyst was submitted to 80 minutes of helium flow at 

the same temperature as the catalyst used for reaction (280 °C). The XPS results are shown in 

Figure 3.26. There was a slight shift toward favoring formation of PdO with the PdO content 

increasing from 39% to 51% after passing helium over it. With such a slight change, the PdO 

increase is most likely due to experimental error, however Schwarz et al. claims that, at 

temperatures below 350 °C, any oxygen exchange in reaction is due to oxygen from support, so 

according to Schwarz, it is possible that the slight change in oxide composition could be due to 

some oxygen migration across the support.23 
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Fig. 3.26: XPS of CSU 15. Used 20% Pd/y-AbCb for passing of helium for 80 minutes at 280 °C. Pd3ds/2 peak 
deconvolution 

To confirm that the observed changes to the Pd surface species after reaction were 

occurring due to support effects, standard grade PdO, both fresh and used for combustion of 2% 

CH4/ 4% O2, were submitted to XPS. The results for both fresh and used catalyst standard were 

100% PdO, showing no change to the phase of PdO, suggesting that support played a role in the 

phase change. XPS of 100% PdO is shown in Figure 3.27. 
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Fig. 3.27. XPS of CSU 8. Pure Standard Grade PdO. Pd3ds/2 peak deconvolution 
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iv. X-ray Diffraction 

XRD analysis was performed at Auburn University to identify the Pd compounds 

comprising the bulk of the catalyst, not just surface species as in XPS. For comparison purposes, 

pure Y-AI2O3, and pure standard grade PdO were analyzed to identify peaks of interest in the 

catalysts CSU 10 and CSU 13. The XRD results are shown in Figures 3.28 and 3.29. The important 

peaks arising from the alumina support are the peaks at 46.0° and 67.4° and the identifying peaks 

for PdO are a strong peak at 34.1° and lesser peaks at 42.2°, 54.9°, 61.1°, and 71.7°. 

20 30 40 50 60 70 80 90 

20 (degrees) 

Fig. 3.28: XRD of y-Al203. 
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Fig. 3.29. XRD of Standard Grade PdO 

The XRD analysis of the 5% Pd/y-ALCb (CSU 10) catalyst, as expected, had low resolution 

of peaks due to low Pd loadings. However, a peak can be detected at 33.8° which is the location 

of the characteristic strongest line for PdO, as found in the XRD of pure PdO and as published by 

other researchers.27’40-41 An unexpected outcome of the 5% Pd/y-AhCb XRD is the strong peak at 

26.0°. While a moderate peak in that range appeared in the XRD for pure PdO in Figure 3.29, it is 

not a PdO peak found in the ICDD nor is it documented by other researchers identifying PdO via 

XRD, which caused suspicion that it might be due to a contaminant species. Lin et al. found a peak 

in the same location on their XRD of Pd on graphene, which was attributed to carbon.41 

Considering the XPS data also contains contamination by atmospheric carbon (see Figure 3.10), it 

is plausible that the 26.0° peak was carbon. Also, double-sided tape was used in preparing the 

samples for XRD and that could also be a possible origin of the unexpected peak. 
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Contaminant 

Fig. 3.30: XRD of CSU 10. 5%Pd/y-Ab03 

A higher resolution XRD was demonstrated by the 20% Pd/yAhCb catalyst, as well as a 

comparison of fresh catalyst to the catalyst after reaction with 2% CH4/ 4% O2 in Figure 3.31. The 

lower redline corresponds to the fresh catalyst and the upper blue line corresponds to the used 

catalyst. Both catalysts displayed the characteristic strong PdO peak at 34°, as well as some of the 

lesser PdO peaks, however all PdO peaks are more pronounced in the fresh catalyst. Of interest, is 

the sharp peak at 40° and a lesser peak at 81° displayed in the used catalyst that are not present in 

the fresh catalyst. These peaks have been cited by other authors as Pd° peaks or metallic Pd.41"42 

Also, all of the PdO peaks in the used catalyst decreased in intensity suggesting a decrease in its 

concentration. Keeping in mind that XRD is a bulk spectroscopic technique, this data could 

elucidate the fluctuation between PdO and PdOx that was observed on the surface of the catalyst. 

According to Schwartz et al., oxygen exchange involving gas-phase oxygen is negligible at 

temperatures below 350 °C, which is the range in which the used catalyst operated. Schwartz 

instead concludes that oxygen for reaction at these lower temperatures is significantly provided by 

oxygen bonded to Pd.23 These conclusions were formed based off previous work by Ciuparu et al., 
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who concluded that re-oxidation of surface PdO was provided by the bulk in addition to gas-phase 

and support oxygen.45 The appearance of the Pd° peak could be explained by the bulk PdO 

contributing oxygen to the surface Pd species which are becoming oxygen depleted as the reaction 

progresses at 280 °C. 

1200 

20 (degrees) 

Fig. 3.31: XRD of CSU 10. Fresh 20%Pd/y-AkO3 is shown in the lower red line. Used 20%Pd/y-AkO3 is in the 
top blue. 

v. TPO/TPR 

Temperature programmed oxidation of the 5% Pd/y-AbOa catalyst is shown in Figure 3.32. 

The plot is noisy, displaying no definitive oxygen uptake. Miller et al. discusses the important 

temperature for TPO studies of Pd/AkCb as being around 286 °C where the Pd to PdO transition 

occurs.21 A noisy rise between 250-300 °C on the plot in Figure 3.32 could possibly be 

representative of oxygen uptake as Pd transitions to PdO. However, the rise is subtle and lacking 

definition. The more likely explanation of the plot’s noise is that the sample already had high 

content of PdO prior to the oxidation procedure, as neither XRD nor XPS found metallic Pd present 

in the fresh 5% Pd/y-Ab03 catalyst. 
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Fig. 3.32: TPO of CSU 10. 5%Pd/y-Al203 

Figure 3.33 displays the temperature programmed reduction plot. In contrast to the TPO 

results, TPR shows a sharp drop at 60 °C with little noise present. Miller et al. attributes this marker 

as the decomposition of Pd-H. 
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Fig. 3.33: TPR of CSU 10. 5%Pd/y-Al203 

vi. N2 physisorption 

Physisorption results provided information regarding the surface area of the 5% Pd/y-AkCb 

catalyst. Of importance, is the Brunauer-Emmett-Teller (BET) surface area. This divulged the 

catalyst’s monolayer capacity, which is the amount of adsorbate needed to cover 1 gram of the 
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solid.14 For the 5% Pd/y-AFOs catalyst, the BET value is 148 m2/g. This value is about a third of 

the surface area described by Schwarz et al. with a similar 3 wt% Pd/AFCb catalyst.2-3 

vii. CO Chemisorption 

CO chemisorption with reduction showed a 56.193 /rmol/g uptake, which yields an 11.95% 

dispersion (amount of Pd atoms at surfaces of crystallites), and a metal surface area of 2.66 m2/g. 

The Pd particle size was found to be 9.37 nm, which is smaller than what Schwarz et al. reported 

with a 12 nm particle diameter, but larger than the Pd particles produced by Miller et al., which 

ranged 3.6-5.3 nm for Pd on alumina support. It has been suggested the choice of Pd precursor 

plays a role in the Pd particle size.21 Schwartz used a nitrate dihydrate precursor23 and Miller used 

nitrate and tetraamine precursors.21 CO chemisorption without reduction showed a significantly 

decreased uptake at 17.69 /rniol/g, which could be expected considering that, without reduction, 

some sites remained as PdO, potentially inhibiting the CO uptake. Other researchers previously 

mentioned did not report using the CO without reduction method. 

viii. Activity 

Figure 3.34 displays activities of CSU 1, la, and 2, which were 10 wt% Pd/a-Ab03 

catalysts calcined at 600, 750 and 900 °C respectively. The best performing catalyst was calcined 

at 600 °C, initiating catalysis at 310 °C and reaching a maximum of 98%conversion at 392 °C. The 

two catalysts calcined at 750 °C and 900 °C initiated catalysis <300 °C, but never achieved >80% 

conversion below 400 °C, which was the targeted range for this study. PdO has been cited as 

remaining stable up to 800 °C, therefore it was expected that higher calcined catalysts would 

exhibit higher amounts of metallic Pd, which could have had effect on activity.13 Supported Pd 

catalysts are also reported as exhibiting poor dispersion at higher temperatures.12 The decreased 



63 

dispersion could be attributed to sintering in which the Pd particles migrate and agglomerate into 

larger particles irreversibly starting at temperatures as low as 570 °C.22,46 XPS revealed the 600 

°C calcined catalyst as having all of its surface Pd in the form of PdO, which confirmed the catalytic 

activity of the PdO phase. XPS was unable to detect sufficient amount of Pd on the surface of the 

900 °C calcined catalyst. Given the calcination temperature above the threshold for sintering, it 

could be suggested that the decreased surface Pd was a result of decreased dispersion due to 

sintering. This would explain the lower catalytic activity as well. XPS was not conducted on the 

fresh 750 °C calcined catalyst, however a decreased activity coinciding with high calcination 

temperature could be a result of sintering as with the 900 °C calcined catalyst. More recent 

publications on supported Pd catalysts report effective calcination temperature in the range of400- 

500 °C, thus all catalysts prepared after CSU 2 were calcined at 500 °C to encourage PdO formation 

and prevent sintering.21’23’29 
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Fig 3.34: Conversion vs. Temperature - Varying Calcination Temperatures 

Figure 3.35 displays CSU 9 and 10 which were both prepared by vortex incipient wetness 

as 5 wt% Pd/y-AhCb differing in preparation only by the Pd precursor. CSU 9 was prepared with 

a dihydrate precursor, and CSU 10 was prepared using a hydrate precursor. While the decision to 

abandon use of the dihydrate was originally made in an effort to remain consistent with precursors, 

activity confirms the decision because the nitrate hydrate both initiated conversion earlier, <275 

°C, and also achieved near complete conversion of 94% at 325 °C, both of which outperform CSU 

9. This could be due to CSU 10 having a smaller particle size than CSU 9. Schwarz et al. reported 

obtaining a 12 nm particle using a nitrate dihydrate precursor as used for CSU 9, but Miller et al. 

produced particles ranging 3.6-5.3 nm using nitrate hydrate and tetraamine precursors.21 The 

particle size for CSU 9 was not measured, but the particle size for CSU 10 was found to be 9.37 

nm which is smaller than the particle size reported by Miller using a nitrate dihydrate precursor. 
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Fig. 3.35: Conversion vs. Temperature -Varying Pd Precursors. 5% Pd catalysts prepared using palladium 
nitrate dihydrate and palladium nitrate hydrate precursors 

Figure 3.36 displays the catalysts which exhibited the highest activity and were submitted 

for the most extensive characterization. Thus, these three catalysts provide the most information 

regarding the Pd phase and catalytic activity relationship. CSU 8, represented by the blue line in 

Figure 3.36, was the unsupported standard PdO catalyst obtained from Sigma Aldrich. As 

anticipated, 0.200 g of the standard initiated combustion and achieved 100% conversion at the 

lowest observed temperature <250 °C. Interestingly, while initiation was not as low as the 100% 

PdO, the 20 wt% Pd/y-Afr03 (CSU 13) also achieved a 100% conversion at 250 °C utilizing a 

fraction of the palladium present in the standard. Of specific interest, the 5 wt% Pd/y-Ah03 

initiated combustion at 250 °C and achieved a peak 94% conversion at 325 °C with the lowest Pd 

loading of the three highly active catalysts. Kinetics performed on this 5 wt% Pd/y-AFOs catalyst 

would provide more clarity regarding the surface reaction. 
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Fig. 3.36: Conversion vs. Temperature - Highest Activity Catalysts. 5% Pd and 20% Pd catalysts compared 
to pure standard grade PdO 

ix. Kinetics 

A fixed temperature of 280 °C was chosen to study the effect methane and oxygen 

concentrations have on conversion over time, because this temperature fell in between catalyst 

activation and full conversion. Figure 3.37 shows how conversion changed over time for a mixture 

of 1% CH4/ 4%C>2/ balance He and a mixture of 2% CH4/ 4%02/ balance He. The 1% CH4 mixture 

took 20 minutes to achieve a peak conversion of 56%. After that point, % conversion showed a 

steady decline. The 2% CH4 mixture showed a sharper increase in conversion and peaked at 5 

minutes into reaction with a 92% conversion. Like the 1% mixture, the 2% CH4 experienced a 

steady decline in activity after reaching peak conversion. The rate of increasing conversion in the 

early minutes of reaction showed significant change dependent on the CH4 concentration, and the 
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declining conversion also showed a steeper slope for the higher methane concentration. This 

implied that concentration of methane affected the reaction mechanism. 

— l%CH4/4%02 
100 
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Fig. 3.37: Conversion vs. Time - Varying Methane Concentration. Kinetics on 5%Pd/y-Ah03, comparing 
1% and 2% CH4 reaction mixtures, O2 held constant 

Figure 3.38 shows how conversion changed over time for a mixture of 2% CH4/ 4%C>2/ 

balance He and a mixture of 2% CH4/ 8%02/ balance He. In this comparison, the methane 

concentration was held constant, but the O2 concentration was doubled. Both reaction mixtures 

achieved peak conversion within the first 5 minutes of reaction, with the 4% O2 mix reaching 92% 

conversion and the 8% O2 mixture peaking at 84% conversion. The rates of increasing conversion 

appeared to be similar, as well as the rate for declining conversion, implying that concentration of 

O2 had little to no effect on the rate of reaction. Further rate calculations would provide more 

specific details regarding the mechanistic dependency on gas concentrations. 
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Fig. 3.38: Conversion vs. Time - Varying Oxygen Concentration. Kinetics on 5%Pd/y-Al203, comparing 4% 
and 8% O2 reaction mixtures, CH4 held constant 

B. Discussion 

Percent Conversion for the activity and kinetics studies was calculated using the 

following equation: 

[mol CH4]in - [mol CH4]0Ut 
%Conversion = x 100% 

[mol CH4]in 

For every sample of reacted gas mixture, the corresponding peak area from the GC was translated 

into % conversion and entered into the graphs found in Figures 3.37 and 3.38. From the % 

conversion, a rate in p.mol ■ gPd-1 ■ s”1 was calculated for a given reaction duration. An example 

of the rate calculation is demonstrated in the following rate for 1%CHU/ 4% O2 after 5 minutes of 

reaction: 
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For 1% methane: 

1 mL CH4 1000mL 
x-x 5 min 

100mL gas min 

— 50mL CH4 sent to reactor over 5 minutes 

n 
PV (1.0atm)(0.05 V) 

RT (°'o82iS(29W) 
= 2.04 x 10“3 [C//,], 

At 5 minutes sampled gas contained 0.58% methane 

0.58 mL lOOOmL 

lOOmL 
x 

min 
x 5 min = 29mL CH4 

PV (1.0atm)(0.029L) _ „ w „n_3 r„„ , 
Tl - T 1.19 X 10 [Cr f/4] QUt 

RT (0.0821 ^y^)(298X) 

Moles converted: 

2.04 x 10~3mol CH4in - 1.19 x 10~3 mol CH4out 

— 0.85 x 10~3mol CH4converted to product 

% Conversion: 

%Conversion = 
\mol CHAin - [mol CH4]0Ut 
--r4Jtn, ^Lr x 100% 

[mol CH4\in 

0.85 x 10 3mol CH4 

2.04 x 10-3 mol CH4in 
x 100 = 42% conversion 

42 moles of CH4 converted 

100 moles of CH4 fed 

Rate for 1%> CH4: 

rate = 
pmol CH4 converted 

(gram surface Pd) (reaction time, s) 

gram surface Pd — 1.64% surface Pd x 0.2,g catalyst in reactor = 3.28 x 10 3g Pd 
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reaction time — 5min x 
60s 

= 300 s 

8.5 x 102^mol CH4 converted 
ri n v m-3/, 

min 

In the same manner, rates were determined for each of the three reaction mixtures at 5 minutes 

and at 20 minutes. Those rates are listed in Table 3.2. 

Table 3.2: Rates of reaction for 3 different gas mixtures at 5 and 20 minutes 

ch4 o2 
Reaction Time 
= 5 Minutes 

Reaction Time 
= 20 Minutes 

1% 4% 
rt = 864 nmol ■ gPd-1 ■ s_1 rx = 4644 ^ol ■ gPd-1 • s_1 

2% 4% r2 = 3,834 iimol ■ gPd-1 ■ s-1 r2 = 14,228 nmol ■ gPd-1 ■ s_1 

2% 8% 
r3 = 3,465 |imol ■ gPd-1 s_1 r3 = 13,211 timol ■ gPd-1 • s_1 

The kinetic runs had limitations with only two sets of concentrations for each reactant. 

While quantitative conclusions need more data, some qualitative conclusions can be drawn from 

Table 3.2. The data for 20 minutes of reaction were more reliable since the runs after 5 minutes 

may have had more sampling errors. The rate of reaction increased three-fold when the methane 

concentration doubled at constant oxygen concentration. However, when oxygen concentration 

doubled, there was virtually no change in the rate. While the order is not calculated, it is apparent 

that the concentration of methane in the gas mixture drives the rate of reaction and that the oxygen 

concentration has no influence, as a zero-order reaction might behave. This observation rules out 

the likelihood of a Langmuir-Hinshelwood (L-H) mechanism, as the L-H model requires both 

reactants to adsorb to the surface of the catalyst and participate in the reaction. Eley-Rideal 

mechanism is a possibility, with methane in the gas phase reacting with adsorbed oxygen 

molecules on the surface. The preliminary kinetics runs suggest the rate to be increasing with 
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increasing concentration of methane and the rate being almost independent of oxygen 

concentration. Such preliminary observations support Eley-Rideal mechanism. 

In order to discuss the mechanistic details any further, there were several observations 

regarding migration of oxygen that need to be reiterated. Firstly, a freshly prepared Pd/y-AhCb 

catalyst contains a mixture of PdO and PdNtv, but post-reaction PdO content decreases in both the 

bulk and the surface, while PdNtv content increases on the surface and metallic Pd° develops in 

the bulk. Secondly, unsupported, standard grade PdO facilitates complete combustion of methane, 

and post-reaction, maintains 100% PdO content, with no presence of PdNtv oxide. The evidence 

from XPS clearly show that in the absence of the support, PdO is the stable and active phase before 

and after reaction in the catalytic oxidation of methane. Thirdly, XPS data also clearly show that 

the support, Y-AI2O3, plays a significant role in changing the surface composition and converts 

PdO to Pd native oxides in the calcination process. One possible reason could be oxide ions from 

the support migrate to PdO and convert it to Pd native oxides. Another, explanation could be 

oxygen transfer between PdO and PdNtv. Therefore, it seems both PdO and Pd native oxides are 

the active phases in the presence of the support. XPS of 20% Pd/y-AhO.3 after reaction with 

2%CH4/4%02 reveal the presence of 100% Pd native oxide and no PdO. This cannot be explained 

alone by the support effect. It may be possible that during the reaction the adsorbed oxygen 

molecules on the surface reacted with PdO to form Pd native oxide. 

The Eley-Rideal mechanism alone could not explain the disappearance of surface and bulk 

PdO, indicating the possibility that a more complex mechanism is occurring. It appears that some 

oxygen for the combustion of methane is being contributed by the bulk in a Mars-van-Krevlen 

type mechanism as described in the work by Fujimoto et al.,47 and the rest of the oxygen to 

complete the combustion is being provided in an Eley-Rideal type mechanism by the adsorbed 
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oxygen. However, the limited kinetics data retrieved by this study are insufficient to propose any 

further conclusion regarding specific mechanisms. A more detailed kinetic study involving 

different partial pressures of methane and oxygen would provide better insights into the 

mechanism. 

Thus, the results of this research are consistent with the works of Miller and Schwartz,2123 

highlighting the roles of PdO and PdNtv in the combustion of methane at low-temperatures, and 

corroborating that alumina as a support material helps stabilize the PdNtv species and facilitates 

oxygen migration. 
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A. Conclusions 

In regard to catalyzing methane, palladium has been the element of choice in recent years, 

even though the mechanism of its action is still not fully understood. What is known, however, is 

that palladium is the best performer at low temperatures which are typical of lean-burn 

conditions.12 To date, an ideal catalyst that performs optimally under 400 °C is undiscovered, but 

palladium, supported on various materials comes close, as it has been shown to initiate oxidation 

at 400 °C.5 One of the major objectives of this current research was to develop a catalyst that will 

oxidize methane at a low temperature below 400 °C. Based on the initial trials and screening with 

a variety of alumina supported palladium catalysts, an improved vortex-assisted incipient wetness 

method was finally developed to prepare a catalyst having higher Pd content on the surface. A 5 

wt% Pd/y-Ab03 was prepared by this method and calcined at 500 °C. This catalyst converted 94% 

(mol/mol) methane at 325 °C and was found to be abetter catalyst for low-temperature combustion 

of methane than recently published Pd/ZrCe, PdCe, and bi-metallic Pt-PdAbOa.21,26 

The second objective of this study was to characterize the surface compounds present on 

the surface of the catalysts before and after reaction. Identification of compounds (metallic Pd, 

PdO, PdNtv oxides, and y-AbCfi) present on the surface of the catalysts (within 10 nm) was mainly 

done through X-ray Photoelectron Spectroscopy (XPS). In the absence of the support, the surface 

contained PdO, PdNtv oxides and y-Ab03 and no metallic Pd. The surface composition did not 

alter after reaction with methane and oxygen for the unsupported catalysts. The evidence from 

XPS confirmed PdO was the active and stable phase before and after the reaction, and no palladium 

native oxide (PdNtv) was found on the surface. However, in the presence of the support, gamma- 

aluminum oxide, the surface composition changed substantially. The surface had PdO, PdNtv 

oxide and y-Ab03 as confirmed by XPS data. The atmospheric oxygen during the calcination 
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process did not change the standard PdO to PdNtv oxide. Thus, it appears that PdNtv oxide, a non- 

stoichiometric palladium oxide PdxOy in the alumina supported catalysts, originated from 

migration of oxide ions to stoichiometric PdO on the surface. It appears both PdO and PdNtv oxide 

were active species in the catalytic oxidation in the presence of Y-AI2O3 as a support. The depletion 

of PdO and increase in PdNtv oxide percentage were also observed in the XPS spectra of the 

catalysts after reaction with methane and oxygen. This suggests the support could facilitate oxygen 

mobility and affect composition of the surface catalytic sites at temperatures <400 °C. This 

observation corroborates the research findings of Miller et al. and Schwartz et al.21,23 

The final objective of the study was to suggest a reaction mechanism for the surface 

reaction based on XPS and preliminary kinetic data. The preliminary kinetic runs suggested the 

rate to be increasing with increasing concentration of methane and the rate being almost 

independent of oxygen concentration. These preliminary observations infer a bimolecular surface 

reaction following Eley-Rideal mechanism. In this mechanism, oxygen would be adsorbed on the 

catalytic surface and methane would be in the gas phase, followed by a surface reaction between 

adsorbed oxygen molecules and gas phase methane molecules as the rate determining step. The 

catalyst surface composition changed to 100% PdNtv oxide and 0% PdO after reaction with 2% 

methane and 4% oxygen. A probable explanation could be the adsorbed oxygen molecules on the 

surface reacted with PdO to form Pd native oxide (PdxOy; x<y). 
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B. Future Work 

In order to elucidate the catalytic mechanism, more extensive work on kinetics needs be 

conducted. This would require more studies on the effects of partial pressures of methane and 

oxygen on the rate of the reaction. Other areas of future research would include determination of 

thermal stability and the turn over number (TON) of the catalyst, and the issue of catalyst 

deactivation by water and/or other substances.11,21’26’35"36 
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