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ABSTRACT 

 

Anatomical variability in the shoulder is inherently present and can influence 

healthy and pathologic biomechanics and ultimately clinical decision-making. 

Characterizing variation in bony morphology and material properties in the population can 

support treatment and specifically the design, via shape and sizing, of shoulder implants. 

Total Shoulder Arthroplasty (TSA) is the treatment of choice for glenohumeral 

osteoarthritis as well as bone fracture. Complications and poor outcomes in TSA are 

generally influenced by the inability of the implant to replicate the natural joint 

biomechanics and by the bone quality around the fixation features. For this reason, 

knowledge of bony morphology and mechanical properties can support optimal implant 

design and sizing, and thus improve TSA results. Statistical shape and intensity modeling 

is a powerful tool to represent the shape and mechanical properties variation in a training 

set. Accordingly, the objectives of this thesis were: 1) to develop a statistical shape model 

(SSM) of the proximal humeral cortical and cancellous bone; 2) to develop an SSM and a 

statistical intensity model (SIM) of the scapular bone. A training set of 85 humeri and 53 

scapulae were reconstructed from CT scans and registered to common templates. Principal 

Component Analysis (PCA) was applied to the registered geometries to quantify 

morphological and bone properties variation in the population. For both the humerus and 

the scapula SSM, the first mode of variation accounted for most of the variation and 
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described scaling. Subsequent modes described changes in the scapular plate, acromion 

process and scapular notch for the scapula, and in the neck angle, head inclination, greater 

and lesser tubercles for the humerus. Variation in cortical thickness of the humeral 

diaphysis was largely independent of size and statistically significant differences with 

ethnicity were noted. Asian subjects showed higher humeral cortical thickness with respect 

to Caucasians, regardless of gender. The first mode of variation in the scapular SIM 

described scaling in material properties distribution, with higher bone density located 

centrally and anteriorly in the glenoid region. The bone property maps developed for the 

scapular training set realistically captured inter-subject variability and they represent a 

valuable tool to assess fixation features and screw location and trajectories for TSA glenoid 

component. The SSMs and SIM developed in this thesis represent a useful infrastructure 

to support population-based evaluations and assess possible anatomical differences with 

gender and ethnicity, SSM and SIM can also provide anatomical relationship in support of 

implant design and sizing.   
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CHAPTER 1. INTRODUCTION 

1.1. Introduction 

Uncertainty is present in many aspects of the human body, such as geometry and 

mechanical property, alignment, loading or kinematics (Fitzpatrick et al., 2011). 

Specifically, anatomical variation in the morphology and material properties of the human 

bones must be reconciled with a finite inventory of orthopaedic implant designs and sizes 

(Pearl et al., 2009). Therefore, a systematic quantification of this variation is crucial to 

optimize the geometry and fixation features of medical devices, ensuring that each design 

and each size fits the largest number of subjects in the population. 

In biomechanics, computational modeling is a powerful tool that overcomes the 

main limitations of experimental testing, which are high costs in terms of expense and time, 

limited number of cadaveric specimen for in vitro testing, and inability to measure internal 

quantity in vivo with non-invasive techniques. Computational modeling offers an efficient 

infrastructure to investigate the complexity of the musculoskeletal system in various 

aspects, such as measuring natural joint mechanics (Ali et al., 2016), or evaluating the 

performance of orthopaedic implants in relation with the surrounding natural structures 

(Navacchia et al., 2016). Computational modeling is often implemented at a subject-

specific level, which is ideal to characterize the features of the analyzed subject, but cannot 

provide information about how these features compare against the rest of the population. 
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Statistical shape and intensity modeling combines, which the advantages of 

computational modeling with a probabilistic approach, is well suited to investigate 

variations in largely scattered data as the human anatomy (Navacchia et al., 2016) and to 

perform population-based evaluations (Laz and Browne, 2010). Statistical shape modeling 

has been applied to investigate variation in bone shape (Kamer et al., 2016) or joint 

morphology (Baldwin et al., 2010), mechanics (Fitzpatrick et al., 2011), and kinematics 

(Smoger et al., 2015), as well as in the distribution of mechanical property of the bone 

(Bryan et al., 2010).  

The work presented in this thesis is focused on the use of statistical shape and 

intensity modeling to describe the variability in morphology and mechanical property in 

the shoulder bones, i.e., humerus and scapula, with the overall goal of providing clinical 

information in support of the design of shoulder orthopeadic implants. The clinical 

questions that motivate this study are several and they are driven by the need for shoulder 

replacements capable of successfully restoring normal joint function. On the humeral side, 

the ‘fit and fill’ of the humeral stem component in the cancellous bone canal and replication 

of the head center are key considerations to optimize the outcome of the surgery and they 

are driven by the underlying bony anatomy. In addition, specific patterns of bony 

morphological and dimensional variation between genders and ethnical groups have been 

recognized (Gebhart et al., 2013, Darling et al., 2013, Nelson et al., 2004) and whether to 

differentiate implant designs based on these characteristics remains an open question. On 

the scapular side, the loosening of the glenoid component is a major cause of failure (Hasan 

et al., 2002, Robertson et al., 2017) and has been linked to bone stock quality around the 
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fixation features as well as to the ability of the component to match the natural glenoid 

surface, maximizing coverage of cortical bone. 

1.2. Objectives 

The objectives of this thesis were 1) to develop a statistical description of the 

proximal humeral morphology to quantify variation across the population, and 2) to 

develop a statistical description of the scapular mechanical property in conjunction with its 

shape to quantify variation across the population. The models were built deriving the 3D 

bone geometry and material property distribution from computed tomography (CT) scans 

of a training set of subjects and specimen of various ethnicities and both gender. Statistical 

analyses were performed after having consistently registered the training set to a common 

template. Specifically, Principal Component Analysis (PCA) (Jolliffe, 2002) was applied 

to quantify the anatomical variation in the training set, both in the bony shape and material 

property. 

1.3.  Thesis Overview 

Chapter 2 provides an overview of the published literature on statistical shape and 

intensity modeling for biomechanical applications as well as a description of the 

glenohumeral joint natural anatomy and total shoulder arthroplasty implants.  

Chapter 3 presents Investigating Gender and Ethnicity Differences in Proximal 

Humeral Morphology using a Statistical Shape Model whose objective was to develop a 

statistical shape model of the cortical and cancellous regions of the proximal humerus and 

assess potential shape differences with gender and ethnicity. 
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Chapter 4 presents Investigating Assessment of Scapula Shape and Bone Quality 

using Finite-Element Statistical Models whose objective was to develop a statistical 

description of scapular anatomy and mechanical property variation in the population to 

support design, sizing and placement of total shoulder arthroplasty implants. 

Chapter 5 discusses the specific contributions of this thesis in addition to 

suggestions for application of statistical shape and intensity modeling to support design 

and sizing of orthopaedic implants as well as surgical planning.  
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CHAPTER 2. BACKGROUND INFORMATION AND LITERATURE REVIEW 

2.1.  Statistical Shape and Intensity Modeling 

Variability of biological structures is a challenge for engineers and clinicians, who 

want to design medical devices and plan surgical procedure for the entire population. 

Variability of anatomical and biomechanical aspects, such as patient geometry, material 

properties, joint kinematics and loading, generates variability in orthopeadic aspects, such 

as implant design and component alignment, as well as clinical outcomes (Laz and Browne, 

2010). Statistical shape models (SSM) and statistical shape and intensity models (SSIM) 

can quantify respectively the morphological and mechanical variability by describing the 

average bone shape and average bone density distribution together with the main modes of 

variation of shape and density distribution within a population (Sarkalkan et al., 2014). 

These statistical models are generally created based on a training set that informs the model 

with the expected shape and density distribution of bones (Sarkalkan et al., 2014). The 

ability of the models to effectively capture intersubject variability is strictly related to the 

size and the quality of the training set, meaning how accurately the target population is 

represented. SSMs have also the ability of identifying anatomical variation of a sub-

population with a common background (Sarkalkan et al., 2014): for example, they can be 

developed for healthy individuals as well as for pathological populations, such as 

osteoporotic or osteoarthritic, or for subjects of a specific ethnicity or gender. Quantifying 

anatomical variation of the entire population or in specific sub-population can provide new 
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opportunities to clinicians for diagnosis, treatment and surgical planning and to engineers 

for medical devices design and sizing.  

In medicine, patient-specific models are ideal for personalized medical treatments, 

but not always feasible from time and financial perspectives. SSM can potentially 

overcome the need for these models or, at least, reduce the high costs associated to them, 

specifically from a computational standpoint. In this sense, SSM have been used as 

predictive tools: for example, in the shoulder joint, to predict the shape of a bone from the 

shape of the adjoining segment (Yang et al, 2008), or in the knee, to predict various 

anatomical quantities, such as joint kinematics and contact mechanics, from joint shape, 

both on the patellofemoral (Fitzpatrick et al., 2011) and tibiofemoral (Smoger et al., 2015) 

side. An additional application of the SSM is the automated segmentation of medical 

images, such as CT scan or MRI, to efficiently and accurately reconstruct the 3D geometry 

of bone and cartilage, without intra- and inter-observer variability (Fripp et al., 2007, 

Baldwin et al., 2010, Rasoulian et al., 2013).  

While SSM have been extensively presented in the literature for various bones, for 

example the pelvis (Lamecker et al., 2004) or the humerus (Kamer et al.,2016), and joints, 

for example the knee (Baldwin et al., 2010, Fitzpatrick et al., 2011, Smoger et al., 2015), 

the spine (Campbell and Petrella, 2016) or the shoulder (Mutsvangwa et al., 2015, Yang et 

al., 2008), only a limited number of studies have developed SSIM (Querol et al., 2006, 

Bryan et al., 2010, Nicolella and Bredbenner 2010). In addition, all these studies have 

focused on the femur. The general approach for developing an SSIM of the bone consists 

in deriving its apparent density distribution from the CT scan gray scale (Schileo et al., 
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2008), and then converting these data to Young’s moduli, using experimental derived 

relationship (Morgan et al., 2003, Gupta et al., 2004). If SSM can be used to support design 

and sizing of medical devices for the all population or for sub-populations that share 

specific morphological characteristics (Fitzpatrick et al., 2008), SSIM are crucial for 

testing such devices because they can be used to generate finite-element (FE) models with 

realistic material property distributions. FE analysis is becoming more and more needed to 

complement the experimental testing required on medical devices prior their 

commercialization, particularly in orthopaedics. For example, FE analyses can assess the 

stress distribution (Coteau et al., 2001) or predict fatigue life (Allred et al., 2016) in the 

implanted bone, alleviating the high costs and time associated to in vivo and in vitro 

experimental testing. In addition, FE models can provide quantitative information on how 

the device impacts the biomechanics of the joint, measuring all those internal quantities 

that are not easily measurable in experiments, such as muscles, ligaments or contact forces 

(Baldwin et al., 2010, Rao et al., 2013, Navacchia et al., 2016). Developing subject-specific 

FE models is a complex and time-consuming process and SSIM of the bone can automate 

parts of it (Campbell and Petrella, 2016), becoming a particularly useful tool in the medical 

device industry. 

In general, SSM and SSIM are powerful computational infrastructures for 

population-based evaluations or probabilistic analyses, allowing the generation of new 

instances (Campbell and Petrella, 2016), to expand the original training set and explore the 

boundaries of anatomical variability, including best- and worst-case scenarios. The lager 

the training set, the more realistically the SSM and SSIM capture anatomical variations in 
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the population. Since variation patterns can be hard to find in data set of high dimensions, 

SSM and SSIM are generally created using Principal Component Analysis, a statistical tool 

that reduces the dimensions of the initial data set, retaining the variation present in it 

(Jolliffe, 2002). The following paragraph provides more details on the mathematical 

process behind Principal Component Analysis. 

2.1.1. Principal Component Analysis 

Principal Component Analysis (PCA) is a type of multivariate analysis whose goal is 

to reduce the dimensions of a data set, while retaining as much as possible of the variation 

present in it (Jolliffe, 2002). This reduction is achieved by transforming the original data 

to a new set of variables, the principal components (PC), which are uncorrelated, and which 

are ordered so that the first few retain most of the variation, i.e. the highest explained 

percentage of variation, present in the original variables (Jolliffe 2002). By finding the 

eigenvectors of the covariance matrix, PCA provides all the orthogonal, i.e. independent, 

modes of variation in a set of data. Each instance of the original data set becomes then a 

linear combination of all or some modes of variation. The covariance matrix is shown in 

Eq. 2.1 for a two-dimension (2D) data set. 

𝐶𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛

𝑖=1

(𝑛 − 1)
                    (2.1) 

If the dimension of the data set is greater than two, the covariance matrix is computed as 

in Eq. 2.2.  

𝐶(𝑋, 𝑌, 𝑍) =

𝐶𝑜𝑣(𝑋, 𝑋) 𝐶𝑜𝑣(𝑋, 𝑌) 𝐶𝑜𝑣(𝑋, 𝑍)
𝐶𝑜𝑣(𝑌, 𝑋) 𝐶𝑜𝑣(𝑌, 𝑌) 𝐶𝑜𝑣(𝑌, 𝑍)

𝐶𝑜𝑣(𝑍, 𝑋) 𝐶𝑜𝑣(𝑍, 𝑌) 𝐶𝑜𝑣(𝑍, 𝑍)
                    (2.2) 
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The bone is a 3D object and its surface can be modeled as a point cloud or a mesh, in which 

each node or anatomical landmark is described by three spatial coordinates X, Y, Z in the 

Cartesian space. Therefore, to build the SSM of a bone, PCA is applied using a covariance 

matrix as in Eq. 2, where X, Y, Z are the coordinates of the nodes of each bone of the 

training set.  Before applying PCA, it is crucial to establish correspondence between the 

geometries in the training set, so that each variable has the consistent meaning across the 

training set. This can be accomplished either manually selecting the same anatomical 

landmarks on each subject or using automated approaches, such as Coherent Point Drift 

algorithm (CPD) (Myronenko et al., 2010). CPD morphs a template geometry to the 

subject’s shape and establishes nodal correspondence through a nearest-neighbor search, 

selecting, for each node of the morphed template, the closest node on the subject’s mesh.  

In case of SSIM, the covariance matrix must account for a fourth dimension, i.e. density or 

Young’s modulus of each node. The eigenvectors of the covariance matrix represent the 

orthogonal direction along which the data vary the most. Eigenvalues λ and eigenvectors v 

are defined as in Eq. 2.3 and can be computed using Eq. 2.4.  

𝐶𝑣 = 𝜆𝑣                              (2.3) 

|(𝐶 − 𝜆𝐼)| = 0                    (2.4) 

In case of the SSM of a bone or a joint, after applying PCA, the modes of variation can be 

visualized by transforming back the data from the PC space to the Cartesian space. A 

common way to do this is constructing the mean geometry and adding to it a certain amount 

of standard deviation for one PC at the time. This approach allows to differentiate the effect 

of each PC on shape variation. 
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2.2. The Glenohumeral Joint 

 The glenohumeral joint is one of the four joints that comprise the shoulder. It is 

classified as a synovial or diarthroidal joint, being surrounded by a joint capsule filled with 

synovial fluid. The glenohumeral joint articulates the humeral head, which is located on 

the proximal part of the humerus, to the glenoid cavity, which is located on the lateral side 

of the scapula (Figure 2.1). It is considered a ball and socket joint, however, the socket, i.e. 

the glenoid cavity, has large radii of curvature in both the coronal and transverse plane, 

providing the joint with minimal geometrical constraint. In fact, the humerus and the 

scapula are allowed 6 degree-of-freedom (DoF) with respect to each other: ab/adduction, 

internal and external rotation, flexion and extension, as well as translations in all the three 

directions. The most common surgical intervention to treat osteoarthritis or pain in the 

glenohumeral joint is Total Shoulder Arthroplasty (TSA), with consists in replacing the 

damaged articular surfaces with artificial component. The following paragraphs provide a 

brief overview on the glenohumeral joint anatomy and the Total Shoulder Arthroplasty. 

2.2.1. Anatomy 

As the glenoid cavity has a much higher radius of curvature than the humeral head 

(Figure 2.1), the glenohumeral joint derives most of its stability from the surrounding soft 

tissue (Kelkar et al., 2001). The joint capsule and the ligaments of the glenohumeral joint 

provide the passive restraint needed to keep the humeral head in contact with the glenoid 

cavity. Three ligaments can be identified in the joint: the superior and middle ligaments, 

that originate in the glenoid and insert in the anatomical neck of the humerus, and the 
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inferior ligament, that originate in the glenoid and insert at the lesser tuberosity of the 

humerus (Wolf et al., 1995, Steinbeck et al., 1998).  

In addition to the ligaments and the capsule, the shoulder muscles and tendons have 

a crucial role in providing stability the joint; specifically, the primary active stabilizers of 

the glenohumeral joint are known as the rotator cuff. The rotator cuff is comprised of the 

following muscles: supraspinatus, infraspinatus, teres minor and subscapularis (Clark et 

al., 1992, Reddy et al., 2000); these muscles also contribute significantly to the articular 

movement, specifically to ab/adduction and internal and external rotation. 

The bones that comprise the glenohumeral joint are the humerus and the scapula. 

The humerus is classified as a long bone, having a shaft (diaphysis) which is longer than it 

is wide, with epiphyses at both the proximal and distal end; it presents a hard outside 

compact shell known as cortical bone and a softer spongy internal structure known as 

cancellous bone (Figure 2.2), containing bone marrow. The epiphyses of the humerus are 

covered in cartilage, in correspondence of the articulations with the adjoining segments. 

On the other hand, the scapula is a flat bone and it still presents the same cortical and 

cancellous bone type (Figure 2.2). The scapula is composed by a flat plate (shoulder blade), 

the glenoid cavity and two processes: the coracoid and the acromion (Figure 2.1); the 

superior border of the plate usually presents a notch (Figure 2.1). 

2.2.2. Total Shoulder Arthroplasty 

TSA involves replacing damaged articular surfaces with artificial components 

(Figure 2.3). Per the American Academy of Orthopaedic Surgeons, 53000 TSA surgeries 

are performed each year in the United States, making TSA the third most common total 
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joint replacement, after the hip and the knee. Several pathological conditions can lead to 

this type of intervention, such as glenohumeral osteoarthritis, rotator cuff arthropathy or 

severe bone fracture, usually on the humeral side. The goal of TSA is to alleviate pain and 

to restore normal function of the joint in terms of mobility and strength. Currently, two 

different designs exist for TSA (Figure 2.3): the anatomic design, in which the humeral 

head replicates closely the natural humeral anatomy, and the glenoid is resurfaced with a 

polyethylene component, and the reverse design, where the glenoid component is convex 

and the humeral stem has a proximal concave head (Sanchez-Sotelo, 2009). The reverse 

design is indicated in case of massive rotator cuff tear, i.e. muscular weakness, because it 

can improve the joint function by increasing the moment arm of the deltoid muscle (Walker 

et al., 2016). A larger moment arm will facilitate the abduction movement, decreasing the 

required muscle force to generate torque. In both designs, the humeral component presents 

a stem that should fit inside the intramedullary canal of the humerus. 

Although TSA is in general an effective procedure, with successful results reported 

in over 90% of the cases Hasan et al. (2002), patient dissatisfaction and necessity for 

revision surgeries are still a concern that needs to be addressed. Stiffness and instability 

are the main complaints, while glenoid loosening is the major cause of failure in TSA, 

accounting for 59% of cases according to (Hasan et al., 2002). After glenoid loosening, the 

main causes of failure are humeral head malposition or humeral head loosening and rotator 

cuff tears (Hasan et al., 2002, Deshmukh et al., 2005). Complications and poor outcomes 

in TSA are influenced by the ability of the implant to replicate the natural joint 

biomechanics and the bone quality. For this reason, knowledge of bony morphology and 
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mechanical properties can potentially improve implant design and sizing, and thus improve 

TSA results. 

 

 

Figure 2.1 Articular 3D geometry of the glenohumeral joint. 
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Figure 2.2 Frontal section of the glenohumeral joint from CT scan: cortical bone is the 

thick white shell on the outside boundary while cancellous bone is the lower-density bone 

in the internal area. 

 

Figure 2.3 Examples of anatomic (top) and reverse (bottom) implant design for Total 

Shoulder Arthroplasty (DePuy Synthes). 
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CHAPTER 3. INVESTIGATING GENDER AND ETHNICITY DIFFERENCES IN 

PROXIMAL HUMERAL MORPHOLOGY USING A STATISTICAL SHAPE MODEL 

3.1. Abstract 

Morphological variability in the shoulder is inherently present and can influence 

healthy and pathologic biomechanics and ultimately clinical decision-making. 

Characterizing variation in humeral morphology in the population can support treatment 

and specifically, the design, via shape and sizing, of shoulder implants. Accordingly, the 

objectives of this study were to quantify proximal humeral geometry and to assess whether 

shape variation was influenced by gender and ethnicity. A statistical shape model (SSM) 

of the proximal humeral cortical and cancellous regions was developed for a training set of 

85 subjects, comprised of both genders and different ethnicities (Asian, Caucasian, African 

American). Cortical and cancellous bony geometries were reconstructed from CT scans, 

meshed with triangular elements and registered to a template. Principal component analysis 

was applied to the registered geometries to quantify modes of variation in the training set. 

Clinically relevant anatomical measurements were computed on the registered geometries 

to assess correlation with modes of variation. Specific regions of interest included the 

humeral head, intramedullary canal and the orientation of the canal relative to the head 

center. Parallel analysis was performed to identify which principal components or modes 

of variation were significant. Parallel analysis identified six significant modes of variation. 

The first six modes accounted for more than 93% of the variation in the training set, 
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describing scaling (Mode 1), inclination of the head (Mode 2, 5), and shape of the greater 

tuberosity and neck region (Modes 3-6). Statistically significant differences with gender, 

where female subjects were smaller than males, were observed in Mode 1; however, no 

other differences were observed in subsequent modes. Statistically significant differences 

in thickness of the diaphyseal cortical shell were observed with ethnicity; Asian subjects 

had larger cortical thickness compared to similar-sized Caucasian subjects. The statistical 

description of cortical and cancellous bone humeral morphology and quantified differences 

with ethnicity provide important descriptive data to support surgical planning and improve 

implant design for the world population. 

3.2.  Introduction 

The anatomy of the proximal humerus inherently influences the biomechanics of the 

shoulder and plays a direct role in various clinical scenarios, such as bone fractures and 

total shoulder arthroplasty (TSA). In the natural shoulder, the proximal humeral anatomy 

defines the glenohumeral conformity, and rotator cuff, muscle and soft tissue attachments, 

which influence muscle moments, motion and overall stability of the joint. Proximal 

humerus fractures are common injuries and the morphology of the bone has direct 

implications for nonoperative treatment, internal and external fixation, and 

hemiarthroplasty (Sanchez-Sotelo, 2006). In complex facture cases, models of bones can 

be used to align bone fragments and guide the surgical repair (Doerfler et al., 2017, 

Schumann et al., 2016). 

The current study, however, is motivated by describing the natural anatomy in the 

context of TSA to assess and improve implant design. The demand for TSA has rapidly 
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grown during the past decades, causing a likewise increase in revision surgeries, which 

tend to be more complex than primary arthroplasties (Day et al., 2010). Despite the high 

success rate of this surgical procedure, complications in TSA are not rare and about 30% 

of the revision surgeries performed from 1996 to 2005 were caused by instability of the 

glenohumeral joint (Bohsali et al., 2006). In TSA, “fit and fill” of an implant in the humeral 

canal and replication of the head center are key considerations to optimize the outcome of 

the surgery and they are driven by the underlying bony anatomy. Humeral head curvature 

determination is also important when choosing the appropriate head size and alignment in 

TSA procedures (Gebhart et al., 2013).  

Variation in humeral anatomy has been investigated to support clinical decision-

making and implant design based primarily on 2D measurements from medical images 

(Ballmer et al., 1993, Boileau and Walch, 1997, DeLude et al., 2007, Hertel et al., 2002, 

Humphrey et al., 2016, Pearl et al., 1996, Pearl et al., 1999, Pearl et al., 2009, Robertson et 

al., 2000). These studies identified a largely scattered anatomy (Hertel et al., 2002), which 

must be reconciled with a finite prosthetic inventory (Pearl et al., 2009). Specifically, 

variation in the dimensions of the head, the relative position of the center of the head on 

the shaft, and the diameter of the intramedullary canal have been explored with the purpose 

of evaluating and optimizing implant design, sizing and placement. While the placement is 

customized on the patient, a finite number of implant designs and sizes must fit the entire 

population. Thus, a quantitative understanding of how the humeral shape changes 

throughout the population is essential to support implant design and sizing. 
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Statistical shape modeling (SSM) have been applied to quantify morphological 

variations of bones, including femur and tibia (Bredbenner at al., 2010, Bryan et al., 2010, 

Galloway et al., 2013), and pelvis (Lamecker et al., 2004). Following registration of the 

training set geometries to a common template, principal component analysis (PCA) is 

applied to the covariance matrix of the registered data to describe the independent modes 

of variation (Joliffe, 2002). Further, as the geometries are registered to a template, the 

approach allows for the automated and consistent computation of anatomical 

measurements across large sets of data. Therefore, statistical shape modeling represents a 

suitable frame to evaluate current implants and to inform new designs in regard to the 

natural bone anatomy.  

SSM have been previously developed for the entire shoulder joint (Mutsvangwa et 

al., 2015, Yang et al., 2008) and for the proximal humerus only (Drew et al., 2014, Kamer 

et al., 2016). Mutsvangwa et al. developed methods to assess the shape of the humerus and 

scapula for a training set of 28 human subjects (Mutsvangwa et al., 2015), while Yang et 

al. proposed a similar work for 28 primates (Yang et al., 2008). Recently, Kamer et al. 

(2016) developed a statistical model that included information on both morphology and 

bone quality for a population of proximal humeri (58 subjects). These studies described 

shape variability of the external cortical shell only, and did not directly consider the 

morphology of the cancellous region or the potential impact of ethnicity or gender, which 

is valuable from surgical and implant-design perspectives. Drew et al. (2014) considered 

the intramedullary canal shape, developing an SSM of the cortical humeral bone 

boundaries on the endosteal and periosteal surfaces. However, this statistical model was 
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based on a population of only 10 subjects, which limits the broad applicability of the 

results. 

As implants are designed to function for the population, differences in 3D anatomy 

with gender and ethnicity have previously been investigated. A gender-dependent size 

difference was identified in the medial meniscus (Vrancken et al., 2014), with Caucasian 

males being larger than Caucasian females, and in the knee (Mahfouz et al. 2012), with 

males being larger than females regardless of ethnicity (Caucasians, Asians, African 

Americans). Specific patterns of morphological variation have been recognized among 

ethnicity groups for the tibia (Darling et al., 2013) and for the femur (Nelson et al., 2004). 

These studies reported that postmenopausal Caucasian women had statistically 

significantly larger tibiae and lower tibial bone density and cortical thickness, compared to 

Asian women (Darling et al., 2013), as well as lower femoral bone strength and thinner 

femoral neck cortices, compared to African-American women (Nelson et al., 2004). In a 

regression model of the proximal humerus, gender was identified as one of the variables 

influencing humeral head curvature; other factors included epicondylar breadth, height, 

and humeral length (Gebhart et al., 2013). However, a systematic SSM-based analysis of 

how gender and ethnicities might influence the proximal humeral shape has not yet been 

performed. Accordingly, the objectives of this study were: 1) to develop a SSM to quantify 

shape variation in both cortical and cancellous bone regions of the proximal humerus, 2) 

to investigate correlations between the 3D shapes and common anatomical measurements 

of the proximal humerus, and 3) to assess potential shape differences with gender and 

ethnicity. 
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3.3.  Methods 

The training set comprised 85 left humeri of healthy subject and cadavers (age: 75 

± 14 years, 38 females and 47 males) and included 52 Caucasian, 31 Asian and 2 African 

American subjects. Bones were classified as healthy if they did not present any abnormal 

morphological feature or sign of joint diseases, such as osteophytes. CT scans were 

performed with nominal settings: tube voltage 130 KvP, tube current 22 Ma, slice thickness 

1 mm and pixel spacing 0.49. The study made use of CT scans from cadavers and subjects 

enrolled in other studies and was classified as exempt by our institutional review board 

(IRB). The 3D geometries of the cortical and cancellous regions were reconstructed from 

CT scans using ScanIP (Simpleware, Exeter, UK) (Figure 3.1). The diaphysis of each bone 

was resected at a length proportional to its head radius (5.6 times), because the proximal 

bone was the region of interest for this study and the entire humerus was not available for 

the entire training set. The resection length was chosen to preserve the portion of the 

diaphysis of interest for TSA stems. Three-node triangular surface meshes were generated 

for each cortical and cancellous bone using Hypermesh (Altair Engineering, Troy, MI), 

with an average element size of 1.0 mm. A median geometry (male, Caucasian, head 

radius: 24.4 mm) was selected as the template and used to create an anatomical coordinate 

system, which was defined per ISB recommendations (Wu et al., 2005). The template was 

selected as it was among those geometries that included the distal portion of the bone, 

providing the full set of landmarks required to construct the anatomical coordinate system. 

The origin was placed in the glenohumeral rotational center, estimated as the center of the 

best-fitting sphere for the humeral head; the mediolateral axis was defined by the direction 
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of the segment connecting the two epicondyles; the anterior-posterior axis was defined as 

the perpendicular to the plane of the glenohumeral rotational center and the epicondyles; 

the superior-inferior axis was defined consequently to form a right-hand coordinate system.  

Training set geometries were registered to the template using the process as follows 

(Figure 3.1Figure 3.1 Statistical shape modeling workflow. Bone geometries were 

reconstructed from CT scans; cortical and cancellous bones were meshed and registered to 

a template.). The cortical geometries were rigid-body aligned to the cortical geometry of 

the template using an iterative closest point algorithm (Besl and McKay, 1992). The rigid-

body transformation matrix obtained for each cortical bone was then applied to the 

respective cancellous bone as well, in order to preserve the original relative position of the 

two surface meshes. After the alignment, nodal correspondence was established using a 

coherent point drift algorithm (Myronenko et al., 2010), first morphing the template 

geometry onto the subject geometry and then performing a nearest-neighbor search for 

each node of the morphed template to the nodes of the subject. For this approach to function 

well, it was essential that the subject mesh was considerably finer than the template mesh 

(average element lengths: 2.5 mm). After nodal correspondence was established, each 

geometry was rigid-body transformed so that the origin was placed in the center of the head 

and the superior-inferior axis was coincident with the axis of the intramedullary canal. 

Head center and canal axis were computed using respectively, a best-fitting sphere and a 

best-fitting cylinder, with a least-square type of algorithm. This orientation was chosen 

because it is meaningful from both surgical and implant-design perspectives. By 

performing the transformation after nodal correspondence was established, an automated 
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transformation process could be applied using consistent node numbers for the head and 

canal regions.  

The SSM was created by applying PCA to the registered data, which consisted of 

nodal coordinates (x, y, z) for the cortical and cancellous geometries for all the registered 

subjects. Modes of variation described the anatomic variation present in the population, 

and each instance was represented as a series of principal component (PC) scores. A leave-

one-out (LOO) analysis was performed to assess the accuracy of the SSM in predicting the 

shape of an unseen subject. A parallel analysis was performed (Horn, 1965) to identify how 

many modes of variation were meaningful, i.e. not noise. Clinically relevant anatomical 

measurements were computed automatically for each registered bone. Head radius was 

computed from the best-fitting of the humeral head. Canal diameter was computed as the 

minimum diameter of a series of four inscribed circles in the cancellous bone sections at 

10, 20, 30 and 40 mm above the most distal section of the shaft. Outer diameter of the 

cortical bone was computed from the best-fitting cylinder of the external surface of the 

lower portion of the shaft (70% of the length). Cortical thickness in the humeral shaft was 

computed as the average radial distance between the cortical and the cancellous profile, at 

multiple sections of the shaft, from 35 to 90 mm (about 25% to 75% of the length of the 

mean subject, measured from the head center) below the head center. Further, medial and 

posterior offset, greater tuberosity offset, inclination angle and articular thickness were 

computed as in previous studies (Boileau and Walch, 1997, Hertel et al., 2002). Anatomical 

measurements and PC scores were analyzed via Pearson’s correlation coefficient (R) and, 

by gender and ethnicity, via unpaired Student’s t-test.  



 

23 

 

3.4. Results 

Morphological changes in the cortical and cancellous proximal humerus were 

defined as a series of modes of variation (Figure 3.2). Parallel analysis identified six 

significant modes of variation. The first six modes of variation explained more than 93% 

of the total variation present in the training set and they were visualized by perturbing the 

mean geometry at ± 2.5 standard deviations of each principal component (PC). Mode 1 

largely described uniform scaling, i.e. scaling of the head size in conjunction with the outer 

diameter and shaft length of the bone (71.6% of variation explained); Mode 2 (9.5%) and 

Mode 5 (2.6%) described changes in the head shape and orientation in the surgical neck 

area; Mode 3 (4.1%), Mode 4 (3.1%) and Mode 6 (2.1%) described various changes in the 

region of the greater tubercle and of the surgical neck area (Figure 3.2). Observations of 

the modes for the cortical bone (Figure 3.2) are mirrored in the cancellous bone (Figure 

3.2). The LOO analysis assessing the ability of the SSM to represent an unforeseen subject 

resulted in an absolute geometric error of 0.48 mm (std. dev.: 0.16 mm) averaged across 

all nodes and all subjects. Parallel analysis identified 6 meaningful modes of variation.  

Several correlations between modes of variations and anatomical measurements 

(Table 3.1 Pearson’s correlation coefficients (R) between PC scores and anatomical 

measurements. High correlations (R>0.65) are bold.), and between anatomical 

measurements were observed (Table 3.2). Mode 1 was strongly correlated with head radius 

(R=0.95) and outer diameter (R=0.88), but only moderately correlated with canal diameter 

(R=0.51) and cortical thickness (R=0.50). Mode 1 was also strongly correlated with 

articular thickness (R=0.86) and greater tuberosity offset (R=0.87). Head radius was highly 
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correlated with outer diameter (R=0.76) but only moderately correlated with canal diameter 

(R=0.45) (Figure 3.3, Table 3.2). Mode 2 was strongly correlated with medial offset (R=-

0.79) and head inclination angle (R=0.66). Mode 3 was moderately correlated with head 

inclination angle (R=0.52) and Mode 4 was moderately correlated with the anterior-

posterior offset (R=0.40) and the canal diameter (R=-0.45). Mode 5 was moderately 

correlated with the medial offset (R=-0.57). Means, standard deviations and ranges of the 

anatomical measurements are shown in Table 3.3 

Gender and ethnicity differences were primarily described by scaling. Statistically 

significant differences were observed in Mode 1 for gender (unpaired Student’s t-test, 

p<4e-12) and ethnicity (p<0.02), but not in subsequent modes. Statistically significant 

differences were observed for head radius between gender and ethnicities (Figure 3.4, 

Table 3.4) for medial offset between ethnicities (Table 3.4). Variation in cortical thickness 

of the diaphysis was largely independent of size (Figure 3.5) and statistically significant 

differences with ethnicity were noted for average cortical thickness computed between 35 

and 90 mm below head center (Asian vs. Caucasian, p<0.05). At similar head sizes, Asian 

subjects showed higher cortical thickness, regardless of gender (Figure 3.5). No 

statistically significant differences with ethnicity were found for the canal diameter (Figure 

3.6), but they were found with gender (p<0.01). 

3.5. Discussion 

An SSM of the proximal humerus was developed to describe the three-dimensional 

shape of the cortical and cancellous bone regions of 85 subjects. The morphological 

variation across the population was systematically quantified using PCA, which represents 
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a state-of-the-art technique to assess the most important anatomical variations (Kamer et 

al., 2016). Most of the variation (71.6%) could be attributed to the size of the bone (Mode 

1), whereas subsequent modes of variation involved pure shape changing in the head 

inclination and surgical neck region (Mode 2, 5), and in the greater tubercle region (Modes 

3, 4, 6). Gender-dependent differences were observed in Mode 1 only, i.e. gender affects 

the size of the bone but not its shape. Ethnicity-dependent differences were observed in 

Mode 1, i.e. ethnicity affects the size of the bone, and in the cortical thickness, i.e. Asians 

subjects had higher thickness than Caucasians. Anatomical measurements were in good 

agreement with previous studies (Boileau and Walch, 1997, Hertel et al., 2002, Humphrey 

et al., 2016), confirming that the SSM is a technique to automatically, accurately and 

consistently compute measurements on large dataset. 

The first six principal components explained more than 93% of the total variation 

present in the training set, with the first one alone accounting for 71.6% of variation. The 

results affirm that PCA was performed on geometries that were properly aligned with 

respect to each other. Thus, modes of variations described actual shape variability between 

subjects and not noise due to inconsistent alignment. As expected, the first mode of 

variation described scaling for both the cortical and cancellous bone regions. Interestingly, 

the first mode of variation was strongly correlated with the radius of the head and the outer 

diameter, which represent the size of the bone, but less correlated with the diameter of the 

canal (Figure 3.3). This finding demonstrated that the internal and external diameters of 

the humeral shaft do not scale uniformly. Functional analysis, e.g. through finite element 

modeling, is required to assess how the shape variation impacts the joint biomechanics 
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(Vrancken et al, 2014) and it can be performed on geometries generated from the SSM 

through clustering analysis, to minimize the computational cost while maintaining a good 

representation of the variation in the population. Clustering analysis can be applied to the 

data represented as PC scores (Ding and He, 2004), in order to subdivide the dataset into 

groups that maximally differ from each other (Vrancken et al., 2014). The number of 

clusters can be assigned equal to the number of modes of variation that parallel analysis 

identified as significant or it can be optimized using gap-statistics (Vrancken et al., 2014). 

The training set included subjects of both genders and three different ethnicities, 

thus allowing the identification of common anatomical patterns in sub-populations with the 

same characteristics. Differences between males and females were primarily in size, as in 

(Humphrey et al., 2016), with male subjects being larger than females. Statistically 

significant differences between genders were present in the first mode of variation (p<4e-

12). No statistically significant differences were observed in subsequent modes, which 

implies that there are no shape differences (beyond scaling) attributed to gender. 

With regard to ethnicity, the first mode of variation also presented differences, although 

less significant for ethnicity (Asian vs. Caucasian, p<0.04) than gender. Our analysis 

(Table 3.4, Figure 3.5) suggested that there are no significant differences between Asians 

and Caucasians in terms of outer and canal diameter but there are significant differences 

for cortical thickness (note that cortical thickness was not calculated simply as the 

difference between the two diameters. Cortical thickness in the diaphysis exhibited 

differences with ethnicity (p<0.04) and with gender (p<0.001) too. In general, larger 

cortical bone thicknesses in the diaphysis and smaller humeral head radii were observed 
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for the Asian population compared to the Caucasian population (Figure 3.5). This result 

agrees with a previous study (Darling et al., 2013), which suggested that Asian women may 

compensate for smaller tibiae with an increased cortical thickness, with respect to 

Caucasian women. Quantitative information on cortical thickness variation in the 

population is important for implant design since this parameter influences implant sizing 

and stability. The implication of the canal diameter varying independent of outer diameter 

(R=0.56, from Table 3.2) requires implant systems to consider combinations of stems sizes 

with head designs and offsets to accommodate variations observed in the population, 

specifically with regard to both stem fit and biomechanics (e.g. replicating head center) 

similarly to what has been proposed for the knee joint (Hovinga and Lerner, 2008, Mahfouz 

et al., 2012). In addition, statistically significant differences were found for medial offset, 

with Asians having larger offset than Caucasians (Table 3.4).  

Specific regions of interest for the humeral bone included the humeral head and the 

intramedullary canal, whose dimensions and relative orientation can inform TSA head 

sizing, stem design and offsets to facilitate replication of the native anatomy and to assess 

load transfer and stability. The statistical shape model allows for an automated calculation 

of many clinically-relevant anatomical measurements (Boileau and Walch, 1997, Hertel et 

al., 2002). This aspect is not only convenient from a time perspective, but also ensures 

consistent measurements across the subjects. Statistically significant differences were 

found between Asian and Caucasian subjects in the radius of the head, but not in the 

diameter of the canal (Table 3.4); this observation suggests that Asian subjects were 
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smaller in size and their cortical thickness did not scale at the same rate as for Caucasian 

subjects.  

Statistical shape modeling has been used to quantify variation in the proximal 

humerus shape (Kamer et al., 2016); however, the shape of the cancellous bone in 

relationship to the outside morphology of the bone has not been investigated, except for a 

limited number of subjects (10 subjects in Drew et al., 2013). The diameter and general 

curvatures of the intramedullary canal are crucial dimensions from an implant design 

perspective since the humeral stem must fit inside it and match its curvature on the neck 

region. By capturing 3D surfaces, the SSM approach has major advantages in capturing 

the anatomy over using 2D distance and angle measurements. Captured in Mode 2, changes 

in head inclination angle represented a second important way in which the proximal 

humeral geometry changed across the population. This angle affects the mediolateral 

position of the head center with respect to the canal axis, as well as the curvature of the 

surgical neck region. Results from PCA suggest that TSA implants might have to 

accommodate these anatomical differences, allowing for various inclination angles of the 

head with respect to the stem.  

It is important to note that the findings of the study are dependent on the training 

set. In the current work, the SSM was developed from CT scans of 85 subjects, which while 

larger than prior SSM work (Mutswanga et al., 2015, Kramer et al., 2016, Yang et al., 

2008), could be expanded to strengthen the work. The ethnicity distribution included 52 

Caucasians, 31 Asians, 2 African Americans and was thereby not fully representative of 

the global population. With the ability to characterize 3D variation in anatomy, the SSM 
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platform is well suited to investigate anatomical differences with gender and ethnicity and 

inform the sizing and design of TSA implants, specifically because PC were interpreted 

with regard to typical clinical measures. 

  In closing, a statistical shape model approach characterized the variability in 

proximal humerus morphology and accurately captured both cortical and cancellous bone 

anatomy. While gender differences were attributed to scaling, differences in canal diameter 

and cortical thickness were present with ethnicity. The descriptive data will be valuable in 

supporting surgical planning and improving TSA implant design for the world population. 

3.6. Tables and Figures 

Table 3.1 Pearson’s correlation coefficients (R) between PC scores and anatomical 

measurements. High correlations (R>0.65) are bold. 

 

 PC1 PC2 PC3 PC4 PC5 PC6 

Head Radius 0.95      

Greater Tub. Offset 0.87   0.17  -0.15 

Medial Offset  -0.79 -0.29 0.26 -0.57  

Ant.-Post. Offset -0.22 0.34 0.24 0.40   

Art. Surf. Thickness 0.86   0.19   

Canal Diameter 0.51 -0.15  -0.45  0.16 

Inclination  0.66 0.52 -0.28  -0.15 

Outer diameter 0.88 -0.11  -0.28   

Cortical Thickness 0.50   0.12   
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Table 3.2 Pearson’s correlation coefficients (R) between anatomical measurements. High 

correlations (R>0.65) are in bold. 

 

 Radius GTO MO APO ATC 
Canal 

Diameter 
Inclination 

Outer 

Diameter 

Cortical 

Thickness 

Radius 1         

GTO 0.84 1        

MO -0.09 0.17 1       

APO -0.13 -0.14 -0.3 1      

ATC 0.84 0.83 0.03 -0.06 1     

Canal 

Diameter 
0.45 0.28 -0.01 -0.36 0.26 1    

Inclination -0.12 -0.16 -0.7 0.23 -0.06 -0.11 1   

Outer 

Diameter 
0.76 0.71 0.1 -0.35 0.67 0.56 -0.05 1  

Cortical 

Thickness 
0.16 0.31 011 -0.06 0.29 -0.46 0.05 0.35 1.0 

 

Table 3.3 Mean and standard deviation of the anatomical measurements computed on the 

population. 

 

 Mean ± St. dev. Range 

Radius (mm) 24.1 ± 2.5 19.3 – 29.4 

Greater tuberosity offset (mm) 40.1 ± 3.6 33.1 – 47.8 

Medial Offset (mm) 6.3 ± 2.4 0.8 – 16.4 

Anterior-posterior offset (mm) -1.9 ± 1.3 -4.4 – 4.4 

Articular surface thickness (mm) 19.0 ± 1.7 15.5 – 22.5 

Canal Diameter (mm) 12.1 ± 2.1 7.3 – 17.6 

Inclination (°) 136.5 ± 4.4 111.5 – 144.8 

Outer Diameter (mm) 23.1 ± 2.5 18.7 – 28.6 

Cortical Thickness (mm) 3.6 ± 0.8 2.1 – 5.7 
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Table 3.4 Unpaired Student’s t-test results (p value) for anatomical measurements and PC 

scores with gender and ethnicity (n.s.= not significant, if p>0.05). Only quantities that 

showed significant differences were reported.  

 

 Gender Ethnicity 

PC1 4e-12 0.02 

Head Radius 3e-11 6e-4 

Outer Diameter 2e-16 n.s. 

Canal Diameter 0.01 n.s. 

Medial Offset n.s. 0.02 

Cortical Thickness 1e-4 0.04 

 

 

Figure 3.1 Statistical shape modeling workflow. Bone geometries were reconstructed 

from CT scans; cortical and cancellous bones were meshed and registered to a template.  
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Figure 3.2 Shape of cortical (A) and cancellous (B) bone for the first six PC modes of 

variation (shown at ± 2.5 std. dev. from the mean) in sagittal (top) and transverse (bottom) 

plane. 
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Figure 3.3 Relationships for head radius vs. canal dimeter (A) and outer diameter (B). 

 

Figure 3.4 Distribution of head radius for gender (A) and ethnicity (B). Percent of subjects 

is calculated with respect to the entire population. 
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Figure 3.5 Relationships for head radius and average cortical thickness (35 mm below head 

center). Bone profiles for representative (circled) Caucasian and Asian subjects. 

 

Figure 3.6 Canal diameter distribution for the population (A). Canal diameter was 

computed as the minimum diameter of a series of inscribed circles (red lines) in the 

cancellous shaft sections (black dots), between the most distal section and a section 40 mm 

proximal to it, every 10 mm (B). Statistically significant differences were not found 

between Asians and Caucasians. 
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CHAPTER 4. ASSESSMENT OF SCAPULA MORPHOLOGY AND MATERIAL 

PROPERTY USING A FINITE ELEMENT STATISTICAL SHAPE AND INTENSITY 

MODEL 

4.1. Abstract 

Knowledge of shape and material property variability in the scapula can inform 

total shoulder arthroplasty. Prior studies assessed scapular shape through measurements on 

cadaveric specimens and on computed tomography (CT) scans, and through statistical 

shape models. Scapular material properties have been evaluated through cadaveric testing 

and CT scans. However, most studies were limited to few subjects. The objective of this 

study was to develop statistical models to quantify variation of scapular anatomy 

throughout the population. A population of 53 material-mapped finite-element models of 

healthy scapulae was reconstructed from CT scans and registered to a common template. 

A statistical shape model (SSM) and a statistical intensity model (SIM) were developed 

using Principal Component Analysis to describe respectively morphological and material 

properties variation. The first three modes of variation of the scapula SSM described: 

scaling (Mode 1, 54% of variation); changes in medial border and acromial process (Mode 

2, 9%); elongation of scapular blade (Mode 3, 7%). Mode 1 of the SIM (43% of the 

variation) described scaling of bone quality in central glenoid. A mild correlation (R=0.41) 

was observed between the first shape and intensity modes. Higher bone quality was 

consistently observed in the central glenoid. SSM and SIM have implications for implant 

design and sizing. Results from SSM and SIM presented respectively uniform bone scaling 
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and contrast in bone quality distributions in central and inferior glenoid as the primary 

modes of variation. Larger scapula size was not strongly linked to better bone quality. 

4.2. Introduction 

While total shoulder arthroplasty (TSA) is in general a successful procedure, 

complications due to loosening of the implant in the glenoid remain the main cause of 

failure. Glenoid loosening has been noted as the cause for 52% of 154 cases of TSA 

revisions (Roberson et al., 2017) and 59% of 139 cases (Hasan et al., 2002) of 

unsatisfactory TSA. Glenoid loosening is influenced by the inability of the implants to 

replicate the natural joint anatomy and biomechanics as well as by the quality of the bone 

surrounding the fixation features of the glenoid component (Matsen et al., 2008).  

Knowledge of the morphological variability in the scapula throughout the 

population can inform the design and sizing of TSA implants. Previous studies 

characterized the glenoid dimensions by manually taking measurements from computed 

tomography (CT) data (Matthews et al., 2017, Fulin et al.,2017), analyzing reconstructed 

3D geometries (Frankle et al., 2009, Ghafurian et al., 2016), or measuring cadaveric 

specimens (Merrill et al., 2001, Churchill et al., 2001). The time-consuming processes 

associated with taking manual measurements, and the intrinsic limitation of using two-

dimension (2D) measurements to characterize the shape of the three-dimensional (3D) 

bone geometry, can be overcome with statistical shape modeling (SSM). SSM is a 

mathematical tool that, through Principal Component Analysis (PCA), reduces the size of 

a given set of data, while retaining all the variation present in it. This is accomplished by 

representing every subject of a training set as a vector of Principal Components (PC), each 



 

37 

 

of which describes an orthogonal, i.e. independent, mode of variation of the population. In 

this way, SSM allows for a systematic quantification of the shape variation present in a 

training set of geometries or in sub-population that share common features, such as 

ethnicity, gender, or pathological status (Fitzpatrick et al., 2008). Prior studies have 

described morphological variations of various bones and joints with SSMs (Smoger et al., 

2015, Fitzpatrick et al., 2011) but not many have focused on the shoulder. One study 

developed an SSM of the glenohumeral joint using 28 primate shoulders, which included 

the scapula and humerus (Yang et al., 2008) and other recent studies have developed 

automated workflows for SSM and applied them to the human scapula (Mutsvangwa et al., 

2015, Mayya et al., 2013).  

If knowledge of morphological variation is required for optimal implant design and 

sizing, characterizing the internal material property distribution of the glenoid vault, as 

well as how these distributions vary throughout the population, can inform the location and 

trajectories of the glenoid component’s fixation features, such as the peg and the 

supplemental screws (Kalouche et al., 2010). Prior studies have assessed the underlying 

bone quality in various regions of the glenoid through mechanical testing of the human 

glenohumeral joint (Mansat et al., 1998, Frich 1994, Mimar et al., 2008, Anglin et al., 

1999). However, limitations in mechanical testing are due to sparsity in data and difficulty 

of sampling. On the other hand, it has been shown that material mapped finite-element (FE) 

models based on CT scan data provide accurate representations of material properties and 

allow for finely mapped material data (Keyak et al., 2001, Schileo et al., 2008). Studies 

have characterized localized material properties in bones through a regression-based 
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approach that relates Hounsfield units (HU) to apparent density (Gupta et al., 2004). In 

order to develop FE models, apparent density is converted to Young’s modulus using bone-

specific relationships derived from mechanical testing (Morgan et al., 2003, Frich 1994). 

If material properties are collected for a training set of bones, they can be incorporated into 

the SSM to generate statistical shape and intensity models (SSIM), still applying a PCA 

approach. SSIM have been successfully developed to describe anatomic variation in shape 

and mechanical properties of the femur across the population (Bryan et al., Nicolella et al., 

2012, Querol et al., 2006, Waarsing et al., 2010). On the other hand, statistical appearance 

or intensity models (Cootes et al., 2004, Campoli et al., 2014) can be used to quantify 

changes in material properties only, independently from the shape. When statistical 

intensity models (SIM) are developed in conjunction with SSM, potential correlation 

between morphology and quality of the bone can be assessed. This type of workflow not 

yet been implemented to quantify anatomical variation in the scapula across the population.  

In addition to systematically quantifying anatomical variation in bones and joints, 

SSM, SSIM and SIM can be used to generate large populations of instances for 

probabilistic studies, i.e. Monte Carlo simulations, or specifically sampled instances that 

cover large portions of the population for design of experiment. New instances are 

generated by perturbing the modes of variation by adding or subtracting a certain amount 

of standard deviation of the PC to the mean geometry (Campbell and Petrella, 2016). This 

type of workflow has implications in the design and sizing of implants that must fit the 

entire population (Laz and Browne, 2010). Accordingly, the objectives of this study were 

1) to develop an SSM and an SIM of the scapula to explore the variation in shape and 
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material properties distribution throughout the population, assessing potential correlation 

between bone size and bone quality, and 2) to develop an SSM of the glenoid region to 

explore only the anatomical variation in the main region of interest for implant placement. 

4.3. Methods 

Scapular geometries for a training set of 53 healthy subjects and cadavers (26 

males, 27 females, age mean: 73, st. dev.: 14) were segmented from CT scans using ScanIP 

(Simpleware, Exeter, UK) (Figure 4.1). The bones did not show any sign of osteoarthritis 

or deformity. CT scans were performed on two identical machines, with the following 

protocol: tube voltage 120-140 KvP, based on the size of the subject, tube current 22 Ma, 

slice thickness 0.5-1.25 mm. Our IRB classified the study as exempt as it made use of 

existing CT scans from subjects enrolled in other studies and cadavers. Surface meshes 

were generated for each subject using Hypermesh (Altair Engineering, Troy, MI), with an 

average element size of 1.0 mm. A median geometry was chosen as the template to which 

the other geometries were registered. The template was represented in its anatomical 

coordinate system as per (Wu et al., 2005), with the difference that the origin was placed 

in the center of the glenoid, which is a more relevant location from a TSA perspective. The 

template surface mesh was represented by 16,384 nodes and 32,762 triangular (tri) 

elements (Figure 4.1). Surface mesh registration was an iterative process performed in 

MATLAB (Mathworks, Natick, MA) by morphing the template mesh to take on the shape 

of the subjects. An iterative closest point (ICP) algorithm was used to rigidly align the 

subject geometries to the template. Note that we refer to scans from both living subjects 

and cadavers as ‘subjects’, to distinguish them from the template. Then, coherent point 
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drift (CPD) (Myronenko et al., 2010) was iteratively performed on the template to conform 

the template to the subject meshes. The CPD algorithm allowed for global scaling, 

skewing, translation, rotation, and local deformation. Given the highly irregular scapular 

geometry, subsequent to the CPD algorithm, a non-rigid iterative closest point (ICP) 

algorithm (Besl and McKay, 1992) was performed on the template to further morph the 

template mesh to take on each subject’s shape. As a result of this iterative morphing 

workflow, the template surface mesh fully conformed to each subject surface mesh, thus 

yielding a registered training set of surface meshes. The surface registered training set was 

necessary for registration of volumetric meshes. The surface mesh of the template was 

filled with four-node tetrahedral (tet) elements to create a 3D template mesh (Figure 4.1). 

The tet template mesh consisted of 42,839 nodes and 204,208 four-node tet elements, with 

element side lengths ranging from 1.0 to 1.4 mm. 3D registration was performed by 

elastically deforming the template tet mesh to the subject tri mesh, using the known 

displacements between the subjects’ registered surface nodes and corresponding surface 

nodes on the template. The elastic deformation process was implemented using finite 

element software (Abaqus SIMULIA, Providence, RI); in each simulation, the nodal 

displacements were set as boundary conditions. This was performed for all 53 subject 

geometries and yielded a population of 53 3D registered scapulae.  

PCA was applied to the registered surfaces in order to create an SSM of the entire 

scapula to explore the morphological variability throughout the population. Additionally, 

PCA was applied to a sub register of only glenoid nodes in order to create an SSM of the 

glenoid, as this is the main region of interest for the placement of TSA glenoid components. 
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Modes of variation were described by perturbing the mean geometry by ± 2 standard 

deviations of each principal component (PC). A Leave-One-Out (LOO) analysis was 

performed to assess the capability of the SSM to reconstruct a subject from its PC (Smoger 

et a., 2015). A parallel analysis was performed (Horn, 1965) to identify how many shape 

modes of variation were meaningful, i.e. not noise. Clinically relevant anatomical 

measurements were computed on the registered geometries. Glenoid height was computed 

as the long axis of the best-fit ellipse of the glenoid profile in the sagittal plane, while 

glenoid width was computed as the diameter of the best-fit circle of the inferior portion of 

the glenoid profile in the sagittal plane. Glenoid retroversion and inclination angles were 

calculated as in (Friedman et al., 1992, Matsumura et al., 2014, Ghafurian et al, 2015) and 

in (Churchill et al, 2001, Werner et al., 2017), respectively. Glenoid radii of curvature in 

the coronal and transverse plane (McPherson et al., 1997) were calculated from best-fit 

circles, using a least-square algorithm. 

Material mapped FE models were generated based on original CT scan data of the 

geometries. Each subject was meshed with element side lengths between 0.5 to 1.0 mm 

using ScanIP’s meshing algorithm. Then, each material mapped FE model was overlaid on 

corresponding CT data in order to associate each element with underlying CT pixels. The 

tet meshes with element side lengths between 0.5 and 1.0 mm were generated using 

ScanIP’s meshing algorithm for each segmented scapula geometry. CT scans had been 

performed using consistent machine settings and a CT calibration phantom (QCT Pro, 

Mindways Software, Inc., Austin TX) had been included in order to derive the relationship 
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between cancellous bone mineral density (⍴) and greyscale values, i.e. HU. The following 

calibration equation was used to convert Hounsfield units to bone mineral density: 

𝜌𝑄𝐶𝑇 =  0.0006782 𝐻𝑈 − 0.009409        (
𝑔𝑟

𝑐𝑚3)⁄  

Bone mineral density was converted into apparent density using the following relationships 

(Schileo et al., 2008): 

𝜌𝑎𝑠ℎ =
𝜌𝑄𝐶𝑇 + 0.09

1.14
        (

𝑔𝑟
𝑐𝑚3)⁄  

𝜌𝑎𝑝𝑝 =  
𝜌𝑎𝑠ℎ

0.598
        (

𝑔𝑟
𝑐𝑚3)⁄  

Because of surface artifact complications, apparent density of all elements with at least one 

node on the surface was set based on the maximum HU for that CT scan mask. Surface 

artifact refers to the issue where the error of the scapular geometry mask causes CT pixels 

that lie outside the scapula in the CT slice to be accounted for in determining material 

properties (Figure 4.2). This causes the material properties of the cortical elements to be 

inaccurate. Furthermore, this correction is justified as the internal material properties, not 

the cortical bone, were the focus of this study. The other exception to the relationship 

between HU and apparent density was a lower bound set on the apparent density. One of 

the reasons for the inclusion of a lower bound was the occurrence of surface artifact in the 

scapular mask. CT pixels included in the scapular mask that lay outside of the scapula were 

low enough to yield a negative apparent density based on the relationship between HU and 

density. Cancellous bone density was converted to Young’s Modulus using the following 
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scapular-specific relationship, which was derived from mechanical testing (Frich, 1994) 

and validated in a previous study (Gupta et al., 2004).  

𝐸 = 0.001049𝜌2                    𝜌 ≤ 350 𝐾𝑔/𝑚3 

 

𝐸 = 3×10−6𝜌3                   
350 𝐾𝑔

𝑚3
≤ 𝜌 ≤

1800 𝐾𝑔

𝑚3
 

The material mapped FE models had material properties assigned to each element, but the 

nature of the SSIM required material properties to be associated to each node. Therefore, 

elements and corresponding material properties from the ScanIP models were represented 

by elements’ centroids. This point cloud of centroids with material properties was overlaid 

on its corresponding tet registered subject. A nearest-neighbor search was performed in 

order to associate each registered node with the material property of the centroid that lays 

closest to it. As a result, each registered node was associated with its apparent density. The 

SIM was created by performing PCA on the material properties of the registered nodes of 

53 subjects. Similar to the SSM, modes of variation were described by perturbing the mean 

material distribution by ± 2 standard deviations of the first PC and a LOO analysis was 

performed to assess the capability of the SIM to reconstruct the material properties of a 

subject from its PC. The Student’s t-test was applied to assess potential statistically 

significant differences with genders and the first mode of variation of the SIM and the SSM 

A parallel analysis was performed (Horn, 1965) to identify the number of meaningful 

modes of variation in the SIM. PCA was also applied to a register composed by the 

coordinates of both the internal and surface nodes of the registered scapulae. The 

geometries generated perturbing the modes of variation of this SSM were super-imposed 
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with the material properties distribution generated perturbing the modes of variation of the 

SIM, with the goal of understanding the boundaries of variation in scapular anatomy. 

4.4. Results 

Scapula SSM 

The first three modes of variation of the whole scapula SSM accounted for nearly 

70% of variability in the training set (Figure 4.2). Mode 1 (54% of variation explained) 

described primarily uniform scaling. Mode 2 (9%) described changes in the medial border 

of the plate and the acromial process. Mode 3 (7%) described a superior-inferior elongation 

of the scapular blade. Statistically significant differences were found between genders for 

SSM PC1 (p<1.2e-4), with males being larger than females, and PC2 (p<0.01). Mode 1 

demonstrated strong correlation with glenoid height (R=0.82) and glenoid width (R=0.77). 

Mode 5 (5.5% of variation explained) demonstrated mild correlation with scapular 

retroversion (R=-0.45). From LOO analysis, absolute geometric errors averaged 0.94 mm 

(st. dev.: 0.28 mm) across all nodes and subjects. Parallel analysis identified 7 meaningful 

modes of variation in the SSM. 

Glenoid SSM 

The first three modes of variation of the glenoid SSM accounted for more than 87% 

of variability in the glenoid geometry (Figure 4.3). Mode 1 (62%) described changes in 

size, with glenoid height and width scaling uniformly. Mode 2 (19%) and mode 3 (7%) 

described different type of non-uniform scaling. Person’s correlation coefficients of 

R=0.87 and R=0.78 were found between the first PC scores (PC 1) and the glenoid anterior-
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posterior width and superior-inferior height, respectively. A correlation of R=0.33 was 

found between PC 1 and the glenoid radius of curvature from the best-fitting sphere. 

Glenoid width, height, retroversion angle, inclination angle, and radii of curvatures in the 

coronal and transverse plane are reported in Table 4.1 as mean, standard deviation and 

range. 

Scapula SIM 

The first four modes of variation of the SIM accounted for nearly 62% of variation, 

with Mode 1 (Figure 4.4), which accounted for 43% of variation, described a scaling of 

bone density in the central-anterior and inferior glenoid area, in conjunction with a 

dimensional scaling of the bone. Only a mild correlation (R=0.41) was found between PC1 

of SIM and PC1 of SSM. No statistically significant differences were found for SIM PC1 

between genders (p=0.24). From LOO analysis, absolute errors on apparent density 

averaged 117.5 Kg/m3 (st. dev.: 23.2 Kg/m3) across all nodes and subjects. Parallel analysis 

identified 4 meaningful modes of variation in the SIM. Figure 4.5 shows an overlay of 

bony material property generated from the SIM on geometries generated from the SSM 

built on both the internal and surface nodes. 

Cancellous bone density in the glenoid region had a mean density of 377 Kg/m3 

(std. dev.: 102 Kg/m3) across all the subjects (Table 4.2), while cortical done density had a 

mean of 1674 Kg/m3 (std. dev.: 155 Kg/m3) across all the subjects, ranging from 1421 to 

1929 Kg/m3. Cancellous bone Young’s modulus in the glenoid region averaged 365 MPa 

(std. dev.: 263 MPa) across all the subjects (Table 4.2).  
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4.5. Discussion 

  The main purpose of this study was to provide a statistical description of 

morphology and mechanical properties of the scapula across the population. A series of 

statistical models of the whole scapula and the glenoid region were developed for a training 

set of 53 subjects of both genders, three different ethnicities and an average age of 73 (st. 

dev: 14). PCA represents a state-of-the-art technique to describe anatomical variation 

(Kamer et al., 2016) and, in this study, it was used to describe and quantify the variation in 

the scapular anatomy, including morphology and bone quality (Figure 4.2, Figure 4.3, 

Figure 4.4). As expected, most of the anatomical variation was captured in the first PC of 

the scapular SSM (54%), the glenoid SSM (62%), and the scapular SIM (43%), and it can 

be described as geometrical scaling and differences in regional bone quality contrast. 

Evaluating variation in bone quality resulted into a lower explained percentage of the first 

mode of variation, meaning that bone quality presents a higher anatomical variability with 

respect to bone shape. Perturbing the mean model by 2 standard deviations of a PC made 

it possible to visualize the bounds of anatomical variation for 95% of the population for 

that PC (Figure 4.2, Figure 4.3, Figure 4.4). This aspect makes the statistical models 

developed in this study useful from a clinical perspective as well as from an implant design 

perspective. In addition, the results from LOO analyses confirmed that the statistical 

models developed in this study could properly described scapular shape and material 

properties variation in the population. 

  Comparing the bone density distributions at mean ± 2 standard deviations of SIM 

PC 1 revealed difference in the contrast between the central, anterior, and inferior glenoid 
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bone quality (Figure 4.4). Interestingly, we did not find a high correlation (R=0.41) 

between the first SSM and SIM modes of variation, meaning that a large scapula is not 

necessarily linked to higher bone quality. Since bone shape and density were found to be 

largely independent from each other, a practical application of the SIM and SSM would be 

to overlay material properties distributions generated with the SIM on various bone shapes 

generated with the SSM (Figure 4.5). This approach could help identifying the boundaries 

in the scapula anatomy when designing shoulder implants. 

  For TSA implants, the glenoid represents a main region of interest and loosening 

of the glenoid component remains the main complication for this procedure (Roberson et 

al., 2017, Hasan et al., 2002). The loosening is influenced by the ability of the implant to 

reproduce natural biomechanics, and, additionally, the quality of the glenoid bone 

surrounding the fixation feature of the TSA component plays a key role (Matsen et al., 

2008). The description of the shape and orientation of the glenoid anatomy for the 

population can inform implant design and sizing, and the bone property maps can support 

screw placement and orientation, particularly for reverse shoulder designs. Material 

properties in the glenoid cancellous bone were highly scattered throughout the training set, 

suggesting that design implants that fit large portions of the population is a challenge. The 

population was classified into four different groups based on where the best bone quality 

i.e. highest density and Young’s modulus, was found, resecting the glenoid 1.5 mm below 

the external bone surface. The majority of the population (26 subjects) showed highest 

bone quality in the anterior glenoid region; 22 subjects showed highest bone quality in the 

central glenoid region; only 1 subject showed highest bone quality in the posterior glenoid 
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region; 3 subjects showed low bone quality throughout the entire glenoid. Observing these 

groups and the number of subjects in each group yields intuition about where the best bone 

quality is likely to be in a given glenoid. In general, we found that, if present, the best bone 

quality was consistently located in the central or anterior region of the glenoid, supporting 

the location of fixation features in current implants. Additionally, visualization of Mode 1 

of the SIM, which describes differences in contrast in bone quality in the glenoid central 

and inferior regions, revealed that the central peg, as well as the anterior and inferior 

screws, may be crucial in glenoid fixation. Because the central, anterior, and inferior 

regions of the glenoid have the most variability in bone quality, based on Mode 1, the 

fixation features located in these regions may have varying rates of success.  

  The CT-based computational approach provides a finer mapping of bone properties 

compared to experimental mechanical testing on specimens (Mansat et al., 1998, Frich et 

al., 1997), with discretization dependent on scan resolution and mesh size. Mean cancellous 

glenoid properties were similar but slightly higher than the values reported in previous 

studies that explored material properties through mechanical testing (Kalouche et al., 2010, 

Mansat et al., 1998, Frich et al., 1997). Mansat et al., 1998 reported mean glenoid 

cancellous apparent densities of 274 to 302 kg/m3 for individual subjects with values in the 

range of 189 to 482 kg/ m3. Kalouche et al., 2010 reported mean glenoid cancellous 

apparent densities of 279 to 326 kg/m3 for individual subjects with values ranging from 

138 to 479 kg/m3. Frich et al., 1997 reported mean cancellous apparent densities of 340 ± 

100 kg/m3 in the glenoid bare area and 380 ± 110 kg/m3 in the superior and inferior glenoid 

regions. We found a mean glenoid cancellous apparent density of 377 ± 102 kg/m3 across 



 

49 

 

all subjects, with values in the range of 243 to 596 kg/m3. Minor incongruences may also 

be due to differences in the definition of the glenoid as a separate region from the entire 

scapula. Our values were more in line with the apparent density values reported in CT scan-

based study, such as Frich, 1994 in which the glenoid mean apparent density was 380 

kg/m3.  

  The approach we chose to cortical material properties represented a limitation of 

this study. Surface artifact was corrected for by assigning all surface tet elements the bone 

apparent density that corresponded to the highest greyscale value found within the subject’s 

scan. This inherently assumes that cortical properties are homogenous for the subject. 

However, the variability of the cortical properties across the subjects was taken in 

consideration and, to the authors’ knowledge, only one other study (Lehtinen et al., 2004) 

provided this type of information for a population of 20 specimens. The cortical densities 

of the training set ranged between approximately 1400 and 1900 Kg/m3, which is consistent 

with literature data on scapular cortical bone properties (Gupta et al., 2004, Lehtinen et al., 

2004). Additionally, the discretization associated with finite elements’ representation 

limited the ability to describe cortical shell thickness in the registered models. Cortical 

thickness was assumed to be the thickness of the outer layer of tet elements in the model. 

In reality, cortical thickness may be different throughout subjects and even depend on 

location in a subject. However, the focus of the study was to describe the variability in the 

distribution of cancellous bone properties.  

  The training set used to develop our statistical models was larger than that of any 

other statistical study performed on the scapula. All subjects and the specimens in the 
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training set were healthy. Future studies may explore larger populations as well as develop 

training sets for non-healthy subjects that are of interest from a TSA perspective, such as 

osteoporotic or osteoarthritic population. 

  Calculation of anatomical measurements was automated by taking advantage of 

known node identifiers from registered meshes. Glenoid height and width are important 

for implant design as the target for the glenoid component of the prosthetic is to replicate 

the native bone geometry, maximizing coverage. For this reason, knowledge of how the 

glenoid measurements vary may inform implant sizing. Knowledge of glenoid radii of 

curvature provides similar functions. Replicating the natural radius of curvature in the 

glenoid component may help to restore the natural kinematics of the shoulder after TSA. 

In general, automated computation of anatomical measurements may be more time-

efficient than manual processes and potentially more consistent, as manual measurement 

methods may have inter- and intra-observer differences. On the other hand, consistency of 

automated computation of anatomical measurements using registered geometries may 

depend on robustness of registration. 

  In this study, measurements of glenoid height were slightly higher than literature. 

Automated computed measurements returned mean glenoid height of 45.3 mm. One study 

reported a mean glenoid height of 33.8 mm for females and 37.0 mm for males (Merrill et 

al., 2009). Another study reported mean glenoid height of 32.6 mm for females and 37.5 

mm for males (Churchill et al., 2001). However, differences compared to literature may lie 

in how the glenoid height was computed, i.e. we computed the glenoid height as the long 

axis of the best-fitting ellipse on the glenoid surface. Measurements of glenoid width are 
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more consistent with literature. Churchill et al., 2001 reported mean glenoid width of 23.6 

mm for females and 27.8 mm for males. Merrill et al., 2009 reported mean glenoid width 

of 23.7 mm for females and 28.56 mm for males. We found a mean glenoid width of 28.9 

mm. Computed glenoid width values may be more consistent with literature as a result of 

more similar measurement approaches. Inclination values were similar to that reported by 

literature. One study reported inclination angles of 8.9 ± 9.9 degrees when computed from 

3D reconstructed computer models based on CT data (Werner et al., 2017). Other literature 

reported inclination angles of 4.0 ± 3.4 degrees for men and 4.5 ± 3.8 degrees for women 

(Churchill et al., 2001). The range of retroversion angles that we found, i.e. from -3.8 to 

20.1 degrees, fell within the ranges reported in the literature. Friedman et al., 1992 reported 

a retroversion range of -14 to 12 degrees for healthy subjects. Other studies report more 

narrow retroversion distributions, such as -9 to 13 degrees (Matsumura et al., 2014) and 

15.1 ± 10.6 degrees for measurements based on 3D reconstructed computer models 

(Werner et al., 2017). Ghafurian et al., 2016 reported mean retroversion angles of -5.05 ± 

3.50 degrees. The computed radii of curvature were slightly higher than what is reported 

in the literature. McPherson et al., 1997 reported inferior-superior radii curvature of 32.2 

± 7.6 mm and anterior-posterior radii of curvature of 40.6 ± 14 mm. We found inferior-

superior radii curvature of 62.6 ± 53.4 mm, i.e. radius of curvature in the coronal plane, 

and anterior-posterior radii of curvature of 53.5 ± 28.1 mm, i.e. radius of curvature in the 

transverse plane. These differences in radii of curvature may be due to the approach taken 

in obtaining these values, as the referenced study depended on the identification of 
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continuous analytical surfaces determined on roentgenograms, whereas the approach of 

this paper looked at best-fitting circles to discretized point clouds. 

  One of the unique strengths of this study is that all the geometries in the training 

set are tetrahedral meshed and therefore are ready to be used in finite-element simulations 

of natural and implanted bone models. In the future, the SSM and SIM platform can be 

linked with virtual implantation of TSA implants and finite element modeling to support 

population-based assessments of load transfer and fixation. 

4.6. Table and Figures 

Table 4.1 Glenoid measurements. 

 Mean ± St. dev. Range 

Height (mm) 45.3 ± 4.3 36.4-54.4 

Width (mm) 28.9 ± 3.5 22.7-39.4 

Retroversion (°) 6.5 ± 5.6 -4.6-19.8 

Inclination (°) 3.5 ± 0.1 2.9-13.3 

I-S rad. of curvature (mm) 43.4 ± 10.9 26.0-75.7 

 

Table 4.2 Cancellous bone properties in the glenoid. 

 Mean ± St. dev. Range 

Density (Kg/m3) 377 ± 102 243-596 

Young’s modulus (MPa) 365 ± 263 125-991 
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Figure 4.1 Workflow. Bone geometries were reconstructed from CT scans; all subjects 

were meshed with triangular elements and a template geometry was also meshed with 

tetrahedral elements. Surface and internal nodal correspondence between all subjects and 

the template was established prior performing PCA. 

 

 

Figure 4.2 Scapula SSM. First three modes of variation are shown at mean ± 2 st. dev. 
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Figure 4.3 Glenoid SSM. First three modes of variation are shown at mean ± 2 st. dev. 

 

Figure 4.4 Scapula SIM. First mode of variation is shown at mean ± 2 st. dev.. Material 

properties are overlayed to the mean geometry. 
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Figure 4.5 Overlay of bony material property genderated from the SIM (mean ± 2 st. dev. 

of Mode 1) on geometries generated from the SSM (mean ± 2 st. dev. of Mode 1). 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

The studies presented in this thesis advance the current understanding of 

morphological and material properties variation in the glenohumeral joint bones across the 

population. The statistical shape and intensity models quantified and described anatomical 

variation in the proximal humerus and the scapula for training sets of healthy subjects and 

cadavers, without any bony deformity. The training sets consisted of both genders and three 

different ethnicities, thus they represented proper samples of the entire population.  

The statistical shape and intensity models presented in this work can be used as a 

supportive infrastructure for population-based studies. Specifically, since implants are still 

designed and manufactured in discrete sizes for the entire population, statistical models can 

provide insights on whether to differentiate implant designs and sizing based on gender 

and ethnicity and on how to optimally discretize sizes so that each one fits the maximum 

number of patients. The statistical models presented in this thesis suggest that no specific 

gender effect exists for either the scapula or the humerus, apart from a scaling effect 

between males and females. However, Asians subjects showed statistically significant 

higher humeral cortical thickness with respect to the Caucasian subjects. This finding 

suggests that TSA humeral stems as well as screws and plates for trauma surgery should 

be designed to accommodate the variation observed, including the differences noted with 

ethnicity. Additionally, SSM can be used to quickly derive anatomical relationships. 

Having the bone geometries aligned and registered to the same template dramatically 
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reduces the time and manual work required to compute anatomical measurements. Access 

to clinically relevant anatomical measurements for the entire population and for customized 

sub-populations, e.g. Asians females or Caucasian males, is useful from an implant design 

and sizing perspective. SSM also finds application in the field of computer-assisted 

surgery. The predictive capabilities of statistical shape modeling can be used to reconstruct 

the geometry of the bone from clinical x-rays/fluoroscopy and/or probed points that the 

surgeon can register during surgery. This is particularly beneficial for the TSA surgery, 

where exposure of the glenoid is limited. Being able to reconstruct and visualize the entire 

shape of the glenoid would be helpful for the surgeon for an optimal placement of the 

glenoid component’s, e.g. how many screws to use and their best orientation.  

Both studies present limitations. Although the training sets were larger in size than 

previous studies (>50 for the scapula and >80 for the humerus), the distribution of ethnicity 

is not representative of the world’s population. For example, only two African American 

subjects were present and this limited the possibility of parsing the data by subgroups. In 

the scapula model, assessing the thickness of the cortical shell is quite difficult, due to 

potential artifacts associated with discretization in the geometry and imaging.  In our 

approach, the cortical bone thickness was assumed homogeneous throughout the 

population, but we could potentially improve future finite-element analysis by 

differentiating the cortical thickness in each subject.  

A potential development of this work would be a material mapping of the humeral 

bone, which could provide insight for design of humeral screws, plates, implants and 

surgical instruments. The models developed in this work are finite-element ready. This 
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feature provides several opportunities for further research, such as finite-element analysis 

of the glenoid cancellous bone and screw interaction. In addition, having access to a 

statistical description of the population can help in selecting or generating subjects that 

capture the variability across the population. Thus, finite-element simulations can be 

performed only on selected subjects instead of on the entire population, reducing 

computational costs. 

In closing, this work developed a comprehensive approach to characterize the 

anatomy of the bones of the shoulder.  By including a larger training set with diversity in 

gender and ethnicity, and representation of the internal cancellous bone (humerus) and 

material property map (scapula), this work advances the current state of the art.  The 

findings quantify the variation present and can help improve implant design and sizing, 

and influence surgical practice, specifically around guidelines for implant alignment, with 

the goal of improving TSA outcomes. 
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APPENDIX A. ANATOMICAL MEASUREMENTS AND ANATOMICAL 

COORDINATE SYSTEMS 

The template anatomical coordinate systems were defined similarly to Wu et al., 

2005. For the humerus, the origin was placed in the glenohumeral rotational center, 

estimated as the center of the best-fitting sphere for the humeral head; the mediolateral axis 

was defined by the direction of the segment connecting the two epicondyles, pointing 

medially; the anterior-posterior axis was defined as the perpendicular to the plane of the 

glenohumeral rotational center and the epicondyles, pointing anteriorly; the superior-

inferior axis was defined consequently to form a right-hand coordinate system (Figure 

A.1). For the scapula, the origin was placed in the center of the glenoid; the mediolateral 

axis was defined by the direction of the segment connecting the angulus acromialis and the 

trigonum scapulae, pointing laterally; the anterior-posterior axis was defined as the 

perpendicular to the plane formed by the angulus inferior, angulus acromialis and the 

trigonum scapulae, pointing anteriorly; the superior-inferior axis was defined consequently 

to form a right-hand coordinate system (Figure A.1).    

Anatomical landmarks were manually placed on the template geometries (Figure 

A.2) and then automatically selected on each registered subject, based on node numbers. 

They were used to automatically compute anatomical measurements on each registered 

subject and to build the anatomical coordinate systems. 

• Humerus 
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1. Greater tuberosity (GT) 

2. Most anterior point of the anatomic neck (MA) 

3. Most posterior point of the anatomic neck (MP) 

4. Most lateral point of the anatomic neck (ML) 

5. Most medial point of the anatomic neck (MM) 

6. Superior apex of the head (SA) 

• Scapula 

1. Glenoid center (GC) 

2. Most inferior point of the glenoid rim (INF) 

3. Most superior point of the glenoid rim (SUP) 

4. Most anterior point of the glenoid rim (ANT) 

5. Most posterior point of the glenoid rim (POST) 

6. Angulus acromialis (AA) 

7. Angulus inferior (AI) 

8. Trigonum scapulae (TS) 

Humerus and scapula anatomical measurements were computed as follows. 

• Humerus 

1. Head radius 

The head radius was computed as the radius of the sphere that best fits the 

humeral head (Figure A.3), i.e. the epiphyseal sphere (Boileau and Walch, 

1997). The nodes used to find the best-fitting sphere are selected manually on 

the cortical shell of the template and then used for all the subjects in the register. 
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2. Canal diameter 

The canal diameter was computed as the diameter of the cylinder that best fits 

the most inferior half of the cancellous shaft (Figure A.3), i.e. the metaphyseal 

cylinder (Boileau and Walch, 1997). The axis of this cylinder is the canal axis 

(orthopaedic axis). This method gives an estimate that does not consider how 

the canal diameter may vary along the shaft. If it is of interest to compute the 

diameter at specific sections of the shaft, this can be measured as the minimum 

distance between the most anterior and the most posterior point and the most 

medial and the most lateral point, or as the diameter of the best-fitting circle. 

3. Head sphericity 

Head sphericity was computed as the ratio between the radii of the best-fitting 

circles in the X (mediolateral) - Z (superior-inferior) plane and Y (anterior-

posterior) - Z (superior-inferior) plane (Figure A.4). X-Z is the frontal plane; 

Y-Z is the sagittal plane. The points used to find the best-fitting circles come 

from the projections of the points used to find the best-fitting sphere on the 

fontal and sagittal plane; to make the code more robust, only the points above 

the origin are selected. 

4. Anatomical neck angle 

The anatomic neck angle was computed as the angle that the vector connecting 

the most medial point of the anatomic neck and the most lateral point of the 

anatomic neck forms with the Z-axis (Figure A.5). 

5. Greater tuberosity offset (or critical distance) 
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As defined in (Hertel et al., 2002), the greater tuberosity offset (or critical 

distance) is the distance between the most medial point of the anatomical neck 

and the canal axis in the X (mediolateral) - Z (superior-inferior) plane (Figure 

A.5).  

6. Articular surface thickness 

As defined in (Boileau and Walch, 1997), the articular surface thickness is the 

distance between the articular margin plane and the superior apex of the head, 

in the X (mediolateral) - Z (superior-inferior) plane (Figure A.5). 

7. Inclination angle of the head 

As defined in (Boileau and Walch, 1997), the inclination angle of the head is 

the angle between the canal axis and the perpendicular to the articular margin 

plane, in the X (mediolateral) - Z (superior-inferior) plane (Figure A.5).  

8. Medial offset 

As defined in (Boileau and Walch, 1997), the medial offset is the distance 

between the head center (i.e. the center of the best-fitting sphere) and the canal 

axis in the X (mediolateral) - Z (superior-inferior) plane (Figure A.6).  

9. Anterior-posterior offset 

As defined in (Boileau and Walch, 1997), the anterior-posterior offset is the 

distance between the head center (i.e. the center of the best-fitting sphere) and 

the canal axis in the Y (anterior-posterior) - Z (superior-inferior) plane (Figure 

A.6). 

10. Cortical thickness 
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The cortical thickness was computed as the distance between the cortical and 

the cancellous profile, at a specific section of the shaft, and at various angles 

(Figure A.7). The distance was calculated both along the radial direction and 

along a direction normal to the cortical profile. An alternative, quicker method 

could be to calculate the difference between the diameter of the best-fitting 

cylinder in the cancellous bone and the best-fitting cylinder in the cortical bone.  

 

Only the proximal portion of the humerus was included in the SSM. The 

humerus shaft was resected at the intersection with a sphere whose center was 

placed coincident with the head center and whose radius was proportional to the 

head radius (5.6 times). Given that the SSM was developed only on the proximal 

portion of the humerus, it was not possible to calculate the retroversion angle, since 

it is based on the transepycondilar axis. 

• Scapula  

1. Anterior-posterior glenoid diameter  

The anterior-posterior glenoid diameter was computed as the diameter of the 

best-fitting circle of the inferior portion of the glenoid (Figure A.8). The points 

used to find the best-fitting circle were selected manually on the template’s 

glenoid and then used for all the subjects in the register. To find the best-fitting 

circle, these points were projected on the plane of the glenoid face. 

2. Superior-inferior glenoid diameter 
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The superior-inferior glenoid diameter was computed as the longest dimension 

of the best-fitting ellipse in the glenoid (Figure A.9). The points used to find the 

best-fitting ellipse were selected manually on the template’s glenoid and then 

used for all the subjects in the register. To find the best-fitting ellipse, these 

points were projected on the plane of the glenoid face. 

3. Anterior-posterior glenoid radius of curvature  

The anterior-posterior radius of curvature, i.e. radius of curvature in the 

transverse plane, was calculated as the radius of the best-fitting circle on the 

glenoid face (Figure A.10).  

4. Superior-inferior glenoid radius of curvature 

The superior-inferior radius of curvature, i.e. radius of curvature in the coronal 

plane, was calculated as the radius of the best-fitting circle on the glenoid face 

(Figure A.10).  

5. Glenoid circularity 

Glenoid circularity was calculated as the ratio between the superior-inferior and 

the anterior-posterior diameters. 

6. Glenoid inclination angle 

The inclination angle was calculated as the angle that the direction of the 

superior-inferior diameter forms with the Z-axis. To compute the inclination 

angle, the scapula was brought in the YZ plane and rotated about the Z-axis 

until the new X-axis was coincident with the vector describing the anterior-

posterior glenoid diameter (Figure A.11). 
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7. Glenoid retroversion angle 

As in (Friedman et al., 1992) and in (Matsumura et al., 2014), the retroversion 

angle was calculated as the angle between the glenoid line, i.e. line connecting 

the most anterior and most posterior points of the glenoid rim, and the line 

perpendicular to the scapular axis, in the X-Y plane. The scapular axis was 

defined as the line connecting the center of the glenoid, i.e. the center of the 

best-fitting ellipse, with the trigonum scapulae (Figure A.11). 

 

 

 

Figure A.1 Humerus (above) and scapula (below) templates anatomical coordinate 

systems. 
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Figure A.2 Humerus (left) and scapula (right) anatomical landmarks.  

 

Figure A.3 Best-fitting cylinder for the metaphyseal cylinder (left) and the best-fitting 

sphere for the humeral head (right). The cortical nodes used to find the best-fitting 

geometries are represented as yellow scattered points; the analytical surfaces are 

represented in shaded yellow. 
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Figure A.4 Best-fitting circles for the humeral head in the sagittal (left) and frontal 

(right) plane. The scattered points in yellow are the nodes used to find the best-fitting 

circles (see Figure A3). 

 

  

Figure A.5 The humerus is represented in the X-Z plane to show the anatomical neck 

angle, the greater tuberosity offset or critical distance, the head inclination angle and 

the articular surface thickness. 
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Figure A.6 The humeral head is represented in the Y-Z plane (left) and the X-Z plane 

(right) to show respectively the anterior-posterior offset and the medial offset. 

 

 

Figure A.7 Cortical thickness was measured as the distance between cortical and 

cancellous profile at a specific section of the shaft (80 mm below the origin, for the 

case showed here), at various angles. 
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Figure A.8 Best-fitting circles on the inferior glenoid surfaces for three representative 

subjects. The yellow scattered points are the nodes used to represent the glenoid surface; 

the black asterisks are the points used to find the best-fitting circles. 

 

 

Figure A.9 Best-fitting ellipses on the glenoid surfaces for three representative subjects. 

The yellow scattered points are the nodes used to represent the glenoid surface; the black 

asterisks are the points used to find the best-fitting ellipses. 
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Figure A.10 Best-fitting circles used to find the glenoid radii of curvature in the coronal 

(left) and transverse (right) planes. 

 

 

Figure A.11 Inclination angle (left) was defined as the angle that the vector connecting the 

most inferior (INF) and most superior (SUP) glenoid points forms with the Z-axis. 

Retroversion angle (right) was defined as the angle between the glenoid line and the line 

perpendicular to the scapular axis, in the X-Y plane. GC is the center of the glenoid; ANT 

and POST are the most anterior and most posterior points of the glenoid rim; TS is the 

trigonum scapulae. 
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APPENDIX B. MATERIAL PROPERTY ASSIGNMENT WORKFLOW 

The purpose of the following appendix is to provide a more detailed description of 

the process that was used to assign material properties to the scapula. Each subject was 

assigned material properties (i.e., apparent density and elastic modulus) from the CT scan. 

The process was carried out as follows: 

1. The subject was meshed with tetrahedral elements (TET) in Simpleware ScanIP. The 

element size was about 1 mm, finer that the template mesh of the statistical shape 

model. The reason behind this choice will be clarified in the following steps. The size 

of the internal elements was set to be consistent with the size of the surface elements. 

The material properties of the bone were determined by transforming Hounsfield units 

(HU) to apparent density, assuming a lower bound threshold of 1 
𝐾𝑔

𝑚3. All the CT scans 

had been performed using consistent machine settings and a CT calibration phantom 

(QCT Pro, Mindways Software, Inc., Austin TX) had been included to derive the 

relationship between cancellous bone mineral density (⍴QCT) and greyscale values, i.e. 

HU. The following calibration equation was then used to assign material properties: 

𝜌𝑄𝐶𝑇 =  0.0006782 𝐻𝑈 − 0.009409        (
𝑔𝑟

𝑐𝑚3)⁄  

Bone mineral density was converted into apparent density using the following relationships 

(Schileo et al., 2008): 
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𝜌𝑎𝑠ℎ =
𝜌𝑄𝐶𝑇 + 0.09

1.14
        (

𝑔𝑟
𝑐𝑚3)⁄  

𝜌𝑎𝑝𝑝 =  
𝜌𝑎𝑠ℎ

0.598
        (

𝑔𝑟
𝑐𝑚3)⁄  

2. Because of surface artifact complications, apparent density of all the elements with at 

least one node on the surface was set based on the maximum HU for that CT scan. 

Every location within the bone that had a HU that would give a density lower that 1 

𝐾𝑔

𝑚3
 was set at 1 

𝐾𝑔

𝑚3
 . To assign apparent density, HU values were discretized in 100 

groups of elements with the same material properties. 

3. Apparent density was converted to Young’s modulus using the scapula-specific 

relationships from Gupta et al., 2004: 

𝐸 = 0.001049𝜌2                       𝜌 ≤ 350 
𝐾𝑔

𝑚3
  

𝐸 = 3×10−6𝜌3                   350
𝐾𝑔

𝑚3
≤ 𝜌 ≤ 1800 

𝐾𝑔

𝑚3
  

4. Each element of the TET mesh was assigned apparent density and Young’s modulus. 

5. The TET mesh was exported as well as a face mesh to be used for the registration 

algorithm, i.e. to find the rigid body transformation matrix to go from CT scan space 

to the SSM space. 

6. The centroid of each TET element was calculated and it was assigned apparent density 

and Young’s modulus of its respective elements. The material properties were assigned 

to nodes instead of elements to build the SIM. 

7. An Iterative Closest Point (ICP) algorithm was used to find the transformation matrix 

from the CT scan space (i.e. the space where the TET meshes created in ScanIP were) 
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to the SSM space (i.e. the space in which the registered TET meshes were), using the 

face mesh exported from ScanIP. This transformation matrix was applied to each TET 

mesh exported from ScanIP to align it to the registered TET mesh of the same subject, 

i.e. the SSM mesh.  

8. Each node of the registered TET mesh was assigned density and Young’s modulus of 

the closest centroid of the TET elements exported from ScanIP. This was done 

performing a nearest-neighbor search. For this step to work properly and accurately, it 

was important that the registered mesh (average edge length: less than 1.5 mm) was 

coarser than the mesh exported from ScanIP (average edge length: about 1 mm).  

9. All the nodes on the surface were assigned cortical bone material properties (i.e. 

apparent density corresponding to the maximum HU in the CT scan) to correct for 

possible different values due to the conversion of element properties into nodal 

properties.  

Table B.1 compares the average density of the glenoid cancellous bone measured 

from in vitro tests to the data obtained from our process. 

 

Table B.1 Comparison between density of the glenoid cancellous bone from in vitro 

experiments and from CT scans.  

Source Cancellous Density ( 
𝑲𝒈

𝒎𝟑 ) 

Frich et al., 1997 (subchondral region, 20 

specimen) – in vitro 

340 ± 100 (bare area) 

380 ± 110 (sup. and inf. areas) 

Mansat et al., 1998 (entire glenoid, 6 

specimens) – in vitro 
282 ± 60 

Lehtinen et al., 2004 (entire glenoid, 20 

specimens) – CT scan 
Range: 395-557 

Current study (glenoid cancellous bone, 

53 scapulae) – CT scan 
377± 102 
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APPENDIX C. GRAPHICAL USER INTERFACE FOR STATISTICAL SHAPE AND 

INTENSITY MODELING 

Two Graphical User Interfaces (GUI) were developed in Matlab (Mathworks, 

Natick, MA) as a supporting tool for TSA implant design. The GUIs allow the user to 

explore anatomical variation in the humerus and the scapula, to export new geometries 

generated as combination of PC scores, to import and score new subjects and to plot 

anatomical measurements for the populations. The GUIs also allow the user to import TSA 

implants (humeral stem and glenoid component) and to virtually implant them into the 

bone. Figure C.12 and Figure C.13 shows screenshots of the GUIs. 

 

Figure C.12 GUI for the Humerus SSM. 
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Figure C.13 GUI for the Scapula SSM and SIM. 
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