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Abstract

This thesis aims to develop of methods for behavior onset detection of patients

with Parkinson’s disease (PD), as well as to investigate the models for classification

of different behavioral tasks performed by PD patient. The detection is based on

recorded Local Field Potentials (LFP) of the Subthalamic nucleus (STN), captured

through Deep Brain Stimulation (DBS) process.

One main part of this work is dedicated to the research of various properties and

features of the STN LFP signals of several patients’ behavior conditions. Features

based on temporal and time-frequency analysis of the signals are developed and

implemented. Evaluation and comparison of the features is conducted on several

patients’ data during a classification process, using onset windows of preprocessed

signals.

Another part of this research is concentrated on automated onset detection of

behavioral tasks for patients with PD using the LFP signals collected during DBS

implantation surgeries. Using time-frequency signal processing methods, features

are extracted and clustered in the feature space for onset detection. Then, a super-

vised model is employed which used Discrete Hidden Markov Models (DHMM) to

specify the onset location of the behavior in the LFP signal.
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Finally, a method for simultaneous onset detection and task classification for

patients with PD is presented, which classifies the tasks into motor, language, and

combination of motor and language behaviors, using LFP signals collected during

DBS implantation surgeries. Again, time-frequency signal processing methods are

applied, and features are extracted and clustered in the feature space. The features

extracted from automated detected onset are used to classify the behavior task

into predefined categories. DHMM is merged with SVM in a two-layer classifier to

boost up the behavior classification rate into 84%, and the presented methodology

is justified using the experimental results.
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Chapter 1

Introduction

Parkinson Disease (PD) is a chronic progressive neurodegenerative movement

disorder, with motor signs of tremor and rigidity [5]. As reported in [1], approxi-

mately 6.3 million people worldwide are affected by PD, for which no cure or med-

ication has recognized yet. In 2013, PD caused 103,000 deaths and this number is

increasing each year [4]. Medications are directed to lessen motor symptoms of PD

such as tremor and rigidity [26]. PD is considered as an idiopathic disease with no

specific cause [36]. The main area of the brain affected by PD is the basal ganglia

[14]. The basal ganglia is a collection of neuronal nuclei that assists in the coordina-

tion of voluntary movement, and is strongly interconnected with the cerebral cortex,

thalamus, and brainstem, as well as several other deep brain areas, [38, 11]. Sub-

thalamic nucleus (STN) is one of the main components of basal ganglia. Increased

abnormal activity of the STN occurs in movement disorders like Parkinsons disease

[42].

One of the typical and apparent symptoms displayed by patients in PD is rest

tremor. It is most intense when limb is at rest, and vanishing during the sleep

or voluntary movements. Hypokinesia or slowness of movement is another distinct

symptom of PD that causes difficulties during the whole process of movement, i.e.

the commencement of an action through the completion. Also, performing sequen-

tial or simultaneous movements results in delay or obstruction. The other cardinal

clinical motor symptoms in PD are rigidity, postural instability, gait and posture
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disturbances such as festination. The non-motor symptoms (neuropsychiatric dis-

turbances) can also be caused by PD such as speech, mood, memory, behavior

problems and slowness in cognitive speed, thinking and planning.

There is a need to improve current open-loop DBS therapies and diminish side-

effects [21, 44, 34]. DBS may lead to detriments in cognition, speech and balance

[21, 32, 12, 35]. Also, the conventional constant DBS therapies are not adaptive to

patients specific needs. Design and advancement of closed-loop IPG is considered

as the next step for development of DBS therapy systems, where DBS will sense

the physiological signal as well as respond to it. The bidirectional signals flow in

both sensing and responding directions, and the sensed signals can modulate the

stimulation output [21].

1.1 Motivation and Problem Information

Great advancement in technology during the past decades, caused important

improvements in modern medicine. Recently, technology has become an essential

part of modern medicine presented in approximately all divisions of this rapidly

developing field. In addition to diagnosis, surgical and therapeutic tools and other

extremely technical fields of health care, technical devices and their development is

a great assist. Specially, in cases where traditional techniques are not successful.

As an example, back in the 60’s, the emergence of implantable heart pacemaker

made the chromic electrical stimulation of human tissue as an assistive technology

which aided the life of numerous patients. Passing several decades of this incident,

the electrical stimulation of the heart became a usual procedure, and the similar

stimulation for human brain was a new milestone. It was discovered that stimula-

tion for the human brain can be helpful to diminish the problems related to motor,
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psychiatric and other neurodegenerative disorders. The electrical stimuli to par-

ticular parts and structures in the brain could lessen to a good extend or remove

symptoms of these kind of diseases, which will help the patient go back through

his/her normal life.

In order to reach this goal, scientists have studied different implantable devices

and developed special instruments that are able to deliver the electrical impulses

directly into the brain, typically referred to as DBS devices or Deep Brain Stimula-

tors (DBS). DBS is an established treatment of motor symptoms in PD [19]. DBS

involves a surgical process during which electrodes are implanted in the brain. The

electrical impulses are sent from an Implantable Pulse Generator (IPG) implanted

in the chest to the electrodes to treat the motor symptoms of PD. DBS leads are

implanted in the basal ganglia, typically in the STN or globus pallidus internus

(GPi). These areas are stimulated with a constant pulse train of a specific ampli-

tude, voltage, pulse width and frequency that are programmed by a physician (see

Figure 1.1(a) and Figure 1.2).

The DBS devices (see Figure 1.1(b)) are used in various clinical application re-

cently, but the details of their positive effects still remain mostly unclear and has

not been studied precisely. The electrical impulses sent by embedded electrodes to

parts of the brain such as STN help the treatment of movement and other disorders

displayed by patients in PD. The STN itself is partitioned into sensorimotor, asso-

ciative and limbic areas and it is not completely obvious which part of the STN is

responsible for speech functions.

Local Field Potential (LFP) is electro-physiological signal and refers to electric

potential around neurons. This signal is produced by summation of electric current
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(a) (b)

Figure 1.1: (a) LFP Signal recording from the Subthalamic Nucleus [22] (b) Neu-
rostimulator that contains Battery and Micro-Electronic Circuitry [29].

flowing from group of neighboring neurons (∼300µm scale), and has been applied

to distinguish cortical regions activity and sub-cortical nuclei [17]. Based on previ-

ous studies on time-frequency analysis of motor cortex electrocardiography (ECoG),

suppression of β (1330Hz) frequency spectral power occurs while doing motor tasks

[31, 30]. The same observation has been offered by analyzing the STN LFB signals

[10, 25, 3, 24].

Another group of researches revealed the association of changes in β with speech

production and audition in cortex [13, 15]. In [20], the authors provided a mecha-

nism in which subjects performed different behavioral tasks while they were under

DBS surgery, and STN LFP data were simultaneously collected. The authors re-

4



Figure 1.2: The recording electrodes’ schematic representation for LFP recordings.
Medtronic 3389 DBS lead [20].

.

marked the relation between bilateral switching of β power states and changing of

the behavioral tasks performed by PD patients.

Research and experiments reveal the need of improvements in current DBS ther-

apies and open-loop implantable pulse generator (IPG) to diminish their drawbacks

and flaws [21] such as cognitive, speech and balance side-effects. In the current DBS

therapy, a train of electrical pulses is sent with predefined and adjusted stimulation

parameters. Although the designed open-loop therapy is practical and successful for

movement disorders, there is a chance for an optimized therapy system being able

to sense and deliver signals in both direction by applying and designing a closed

loop model. The growing assistive technology to record bio-signals has improved

the understanding of clinical state of the patients. They contribute in collecting

essential information to customize neuro-modulation therapy.

Another need is to customize DBS therapy to specific patients tasks and control

the side-effects to be non-damaging to the patients overall therapy process. Design

and advancement in closed-loop IPG is considered as the next step for development

of DBS therapy systems. The closed-loop means being able to sense the physi-
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ological signal as well as responding to it. Here the bidirectional signals flow in

both sensing and responding directions and the sensor signals can provide feedback

modulation of stimulation. Reaching closed-loop DBS therapy require better un-

derstanding of LFP signals characteristics during the different behavior tasks. As a

consequence, detection and learning the informative LFP features, classification of

behavioral tasks, and detecting the onset of each behavior in PD patients play an

important role in development and advancement in the closed-loop IPGs which are

called the next generation DBS therapy systems.

1.2 Background

As presented in [37], the state of macaques behavior such as planning or cas-

cade, as well as the direction of intended movement can be predicted by LFP sig-

nals, which reveals the prospective and potential appeal of LFP signals in future

as valuable features for brain-machine interface. In our recent works [44], machine

learning methods were applied in order to differentiate various behavioral tasks of

PD patients. The behaviors were categorized as language, motor and combination

of language-motor tasks. Time-frequency features were extracted from the LFP sig-

nals collected during the DBS surgery process. The classification frameworks such

as hybrid Hidden Markov Models (HMM) and Support Vector Machines (SVMs)

as well as adaptive learning with Dirichlet process Gaussian mixture models were

designed and applied to categorize the behavioral tasks with high accuracy.

Achieving closed-loop DBS therapy requires better understanding of LFP sig-

nals characteristics during different behavior tasks. In [26], adaptive DBS (aDBS)

of the subthalamic nucleus was tested on PD patients where the beta oscillations in

the LFP recorded from the stimulation electrodes, was used as the feedback infor-
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mation. Experimental results provided in [26], validated the effectiveness of aDBS

comparing to constant stimulation and random intermittent stimulation.

Apart from classification of different behavioral tasks, detection of onset of sig-

nals and behaviors is another state of the art problem grabbed the attention of many

researchers in different areas of signal processing [7]. Not many studies have been

done on behavior onset detection using LFP signals for patients in PD. In [33], the

authors applied an artificial neural network to predict the onset of PD tremors in

one human subject. They accomplished to specify the pattern of the onset tremor.

They detect and predict the onset of the PD tremors in human subjects with good

accuracy. Radial Basis Function Neural Network (RBFNN) model based on Particle

Swarm Optimization (PSO) was applied on the LFP signals in another work [43].

However, non of these works present an approach to detect the patients different

behavior tasks onset.

The precise control of movement execution onset is absolutely important for pa-

tients in PD. According to a study from the Parietal Reach Region (PRR), the LFPs

in cortical area might be one of the useful features in order to decode the execution

time information. The striking difference in the LFP spectrum between the plan

and execution states is the main reason for this hypothesis [37].

1.3 Thesis Contribution

In this work, we study the bipolar recording from DBS leads, implanted in STN

of human subjects underwent implantation of DBS IPG. This data is collected from

four patients and was previously used in [21] where patients underwent DBS implan-

tation for treatment of idiopathic PD. In this research, we first proposed models to
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only classify the PD patients behavior tasks for the best recognition rates. We im-

proved the classification rate of our system to more than 90 percent in average for

different behavioral tasks. The behavioral tasks were grouped as 1) motor tasks,

2) language tasks, 3) language with motor task and motor onset 4) language with

motor task and speech onset [20, 44].

Further more, we proposed a new framework to detect the onset of the behavior

from the collected LFP signals after the cue of the behavior [45]. We collected LFP

values in small windows of 2000 samples and learned the essential features of onset

windows for language with motor tasks of patients. Our proposed method was suc-

cessful to detect onsets of behavior with average delay of 1500 ms through all the

trials of the behavior task [45].

In our latest work, we have merged the onset detection and classification pro-

cedures for different behavior tasks. The proposed model is capable of detecting

the onset of different behaviors, and after detection of the onset with an accept-

able delay, it deals with classifying the behavior into predefined categories. This

achievement, is a great step forward in order to being able to customize the DBS

therapy in closed-loop models. Here, detecting the cue, the type of the behavior is

mathematically recognized by applying machine learning classification models with

an average of 80% recognition rate through all the subjects.

To locally monitor the signal for onset detection, the LFP signal is divided into

small consecutive sliding windows with an overlap. We explore and learn the char-

acteristics of windows of signal containing the onset of the behavior in addition to

differentiating behavior tasks based on their specific features. Moreover, the suit-

ability and relevance of the different approaches was compared. The classification
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results were then used to assess the actual applicability of the proposed method.

The results obtained in this study will assist us in advancing our knowledge of PD

patients behaviors and help us develop the next generation of DBS systems.

To the best of our knowledge, this is the first study and framework designed to

simultaneously detect the onset of different behavior tasks and specify the type of

task (i.e. language or motor) as well. We applied Matching Pursuit Decomposition

(MPD) for time-frequency analysis of the LFP. Considering the physical meaning of

Gaussian atoms, the MPD with Gaussian atom dictionary (GD) can decompose a

signal into a linear composition of Gaussian atoms with the features of amplitude,

variance scale, time-shift and frequency-shift. In this thesis, the MPD with GD is

employed to extract the useful features from LFP signals.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 provides a background on DBS

and explains the need for a closed loop DBS system for patients with PD. It also

provides a background on LFP signals and how they are collected. Chapter 3 ex-

plains the data collection procedure and provides information regarding the subjects

and behavioral study. The feature extraction method including Matching Pursuit

Decomposition (MPD) algorithm is provided in Chapter 4. Here, the procedure of

extracting informative features from LFP recordings using a Gaussian dictionary is

explained in details. In addition, the clustering methods used in this work and the

most suitable modified version is introduced.

Chapter 5 discusses the proposed onset detection algorithm. The implementa-

tion using Hidden Markov Model (HMM) and Support Vector Machines (SVM) is

9



Figure 1.3: Block diagram summarizing the proposed method for simultaneous onset
detection and classification.

elaborated, and explains our proposed integrated multi layer classifier. Chapter 6

provides the classification of behavioral tasks, and Chapter 7 introduces the pro-

posed joint onset detection and classification model. In Chapter 8, the experiments

and discussion of the results are provided and evaluated. Finally conclusion and

future work are elaborated in Chapter 9. A block diagram representing the main

contribution of this work is shown in Figure 1.3. Also, the acronyms used throughout

this thesis are summarized in Table 1.1 and 1.2.
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Table 1.1: Alphabetical list of acronyms used in this Thesis
Acronym Definition Explanation

BG Basal Ganglia

Brain structure positioned mainly
in the midbrain, involved also in
modulation of movement. A dys-
function of this structure causes
the Parkinsons disease.

DBS Deep Brain Stimuation
Therapeutic method based on ap-
plication of electrical impulses to
the structures in the human brain.

DHMM
Discrete Hidden
Markov Model

A discrete-time stochastic process
is a stochastic process for which
the index variable takes a discrete
set of values.

ECoG Electrocorticography

The practice of using electrodes
placed directly on the exposed sur-
face of the brain to record electri-
cal activity from the cerebral cor-
tex.

EEG Electroencephalography
Method to record electrical activ-
ity of the brain along the scalp.

GMM
Gaussian Mixture
Model

A probabilistic model that as-
sumes all the data points are gen-
erated from a mixture of a finite
number of Gaussian distributions
with unknown parameters.

HMM Hidden Markov Model

Statistical Markov model in which
the system being modeled is as-
sumed to be a Markov process with
unobserved (hidden) states.

IPG
Implantable Pulse
Generator

A battery powered device designed
to deliver electrical stimulation to
the brain.

LFP Local Field Potential
Summarized activity of the neu-
ronal tissue in a specific region as
captured by an electrode pair.
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Table 1.2: Alphabetical list of acronyms used in this Thesis, continued.
Acronym Definition Explanation

MPD
Matching Pursuit De-
composition

A sparse approximation which in-
volves finding the best match-
ing projections of multidimen-
sional data onto an over-complete
dictionary D .

PD Parkinson’s Disease

Chronic neurological disorder, af-
fecting mainly motor function of
the diseased. Tremor, akinesia and
rigidity are among the most com-
mon symptoms.

ROC
Receiver operating
characteristic

Graphical plot of binary classifier
system properties, used for system
evaluation.

STN Subthalamic Nucleus

Structure in the brain, functional
unit of the Basal ganglia, involved
in the modulation of motor func-
tions. A target structure for DBS
in Parkinson’s disease.

SVM
Support Vector Ma-
chine

A supervised learning model
with associated learning algo-
rithms that analyze data and
recognize patterns which used
for classification and regression
analysis.

12



Chapter 2

Deep Brain Stimulation and Local Field Potential

As mentioned in previous chapter, PD is considered as a progressive neurolog-

ical condition. The studies showed that it causes from the degeneration of special

neurons that produce dopamine in the substantia nigra which resides at the lower

part of the brain [20]. PD has impact on functional activities like writing, typ-

ing, walking, speech as well as slowness in thinking and cognitive tasks. The very

early treatments for managing the motor and cognitive symptoms of this disease

is effective, however, by the progress of the disease, drug therapies may eventually

considered as an ineffective option. In this regard, deep brain stimulation (DBS)

treatment can be used as a therapy to relieve the motor symptoms [21].

2.1 Deep Brain Stimulation

Deep Brain Stimulation (DBS) is known as a surgery applied in order to cure or

reduce several disabling neurological symptoms. It is usually used to devitalize the

motor symptoms of PD, such as tremor, rigidity, stiffness, slowed movement, and

walking problems. Accomplishments in clinical purposes by applying DBS therapies,

has made it possible to extensive use of this devices for a great scope of neurological

disorders [21].

Currently, open loop DBS is used vastly for treatment of PD and essential tremor.

This kind of DBS, directs one-way signal through the brain of patient constantly.
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The constant stimulation which is not adjusted to patients’ different needs and tasks

may cause some side effects such as impaired cognition, speech and balance.

In Figure 1.2, DBS device is shown. The thin coated leads is used to transmit

electrical energy (LFPs) to the targeted portion of the brain. This area is considered

mostly as subthalamic nucleus for PD therapies. Here, the LFP signals are recorded

by the invasive micro-electrodes. These signals represent the oscillatory activity

within the nuclei of the Basal Ganglia (BG). In Figure 1.1(b), a neurotransmitter is

demonstrated. This type of neurotransmitter contains a computer chip controlling

waveform and electric impulses transfered to the PD patient’s brain, and is pro-

grammable to fine tune the system to the patient.

As mentioned in Chapter 1, the design and development of closed-loop IPG

being able to transfer and sense physiological signals is the next border in brain

stimulation research and therapy. It will absolutely extend the applications of DBS

systems and introduce new ones in the fast pacing improving technology. In the

closed-loop systems, the bidirectional signals move in both sensing and responding

directions which let the sensing signals provide feedbacks based on the responding

ones. This feedback loop can cause recovering the functionality of the targeted parts

of the brain.

Having knowledge of the LFP features of patients operating behavioral tasks

under conditions with no tremor and motor symptoms, DBS devices is adjusted to

restore LFP signals in spacial parts of the brain while the patient experiencing sever

tremor. To do so, correct understanding of the properties of LFP signals during

different behaviors of the patient is of great value, and considered as an essential

factor toward the success of closed-loop DBS systems.
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Figure 2.1: LFP signals recording from deeper areas of the brain comparing to EEG
signals [39].

2.2 Local Field Potential

Local Field Potentials (LFPs) are electrical events at deeper locations in the

brain which can be recorded by invasive metal or glass electrodes, or silicon probes

into the brain. They are also known as micro-EEG (see Figure 1.2), and considered

as the most informative brain signal representing action potentials and other mem-

brane potentials-derived fluctuations in a small neuron volume [9]. LFP is different

from normal EEG or ECoG signals. The range of LFP is less than 1 mV with

frequency less than 200 Hz as shown in Figure 1.2.

The LFP signals used to assess the performance of our proposed methods were

obtained from a study involving twelve patients undergoing DBS implantation for

treatment of idiopathic PD at University of Washington and Colorado Neurological

Institute (CNI) [44]. The LFP signals recorded during behavioral tasks . The tasks

described four types of behaviors as mentioned in Chapter 1.
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Figure 2.2: In the LFP signal, the cue and patients’ behavior onset are shown. The
sampling frequency of LFP is 5k Hz in this example.

The recordings were obtained from each of the four contacts of the DBS lead

(Medtronic 3389, see Figure 1.2). Although primarily designed for stimulation, these

electrodes have been used for LFP recording in humans, as they do not require mod-

ification of standard surgical practice. The DBS lead contact is platinum/iridium,

has a surface area of 6.0 mm2 and impedance of 1.7kΩ. Signals were amplified,

sampled using a sampling frequency of 4.8kHz or 5kHz (depending on the subject

and place data collected), and combined with event markers and subject response

signals. A typical LFP signal taken from one of the subjects with Idiopathic PD is

shown in Figure 2.2. Here, the cue and onset of the behavior are also marked on

the signal.
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Chapter 3

Data Collection

For the data collection procedure, LFP signals were collected from several pa-

tients which is discussed in more details in the following.

3.1 Subjects

In this research, the data we used was collected from four subjects who under-

went DBS surgery as approved standard treatment for idiopathic PD. All subjects

were in the off-medication state, and experienced DBS surgery per clinical routine.

They provided informed consent for their participation in the manner approved by

the Institutional Review Board (IRB) of the institutes that data were collected, Uni-

versity of Washington and Colorado Neurological Institute (CNI). Four independent

recordings were measured from the four participants. One of the subjects provided

sequential recordings from each side. The remaining three patients provided bilat-

eral recordings. Overall, there were four left, and four right hemisphere recordings

for our experiments and analysis.

3.2 Data Acquisition Design and DBS Surgery

Data recording were performed at University of Washington and Colorado Neu-

rological Institute (CNI) using Medtronic 3389 DBS leads implanted in the right and

left STN. The DBS lead is shown in Figure 1.2 [1]. Each DBS lead has 4 contacts,

and the DBS lead contact is made of platinum/iridium [20]. The LFP signals were
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amplified, digitized and collected simultaneously with event markers and subject

response signals using SynAMPS2 (Neuroscan, Victoria, Australia) or g.USBamp

(g.tec, Graz, Austria). We used linked mastoid reference and one ground plate.

Table 3.1: Behavior condition code and specification for different PD patients.

Condition code Description
Number
of trials

Patient ID Center

I button press 90 P1
University of
Washington

II language 45 P1
University of
Washington

III
language and but-
ton press, with
button press onset

45 P1
University of
Washington

IV
language and
button press with
speech onset

45 P1
University of
Washington

I button press 55 P2
University of
Washington

II language 53 P2
University of
Washington

III
language and
button press with
button press onset

54 P2
University of
Washington

IV
language and
button press with
speech onset

54 P2
University of
Washington

V
left hand button
press

46 P3
Colorado Neuro-
logical Institute

VI
right hand button
press

47 P3
Colorado Neuro-
logical Institute

II language 43 P3
Colorado Neuro-
logical Institute

V
left hand button
press

45 P4
Colorado Neuro-
logical Institute

VI
right hand button
press

46 P4
Colorado Neuro-
logical Institute

II language 45 P4
Colorado Neuro-
logical Institute
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3.3 Behavioral Study

The behavior tasks studied in this thesis included motor, speech and combina-

tional motor-speech tasks. All subjects performed left and right hand button-press,

and for some of the subjects, we further classified the button-press between left and

right hands. Different speech initiation tasks were also investigated, i.e, naming

the months of the year, repeating names of objects, counting upwards from one.

Combinational speech-motor tasks include naming the months of the year with a

simultaneous button press marking the first month, and counting with a simultane-

ous button press marking the first number. Six specific behavior tasks were selected

for our analysis, which are 1) button press, 2) language, 3) language and button

press with button press onset, and 4) language and button press with speech onset.

For subjects whose left and right hand data is available, we also considered 5) left

hand button press, and 6) right hand button press.

Behaviors were performed in 3-6 blocks of 15 trials for subject “P1”, 2-4 blocks

of 11-15 trials for subject “P2”, 2-4 blocks of 15-20 trials for subjects “P3”, and

“P4”. The total number of trials for each subject’s behavioral task is shown in

Table 3.1. For task initiation and completion, subjects received an audio cue from

a presentation laptop computer running EPrime 2.0 (Psychology Software Tools,

Sharpsburg, PA), or a custom kivy script. In order to remove the effect of anticipa-

tion of the cue, random time factor was programmed into task length in each trial.

If the patient did not respond within three seconds, the trial was marked as invalid.
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Chapter 4

Feature Extraction

Let m denote the mth behavior task of PD patients, where m = I represents

motor task, m = II represents language task, m = III represents language plus

motor task with motor onset, m = IV represents language with motor task and

language onset, m = V represents left hand motor task, and m = V I represents

right hand motor task. We denote the set of LFP signals collected from different

behavior tasks as L = {Lm|m = I, II, III, IV, V, V I}.

We utilized the recorded LFP signals after the cue of a behavior for 10 seconds to

detect the patients’ behavior onset. In Figure 4.1, a sample signal from a trial of the

experiment is displayed and marked with the cue and patient onset. Let the LFP sig-

nal from the ith (i= 1, . . . , I) experiment of mth behavior task be given by lmi , where

lmi = [lmi [1] lmi [2] · · · lmi [n] · · · lmi [N ]], lmi [n] denotes the discrete LFP signal values col-

lected at time n, and N stands for the number of collected samples. We divided the

signal into small sliding windows as wm
i,d = [lmi [(d − 1)U + 1] · · · lmi [(d − 1)U + V ]]

where d = 1, · · · , D. The window length is indicated by V that is equal to 0.4 sec-

ond, and V −U is the window overlap that is equal to 0.2 second. As a consequence,

lmi is decomposed into D consecutive sliding windows (Figure 4.1).

This work is considered as a hard problem since any flaw or drawback in de-

tecting the onset position will also lead to misclassification of the behavioral tasks.

Also, there is a high similarity between the features extracted from combinational

20



Figure 4.1: The LFP signal extracted from each patient was monitored for 10 seconds
after the cue and divided into sliding windows with length of 0.4 second, and an
overlap of 0.2 second with their adjacent windows (49 windows overall). This figure
shows the LFP signal extracted from patient “P1” for 1.2 seconds (the top figure),
and divided into sliding windows as demonstrated. The Cue, Onset and Time Lag
are shown in the figure. The sampling frequency of LFPs is 5000 Hz for this patient.
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tasks. As an example, “language with button press and button press onset” is very

similar to “language with button press and speech onset” in terms of collected fea-

tures which makes the classification task very difficult.

As the aim of the advanced closed-loop DBS system is to customized the therapy

for each patient, we focused on subject specific onset detection and classification

for each patient. Several recordings (i.e. trials) of performing a specific task are

available for each of the patients, which are considered as separate samples of each

behavior task. To train onset detection classifier, K−fold cross validation is applied

to separate the training and testing sets. The same procedure is used in behavior

task classification problems.

4.1 Matching Pursuit Decomposition

A time-frequency analysis algorithm, namely Matching Pursuit Decomposition

(MPD), is used in our proposed approach in order to extract informative features

from each LFP signal windows.

The MPD algorithm is considered as a sparse approximation method which

tries to find the best matching projections of multi-dimensional data onto an over-

complete dictionary. The idea behind this algorithm is to represent a time-domain

signal, f(t), as a weighted sum of Gaussian atom functions gp(t). Compared with

many time-frequency representations which may result in cross-terms and cause

information distraction, MPD feature extraction algorithm with GD can decompose

the original signal into highly dense Gaussian atoms in time-frequency domain and

generate minimum residual signal energy. In (4.1.1), αp denotes the coefficient for

the Gaussian atom, gp(t) stands for the Gaussian atom selected from a given GD,

and p represents the iteration index.
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f(t) =
∞∑
p=1

αpgp(t). (4.1.1)

The convergence of the above representation is discussed in [28]. Although or-

thogonality is not required for the GD D, the completeness is required for the MPD.

Using this method, we can reconstruct the original signal f(t) by applying decom-

position using finite iterations, and a remainder rP (t) with small energy residual.

The formulation is illustrated in the following equation as

f(t) =

P−1∑
p=1

αpgp(t) + rP (t). (4.1.2)

Considering (4.1.2), the MPD algorithm is described as follows. Let r1(t) = f(t)

which denotes the energy residual at first step. The atom gp(t) is searched in the

GD D for the one which has the maximum magnitude of the projection in rp(t),

p = 1, 2, 3, . . . , P . (4.1.3) explains the selection of gp(t) in details.

gp(t) = arg max
g(e)(t)∈D

|
∫ +∞

−∞
rp(t)g

(e)(t)dt|, (4.1.3)

where, e = {τ, ν, σ} stands for the time-shifting, frequency-shifting and related

normalization coefficient for the Gaussian atoms. Consequently, the corresponding

coefficient αp is calculated after gp(t) is obtained as

αp =

∫ +∞

−∞
rp(t)gp(t)dt. (4.1.4)

The remainder rp(t) and rp+1(t) are related according to the equation below

rp+1(t) = rp(t)− αpgp(t). (4.1.5)
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The P th remainder after (P − 1)th iteration is calculated as

rP (t) = r1(t)−
P−1∑
p=1

αpgp(t). (4.1.6)

Using MPD, the signal f(t) is decomposed into a number of Gaussian atoms, and

can be represented by the parameters of the selected atoms, i.e., [αm,pi,d τm,pi,d νm,pi,d σm,pi,d ], p =

1, · · · , P.

Specifically for this study, after extracting the MPD features from the LFPs of

each window wm
i,d, P 4-dimensional feature vectors are extracted from each LFP

windows. P denotes the number of MPD algorithm iterations. The MPD fea-

tures extracted from the LFPs in wm
i,d after P iterations are denoted as Mm

i,d =

[Mm,1
i,d . . . Mm,P

i,d ]T with T denoting matrix transpose. The pth feature vector

is given by Mm,p
i,d = [αm,pi,d τm,pi,d νm,pi,d σm,pi,d ], corresponds to amplitude, time-shift,

frequency-shift and variance parameters of the MPD Gaussian atom.

4.2 Clustering

After signal feature vectors are extracted by MPD, the resulted P feature vectors

are quantified into P feature symbols byK-means clustering algorithm, i.e., each fea-

ture vector is mapped to one feature symbol [27]. The resulting feature symbols are

used for HMM based classification. The MPD atoms are composed of time-frequency

parameter vectors, and the K-means clustering method is applied to quantify these

vectors into K symbols [27]. The feature vectors Mm
i,d = [Mm,1

i,d . . . Mm,P
i,d ]T are

mapped into Km
i,d = [km,1i,d . . . km,Pi,d ]T , where the element km,pi,d is one of the K

symbols, i.e., km,pi,d ∈ {S1, S2, · · · , SK}. The quantification results, Km
i,d, are used to

train and test HMM classifier.
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4.2.1 K-means Clustering Method

K-means is one of the most commonly used unsupervised learning algorithms

that can easily be used for clustering problems. The procedure includes a straight

forward method to cluster a given set of data without considering or having any

knowledge for their labels. Here, a certain priori number of clusters can be specified

say k. The main idea is to select k centers or centroids each related to each of

the clusters. Selecting different centers will cause different clustering results. As a

consequence, the best guess is to select centroids which has the most distance from

each other.

Here, the definition of distance may vary from euclidean, hamming, cosine and

other distances which best suited the data. Later, each point will be assigned to the

nearest centroid and the process continues till no data point remains. Since, this

clustering may not be the best regarding the data, new centroids will be selected

in the next step based on the calculated center of each cluster. The process of as-

signing data point to the new centroids will be done, and again new centroids will

be selected based on newly built clusters. As a result of this loop we may notice

that the k centroids change their locations step by step, and this procedure will con-

tinue till no more changes are done. In other words, centroids do not move any more.

Finally, this algorithm aims at minimizing an objective function, in this case a

squared error function. The objective function is provided in Equation 4.2.1.

J =

k∑
j=1

n∑
i=1

‖x(j)i − cj‖
2 (4.2.1)
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where ‖x(j)i − cj‖2 is a chosen distance measure between a data point x
(j)
i and

the cluster center cj . It is an indicator of the distance of the n data points from

their respective cluster centers or centroids.

4.2.2 Semi-Supervised K-means Clustering

K-Means algorithm is known as one of the most used clustering algorithm for

Knowledge Discovery in Data Mining which usually lead to acceptable results. Seed

based K-Means is a semi-supervised learning algorithms such that integrates a small

set of labeled data which are called seeds to the K-Means algorithm to boost the

results and decrease its sensitivity to the initial centers. The centers in the first

step of the algorithm are usually generated at random or assumed to be available

for each of the clusters [6].

Another efficient algorithm is active seeds selection [18]. This method employs

a Min-Max approach in order to help the coverage of the whole data points. By

applying active seeds selection method, the seeds are collected so that each of the

cluster has at least one seed. Also, the number of convergence iteration of K-Means

clustering will be reduced, which is one of the essential factors for many applications

[41].
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Chapter 5

Onset Detection

In order to detect the behaviors onset, we conducted several experiments. We

collected the recorded LFP values after the cue for 10 seconds. As it is demonstrated

in Figure 2.2, a sample signal from a trial of the experiment is displayed and marked

with the cue and patient onset. We divided the signal into small sliding windows of

2000 samples, which have overlaps of 1000 samples. There is a time lag of approx-

imately 200 ms between two consecutive windows. Figure 4.1 better demonstrates

this process.

We collected MPD features from the signal in each window. Since MPD atoms

are composed of four-dimensional parameter vectors (i.e. amplitude, variance scale,

time-shift and frequency-shift), the K-means clustering method is applied to clus-

ter these atoms to 64 nodes [27]. In other words, we quantify the feature vectors

and map them into clusters using K-means method. Then, the deep brain signal

obtained during PD patient’s behavior is represented by a one-dimensional feature

vector. The quantified vectors which are mapped into K-means nodes used to train

HMM classifier as explained previously.

In the onset detection procedure, we employed supervised probabilistic model

based on DHMM classifiers. We also use a two-layer detection model by applying

SVMs as a discriminative model in the top layer, and DHMMs as generative models

in the lower layer of the classifier. In the following, each method is elaborated.
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Hidden Markov Model (HMM) is a statistical Markov model in which the system

being modeled is assumed to be a Markov process with unobserved or hidden state.

We utilize the standard type of hidden Markov model, in which the state space of

the hidden variables is discrete, i.e. Discrete Hidden Markov Model (DHMM) [8].

The feature symbol set is denoted as β which contains the observation symbols to

train different HMMs for detecting and identifying the behavior onset. In our HMM

say Λ, we specify the initial state distribution vector, the hidden state transition

matrix, and the state-dependent observation density matrix as λ = [π,A,B], respec-

tively. The maximum-likelihood estimate for λ is given by the following equation

using the Baum-Welch algorithm [8].

λML = arg max
λ

logP (β|λ,Λ), (5.0.1)

Where β is the observation data and λ is the parameter set of the HMM Λ.

After passing i iterations, the λ is calculated as:

λ(i+1) = arg max
λ

∑
H

P (H|β, λ,Λ) logP (H, β|λ(i),Λ) (5.0.2)

Here, H indicates the hidden states. The summation over H signifies the overall

possible state sequences in the HMM. Finally, the probability of the test is calculated

as

P (β|λ,Λ) =
∑
H

πH1

Nobs∏
n=1

aHn,Hn+1

Nobs∏
n=1

bHn(βn), (5.0.3)

Where πH1 is defined as initial state probability of state H1. Also, the state

transition probability from state Hn to Hn+1 is defined as aHn,Hn+1 . bHn(βn) spec-
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Figure 5.1: Flowchart demonstrating the train procedure for onset detection.
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ifies the probability of observing βn in state bHn [8], and Nobs is the number of

observations. The training procedure is shown in a flowchart in Figure 5.
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Chapter 6

Classification of Behaviors

In order to classify the behaviors, we applied several experiments. As a prepro-

cessing step, we quantify the feature vectors and map them into new feature values

using the K-means classifier. The feature vectors are clustered into 64 cluster nodes.

Each consecutive 30 feature vectors represent deep brain signal attained during a

PD patient’s behavior. Then, for learning the best model for classification, we em-

ployed a combination of SVM classifiers as a discriminative model and HMM as a

generative model in the first two experiments. In the later one, we applied Dirichlet

Process Gaussian Mixture Models (DP GMMs) to depict arbitrarily complex sta-

tistical data distributions. In the following, each method is elaborated with more

details separately.

6.1 Support Vector Machine

To improve the performance and robustness of the classifier, several DHMMs

were trained. The log-likelihood returned by all DHMMs constructs a new vector

of features as the input of the SVM. According to [40], given data points D =

{(ϕi, yi)|ϕi ∈ Rp, yi ∈ {−1, 1}}ni=1, where ϕi is a p−dimensional real vector. The

objective function of the SVM classifier is provided below, which tries to find the

maximum-margin hyperplane that divides the data points based on their related

label value.
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min
w,b

‖w‖2

2
, subject to: ∀i, yi(w · ϕi − b) ≥ 1 (6.1.1)

The offset of the hyperplane from the origin along the normal vector w is calcu-

lated by the parameter b
‖w‖ . The top-level SVM fuses all the low-level DHMMs and

returns one value. This approach improved the recognition results [44].

6.2 Hidden Markov Model

An HMM is a statistical Markov model in which the system being modeled is

assumed to be a Markov process with unobserved or hidden states which can be pre-

sented as the simplest dynamic Bayesian network. Here the standard type of hidden

Markov model is considered, in which the state space of the hidden variables is dis-

crete and called Discrete Hidden Markov Model (DHMM). In our experiments, we

applied the same equations as described in Chapter 5 for training and testing HMMs.

6.3 Fusing HMMs by Top Level SVM Classifier

Since the features have temporal patterns, we used HMM models as a good

candidate to model and classify cognitive tasks patterns. Based on the probability

nature of HMMs and the random assignment of prior probabilities, the HMMs may

lead to different classification results in different runs of the model. In our first

approach, to avoid the randomness and improve the performance of the classifier,

we trained several DHMM classifiers for each behavior and put the log-likelihood

returned by all DHMMs in a new vector. The resulted vector is given as an input

of a SVM to decide between the outputs of the DHMMs. According to [40], the

objective function of the SVM classifier can be found in Equation 6.1.1.
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Figure 6.1: Independent DHMMs are fused by the top level SVM classifier.

The top-level SVM fuses all the low-level DHMMs and returns one value as

demonstrated in Figure 6.3. This approach improved the recognition result for seven

percent comparing to the previous work [23]. The training procedure is shown in

Figure 6.4.

6.4 Hybrid SVM-HMM Model

In the second alternative, we trained a hybrid SVM-HMM model which is an

implementation of structural SVMs for sequence tagging based on a combination of

SVM and HMM [2]. It handles dependencies between neighboring labels by Viterbi

decoding. In contrary to basic HMM, the learning procedure is based on a maximum

soft margin criterion but it also shares the major advantages with other discrim-

inative methods, specially the potential to deal with overlapping features. In the

SVM-HMM, models that are isomorphic to an kth-order HMM are discriminatively

trained utilizing the Structural Support Vector Machine (SVM) concept. Consider

an input sequence x = (x1, ..., xl) of feature vectors x1, ..., xl, the SVM-HMM tries

to train a model that predicts a tag sequence y = (y1, ..., yl). The following linear

discriminant function is applied.
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y = arg max
y

Σl
i=1[Σ

k
j=1(Xi.Wyi−j,...,yi

) + ϕtrans(yi−j , ..., yi).Wtrans] (6.4.1)

Where Wyi−k,...,yi is the emission weight vector learned for each different kth-

order tag sequence yi−k, ..., yi, and Wtrans is the transition weight vector for the

transition weights between adjacent tags. ϕtrans(yi−j , ..., yi) stands for an indicator

vector which has an entry set to 1 for the sequence yi−j , ..., yi. An optimization

problem in which the training entries are (x1, y1), ..., (xn, yn). The feature vectors

are xj = (xj1, ..., x
j
l ), and the training sequence tags are yj = (yj1, ..., y

j
l ). For a model

with first-order transitions and zero-order emissions the optimization problem is

defined as follows:

min
1

2
ww +

C

n
Σn
i=1ξi (6.4.2)

s.t.∀y : [Σl
i=1(x

1
i .Wy1i

) + ϕtrans(y
1
i−1, y

1
i ).Wtrans]

≥ [Σl
i=1(x

n
i .Wyi) + ϕtrans(yi−1, yi).Wtrans] + ∆(yn, y)− ξn (6.4.3)

Here, C is the trades off parameter for the margin size and training error.
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Figure 6.2: Flowchart demonstrating the train procedure for classification.
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Chapter 7

Jointly Onset Detection and Classification

The proposed simultaneous onset detection and behavior classification method is

a two-phase approach. In the first phase, the behavior onset detection is conducted.

As the onset detection outcome, one of the sliding LFP signal windows is recognized

as the onset of patient behavior. This window is further used in the second phase

to classify the behavior type. The details of the behavior classification approach are

elaborated as follows.

Similar to onset detection, we applied HMM to model behavioral patterns since

it has inherent temporal transitional models. Due to the probability nature of HMM

and the random assignment of prior probabilities, the HMMs may lead to slightly

different classification results in multiple trials. To improve the performance and

robustness of the classifier, c HMMs are trained for each behavior, i.e., for the mth

behavior, c HMMs, say Λm1 , . . . ,Λ
m
c , are trained.

Consider a binary classification between the m1th behavior and the m2th be-

havior. Given the feature symbols Km
i,d̂

from the detected onset window indexed

by d̂, the log-likelihood, ηm1
i,c returned by all HMMs corresponding to behavior m1,

construct the log-likelihood feature vector ηm1
i = {ηm1

i,1 ηm1
i,2 · · · η

m1
i,c }. We note

that in ηm1
i,c , the window index d̂ is removed for simplicity. A similar procedure is

conducted for HMMs trained on behavior m2 to calculate the log-likelihood vector
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Figure 7.1: The flowchart on simultaneous detection of patient’s onset and classifi-
cation of behaviors.

ηm2
i . The log-likelihood feature vector of {ηm1

i |∀i} and {ηm2
i |∀i} were used for train

and test an SVM model for classifying behavior m1 and m2. Similarly, we used 10-

fold cross validation to separated training and testing sets, and binary classification

was performed between different behaviors. The classification model will not only

rely on one HMM, but also considers the log-likelihood value returned by a pool of

HMMs. As a consequence, the recognition results are improved [44].

Our proposed approach aims to detect the onset and classify the behavior tasks

simultaneously. The general flowchart of proposed approach is demonstrated in Fig-

ure 7.1. As an example, consider LFP signals collected for m = I, which is button

press, and m = II which stands for language behavior. The collected LFP sig-
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nals, Lmi , where m = 1 are segmented into consecutive windows Wm
i,d for all trials

i = 1, .., I as shown in Figure 7.1. Then the MPD features, Mm
i,d, are collected from

each window, and these features are quantized into cluster nodes, Km
i,d. As a conse-

quence, each window is represented as one-dimensional vector Km
i,d.

For training the onset detection HMMs, 10 fold cross validation is used to select

9
10 of onset windows to learn parameters of behavior m = I. The same procedure

is performed for behavior m = II. In the next section, the onset windows are also

used to train one-against-one SVM-HMM classifier to categorize different behavioral

tasks as described previously. After learning the parameters of onset detection and

behavior classification sections, the remaining 1
10 fraction of trials from m = I and

m = II are used for testing. The procedure for testing can be followed according to

Figure 7.2.
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Figure 7.2: The flowchart displays the test procedure to jointly detection of patient’s
onset and classification of behaviors.
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Chapter 8

Experimental Results

For demonstrating the effectiveness of our approach, we employed LFP signals

collected from patients with PD in our experiments. All subjects provided informed

consent for participation in this research study, in a manner approved by the internal

review board of University of Washington (UW) and Colorado Neurological Institute

(CNI) where the signals were collected. We used signal segments associated with

language, motor, and combinational tasks of language and motor performed by PD

patients during the data collection procedure. The sampling rate of our system is

either 4.8kHz, or 5kHz, depending on the subjects and the place data was collected.

The number of trials each patient performed the tasks in addition to other specific

details of data collection is provided in Table 3.1.

8.1 Behavior Classification

We use the LFP signals collected as explained in Chapter 3, from patients with

PD for demonstrating our approach. The signal segments associated with different

behavioral tasks were labeled by physicians during data collection. The behavioral

tasks are: motor task with condition code m= I, language and motor task with

motor task onset m= III, and language task m= IV . The language tasks m= II

combines tasks III and IV .

The sampling rate of our system is 4kHz, and for different behavioral tasks, the

number of data segments varied from 80 to 109. We used K-fold cross validation
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Table 8.1: Confusion matrix of PD patients behavior tasks using DHMMs by top-
level SVM.

(a) language and motor
task with motor onset
m= III vs language and
motor task with speech
onsetm= IV

mth task III IV

III 0.93 0.07

IV 0.09 0.91

(b) motor task m= I vs
language m= II

mth task I II

I 0.94 0.06

II 0.10 0.90

(c) motor taskm= I vs lan-
guage and motor task with
speech onset m= IV

mth task I IV

I 0.94 0.06

IV 0.09 0.91

(d) motor task m= I vs
language and motor task
with motor onset m= III

mth task I III

I 0.89 0.11

III 0.10 0.90

technique to separate the training and test data for the DHMMs, and four hidden

states for the DHMMs. Linear SVM provided the best performance for both the

top-level and hybrid approaches. Tables 8.1 and 8.2 provide the confusion matrices

that summarize the classification results. On average, the classification rates are

92.02% and 92.1%, respectively.

Table 8.2: Confusion matrix of PD patients behavior tasks using hybrid HMM-SVM

(a) language and motor
task with motor onset
m= III vs language and
motor task with speech
onset m= IV

mth task III IV

III 0.92 0.08

IV 0.08 0.92

(b) motor task m= I vs
language m= II

mth task I II

I 0.93 0.07

II 0.08 0.92

(c) motor taskm= I vs lan-
guage and motor task with
speech onset m= IV

mth task I IV

I 0.94 0.06

IV 0.08 0.92

(d) motor task m= I vs
language and motor task
with motor onset m= III

mth task I III

I 0.91 0.09

III 0.10 0.90
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8.2 Onset Detection

We collected LFP signal from the cue moment for 10 seconds by consideration

of the success of all of the subjects to display the response during this time span.

As explained in Chapter 3, the sample signal from a trial of behavior task is marked

with the cue and patient’s response onset in Figure 2.2. As the first step of the

proposed model, we aim to detect the behavior onset position. Consequently, the

signal is divided into small sliding windows of 2k samples, which have overlaps of 1k

samples. The time lag between two consecutive sliding windows varies between 200

ms to 208 ms considering the frequency of data collection. This process is illustrated

in Figure 4.1.

Later, we collected MPD features from the signal in each window. As MPD

atoms are composed of four-dimensional parameter vectors (i.e. amplitude, variance

scale, time-shift and frequency-shift), the K-means method is applied for clustering

[27]. The quantified feature vectors resulted from K-means are used as features for

HMM classifier. In Figure 8.1, the histogram of feature values or cluster nodes,

is shown for all trials of two different behavioral tasks. As it is illustrated, the

collected features are good representatives of each behavior condition, and specific

feature values are explicit indication of a condition. For example, the first and sec-

ond feature vector values with frequency of less than 50, only occurred in condition

II trials. As a consequence they can be regarded as indication of condition II. The

same conclusion is made for third and forth feature values that represent condition

III.

In order to train the onset detection module, we used the windows which contain

the onset to learn the HMM parameters for detection. We applied K-fold cross val-
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Figure 8.1: The histogram of feature symbols after applying K−means clustering
method on MPD features extracted from patient “P1”, for two different behaviors
coded as II and III. As illustrated, different behaviors depict distinct features.

idation technique to separate the training and test set for each behavior condition

[16]. In each fold, one of the trials was used for testing and the others to train.

Afterwards, we train the SVM-HMM classifier to classify different behavioral

tasks. The probability nature of HMMs, causes the results of experiment vary for

a small proportion in different trials. To avoid these variations and improve the

robustness, several HMMs were trained and combined by a top layer SVM classifier.

The two layer classifier has shown the best performance to classify and detect the

onset [44, 45]. Here, we also applied k-fold cross validation technique to partition

training and testing sets. For all the classification experiments, k is set to 10.

8.3 Jointly Detect the Onset and Classify Behavioral Tasks

For demonstrating the effectiveness of our approach, we present the following

detection and classification results using LFP signals collected from PD patients.

We used signal segments associated with language, motor, and combinational tasks

performed by PD patients during the data collection procedure. The sampling rate
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Table 8.3: Onset detection results using the Hidden Markov Models for 45 trials of
behavioral task.

Code Patient ID Trials
Average delay
(second)

Standard devia-
tion (second)

I P1 90 0.9 0.3

II P1 45 0.8 0.4

III P1 45 0.7 0.5

IV P1 45 0.7 0.4

I P2 55 0.8 0.4

II P2 53 0.8 0.4

III P2 54 0.8 0.4

IV P2 54 0.9 0.3

V P3 46 0.8 0.5

VI P3 47 0.9 0.4

II P3 43 0.8 0.5

V P4 45 0.7 0.5

VI P4 46 0.8 0.4

II P4 45 0.8 0.4

of our system were either 4.8kHz or 5kHz, depending on the subjects. The number

of trials each patient performed during each task and other specific details of data

collection are provided in Table 3.1.

The LFP signals were extracted after the cue moment for 10 seconds in all trials

of behavioral tasks. LFP signals from trials of behavior task are marked with the

cue and patient’s response onset as shown in Figure 4.1. Consequently, the signal is

divided into small sliding windows of 0.4 second, and each two consecutive windows

have an overlap of approximately 0.2 second (49 windows overall). The time lag

between two consecutive sliding windows is similar to the windows overlap, and is

0.2 second. This process is illustrated in Figure 4.1.

In the next step, we collected MPD features from the signal in each window. As

MPD atoms are defined by time-frequency parameters, i.e., variance scale, time-shift

and frequency-shift, the K-means method is applied for feature vector quantization.

The quantified feature vectors resulted from K-means are used as feature symbols
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for HMM classifiers. In order to train the onset detection HMMs, we used the

windows which contain the onset to learn the HMM parameters for detection. We

applied 10-fold cross validation technique to separate the training and test set for

each behavior condition. In each fold, 1
10 trials was used for testing and the others

for training. This process is illustrated in the block diagram in Figure 8.2.

Afterwards, we train the SVM-HMM classifier to classify different behavioral

tasks. Again, a number of HMMs were trained for each behavior and were com-

bined by a top layer SVM classifier to avoid small proportion of differences of the

results in different trials [44, 45]. Here, we also applied 10-fold cross validation tech-

nique to partition training and testing sets (See Figure 8.2).

Our experimental results for onset detection of behavior language and button

press with button press onset for subject “P1” is demonstrated in Figure 8.3. The

vertical axes of the figure shows the time delay and the horizontal axes represents

the trial number. The time lag between two consecutive windows is approximately

200 ms, which is the time step for calculating delay. According to Figure 8.3, in

nine trials the onsets were detected with no delay in the same window where they

occurred. Also, in 38 trials, the onsets were detected with less or equal to 1.4 second

delay. Table 8.3 summarized these results.

In Tables 8.4, 8.6, 8.5, and 8.7, the classification results for different behav-

ioral tasks and subjects are presented. The detected onset windows by the HMM

detector are used for classification. We tested classification performance of motor

vs. language tasks. We set button press as m = I representing motor behaviors,

and merged behaviors with speech onset as m = II + IV , representing speech on-

set behaviors. These results are provided in Tables 8.4(a), 8.4(b), 8.5(a), and 8.5(b).
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Figure 8.2: Block diagram of the implemented method. For each subject, the trials
are divided into train and test sets. After extracting features, and clustering, the
onset of the behavior is detected. Then, the recognized onset is classified into
behavior classes.
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Figure 8.3: Time delay of onset detection for 45 trials. In 29 out of 45, the onset is
detected within one second after the true onset.

We also assessed the proposed approach in classifying combinational tasks such

as language and button press with button press onset, vs. non-combinational tasks

such as language only. As shown in confusion matrices provided in Tables 8.6(a),

and 8.6(b), we are able to classify tasks with an accuracy of at least 79%, and 86%

for subjects “P2”, and “P1”, respectively. According to Table 8.4, and 8.6, subject

“P1”displays higher classification results comparing to all other subjects.

For subjects “P3”and “P4”, we merged the left and right hand recordings for

classifying motor tasks vs. language tasks. We performed another assessment of the

approach by classifying left vs. right hand button press for subjects “P3”and “P4”,

as provided in Tables 8.7(a) and 8.7(b).
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Table 8.4: Confusion matrix of PD patient (a) ”P2”, and (b) ”P1” behavior tasks
using combined onset detection and classification method

(a) button press onset m= I, vs.
speech onset m= II + IV

mth task code I II+IV

I 0.88 0.12

II+IV 0.14 0.86

(b) button press onset m= I, vs.
speech onset m= II + IV

mth task code I II+IV

I 0.93 0.07

II+IV 0.09 0.91

Table 8.5: Confusion matrix of PD patients (a) ”P3”, and (b) ”P4” behavior tasks
using combined onset detection and classification method

(a) button press onsetm=V +V I
vs. speech onset m= II

mth task code V+VI II

V+VI 0.78 0.22

II 0.26 0.74

(b) button press onsetm=V+V I
vs. speech onset m= II

mth task code V+VI II

V+VI 0.75 0.25

II 0.27 0.73

Table 8.6: Confusion matrix of PD patient (a) ”P2”, and (b) ”P1” behavior tasks
using combined onset detection and classification method

(a) speech onset m= II, vs. lan-
gauge and button press, with
button press onset m= III

mth task code II III

II 0.81 0.19

III 0.21 0.79

(b) speech onsetm= II, vs. lan-
gauge and button press, with
button press onset m= III

mth task code II III

II 0.90 0.10

III 0.14 0.86

Table 8.7: Confusion matrix of PD patients (a) ”P3”, and (b) ”P4” behavior tasks
using combined onset detection and classification method

(a) left hand button press on-
set m=V vs. right hand button
press onset m=V I

mth task code V VI

V 0.75 0.25

VI 0.21 0.79

(b) left hand button press on-
set m=V vs. right hand button
press onset m=V I

mth task code V VI

V 0.78 0.22

VI 0.24 0.76

8.4 Discussion of the Results

In this thesis, we investigated the detection of behavioral tasks onset, as well as

classification of behaviors using the stimulation electrodes applied for DBS surgery.
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We suggested that LFP signals are sufficient for behavior onset detection and classi-

fication, and tested this hypothesis on four PD patients. This work is considered as

a difficult problem, since any flow or drawback in detecting the onset position will

also lead to misclassification of the behavioral tasks. Also, there is a high similar-

ity between the features extracted from combinational tasks, for example, language

and button press with button press onset is similar to language in terms of collected

features, and this fact deteriorates the classification performance. In this section,

we aim to evaluate and provide a discussion on experimental results and possible

errors causing misclassification.

In the results, we demonstrated the classification performance of proposed method

on different patients’ data. Aside from the strength of the proposed classification

approach, one of the main reasons for functionality of the suggested method is the

informative collected features. In Figure 8.1, the histogram of the feature symbols,

is shown for all trials of two different behavioral tasks. As illustrated, the collected

features are able to well represent each behavior condition, and certain feature values

are explicit indication of a behavior. In Figure 8.1, comparing the two behaviors, the

first and second feature vector values with frequency of less than 50, only occur in

language behavior trials. The same observation is made for third and forth feature

values that represent language and button press with button press onset.

In order to analyze the onset detection procedure more precisely, we explored

the MPD atoms’ parameter vectors in the onset windows. In agreement with our

findings, the onset windows were characterized to have greater peaks of amplitude

comparing to non-onset ones. Another observation indicates that the onset windows

also have the higher frequency shifts in the same atoms. These features can be re-

garded as justifications for the experimental results. In Figure 8.4(a) and 8.4(b),
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these characteristics are shown from a sample trial. In these figures, 21 sliding win-

dows with 20 MPD iterations are shown. The onset window has higher peaks in

MPD atoms’ amplitudes and frequency shifts comparing to windows without onset.

We also noticed that there are possible differences in data collection procedure

between the subjects. A subject’s limited attention in an operating room during

the recording, may influence the quality of our recordings. For example, during a

language task, a subject may have moved his hand. Furthermore, DBS lead loca-

tions were driven by clinical benefits and may vary in location between subjects.

This unavoidable differences may affect the onset detection results and cause the

onset detector to recognize undesirable windows as the onset. As a consequence,

the behavioral task classification will be affected. The mentioned causes as well as

differences in behavior task and subject variability in responding to cue may cause

slight difference in the classification results of Tables 8.4 comparing to Tables 8.6.

Due to the time complexity of feature extraction algorithm, the proposed method

cannot be run in real time. However, it is considered as a tool that can be used

to monitor patients activity off line. Moreover, it depicts the effectiveness and

strength of collected LFP signals to observe different activities performed by the

patients. According to the experimental results, it can successfully detect the onset

of behaviors and classify them into predefined groups of behavioral tasks.
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Figure 8.4: The amplitude and frequency of MPD coefficients for 21 consecutive
sliding windows is shown for subject “P1”. The length of each window was set as
0.4 second . The MPD parameter P was set to 20 for all 21 windows, which is the
number of iterations. (a) shows the amplitude of MPD atoms. Amplitude peaks
occur around atom number 200 (window number 10) which is the patient’s onset.
(b) shows the frequency shift of MPD atoms.
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Chapter 9

Conclusion and Future Works

In this work, we proposed and investigated new approaches for classification of

behavior tasks performed by PD patients, automatically detecting the onset of the

behaviors, as well as simultaneous onset detection and classification of behaviors.

We collected STN LFP signals from PD patients who underwent DBS surgeries.

We applied MPD feature extraction method, and proposed learning models in order

to detect the onset of the behavioral tasks. In addition we suggested classification

models to improve the classification rate of behavioral task into 90%, comparing to

the previous works.

Further, we employed the detected onsets to feed a two-layer classification model

to recognize the type of PD patients behavior tasks in addition to the onset of be-

havior. Our result depict a reliable approach which is able to detect patient’s onset

with average delay of 1.43 seconds. It is also capable of recognizing behavior tasks

with detection rate of 84% on average.

In the current data, there are six streams of LFP signal recording available

in addition to the EEG signals, which can provide more informative features for

the onset detection, and classification procedure. As the future work to improve

the system detection rate and accuracy, we suggest to fuse and combine multiple

recorded signals, and design a multi feature learning model which are able to detect

the most informative features automatically and improve the recognition rates.
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