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THE DUAL GROMOV-HAUSDORFF PROPINQUITY

FRÉDÉRIC LATRÉMOLIÈRE

ABSTRACT. Motivated by the quest for an analogue of the Gromov-Hausdorff
distance in noncommutative geometry which is well-behaved with respect to C*-
algebraic structures, we propose a complete metric on the class of Leibniz quan-
tum compact metric spaces, named the dual Gromov-Hausdorff propinquity, which
resolves several important issues raised by recent research in noncommutative
metric geometry: our new metric makes *-isomorphism a necessary condition for
distance zero, is well-adapted to Leibniz seminorms, and — very importantly — is
complete, unlike the quantum propinquity which we introduced earlier. Thus our
new metric provides a new tool for noncommutative metric geometry which of-
fers a solution to several important problems in the field and is designed to allow
for the generalizations of techniques from metric geometry to C*-algebra theory.

RÉSUMÉ: Motivés par la quête d’une métrique analogue à la distance de Gromov-
Hausdorff pour la géométrie noncommutative et adaptée aux C*-algèbres, nous
proposons une distance complète sur la classe des espaces métriques compacts
quantiques de Leibniz. Cette nouvelle distance, que nous appelons la proxim-
ité duale de Gromov-Hausdorff, résout plusieurs problèmes importants que la
recherche courante en géométrie métrique noncommutative a révélés. En parti-
culier, il est nécessaire pour les C*-algébres d’être isomorphes pour avoir distance
zero, et tous les espaces quantiques compacts impliqués dans le calcul de la prox-
imité duale sont de type Leibniz. En outre, notre distance est complète. Notre
proximité duale de Gromov-Hausdorff est donc un nouvel outil naturel our le
dévelopment de la géométrie métrique noncommutative.

1. INTRODUCTION

Noncommutative metric geometry proposes to study certain classes of noncom-
mutative algebras as generalizations of algebras of Lipschitz functions over metric
spaces. Inspired by Connes’ pioneering work on noncommutative metric geom-
etry [5, 6] and, in particular, the construction of a metric on the state space of
C*-algebras endowed with a spectral triple, Rieffel introduced in [30, 31] the no-
tion of a compact quantum metric space, and then defined the quantum Gromov-
Hausdorff distance [39], a fascinating generalization of the Gromov-Hausdorff dis-
tance [10] to noncommutative geometry. Various examples of compact quantum
metric spaces [32, 28, 25, 23] and convergence results for the quantum Gromov-
Hausdorff distance have since been established [39, 23, 17, 33, 25, 34, 36, 35], often
motivated by the desire to provide a formal framework to certain finite dimen-
sional approximations of C*-algebras found in the mathematical physics literature
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(e.g. [7, 27, 40, 26]). Furthermore, the introduction of noncommutative metric in-
formation on C*-algebras, encoded in special semi-norms called Lip-norms, offers
the possibility to extend techniques from metric geometry [11] to the realm of non-
commutative geometry, opening a new avenue for the study of quantum spaces
and their applications to mathematical physics.

To implement the extension of metric geometry to noncommutative geometry,
we however require an analogue of the Gromov-Hausdorff distance which is well-
behaved with respect to the underlying C*-algebraic structure, rather than only
the order structure on the self-adjoint part of C*-algebras as with the quantum
Gromov-Hausdorff distance. We propose such a metric in this paper, the dual
Gromov-Hausdorff propinquity, which addresses several difficulties encountered
during recent developments in noncommutative metric geometry [34, 36, 35, 37,
38], where the study of the behavior of such C*-algebraic structures as projec-
tive modules under metric convergence is undertaken. Indeed, our metric only
involves Leibniz quantum compact metric spaces, i.e. quantum compact metric
spaces described as C*-algebras endowed with Leibniz Lip-norms, and makes
*-isomorphism of the underlying C*-algebras a necessary condition for distance
zero. Moreover, our dual Gromov-Hausdorff propinquity is complete, which is
an essential property of the Gromov-Hausdorff distance, and which differentiates
our new metric from our earlier quantum Gromov-Hausdorff propinquity [21].
Our dual Gromov-Hausdorff propinquity dominates Rieffel’s quantum Gromov-
Hausdorff distance, and is dominated by the Gromov-Hausdorff distance when
restricted to classical compact metric spaces. It thus offers a natural framework
for a noncommutative theory of quantum metric spaces.

The model for a quantum compact metric space is derived from the following
construction. Let (X, m) be a compact metric space. For any function f : X → C,
we define the Lipschitz constant of f as:

(1.1) Lip( f ) = sup
{
| f (x)− f (y)|

m(x, y)
: x, y ∈ X and x 6= y

}
,

which may be infinite. However, the space of functions with finite Lipschitz con-
stant is norm dense in the C*-algebra C(X) of C-valued continuous functions over
X, and Lip is a seminorm on this space.

A fundamental observation, due to Kantorovich, is that the dual seminorm of
Lip induces a metric mkLip on the state space S (C(X)) of C(X), i.e. the space of
Radon probability measures on X, and the topology for this metric is given by the
weak* topology restricted to S (C(X)). Moreover, the restriction of mkLip to the
space X identified with the subset of Dirac probability measures in S (C(X)) is
given by m: thus the Lipschitz seminorm encodes all the metric information given
by the metric m at the level of the C*-algebra C(X). We also note that the Mon-
ge-Kantorovich metric mkLip is entirely determined by the restriction of Lip to the
self-adjoint part of C(X), i.e. the real-valued continuous functions over X, since
states are self-adjoint.

The distance mkLip is known as the Monge-Kantorovich metric, and was intro-
duced by Kantorovich in [13] as part of his research on the transportation problem
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introduced by Monge in 1781. The original formulation of the distance mkLip be-

tween two probability measures µ, ν on X involved minimizing
∫

X×X
m dγ, where

γ is any probability measure whose marginals are given by µ and ν. The duality
relationship between the Monge-Kantorovich metric and the Lipschitz seminorm
was first made explicit by Kantorovich and Rubinstein in [14]. This metric has
since acquired several other names. Most notably, Dobrushin named this metric
the Wasserstein metric in [8], after Wasserstein rediscovered it in the context of
probability theory in [41]. The work of Dobrushin in [8], incidentally, plays a fun-
damental role in our own work on generalizing the theory of quantum compact
metric spaces to quantum locally compact spaces in [20].

Rieffel proposed [30, 31] to generalize the above model to the noncommutative
world, as well as to extend the construction of metrics on the state spaces of C*-
algebras from spectral triples proposed by Connes [5, 6]. Thus, Rieffel defines a
compact quantum metric space (A, L) as a pair of an order-unit space A endowed
with a densely defined seminorm L which vanishes exactly on the scalar multiple
of the order-unit and such that the topology of the associated Monge-Kantorovich
metric mkL, defined between any two states ϕ, ψ of A by:

mkL(ϕ, ψ) = sup {|ϕ(a)− ψ(a)| : a ∈ A and L(a) 6 1}

is the weak* topology restricted to the state space of A. Note that this original def-
inition does not involve any C*-algebraic structure. The seminorm L of a quantum
compact metric space (A, L) is called a Lip-norm [31].

Rieffel then constructed the quantum Gromov-Hausdorff distance in analogy
with Gromov’s distance [10, 11], with the hope to initiate a new approach to prob-
lems in noncommutative geometry and mathematical physics based upon gener-
alizations of ideas from metric geometry, where the Gromov-Hausdorff distance
is an important tool. Given two compact metric spaces (X, dX) and (Y, dY), the
Gromov-Hausdorff distance may be defined as the infimum of the Hausdorff dis-
tance between ιX(X) and ιY(Y) for any two isometric functions ιX : X → Z and
ιY : Y → Z into a compact metric space (Z, dZ), taken over all such isometric
embeddings. An equivalent distance may be obtained by restricting one’s atten-
tion to admissible metrics on the disjoint union X ä Y, i.e. metrics for which the
canonical embeddings X ↪→ X ä Y and Y ↪→ X ä Y are isometries, and defining
our distance between (X, dX) and (Y, dY) as the infimum over all such admissible
metrics of the Hausdorff distance between X and Y in X ä Y.

In this context, we note that if d is an admissible metric on X ä Y, then any Lip-
schitz function on (X, dX) can be extended to a function on X ä Y with the same
Lipschitz constant for d [42]. Thus, the Lipschitz seminorm associated with dX is
easily seen to be the quotient of the Lipschitz seminorm associated with d. Con-
versely, if the Lipschitz seminorms for dX and dY are the respective quotients of
the Lipschitz seminorm for some metric d on X ä Y along the canonical surjections
from X ä Y onto X and Y, then d is easily seen to be admissible.

The construction of the quantum Gromov-Hausdorff distance proceeds natu-
rally by duality as follows: given two compact quantum metric spaces (A, LA)
and (B, LB), we consider the set Adm(LA, LB) of all Lip-norms on A⊕B whose
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quotients to A and B are, respectively, LA and LB. For any such admissible Lip-
norm L, one may consider the Hausdorff distance between S (A) and S (B) iden-
tified with their isometric copies in S (A ⊕ B), where the state spaces S (A),
S (B) and S (A ⊕B) are equipped with the metrics dual to, respectively, LA,
LB and L. The infimum of these Hausdorff distances over all possible choices of
L ∈ Adm(LA, LB) is the quantum Gromov-Hausdorff distance between (A, LA)
and (B, LB).

As the quantum Gromov-Hausdorff distance is defined on a class of order-
unit spaces, rather than C*-algebras, it is informally unaware of the multiplicative
structure — thus, two *-isomorphic C*-algebras may be at distance zero for Rief-
fel’s distance, as long as their self-adjoint part are isomorphic as order-unit spaces
and the quantum metric structures are isomorphic in a natural sense [39]. In other
words, when working with C*-algebras, distance zero for the quantum Gromov-
Hausdorff distance gives rise to a Jordan isomorphism between self-adjoint parts,
rather than a full *-isomorphism [1].

This weakened form of the desired coincidence property sparked a lot of re-
search toward the goal of strengthening Rieffel’s distance to make various stronger
notions of isomorphisms necessary for distance zero [15, 22, 24, 16, 44, 21]. All
of these approaches involve replacing the Monge-Kantorovich metric on the state
space with various alternative structures: in [15], matricial-valued completely pos-
itive unital maps are used in lieu of states, in [22, 24, 16, 21] the state space is
replaced by objects built from the noncommutative analogues of the unit Lips-
chitz ball, such the Lipschitz ball itself [24, 16], or the restriction of the graph of
the multiplication to the Lipschitz ball [22], while in [44], the focus is on operator
spaces and employs an enriched structure compared to compact quantum met-
ric spaces [43, 44], adapted to noncommutative Banach spaces. In general, the
method employed to strengthen the quantum Gromov-Hausdorff distance relied
on changing the object used to compute the distance rather than adding require-
ments to the Lip-norms themselves. Contrary to these earlier constructions, our
new dual Gromov-Hausdorff propinquity relies solely on the natural metric on
the state spaces of Leibniz quantum compact metric spaces, as does the quantum
Gromov-Hausdorff distance, but add a natural requirement on Lip-norms.

Indeed, Lipschitz seminorms, as defined by Equation (1.1), posses a property
which did not appear in the original work of Rieffel, and which connects the metric
structure and the C*-algebraic structure: they satisfy the Leibniz identity

(1.2) ∀ f , g ∈ C(X) Lip( f g) 6 Lip( f )‖g‖C(X) + ‖ f ‖C(X)Lip(g),

where we used the notations of Equation (1.1). Most examples of Lip-norms are
also Leibniz seminorms, in an appropriate sense which we defined in [21] (and
often, in the same sense as Equation (1.2) if the Lip-norms are given on a dense
subset of the whole C*-algebra rather than its self-adjoint part). This property
has recently proven very desirable (e.g. [34, 36, 35, 37, 38, 21]) in order to study
the behavior of C*-algebraic related structures, such as projective modules, under
metric convergence. However, the quantum Gromov-Hausdorff distance does not
provide a framework to work only with such Lip-norms: by its very construction,
it forces one to consider many Lip-norms which may well not be connected to
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any underlying multiplicative structure. Our current research on the theory of
Gromov-Hausdorff convergence for quantum locally compact metric spaces [18,
20] revealed other advantages in working with Leibniz seminorms, and in fact
spawn our current work on finding a well-behaved metric for Leibniz quantum
compact metric spaces. Yet, efforts in constructing a metric which only involve
Leibniz quantum compact metric spaces have met with difficulties [34, 35].

In particular, Rieffel introduced the quantum proximity in [35] as a step toward
the resolution of all the aforementioned issues by adding a strong form of the Leib-
niz property to the notion of admissibility of Lip-norms in the construction of the
quantum Gromov-Hausdorff distance. Yet the quantum proximity is unlikely to
satisfy the triangle inequality, because the proof of the triangle inequality for the
quantum Gromov-Hausdorff distance relies on taking the quotients of Lip-norms,
and it is known [3] that the quotient of a Leibniz seminorm is not necessarily Leib-
niz. The matter of addressing this issue, as well as the coincidence property, while
retaining the fundamental idea of Connes and Rieffel to use the Monge-Kantoro-
vich metric on the state spaces of quantum compact metric spaces are the funda-
mental tool of noncommutative metric geometry, remained an unsolved challenge
for some time.

Recently [21], we introduced a metric on the class of Leibniz quantum compact
metric spaces, called the quantum Gromov-Hausdorff propinquity, to play the role
intended by the quantum proximity from which it draws its name. Our new met-
ric put very strong structural requirements on admissible Lip-norms, which are
always built using bimodules which are themselves C*-algebras, and, as many ap-
proaches before, replaces the state space by the Lipschitz ball in some of the com-
putations of the distance between Leibniz quantum compact metric spaces. This
metric answers questions raised in [36] in addition to the ones we have discussed
so far, with the goal to facilitate the study of convergence of modules and other
such C*-algebraic related structures [36, 35]. Yet our exploration of the question
of completeness for the quantum propinquity revealed challenges caused by the
restrictions on admissible Lip-norms.

The result of our investigation into the matter of completeness for the quantum
Gromov-Hausdorff propinquity is our definition of a dual version of the quantum
propinquity, which is the new metric presented in this paper. Remarkably, this
dual Gromov-Hausdorff propinquity enjoys the same desirable property as the
quantum Gromov-Hausdorff propinquity: distance zero implies *-isomorphisms,
all admissible Lip-norms are Leibniz, and one may even use our construction to
work with subclasses of Leibniz Lip-norms if desired. Yet, in addition to providing
an actual metric as a replacement for the quantum proximity, our dual Gromov-
Hausdorff propinquity is also complete. This is the main reason for our interest
in this metric: the completeness of the Gromov-Hausdorff distance is an essential
property [11], which the quantum Gromov-Hausdorff distance shares, and we feel
that a C*-algebraic analogue for these distances ought to possess this property as
well. Moreover, the dual Gromov-Hausdorff propinquity only uses the Monge-
Kantorovich metric on the state spaces of Leibniz quantum compact metric space,
just as the quantum Gromov-Hausdorff distance. It thus avoids the recourse to
substitute structures to achieve the proper coincidence property and has a vary
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natural physical interpretation in terms of states. The proof of the completeness
of our metric occupies a large part of this paper, while we prove the coincidence
property by establishing all the needed estimates to apply our work in [21] to our
new metric.

The main difference between the approach which we propose in this paper and
earlier approaches to strengthening the quantum Gromov-Hausdorff distance is
that we focus on additional properties of Lip-norms, rather than changing the un-
derlying objects used to measure the distance between compact quantum met-
ric spaces. As a result, our distance is very close in spirit to the original quan-
tum Gromov-Hausdorff distance, yet is well-behaved with respect to Leibniz Lip-
norms on C*-algebras, and thus offers a natural framework to study the extension
of metric geometry to quantum spaces.

After a reminder about the class of Leibniz quantum compact metric spaces,
we define our new metric. We then show that it has the desirable coincidence
property. This section uses some results from [21] to which we refer when ap-
propriate. Afterward, we prove a comparison theorem relating our new metric
with the quantum propinquity and the quantum Gromov-Hausdorff distance, as
well as Rieffel’s proximity. We conclude with the important result that the dual
propinquity is complete.

2. LEIBNIZ QUANTUM COMPACT METRIC SPACES

This section provides the framework within which our current work takes place.
We begin with setting some basic notations.

Notation 2.1. Let A be a unital C*-algebra. The unit of A is denoted by 1A. The
self-adjoint part {a ∈ A : a = a∗} of A is denoted by sa (A). The state space of A is
denoted by S (A). The norm of A is denoted by ‖ · ‖A.

At the root of our work is a pair (A, L) of a unital C*-algebra A and a seminorm
L which enjoys various properties. The following definition contains the minimal
assumptions we will make on such a pair:

Definition 2.2. A Lipschitz pair (A, L) is given by a unital C*-algebra A and a semi-
norm L defined on a norm-dense subspace dom(L) of sa (A) such that:

{a ∈ dom(L) : L(a) = 0} = R1A.

Convention 2.3. We adopt the usual convention that if L is a seminorm defined
on a dense subspace dom(L) of a topological vector space V, and if a ∈ V is not in
the domain of L, then L(a) = ∞. With this convention, we observe that:

dom(L) = {a ∈ V : L(a) < ∞}.

Note that with this convention, we do not introduce any ambiguity when talking
about lower semi-continuous seminorms by exchanging the original seminorm
with its extension.

The central object of noncommutative metric geometry is the generalization of
the Monge-Kantorovich metric [13, 14] to any Lipschitz pair:
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Definition 2.4. The Monge-Kantorovich metric mkL associated with a Lipschitz pair
(A, L) is the metric on the state space S (A) of A defined by setting for all ϕ, ψ ∈
S (A):

mkL(ϕ, ψ) = sup{|ϕ(a)− ψ(a)| : a ∈ sa (A) and L(a) 6 1}.

Definition (2.2) is designed to ensure that the Monge-Kantorovich metric asso-
ciated with a Lipschitz pair is indeed an extended metric.

Rieffel introduced the notion of a quantum compact metric space [30, 31], which
actually can be defined in the more general context of order-unit spaces endowed
with densely-defined seminorms; however, for our purpose, we focus on quan-
tum compact metric spaces whose underlying space is given by a C*-algebra — in
fact, our work is precisely aimed at solving various difficulties introduced by the
restriction to the category of C*-algebras. The definition of a quantum compact
metric space extends to the setting of Lipschitz pairs the fundamental property of
the Monge-Kantorovich metric from the classical setting:

Definition 2.5. A quantum compact metric space (A, L) is a Lipschitz pair whose
associated Monge-Kantorovich metric metrizes the weak* topology of S (A). The
seminorm L is then called a Lip-norm.

Example 2.6. The fundamental example of a quantum compact metric space is
given by a pair (C(X), Lip) where (X, m) is a compact metric space and Lip is the
Lipschitz seminorm associated to m, as defined by Equation (1.1).

We note that the set of bounded, 1-Lipschitz functions on a compact metric
space is compact for the uniform norm by Arzéla-Ascoli’s theorem. In [30, Theo-
rem 1.9], Rieffel proposes a noncommutative analogue of the Arzéla-Ascoli theo-
rem as a characterization of quantum compact metric spaces. Later, an equivalent
characterization of quantum compact metric spaces was given in [28].

Theorem 2.7 (Theorem 1.9, [30] and Proposition 1.3, [28]). Let (A, LA) be a Lipschitz
pair. The following assertions are equivalent:

(1) (A, L) is a quantum compact metric space,
(2) (S (A), mkL) has finite diameter and:

{a ∈ sa (A) : L(a) 6 1 and ‖a‖A 6 1}
is norm precompact,

(3) for some ϕ ∈ S (A), the set:

{a ∈ sa (A) : L(a) 6 1 and ϕ(a) = 0}
is norm precompact,

(4) for all ϕ ∈ S (A), the set:

{a ∈ sa (A) : L(a) 6 1 and ϕ(a) = 0}
is norm precompact.

We generalized the notion of quantum compact metric space to the concept of
quantum locally compact metric spaces in [20], and proved a generalization of
Rieffel’s characterization for our quantum metric spaces, in the spirit of our earlier
work [18] on the bounded-Lipschitz distance.
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Using Rieffel’s characterization, several examples of quantum compact metric
spaces have been established.

Example 2.8 ([30]). Let α be a strongly continuous action of a compact group G on
a unital C*-algebra A by *-automorphisms, such that:

{a ∈ A : ∀g ∈ G αg(a) = a} = C1A.

If l is a continuous length function on G and if e is the unit of G, and if for all
a ∈ sa (A) we define:

L(a) = sup
{
‖a− αg(a)‖A

l(g)
: g ∈ G \ {e}

}
,

then (A, L) is a quantum compact metric space.

Example 2.9. An important special case of Example (2.8) is given by the twisted
C*-algebras C∗

(
Ĝ, σ

)
of the Pontryagin dual Ĝ of a compact metrizable group G,

where σ is a skew-bicharacter of Ĝ, with α the dual action of G on C∗
(

Ĝ, σ
)

, using

any continuous length function l on G. In particular, for the d-torus G = Td, we
see that the quantum tori are quantum compact metric spaces.

Example 2.10 ([5, 28]). Let G be a finitely generated group and let l be the length
function associated with some set of generators of G such that (G, l) is a Gromov
Hyperbolic group. Let λ be the left regular representation of G on the the Hilbert
space `2(G), and for all ξ ∈ `2(G), define Dξ as g ∈ G 7→ l(g)ξ(g) wherever
Dξ ∈ `2(G). Last, we define, for all a ∈ C∗red(G):

L(a) = ‖[D, λ(a)]‖B(`2(G))

where the norm ‖ · ‖B(`2(G)) is the operator norm for linear operators on `2(G),
which we allow to be infinity for unbounded operators. Note that D is densely
defined on `2(G).

This construction follows Connes’ original approach to metric structures in non-
commutative geometry laid out in [5], where in particular Connes establishes that
(C∗red(G), L) is a Lipschitz pair. In [28], Ozawa and Rieffel proved that (C∗red(G), L)
is a quantum compact metric space.

Example 2.11 ([32]). Let d ∈ N, d > 0 and let σ be a skew-bicharacter of Zd. Let
us denote the left-regular representation of C∗(Zd, σ) on `2(Zd) by λ. If l is the
word metric on Zd for some finite set of generators of Zd, and if we define D as
the multiplication operator by l on `2(Z), then the seminorm:

L(a) = ‖[D, λ(a)]‖B(`2(Z)),

defined for all a ∈ C∗(Zd, σ), is a Lip-norm.

Examples (2.10) and (2.11) are special cases of a general construction of metrics
from spectral triples, pioneered by Connes in [5]. If (A, H , D) is a spectral triple
over some *-algebra A, then we can define a seminorm:

(2.1) L : a ∈ A 7→ ‖[D, π(a)]‖B(H )
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where the norm ‖ · ‖B(H ) is the operator norm on H and π is the chosen rep-
resentation of A on H . It is not known under what conditions such a construc-
tion leads to a Lip-norm on A, as it is usually difficult to check when a Lipschitz
pair is a quantum compact metric space. Other examples of such a construction
where a spectral triple actually leads to a Lip-norm, besides the one we have listed,
include quantum compact metric spaces associated with spectral triples on C*-
crossed-products [2], spectral triples on quantum tori [30], and spectral triples on
Connes-Dubois-Landi-Violette spheres [23], to name a few.

The classical Lipschitz seminorm enjoys an additional property related to the
multiplication of functions, given by Inequality (1.2). Indeed, if (A, L) is any of the
quantum compact metric spaces given by Examples (2.6,2.8,2.9,2.10,2.11) then L is
in fact densely defined on A, and for all a, b ∈ A we have:

(2.2) L(ab) 6 L(a)‖b‖A + ‖a‖AL(b).

More generally, Inequality (2.2) is satisfied by any seminorm defined by a spectral
triple using Equation (2.1).

This connection between noncommutative metric structure and C*-algebraic
structure was absent from the original work of Rieffel [30, 31, 39] but appeared
to be very important in more recent developments in noncommutative metric ge-
ometry, where the consequences of convergence for various structures, such as
projective modules [34], is investigated. We shall therefore adopt the perspective
that such an additional property should be incorporated in our theory, and as we
shall prove, this new approach allows for the definition of a stronger metric than
the quantum Gromov-Hausdorff distance which fits the C*-algebraic framework
as described in our introduction.

As discussed in our introduction, the natural dual notion for isometric embed-
dings used in the definition of the Gromov-Hausdorff distance [11] is given by
the notion of admissible Lip-norms, which reflects the fact that real-valued Lips-
chitz functions can be extended, without growing their Lipschitz seminorm, from
closed subsets of a metric space to the whole space. This property is not valid for
complex-valued functions, and this fact alone justifies that we focus on Lip-norms
densely defined only on the self-adjoint part of C*-algebras (other interesting and
relevant issues are discussed in [35]). We thus propose to express the Leibniz
property in terms of the Jordan-Lie algebra structure of the self-adjoint part of
C*-algebras, which will prove enough for our need. As we shall see in this paper,
our constructions and main results are valid if we were to require Lip-norms to be
densely defined on the whole C*-algebra and to satisfy Equation (2.2), rather than
our more general Definition (2.13) below.

Notation 2.12. Let A be a C*-algebra. Then for all a, b ∈ A, we use the following
notation for the Jordan product of a and b:

a ◦ b =
1
2
(ab + ba) .

We also use the following notation for the Lie product:

{a, b} = 1
2i

(ab− ba) .
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Our choice of normalization for the Lie product means that sa (A) is closed under
both the Jordan and the Lie products, so that (sa (A), · ◦ ·, {·, ·}) is a Jordan-Lie
algebra.

Definition 2.13. A seminorm L defined on a dense subspace dom(L) of the self-
adjoint part sa (A) of a C*-algebra A is a Leibniz seminorm when, for all a, b ∈
dom(L):

L(a ◦ b) 6 ‖a‖ALB(b) + ‖b‖BLA(a),

and
L({a, b}) 6 ‖a‖ALB(b) + ‖b‖BLA(a).

We are now able to define the objects of our study.

Definition 2.14. A Leibniz quantum compact metric space (A, L) is a quantum com-
pact metric space whose Lip-norm L is also a Leibniz seminorm which is lower
semicontinuous with respect to the norm of A.

Requiring the Leibniz property introduced in Definition (2.13) is central to this
paper: we shall see how this additional requirement, absent from the original con-
struction of the quantum Gromov-Hausdorff distance, will allow us to obtain the
strong coincidence property for our new metric, which shows the dual propin-
quity is sensitive to the C*-algebraic structure, rather than the order-structure, of
the underlying space.

The requirement of lower-semi-continuity is motivated by the fact that the no-
tion of isometry between Leibniz quantum compact metric spaces can be expressed
in terms of closed Lip-norms, which in the case when the underlying space is a
Banach-space (as in our case, as we work with C*-algebras), is equivalent to lower
semi-continuous Lip-norms. We note however that the Lipschitz seminorms of
Example (2.6), and that in general, by [35], the closure of a Lip-norm with the
Leibniz property will have the Leibniz property; hence the assumption of lower
semicontinuity can be conveniently made without loss of generality.

The class of Leibniz quantum compact metric spaces can be endowed with a
natural category structure, where a morphism π from a Leibniz quantum com-
pact metric space (A, LA) to a Leibniz quantum compact metric space (B, LB) is
a unital *-morphism π : A → B such that the dual map π∗ : S (B) → S (A) is
a Lipschitz function from mkLB to mkLA . In this case, an isomorphism of Leibniz
quantum compact metric spaces is given by a *-isomorphism whose dual map is
a bi-Lipschitz map. For our purpose, we shall focus on the stronger notion of
isometric isomorphism:

Definition 2.15. An isometric isomorphism π from a Leibniz quantum compact
metric space (A, LA) to a Leibniz quantum compact metric space (B, LB) is a *-
isomorphism from A to B such that for all a ∈ sa (A) we have LB ◦ π(a) = LA(a).

Remark 2.16. Our definition of isometry is compatible with [39, Definition 6.3],
since the Lip-norm L of a Leibniz quantum compact metric space is closed, i.e. the
set:

{a ∈ sa (A) : L(a) 6 1}
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is closed in A. Indeed, as A is a C*-algebra and thus complete for its norm, the
assumption of lower-semicontinuity on L is equivalent to the notion of closed
Lip-norm. Moreover, by [39, Theorem 6.2], a *-isomorphism between two Lei-
bniz quantum compact metric spaces is an isometric isomorphism if and only if its
dual map is an isometry between the state spaces endowed with their respective
Monge-Kantorovich metrics. Thus, isometric isomorphisms are isomorphisms in
the category of Leibniz quantum compact metric spaces, as would be expected.

We shall see that working with our dual Gromov-Hausdorff propinquity is
somewhat akin to working in a different category with a weaker notion of mor-
phism, analogous to the notion of a correspondence between metric spaces. As
seen in [11], the Gromov-Hausdorff distance can be defined in terms of correspon-
dences between metric spaces, and their “distorsion” — our construction of the
dual propinquity can be seen as an attempt to provide a noncommutative version
of this approach as well.

3. THE DUAL GROMOV-HAUSDORFF PROPINQUITY

We now define our new metric, which is the subject of our paper. We begin with
a very brief motivation for our definition.

For any two compact metric spaces (X, dX), (Y, dY), the Gromov-Hausdorff dis-
tance distGH((X, dX), (Y, dY)) is the infimum of the Hausdorff distance between
f (X) and g(Y), where f and g are isometries from X and Y to some metric space
(Z, dZ), respectively [11]. One may even choose Z = X ä Y at the cost of defining
an equivalent metric.

Given two Leibniz quantum compact metric spaces (A, LA) and (B, LB), the
natural dual picture for such an embedding would thus be given by two *-epi-
morphisms πA : D → A and πB : D → B, where (D, LD) is yet another Lei-
bniz quantum compact metric space, and such that the dual maps of πA and
πB are isometries, respectively, from (S (A), mkLA) and from (S (B), mkLB) to
(S (D), mkLD). One may wish to then take the infimum of the Hausdorff distance
between the images of S (A) and S (B) in S (D) for mkLD over all possible such
embeddings. Up to metric equivalence, one may even be tempted to always take
D of the form A⊕B.

There is one major obstruction to this idea: because the quotient of Leibniz
seminorms may not be Leibniz, it is not known how to show whether the above
construction would give an object which satisfies the triangle inequality, as seen in
[35]. One solution is to forget the Leibniz property, which led to the original quan-
tum Gromov-Hausdorff distance distq. Yet, it is desirable to keep some connection
between the quantum metric structure and the C*-algebraic structure, so that dis-
tance zero implies *-isomorphism (rather than Jordan isomorphism, as with distq),
and more generally to be able to work within the category of C*-algebras and as-
sociated structures. It is however very unlikely that we will obtain the triangle
inequality if one simply restrict the Lip-norms in the construction of distq to be
Leibniz. A new solution is needed.

Moreover, suppose that we are given two *-epimorphisms πA : D → A and
πB : D→ B onto some Leibniz quantum compact metric space (D, LD). One can
construct a seminorm L on A⊕B from LD (essentially by doubling D to D⊕D,
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making both copies of S (D) in S (D⊕D) as close as we want), in such a manner
that the Hausdorff distance between S (A) and S (B) in (S (A⊕B), mkL) is arbi-
trarily close to the Hausdorff distance between S (A) and S (B) in (S (D), mkLD).
However this process, which we describe in detail in the proof of Lemma (5.4), in-
volves taking a quotient of a Leibniz seminorm, which in general will fail to be a
Leibniz seminorm. Thus, if we wish to remain within the class of Leibniz quantum
compact metric spaces in the construction of our new metric, we can not restrict
ourselves to always choosing D = A⊕B, as is done with the quantum Gromov-
Hausdorff distance, without risking to make our distance larger than necessary. In
particular, the quantum proximity [35] may be larger than it needs to be since it
only involves (strongly) Leibniz Lip-norms on A⊕B rather than the more general
setting we will now present for our new metric.

The subject of this paper is to fix these issues. We start from the general dual
picture proposed above, and offer a mean to construct a well-behaved metric out
of this general intuition. We first implemented some of the techniques we shall
use here when working with the quantum Gromov-Hausdorff propinquity [21],
which was also motivated by the question of defining a metric on Leibniz quan-
tum compact metric spaces, yet focused on seminorms defined using some very
specific bimodules constructed from C*-algebras, as appear in the literature on the
subject recently. In contrast, this paper offers a construction which is as close to
the original quantum Gromov-Hausdorff distance (and the quantum proximity)
as possible, and will be proven to lead to a complete metric. It is, informally, a
dual version of the quantum propinquity — though it is in fact a weaker metric
in general. Due to the origin of our method in our earlier work, we employ an
analogue terminology in the present paper, yet we “dualize” some terms to help
our intuition in understanding similarities and differences between our two fami-
lies of propinquities. Also, we note that the numerical quantities proposed in this
paper to build our metric are quite different from the ones introduced in [21].

We first formalize our “dual isometric embeddings” as follows:

Definition 3.1. Let (A1, L1), (A2, L2) be two Leibniz quantum compact metric spaces.
A tunnel (D, LD, π1, π2) from (A1, L1) and (A2, L2) is a Leibniz quantum compact
metric space (D, LD) such that, for all j ∈ {1, 2}, the map πj : D � Aj is a unital
*-epimorphism such that for all a ∈ sa

(
Aj
)
:

Lj(a) = inf{LD(b) : b ∈ sa (D) and πj(b) = a}.
A tunnel is just a generalization of an admissible Lip-norm in the sense of [39],

where the Leibniz quantum compact metric spaces are quotients of arbitrary Lei-
bniz quantum compact metric spaces rather than their coproduct only, and were
the Leibniz property in the sense of Definition (2.13), is imposed.

We now define two numerical quantities associated with tunnels, which will be
the base for the construction of our distance. The first numerical quantity is rather
natural, since we work with an extension of the Gromov-Hausdorff distance in-
spired by Rieffel’s original construction for the quantum Gromov-Hausdorff dis-
tance. We call this quantity the reach of a tunnel.

Notation 3.2. The Hausdorff distance on the class of compact subsets of a metric
space (E, d) is denoted by Hausd.
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Notation 3.3. If ρ : A → B is a continuous linear map from a topological vector
space A to a topological vector space B then we denote by ρ∗ the dual map T ∈
B∗ 7→ T ◦ ρ ∈ A∗.

Definition 3.4. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces. The reach of a tunnel τ = (D, LD, πA, πB) from (A, LA) to (B, LB) is the
non-negative real number:

ρ (τ) = HausmkLD
(π∗A (S (A)) , π∗B (S (B))) .

Remark 3.5. If (D, LD, πA, πB) is a quadruple where (D, LD) is a Leibniz quantum
compact metric space, and πA : D� A and πB : D� B are *-epimorphism onto
some unital C*-algebras A and B, respectively, then the quotient seminorms LA

and LB of LD by πA and πB are closed Lip-norms on A and B, by [39, Proposition
3.1, Proposition 3.3] — although they may not be Leibniz. This observation how-
ever implies that a tunnel contains enough information to recover the quantum
metric structure on its domain and codomain. Thus, there is no need to decorate
our notation for the reach of a tunnel with the Lip-norms LA and LB, unlike the
situation with the notation for the reach of a bridge in [21]. This remark applies as
well to the notations for depth and length of a tunnel.

The second numerical quantity is new to our metric. The reason for its intro-
duction, which will be formalized in Proposition (4.5) and used with full strength
in Proposition(4.6) and our main theorems, Theorem (4.13) and Theorem (6.27), is
to help control the norm of the lift of Lipschitz elements. We call this quantity the
depth of a tunnel.

Notation 3.6. If A ⊆ E is a subset of a topological vector space E, then co (A) is
the closure of the convex envelope of A, i.e. the smallest closed convex subset of E
containing A.

Definition 3.7. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces. The depth of a tunnel τ = (D, LD, πA, πB) from (A, LA) to (B, LB) is the
non-negative real number:

δ (τ) = HausmkLD
(S (D), co (S (A) ∪S (B))) .

One reason for the depth of tunnels not to appear in Rieffel’s original construc-
tion may be the following observation:

Remark 3.8. If D = A⊕B, πA : (a, b) ∈ D 7→ a and πB : (a, b) ∈ D 7→ b, and if
(D, LD, πA, πB) is a tunnel, then δ (τ) = 0.

Given our basic numerical quantities for tunnels, we then define:

Definition 3.9. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces. The length of a tunnel τ = (D, LD, πA, πB) from (A, LA) to (B, LB) is the
non-negative number:

λ (τ) = max{ρ (τ), δ (τ)}.

The informal idea to define the dual propinquity should be to take the infimum
of the lengths of all tunnels between two given Leibniz quantum compact metric
spaces. This idea, as we discussed, will likely fail to satisfy the triangle inequality.
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As with the quantum propinquity [21], we introduce a notion of “paths” made of
tunnels, which we shall call journeys. Such an approach is used, for instance, in
the definition of the quotient (pseudo)metric of a metric [11]. In general however,
such a construction leads to a pseudo-metric, and one main result of this paper is
that the dual Gromov-Hausdorff propinquity is in fact a metric.

Introducing journeys open an interesting possibility: we may restrict our at-
tention to journeys made of specific choices of tunnels, with additional properties
which may be of use for a particular purpose. We thus introduce the following
notion of a compatible class of tunnels, which is a class of tunnels rich enough to
guarantee that the construction of our metric, when specialized to such a compat-
ible class, is indeed a metric.

Definition 3.10. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces. Let τ = (D, LD, πA, πB) be a tunnel from (A, LA) to (B, LB). The reversed
tunnel τ−1 of τ is the tunnel (D, LD, πB, πA) from (B, LB) to (A, LA).

Definition 3.11. Let C be a nonempty class of Leibniz quantum compact metric
spaces. A class T of tunnels is compatible with C (or C-compatible) when:

(1) for all τ = (D, LD, π, ρ) ∈ T , we have τ−1 = (D, LD, ρ, π) ∈ T ,
(2) for all (A, LA), (B, LB) ∈ C, there exists a finite family (Aj, Lj)j∈{1,...,n+1} in
C for some n ∈ Nwith (A1, L1) = (A, LA), (An+1, Ln+1) = (B, LB), as well
as a finite family (τj)j∈{1,...,n} in T such that for all j ∈ {1, . . . , n} we have
τj ∈ Tunnels

[(
Aj, Lj

)
→
(
Aj+1, Lj+1

)]
,

(3) for all (A, LA), (B, LB) ∈ C, if there exists a *-isomorphism h : A→ B such
that LB ◦ h = LA, then we have (A, LA, idA, h) ∈ T and (B, LB, idB, h−1) ∈
T , where idA : a ∈ A 7→ a. Note in particular that (A, LA, idA, idA) ∈ T ,

(4) any tunnel in τ is from an element in C and to an element of C.

Example 3.12. The class of all possible tunnels over the class L∗ of all Leibniz quan-
tum compact metric spaces is L∗-compatible.

Example 3.13. A compact JLC*-metric space (A, L) is a Leibniz quantum compact
metric space where the Lip-norm is strongly Leibniz, in the sense that its domain
is closed under the inverse map, and it also satisfies, for all a ∈ GL(A):

L
(

a−1
)
6 ‖a−1‖2

AL(a).

This notion differs slightly from the notion of a compact C*-metric space intro-
duced in [35], to which we shall return momentarily. The letters JL are meant for
Jordan-Lie to emphasize the form of the Leibniz property as defined in Definition
(2.13). Let J LCM∗ be the class of all compact C∗-metric spaces [35]. The class
J LC∗ of all tunnels from and to elements of J LCM∗ is J LCM∗-compatible.

Now, the class CM of compact C*-metric spaces is defined as a subclass of our
class J LCM: a Leibniz quantum compact metric space (A, L) ∈ J LCM is a
compact C*-metric space if L is defined on a dense *-subalgebra of A, closed under
the inverse map, and such that for all a, b ∈ A we have:

(3.1) L(ab) 6 ‖a‖AL(b) + L(a)‖b‖A.
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It is easy to check that Inequality (3.1) implies the Leibniz property of Definition
(2.13). In [35], the notion of compact C*-metric space does not require the under-
lying algebra to be Banach — only C*-normed — but we focus in this paper on
various subclasses of Leibniz quantum compact metric spaces.

With this in mind, the class C of all tunnels from and to elements of CM is
CM-compatible.

Example 3.14. Another example is the class SUMC of tunnels of the form (A ⊕
B, L, πA, πB) where πA and πB are the canonical surjections on each term, and
(A, LA),(B, LB) ranges over all Leibniz quantum compact metric spaces in some
nonempty subclass C of L∗. The class SUMC is compatible with C.

We now have the tools to define journeys, i.e. path of tunnels in some appro-
priate class:

Definition 3.15. Let C be a nonempty class of Leibniz quantum compact metric
spaces and T be compatible class of tunnels for C. A T -journey from (A, LA) to
(B, LB), with (A, LA), (B, LB) ∈ C, is a finite family:

(Aj, Lj, τj,Aj+1, Lj+1 : j = 1, . . . , n)

where:

(1) (Aj, Lj) is a Leibniz quantum compact metric space in C for all j ∈ {1, . . . , n+
1},

(2) (A1, L1) = (A, LA),
(3) (An+1, Ln+1) = (B, LB),
(4) τj is a tunnel in T from (Aj, Lj) to (Aj+1, Lj+1) for all j ∈ {1, . . . , n}.

The integer n is called the size of the journey.

Notation 3.16. Let C be a nonempty class of Leibniz quantum compact metric
spaces and let T be a class of tunnels compatible with C. The set of all T -journeys
from (A, LA) ∈ C to (B, LB) ∈ C is denoted by:

Journeys
[
(A, LA)

T−→ (B, LB)
]
.

When we not specify a class of tunnels for a given journey, we mean that the
journey is made of arbitrary tunnels between arbitrary Leibniz quantum compact
metric spaces. We now can define journeys as certain finite families of tunnels in
a compatible class.

A journey has a natural length:

Definition 3.17. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces. The length of a journey Υ = (Aj, Lj, τj,Aj+1, Lj+1 : j = 1, . . . , n) from
(A, LA) to (B, LB) is:

λ (Υ) =
n

∑
j=1

λ
(
τj
)
.

We now can define our family of metrics, which we call the dual Gromov-
Hausdorff propinquities.
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Definition 3.18. Let C be an admissible class of Leibniz quantum compact metric
spaces and T be a class of tunnels compatible with C. The dual Gromov-Hausdorff
T -propinquity Λ∗T between two Leibniz quantum compact metric spaces (A, LA)
and (B, LB) in C is defined as:

Λ∗T ((A, LA), (B, LB)) = inf
{

λ (Υ) : Υ ∈ Journeys
[
(A, LA)

T−→ (B, LB)
]}

.

The dual propinquity associated with the category CM (Example (3.13)) of
compact C*-metric spaces is a direct extension of Rieffel’s proximity. An even
closer extension of the proximity is given by restricting one’s attention to the class
CM∩SUM (3.13). On the other hand, by default, we work with the dual propin-
quity associated with the class of all Leibniz quantum compact metric spaces (Ex-
ample (3.12)). We introduce two notations to stress the role of the most important
examples of dual propinquity:

Notation 3.19. The dual propinquity Λ∗ designates the dual propinquity Λ∗L∗ .

Notation 3.20. The dual propinquity Λ∗∗ designates the dual propinquity Λ∗CM.

At the level of generality which we have chosen, the dual propinquity is never
infinite, though more interesting estimates depend on the choice of a class of tun-
nel. Moreover, the dual propinquity is zero between two isometrically isometric
Leibniz quantum compact metric spaces. These properties partially illustrate the
role of the notion of compatibility for tunnel.

Proposition 3.21. For any class C of Leibniz quantum compact metric spaces and any
C-compatible class T of tunnels, and for any (A, LA),(B, LB) in C, we have:

Λ∗T ((A, LA), (B, LB)) < ∞.

Moreover, if there exists a *-isomorphism h : A→ B such that LB ◦ h = LA, then:

Λ∗T ((A, LA), (B, LB)) = 0.

Proof. By Definition (3.11), the set Journeys
[
(A, LA)

T−→ (B, LB)
]

is not empty, hence
our first inequality. By the same definition, ιA = (A, LA, idA, h) ∈ T , where idA

is the identity map on A, and the length of the tunnel ιA is trivially zero. This
concludes our proposition. �

The most natural classes of tunnels proposed in Examples (3.12),(3.13) and Ex-
ample (3.14) give rise to noncommutative propinquities with a more explicit upper
bound. We propose a terminology for such classes, as it may be useful for later use.

Definition 3.22. Let C be a class of Leibniz quantum compact metric spaces. A
class T of tunnels which is compatible with C is C-regular when, for all (A, LA),
(B, LB) in C:

Λ∗T ((A, LA), (B, LB)) 6 max{diam
(
S (A), mkLA

)
, diam

(
S (B), mkLB

)
.

We shall see, using Theorem (5.5), that the class of tunnels in Examples (3.12)
and (3.13) are regular.

We conclude this section with the result that the dual Gromov-Hausdorff propin-
quity satisfies the triangle inequality and is symmetric. In the process of doing
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so, we explicit a category structure on every nonempty class of Leibniz quantum
compact metric spaces, whose Hom-sets are given by sets of reduced journeys, to
be defined below. We will use this observation to provide some guidance to the
intuition of the main theorem of this paper in the next section.

Definition 3.23. Let C be a nonempty class of Leibniz quantum compact metric
spaces and T be a class of tunnels compatible with C. Let (A, LA), (B, LB) and
(D, LD) in C, and let:

Υ1 =
(
Aj, Lj, τj,Aj+1, Lj+1 : j = 1, . . . , n1

)
be a journey from (A, LA) to (B, LB), and:

Υ2 =
(
Bj, Lj, τ j,Bj+1, Lj+1 : j = 1, . . . , n2

)
be a journey from (B, LB) to (D, LD).

If we set, for all j ∈ {1, . . . , n1 + n2}:

Dj =

{
Aj if j 6 n1
Bj−n1 if j > n1

and

L[j] =
{

Lj if j 6 n1
Lj−n1 if j > n1

and

ρj =

{
τj if j 6 n1
τ j−n1 if j > n1

,

then Υ1 ? Υ2 is the T -journey (Dj, L[j], ρj,Dj+1, L[j + 1] : j = 1, . . . , n1 + n2) from
(A, LA) to (D, LD).

We already used one of the two conditions for a class of tunnel to be compat-
ible with some class C of Leibniz quantum compact metric spaces in Proposition
(3.21): the existence in the class of a tunnel of length zero for all isometric isomor-
phisms between elements of C. The condition regarding closure under the reverse
operation allows us to define reverse journeys, which will give us that the dual
Gromov-Hausdorff propinquity is symmetric.

Definition 3.24. Let C be a nonempty class of Leibniz quantum compact metric
spaces. Let T be a C-compatible class of tunnels and let Υ = (Aj, Lj, τj,Aj+1, Lj+1 :
j = 1, . . . , n) be a T -journey. The reversed journey Υ−1 is the T -journey:

(An−j+1, Ln−j+1, τ−1
j ,An−j, Ln−j : j = 1, . . . , n).

The two operations of composition and reverse of journeys allow us to prove
the following properties of the dual Gromov-Hausdorff propinquity, bringing us
closer to proving that the dual Gromov-Hausdorff propinquity is a metric.

Theorem 3.25. Let C be a nonempty class of Leibniz quantum compact metric spaces and
let T be a C-compatible class of tunnels.

(1) For all (A, LA), (B, LB) ∈ C, we have:

Λ∗T ((A, LA), (B, LB)) = Λ∗T ((B, LB), (A, LA)).

(2) For all (A, LA), (B, LB), (D, LD) ∈ C, we have:

Λ∗T ((A, LA), (D, LD)) 6 Λ∗T ((A, LA), (B, LB)) + Λ∗T ((B, LB), (D, LD)).
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Proof. The proof follows the scheme of [21, Proposition 2.3.7]. Let ε > 0. Let

Υ1 ∈ Journeys
[
(A, LA)

T−→ (B, LB)
]

and Υ2 ∈ Journeys
[
(B, LB)

T−→ (D, LD)
]

such
that:

λ (Υ1) 6 Λ∗T ((A, LA), (B, LB)) + ε

and
λ (Υ1) 6 Λ∗T ((A, LA), (B, LB)) + ε.

First, note that λ
(

Υ−1
1

)
= λ (Υ1) and thus:

Λ∗T ((B, LB), (A, LA)) 6 Λ∗T ((A, LA), (B, LB)) + ε.

Since ε > 0 is arbitrary, and by symmetry of the roles of (A, LA) and (B, LB), we
conclude that Λ∗T ((A, LA), (B, LB)) = Λ∗T ((B, LB), (A, LA)).

Similarly, we have Υ1 ? Υ2 ∈ Journeys
[
(A, LA)

T−→ (D, LD)
]

and λ (Υ1 ? Υ2) =

λ (Υ1) + λ (Υ2), which implies:

Λ∗T ((A, LA), (D, LD)) 6 Λ∗T ((A, LA), (B, LB)) + Λ∗T ((B, LB), (D, LD)) + 2ε,

which implies the triangle inequality since ε > 0 is arbitrary. �

We conclude this section with an observation. Let C be a nonempty class of
Leibniz quantum compact metric spaces and T be a class of tunnels compatible
with T . We define a reduced T -journey Υ as a T -journey which is either of the form
(A, LA, idA, h) for some (A, LA) ∈ C and some isometric isomorphism h, or such
that if Υ = (Aj, Lj, τj,Aj+1, Lj+1 : j = 1, . . . , n), then for all j, k ∈ {1, . . . , n + 1}, if
j 6= k then (Aj, Lj) is not isomorphic, as a Leibniz quantum compact metric space,
to (Ak, Lk). The process of reducing a T -journey consists in removing any loop
(i.e. sub-finite family starting and ending at isomorphic Leibniz quantum com-
pact metric space) to obtain a reduced journey, up to obvious changes to tunnels
(by composing by isomorphisms of Leibniz quantum compact metric spaces the
surjections of a tunnel).

It should be observed that reducing a journey reduces its length, and that the
journeys consisting of a single tunnel defined by an isomorphism have length zero.
Moreover, reducing a T -journey leads to another T -journey. Last, let us define
the composition of two reduced journeys as the reduction of the star product of
journeys. We then easily check that the composition of journeys is associative and
that identity journeys are neutral (where the identity journeys consist of the single
tunnel (A, LA, idA, idA) for all (A, LA) ∈ C). Moreover the reverse of a reduced
journey Υ is the inverse of Υ for this composition.

We now turn define a category whose objects are given by the class C. For any
two objects (A, LA) and (B, LB), we denote the set of reduced T -journeys by:

Hom
[
(A, LA)

T−→ (B, LB)
]

which is a nonempty subset of Journeys
[
(A, LA)

T−→ (B, LB)
]
. Now, it is easy to

check that the setsHom
[
(·) T−→ (·)

]
are the Hom-sets of a category over C. More-

over, this category is a groupoid (more formally, if C is a set then our category is a
groupoid; if C is not a set, then all arrows are invertible).
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Thus, up to reduction, journeys should be thought of as morphisms of a cate-
gory, with a length associated to each morphism. This picture should be under-
stood as a noncommutative analogue of the idea to define the Gromov-Hausdorff
distance using correspondences as morphisms: to each correspondence, one asso-
ciate a distortion, i.e. a numerical quantity, and the Gromov-Hausdorff distance is
then taken as the infimum of all distortion over all correspondence between two
given metric spaces. Our notion of a tunnel could be seen as our replacement for
correspondence, and length as a measurement of distortion.

We also note that we could have done the same construction with the quantum
propinquity [21], introducing a natural notion of reduced treks.

4. DISTANCE ZERO

One of the two main theorems of this paper is that the dual Gromov-Hausdorff
propinquity is null between two Leibniz quantum compact metric spaces if and
only if their underlying C*-algebras are *-isomorphic and their state spaces are iso-
metric, thus completing the proof that Λ∗ is a metric on the isometry, *-isomorphism
equivalence classes of Leibniz quantum compact metric spaces. The other main
theorem will concern completeness and will be proven in the last section of this
paper.

The proof of our first main theorem follows the scheme of [21]. Seeing a jour-
ney as a morphism akin to a correspondence, we first introduce the notion of an
“image” of an element of a Leibniz quantum compact metric space by a journey,
which is a subset of the co-domain of the journey. There is, in fact, a family of
possible images indexed by a real number, and we call these sets target sets.

We then proceed to give estimates on the norm radius of target sets computed
from the length of journeys. We then note that Journeys posses an analogue of the
algebraic morphism properties between C*-algebras, expressed in terms of target
sets. The estimates we obtain are analogue of the results about treks for the quan-
tum propinquity, so once they are established, we progress toward our goal as
with the quantum propinquity in [21].

Results about journey are derived by inductions based upon results on tunnels.
We therefore begin with the notion of the target set of a tunnel.

Definition 4.1. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces. Let τ ∈ Tunnels [(A, LA)→ (B, LB)] and write τ = (D, LD, πA, πB). For
any a ∈ sa (A) and r > LA(a), we set:

tτ (a|r) =
{

πB(d) ∈ sa (B)

∣∣∣∣ d ∈ sa (D), LD(d) 6 r,
πA(d) = a

}
.

A first observation is that target sets are not empty.

Lemma 4.2. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric spaces.
Let τ ∈ Tunnels [(A, LA)→ (B, LB)]. For any a ∈ sa (A) and r > LA(a), the set
tτ (a|r) is not empty.

Proof. Let ε > 0. By Definition (3.1), there exists dε ∈ sa (D) such that πA(dε) = a
and:

LA(a) 6 LD(dε) 6 LA(a) + ε.
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Let ϕA ∈ S (A). The set:

d = {d ∈ sa (D) : LD(d) 6 LA(a) + 1 and ϕA ◦ πA(d) = 0}
is norm compact by assumption on (D, LD) since LD is lower-semicontinuous and
by Theorem (2.7). Moreover, for all n ∈ N, n > 0, since ϕA ◦ πA(dn−1) = ϕA(a) by
construction, we have:

dn−1 − ϕA(a)1D ∈ d.
Thus, there exists a convergent subsequence:

(dn−1
k
− ϕA(a)1D)k∈N

which converges in norm to some f ∈ sa (D). By lower-semi-continuity of LD,
we have LA(a) 6 LD( f ) 6 LA(a). Furthermore, we have πA( f + ϕA(a)1D) =
a by continuity of πA. Since LD( f + ϕA(a)1D) = LA(a), we conclude πB( f +
ϕA(a)1D) ∈ tτ (a|r) for all r > LA(a) as desired. �

The crucial property of the target sets for a tunnel τ is that their diameter is
controlled by the length τ. Consequently, when two Leibniz quantum compact
metric spaces are close for the dual Gromov-Hausdorff propinquity, then one may
expect that target sets for appropriately chosen tunnels have diameter of the order
of the distance between our two Leibniz quantum compact metric spaces. Thus,
if two Leibniz quantum compact metric spaces (A, LA) and (B, LB) are in fact at
distance zero, one may find a sequence of target sets for any a ∈ sa (A) associated
to tunnels of ever smaller length, which converges to a singleton: the element in
this singleton would then be our candidate as an image for a by some prospective
isometric isomorphism in the sense of Definition (2.15). This general intuition
will be the base for our proof of Theorem (4.13). We now state the fundamental
property of target sets upon which all our estimates rely.

Proposition 4.3. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces and τ ∈ Tunnels [(A, LA)→ (B, LB)] be a tunnel from (A, LA) to (B, LB).
If a ∈ sa (A), r > LA(a) and b ∈ tτ (a|r) then:

‖b‖B 6 ‖a‖A + rρ (τ),

and LB(b) 6 r.

Proof. Let a ∈ sa (A), r > LA(a) and b ∈ tτ (a|r). Let ψ ∈ S (B). By Definition
(3.9), there exists ϕ ∈ S (A) such that:

mkLD(ϕ ◦ πA, ψ ◦ πB) 6 ρ (τ).

By Definition (4.1), there exists d ∈ D such that πA(d) = a, πB(d) = b and
LD(d) 6 r. Then:

|ψ(b)| = |ψ ◦ πB(d)|
6 |ψ ◦ πB(d)− ϕ ◦ πA(d)|+ |ϕ ◦ πA(d)|
6 LD(d)mkLD(π

∗
A(ϕ), π∗B(ψ)) + |ϕ(a)|

6 rρ (τ) + ‖a‖A.

Thus, since B is a C*-algebra:

‖b‖B = sup{|ψ(b)| : ψ ∈ S (A)} 6 rρ (τ) + ‖a‖A.
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Since LB is the quotient seminorm of LD on B via πB, we have:

LB(b) = LB(πB(d)) 6 LD(d) 6 r,

as desired. �

We can now relate the linear structure of Leibniz quantum compact metric
spaces and target sets of tunnels. An important consequence of this relation re-
gards the diameter of target sets. Note that this result only involves the reach of
tunnels (see Definition (3.4)).

Corollary 4.4. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric spaces
and τ ∈ Tunnels [(A, LA)→ (B, LB)]. Let a, a′ ∈ sa (A), r > LA(a) and r′ > LA(a′).
Then:

(1) For all b ∈ tτ (a|r), b′ ∈ tτ (a′|r′) and t ∈ R, we have:

b + tb′ ∈ tτ
(
a + ta′

∣∣r + |t|r′),
(2) If r > max{LA(a), LA(a′)} then:

sup
{
‖b− b′‖B : b ∈ tτ (a|r), b′ ∈ tτ

(
a′
∣∣r)} 6 ‖a− a′‖A + 2rρ (τ).

(3) In particular:
diam (tτ (a|r), ‖ · ‖B) 6 2rρ (τ).

Proof. Let b ∈ tτ (r|a), b′ ∈ tτ (r′|a′) and t ∈ R. By Definition (4.1), there exists
d ∈ sa (D) such that πB(d) = b, πA(d) = a, LD(d) 6 r. Similarly, there exists
d′ ∈ sa (D) such that πA(d′) = a′, πB(d′) = b′ and LD(d′) 6 r′. Then:

LD(d + td′) 6 LD(d) + |t|LD(d′) 6 r + |t|r′,

and πA(d + td′) = a + ta′, so b + tb′ = πB(d + td′) ∈ tτ (a + ta′|r + |t|r′) by
Definition (4.1). This completes the proof of (1).

Now, let a, a′ ∈ sa (A) and r > max{LA(a), LA(a′)}. Then if b ∈ tτ (a|r) and
b′ ∈ tτ (a′|r) then b− b′ ∈ tτ (a− a′|2r) by the proof of (1). By Proposition (4.3),
we have:

(4.1) ‖b− b′‖B 6 ‖a− a′‖A + 2rρ (τ).

This proves Assertion (2) of our proposition.
Assertion (3) is now obtained from Inequality (4.1) with a = a′. This completes

our proof. �

Our next goal is to relate the multiplicative structure of Leibniz quantum com-
pact metric spaces with target sets of tunnels. This requires us to obtain some
bound on the norm of lifts of elements with finite Lip-norm since the Leibniz prop-
erty given in Definition (2.13) involves both Lip-norms and norms of elements.
Such estimates are made possible thanks to our Definition (3.7) of the depth of a
tunnel.

Proposition 4.5. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces and τ ∈ Tunnels [(A, LA)→ (B, LB)]. If a ∈ sa (A), r > LA(a) and d ∈ sa (D)
with LD(d) 6 r and πA(d) = a, then ‖d‖D 6 ‖a‖A + 2rλ (τ).
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Proof. Let d ∈ sa (D) such that πA(d) = a and LD(d) 6 r. Write b = πB(d), so
that b ∈ tτ (a|r) by Definition (4.1).

Let ψ ∈ S (D) and let ε > 0. By Definition (3.7), there exist tε ∈ [0, 1],ϕA,ε ∈
S (A) and ϕB,ε ∈ S (B) such that:

mkLD (ψ, (tε ϕA,ε ◦ πA + (1− tε)ϕB,ε ◦ πB))) < δ (τ) + ε.

We write µε = tε ϕA,ε ◦ πA + (1− tε)ϕB,ε ◦ πB ∈ S (D).
Now:

|ψ(d)| 6 |ψ(d)− µε(d)|+ |µε(d)|
6 rmkLD (ψ, µε) + tε|ϕA,ε(a)|+ (1− tε)|ϕB,ε(b)|
6 r(δ (τ) + ε) + tε‖a‖A + (1− tε)‖b‖B
6 r(δ (τ) + ε) + max{‖a‖A, ‖b‖B}.

As ε > 0 is arbitrary, we conclude |ψ(d)| 6 rδ (τ) + max{‖a‖A, ‖b‖B}. Since
ψ ∈ S (D) is arbitrary, we conclude ‖d‖D 6 rδ (τ) + max{‖a‖A, ‖b‖B}.

Now, by Proposition (4.3), we have ‖b‖B 6 ‖a‖A + rρ (τ). Hence our proposi-
tion is proven. �

We thus can now establish the analogue of a multiplicative morphism property
for target sets. This property makes explicit use of the Leibniz property of Def-
inition (2.13), and it is the argument which will allow us to prove that the maps
constructed from target sets, when the distance between two Leibniz quantum
compact metric spaces is zero, are indeed multiplicative.

Proposition 4.6. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces and τ ∈ Tunnels [(A, LA)→ (B, LB)].

Let a, a′ ∈ sa (A), and let r > max{LA(a), LA(a′)}. Let b ∈ tτ (r|a), b′ ∈ tγ (r′|a′).
Then:

b ◦ b′ ∈ tτ
(
a ◦ a′

∣∣(‖a‖+ ‖a′‖+ 4rλ (τ))r
)
,

while: {
b, b′

}
∈ tτ

({
a, a′

}∣∣(‖a‖+ ‖a′‖+ 4rλ (τ))r
)
.

Proof. Let a, a′ ∈ sa (A), r > max{LA(a), LA(a′)}. Let b ∈ tγ (a|r), b′ ∈ tγ (a′|r).
Let d, d′ ∈ D such that LD(d) 6 r, LD(d′) 6 r, πA(d) = a,πB(d) = b and πA(d′) =
a′,πB(d′) = b′. By Proposition (4.5), we have:

‖d‖D 6 ‖a‖A + 2rλ (τ) and ‖d′‖D 6 ‖a′‖A + 2rλ (τ).

Since (D, LD) is a Leibniz quantum compact metric space, we get:

LD(d ◦ d′) 6 ‖d‖DLD(d′) + ‖d′‖DLD(d)

6 (‖a‖A + 2rλ (τ)) r +
(
‖a′‖A + 2rλ (τ)

)
r

6
(
‖a‖A + ‖a′‖A + 4rλ (τ)

)
r.

Since πA(d ◦ d′) = a ◦ a′, we conclude our proposition holds true for the Jordan
product.

The proof for the Lie product is similar. �
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We now turn to extending Proposition (4.3), Corollary (4.4) and Proposition
(4.6) from tunnels to journeys. To this end, we first introduce the notion of an
itinerary along a journey, which will then enable us to define target sets of jour-
neys, as well as provide a natural tool to derive results about journeys from their
analogues for tunnels.

Definition 4.7. Let C be a nonempty class of Leibniz quantum compact metric
spaces and let T be a class of tunnels compatible with C. Let (A, LA) and (B, LB)

in C. Let Υ ∈ Journeys
[
(A, LA)

T−→ (B, LB)
]

and write:

Υ =
(
Aj, Lj, τj,Aj+1, Lj+1 : j = 1, . . . , n

)
.

For any a ∈ sa (A) and b ∈ sa (B), and for any r > LA(a), we define the set of

r-itineraries from a to b Itineraries
(

a Υ−→ b
∣∣∣r) by:{

(ηj)j∈{1,...,n+1} : ∀j ∈ {1, . . . , n} ηj+1 ∈ tτj

(
ηj
∣∣r) and η1 = a, ηn+1 = b

}
.

Notation 4.8. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces and τ ∈ Tunnels [(A, LA)→ (B, LB)]. For any a ∈ sa (A) and r > LA(a),
we set:

Itineraries
(

a τ−→ ·
∣∣∣r) =

⋃
b∈sa(B)

Itineraries
(

a τ−→ b
∣∣∣r).

Similarly, for any b ∈ sa (B) and r > LB(b), we set:

Itineraries
(
· τ−→ b

∣∣∣r) =
⋃

a∈sa(B)

Itineraries
(

a τ−→ b
∣∣∣r).

Lemma 4.9. Let C be a nonempty class of Leibniz quantum compact metric spaces and
let T be a class of tunnels compatible with C. Let (A, LA) and (B, LB) in C. Let

Υ ∈ Journeys
[
(A, LA)

T−→ (B, LB)
]
. For all a ∈ sa (A) and r > LA(a), the set

Itineraries
(

a Υ−→ ·
∣∣∣r) is not empty.

Proof. This follows from an easy induction using Lemma (4.2). �

Journeys are a form of generalization of correspondence between Leibniz quan-
tum compact metric spaces, and in particular, as the analogue of set-valued func-
tions, one can make sense of the image of an element by a journey; this is the
subject of the following definition.

Definition 4.10. Let C be a nonempty class of Leibniz quantum compact metric
spaces and let T be a class of tunnels compatible with C. Let (A, LA) and (B, LB)

in C. Let Υ ∈ Journeys
[
(A, LA)

T−→ (B, LB)
]
. For any a ∈ sa (A) and r > LA(a),

we set:

TΥ (a|r) =
{

b ∈ sa (B) : Itineraries
(

a Υ−→ b
∣∣∣r) 6= ∅

}
.

The first natural observation is:
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Lemma 4.11. Let C be a nonempty class of Leibniz quantum compact metric spaces and
let T be a class of tunnels compatible with C. Let (A, LA) and (B, LB) in C. Let Υ ∈
Journeys

[
(A, LA)

T−→ (B, LB)
]
. For any a ∈ sa (A) and r > LA(a), the set TΥ (a|r) is

not empty.

Proof. This follows immediately from (4.9). �

By induction, we thus derive the following result about journeys. Observe that
assertions (2) and (3) of Corollary (4.12) could be interpreted by stating, somewhat
informally, that (reduced) journeys are morphisms for the underlying Jordan-Lie
algebra structure of the self-adjoint parts of Leibniz quantum compact metric spaces.
As we explained when presenting our results about target sets for tunnels, the
following result will allow us to build isometric isomorphisms between Leibniz
quantum compact metric spaces at distance zero, as limits of journeys, properly
defined.

Corollary 4.12. Let C be a nonempty class of Leibniz quantum compact metric spaces
and let T be a class of tunnels compatible with C. Let (A, LA) and (B, LB) be two Lei-

bniz quantum compact metric spaces in C and Υ ∈ Journeys
[
(A, LA)

T−→ (B, LB)
]

be a
journey from (A, LA) to (B, LB).

(1) If a ∈ sa (A), r > LA(a) and b ∈ TΥ (a|r) then:

‖b‖B 6 ‖a‖A + rλ (Υ).

(2) If a, a′ ∈ sa (A), r > LA(a), r′ > LA(a′), t ∈ R, and if b ∈ TΥ (a|r), b′ ∈
TΥ (a′|r′) then:

b + tb′ ∈ TΥ
(
a + ta′

∣∣r + |t|r′),
and

b ◦ b′ ∈ TΥ
(
a ◦ a′

∣∣(‖a‖A + ‖a′‖A + 4rλ (τ))r
)
,

while {
b, b′

}
∈ TΥ

({
a, a′

}∣∣(‖a‖A + ‖a′‖A + 4rλ (τ))r
)
.

(3) If a, a′ ∈ sa (A) and r > max{LA(a), LA(a′)} then:

sup
{
‖b− b′‖B : b ∈ TΥ (a|r), b′ ∈ TΥ

(
a′
∣∣r)} 6 ‖a− a′‖+ 2rλ (Υ).

(4) In particular, if a ∈ sa (A) and r > LA(a) then:

diam (TΥ (a|r), ‖ · ‖) 6 2rλ (Υ).

Proof. We proceed by induction on the size of the journey Υ and using Proposition
(4.3), Corollary (4.4) and Proposition (4.6) as well as the notion of itinerary. We
refer to [21, Proposition 5.11, Proposition 5.12] for a similar argument. �

We have now established the analogues of [21], and thus we are in a position to
prove, using similar methods as [21], the main theorem of this section.

Theorem 4.13. Let C be a nonempty class of Leibniz quantum compact metric spaces and
let T be a class of tunnels compatible with C. Let (A, LA) and (B, LB) be two Leibniz
quantum compact metric spaces in C. If:

Λ∗T ((A, LA), (B, LB)) = 0
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then there exists a *-isomorphism h : A→ B such that LB ◦ h = LA.

Proof. The proof of this theorem is now essentially identical to the proof of our
[21, Theorem 5.13], thanks to the estimates given by Corollary (4.12) in lieu of
the similar estimates in [21, Proposition 5.11, Proposition 5.12], with tunnels for
bridges and journeys for treks.

We only sketch the argument for the convenience of our reader. We refer the
reader to the proof of [21, Theorem 5.13] for a detailed demonstration, and only
aim in the following exposition at giving a rough idea of the construction of h.

By Definition (3.18), and by our assumption, for all n ∈ N, there exists a T -

journey Υn ∈ Journeys
[
(A, LA)

T−→ (B, LB)
]

from (A, LA) to (B, LB) such that:

λ (τ) 6
1

n + 1
.

Now, fix a ∈ sa (A) such that LA(a) < ∞. By Assertion (1) of Corollary (4.12), for
all r > LA(a), the sequence of target sets (TΥn (a|r))n∈N is a sequence of closed
subsets of the compact set:

C(a, r) = {b ∈ sa (B) : LB(b) 6 r and ‖b‖B 6 ‖a‖A + r}

since the length of Υn is less than 1 for all n ∈ N. Consequently, since the space
of closed subsets of a compact metric space for the Hausdorff distance is itself
compact, there exists a subsequence

(
TΥ f (n)

(a|r)
)

n∈N
which converges to some

compact set T (a|r) in the Hausdorff distance associated to ‖ · ‖B on the norm-
compact set C(a, r). At the moment, the function f : N → N depends on a and
r > LA(a), and thus do does T (a|r).

Now, since the sequence
(

diam
(
TΥ f (n)

(a|r), ‖ · ‖B
))

n∈N
converges to 0 by As-

sertion (4) of Corollary (4.12), the set T (a|r) is a singleton. Moreover, by Assertion
(4) of Corollary (4.12), for any a in the domain of LA and r > LA(a), and for all
n ∈ N we choose bn ∈ TΥ f (n)

(a|r), then the sequence (bn)n∈N converges in norm
to the unique element of T (a|r).

This is the crux of Claim (5.14) in the proof of [21, Theorem 5.13].
We now use a diagonal argument to construct h on a dense subset of sa (A),

as follows. Since the weak* topology of S (A) is metrizable, and in this topology,
S (A) is compact, we conclude that S (A) is separable for the weak* topology.
Thus the dual of A is separable by the Hahn-Jordan decomposition theorem [29],
and thus A is separable [4]. As the domain of LA is dense in sa (A), we conclude
with an easy argument that there exists a countable subset a of the domain of LA

which is dense in sa (A).
Let a be a countable dense set in sa (A) which is a subset of the domain of LA.

By a diagonal argument, we can find a strictly increasing f : N→ N such that for
all a ∈ a, the sequence

(
TΥ f (n)

(a|LA(a))
)

n∈N
converges to a singleton, denoted

{h(a)}, in the Hausdorff distance associated with ‖ · ‖B.
Now, using density of a in the domain of LA, we can extend h to a map from

the domain of LA to sa (B) and then prove that the resulting map is a Jordan-
Lie morphism of norm 1. This extension possess the property that, once again,
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if, for any a ∈ a and r > LA(a), and for all n ∈ N we choose bn ∈ TΥ f (n)
(a|r),

then the sequence (bn)n∈N converges in norm to h(a). This property follows from
Assertion (3) of Corollary (4.12), since if a ∈ a and a′ is in the domain of LA,
then the Hausdorff distance between TΥ f (n)

(a|r) and TΥn (a′|r) is no more than

‖a − a′‖A + 2rλ
(

Υ f (n)

)
, which can be made arbitrarily small by taking n large

enough and a close enough to a′. This is proven in Claim (5.15) of [21, Theorem
5.13].

The crucial step in proving that h is a Jordan-Lie morphism utilizes Assertions
(2) of Corollary (4.12): for instance, if a, a′ are in the domain of LA, and if r >
max{LA(a), LA(a′)}, and if, for all n ∈ N we choose bn ∈ TΥ f (n)

(a|r) and b′n ∈
TΥ f (n)

(a′|r), then by Assertion (2) of Corollary (4.12), we have:

bn ◦ b′n ∈ TΥ f (n)

(
a ◦ a′

∣∣∣∣r(‖a‖A + ‖a′‖A +
4r

f (n) + 1

))
⊆ TΥ f (n)

(
a ◦ a′

∣∣r (‖a‖A + ‖a′‖A + 2r
))

and thus, the sequence (bn ◦ b′n)n∈N must converge to h(a ◦ a′) since:

LA

(
a ◦ a′

)
6 LA(a)‖a‖A + LA(a′)‖a‖A
6 r

(
‖a‖A + ‖a′‖A

)
6 r

(
‖a‖A + ‖a′‖A + 2r

)
.

On the other hand, (bn ◦ b′n)n∈N converges to h(a) ◦ h(a′). Thus:

h(a ◦ a′) = h(a) ◦ h(a′) (see Claim (5.17) of the proof of [21, Theorem 5.13]).

The same reasoning applies to linearity (see Claim (5.16) of the proof of [21, Theo-
rem 5.13]) and the Lie product.

Moreover, using lower semicontinuity of LB, one proves that LB ◦ h 6 LA (see
Claim (5.16) of the proof of [21, Theorem 5.13]).

We then extend h to A by density and linearity and prove that it is a *-morphism,
which is natural from linearity and the Jordan-Lie morphism property on the do-
main of LA, as shown in Claim (5.18) of the proof of [21, Theorem 5.13].

The construction of the inverse of h proceeds by observing that the construction
of h can be applied once again to the sequence of journeys

(
Υ−1

f (n)

)
n∈N

, as shown

in Claim (5.19) of the proof of [21, Theorem 5.13]. The key observation is that
an itinerary from a ∈ sa (A) to b ∈ sa (B) for some journey Υ from (A, LA) to
(B, LB) can be reversed into an itinerary for Υ−1 from b to a. Once an inverse is
constructed, it is easy to check that h is an isometric isomorphism.

We point out that there is no unique isometric isomorphism h, as one may com-
pose h with isometric automorphisms on either end. This lack of uniqueness is
reflected in the proof above by the use of compactness to extract a subsequence
of journeys. Different subsequences may lead to different isometric isomorphism.
However, we show in Claim (5.19) of [21, Theorem 5.13] that once such a choice is
made (after the diagonal process step), the inverse which we construct is indeed

unique — it turns out that the sequences
(
TΥ−1

f (n)
(a|r)

)
n∈N

converge to {h−1(a)}

for all a ∈ sa (A) and r > LA(a). �
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We conclude with a summary of the two previous sections:

Theorem 4.14. Let C be a nonempty class of Leibniz quantum compact metric spaces and
let T be a class of tunnels compatible with C. The dual Gromov-Hausdorff C-Propinquity
Λ∗T is a metric on the isometric isomorphic classes of Leibniz quantum compact metric
spaces in C, in the following sense. For any three Leibniz quantum compact metric spaces
(A1, L1), (A2, L2) and (A3, L3) in C, we have:

(1) Λ∗T ((A1, L1), (A2, L2)) ∈ [0, ∞),
(2) Λ∗T ((A1, L1), (A2, L2)) = Λ∗T ((A2, L2), (A1, L1)),
(3) Λ∗T ((A1, L1), (A2, L2)) 6 Λ∗T ((A1, L1), (A3, L3)) + Λ∗T ((A3, L3), (A2, L2)),
(4) Λ∗T ((A1, L1), (A2, L2)) = 0 if and only if there exists a isometric isomorphism

ϕ : (A1, L1)→ (A2, L2).

Proof. By Proposition (3.21) and Theorem (4.13), the noncommutative T -propinquity
is null between two Leibniz quantum compact metric spaces if and only if they are
isometrically isomorphic.

By Theorem (3.25), the noncommutative T -propinquity is symmetric and satis-
fies the triangle inequality. This completes our proof. �

5. EXAMPLES OF CONVERGENCES

We prove a comparison theorem between our dual Gromov-Hausdorff propin-
quity and other (pseudo-)metrics on the class of Leibniz quantum compact metric
spaces. From these comparisons, we then derive various convergence results valid
for our distance. This section focuses on the dual Gromov-Hausdorff propinquity
Λ∗ = Λ∗L∗ , though it also applies to Λ∗∗, as well as any T -propinquity with enough
tunnels to allow for the proofs below.

As it would require much exposition to detail the construction of each metric,
we refer to [21] for the definitions of treks, bridges as they relate to the quantum
propinquity, to [39] for the construction of the quantum Gromov-Hausdorff dis-
tance, and to [35] for the construction of the quantum proximity. A brief summary
of the idea of the construction of the Gromov-Hausdorff distance, the quantum
Gromov-Hausdorff distance and the quantum proximity is given in the introduc-
tion of this paper. We shall use the following notations:

Notation 5.1. The quantum Gromov-Hausdorff distance on the class of compact
quantum metric spaces [39] is denoted by distq. The quantum Gromov-Hausdorff
distance restricts to a pseudo-metric on the class of Leibniz quantum compact met-
ric space.

Notation 5.2. The quantum proximity, defined on the class of compact C*-metric
spaces CM in [35] (see Example (3.13)), which not known to be a pseudo-distance,
is denoted by prox. The dual Gromov-Hausdorff propinquity restricts to a dis-
tance on the class CM and our work allows for the construction of a specialized
version of the dual Gromov-Hausdorff propinquity Λ∗∗ whose journeys all involve
only compact C*-metric spaces.

Notation 5.3. Last, the quantum Gromov-Hausdorff propinquity of [21] is de-
noted by Λ. The quantum propinquity can also be specialized, as its dual version
in this paper, to various subclasses of Leibniz quantum compact metric spaces.
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We begin with a lemma which will be useful in relating our dual Gromov-
Hausdorff propinquity with the quantum Gromov-Hausdorff distance.

Lemma 5.4. Let τ = (D, LD, πA, πB) be a tunnel from a Leibniz quantum compact
metric space (A, LA) to a Leibniz quantum compact metric space (B, LB). Then:

distq((A, LA), (B, LB)) 6 ρ (τ).

Proof. Let γ > 0 be given. For all (d1, d2) ∈ sa (D⊕D), we set:

Lγ(b1, b2) = max
{

LD(d1), LD(d2),
1
γ
‖d1 − d2‖D

}
.

Now, for any d ∈ D, we note that Lγ(d, d) = LD(d), and thus LD is an ad-
missible Lip-norm, in the sense of [39], for the pair of Lip-norms (LD, LD). Let
πj : (d1, d2) ∈ D⊕D 7→ dj for j ∈ {1, 2}. A simple computation shows that for all
j ∈ {1, 2}, if ϕ ◦ πj ∈ π∗j (S (D)) then:

(5.1) mkLγ
(ϕ ◦ π1, ϕ ◦ π2) 6 γ.

We note that this implies:

HausmkLγ
(π∗1 (S (D)) , π∗2 (S (D))) 6 γ.

For our purpose, however, the following computation is what is needed. Let ϕ ∈
S (A). Then there exists ψ ∈ S (B) such that mkLD(ϕ ◦ πA, ψ ◦ πB) 6 ρ (τ) by
Definition (3.4). Now, since π∗2 is an isometry:

mkLγ
(ϕ ◦ πA ◦ π1, ψ ◦ πB ◦ π2) 6 mkLγ

(ϕ ◦ πA ◦ π1, ϕ ◦ πA ◦ π2)

+ mkLγ
(ϕ ◦ πA ◦ π2, ψ ◦ πB ◦ π2)

6 γ + mkLD(ϕ ◦ πA, ψ ◦ πB) by Equation (5.1),

6 γ + ρ (τ).

By symmetry in the roles of A and B, as well as π1 and π2, we obtain:

(5.2) HausmkLγ
(π∗1 ◦ π∗A (S (A)) , π∗2 ◦ π∗B (S (B))) 6 γ + ρ (τ).

Now, let π = (πA ◦ π1, πB ◦ π2) : D⊕D → A⊕B. By construction, π is a *-
epimorphism. Let L′γ be the quotient seminorm from Lγ for π. By [39, Proposition
3.1], the Lipschitz pair (A⊕B, L′γ) is a compact quantum metric space and π∗ is
an isometry from S (A⊕B) into S (D⊕D).

As a remark, we note that L′γ may not possess the Leibniz property, though it
is closed by [39, Proposition 3.3]. We shall not need this remark in what follows;
however this observation justifies that we do not solely work with tunnels in the
class SUM.

Since π∗ is an isometry, the Hausdorff distance between S (A) and S (B) for
mkL′γ is no more than γ + ρ (τ) by Equation (5.2). Moreover, by [39, Proposition
3.7], the Lip-norm L′γ is admissible for (LA, LB). Hence by the definition of the
quantum Gromov-Hausdorff distance distq, we have:

distq(LA, LB) 6 ρ (τ) + γ.

As γ > 0 is arbitrary, our lemma is proven. �
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Theorem 5.5. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric spaces.
Then:

(5.3) distq((A, LA), (B, LB)) 6 Λ∗((A, LA), (B, LB)) 6 2Λ((A, LA), (B, LB)).

If (A, LA) and (B, LB) are in some class C of Leibniz quantum compact metric spaces and
T ⊆ G are two C-compatible classes of tunnels, then:

(5.4) Λ∗G((A, LA), (B, LB)) 6 Λ∗T ((A, LA), (B, LB)) 6 ΛC((A, LA), (B, LB)).

Moreover, if (A, LA) and (B, LB) are both compact C*-metric spaces, then:

(5.5) Λ∗((A, LA), (B, LB)) 6 Λ∗∗((A, LA), (B, LB)) 6 prox((A, L), (B, LB)).

Proof. By Definition (3.18), if T ⊆ G are C-compatible classes of tunnels, and
(A, LA) and (B, LB) lie in C, then:

Λ∗G((A, LA), (B, LB)) 6 Λ∗T ((A, LA), (B, LB)),

i.e. the first halves of Inequality (5.4) and Inequality (5.5) hold.
By construction, Λ∗∗ is dominated by Rieffel’s proximity, and thus Inequality

(5.5) is proven.
Let us now prove that the quantum Gromov-Hausdorff propinquity dominates

the dual Gromov-Hausdorff propinquity.
Let ε > 0. We recall from [21] that the quantum propinquity is computed as

the infimum of the lengths of all treks between two given Leibniz quantum com-
pact metric spaces. Let Γ ∈ Treks ((A, LA) −→ (B, LB)) be a trek from (A, LA) to
(B, LB) such that the length λ (Γ) of Γ satisfies λ (Γ) 6 Λ((A, LA), (B, LB)) + ε.

Write Γ = (Aj, Lj, γj,Aj+1, Lj+1 : j = 1, . . . , n), where γj is a bridge from
(Aj, Lj) to (Aj+1, Lj+1) for j ∈ {1, . . . , n} with (A, LA) = (A1, L1) and (B, LB) =
(An+1, Ln+1).

For each j ∈ {1, . . . , n}, aj ∈ sa
(
Aj
)

and aj+1 ∈ sa
(
Aj+1

)
, we set:

Lj(aj, aj+1) = max

{
Lj(aj), Lj+1(aj+1),

1
λ
(
γj
∣∣Lj, Lj+1

)bnγj

(
aj, aj+1

)}
,

where, for all j ∈ {1, . . . , n}, the real number λ
(
γj
∣∣Lj, Lj+1

)
is the length of the

bridge γj as defined in [21, Definition 3.17], and bnγj (·, ·) is the bridge seminorm
of γj as defined in [21, Definition 3.10].

By [21, Theorem 6.3], (Aj⊕Aj+1, Lj) is a Leibniz quantum compact metric space
and τj = (Aj⊕Aj+1, Lj, πl

j , πr
j ) is a tunnel from (Aj, Lj) to (Aj+1, Lj+1), with πr

l and

πl
r being the canonical surjections from Aj ⊕ Aj+1 onto Aj and onto Aj+1 respec-

tively. Thus Υ = (Aj, Lj, τj,Aj+1, Lj+1 : j = 1, . . . , n) is a journey from (A, LA) to
(B, LB).

The depth of τj is 0 for all j ∈ {1, . . . , n} by Remark (3.8). Moreover, by [21,
Theorem 6.3], the reach of the tunnel τj is bounded above by twice the length of
the bridge γj for all j ∈ {1, . . . , n}. In conclusion, λ

(
τj
)
6 2λ

(
γj
∣∣Lj, Lj+1

)
for all

j ∈ {1, . . . , n}. Thus λ (Υ) 6 2λ (Γ) and thus by Definition (3.18), we have:

Λ∗((A, LA), (B, LB)) 6 2Λ((A, LA), (B, LB)) + ε.
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As ε > 0 is arbitrary, we have established the desired upper bound on Λ∗. The
proof caries if we restrict the class of Leibniz quantum compact metric spaces and
tunnels, so the upper bound in Inequality (5.3) is established.

The claimed lower bound in Inequality (5.3) proceeds as follows. Let ε > 0 and
let:

Υ = (Aj, Lj, τj,Aj+1, Lj+1 : j = 1 . . . , n) ∈ Journeys
[
(A, LA)

T−→ (B, LB)
]

such that:

λ (Υ) =
n

∑
j=1

λ
(
τj
)
6 Λ∗((A, LA), (B, LB)) + ε.

Thus, since the quantum Gromov-Hausdorff distance satisfies the triangle in-
equality:

distq((A, LA), (B, LB)) 6
n

∑
j=1

distq((Aj, Lj), (Aj+1, Lj+1))

6
n

∑
j=1

ρ
(
τj
)

by Lemma (5.4),

6
n

∑
j=1

λ
(
τj
)

6 Λ∗((A, LA), (B, LB)) + ε.

Our theorem is thus proven as ε > 0 is arbitrary. �

We first obtain a more precise bound for the dual Gromov-Hausdorff propin-
quity using the known bound on the quantum propinquity:

Corollary 5.6. For any two Leibniz quantum compact metric spaces (A, LA) and (B, LB)
we have:

Λ∗((A, LA), (B, LB)) 6 max
{

diam
(
S (A), mkLA

)
, diam

(
S (B), mkLB

)}
.

Proof. Apply Theorem (5.5) to [21, Proposition 4.6]. �

We also can compare the dual Gromov-Hausdorff propinquity with the Gromov-
Hausdorff distance:

Corollary 5.7. Let (X, dX) and (Y, dY) be two compact metric spaces, and let GH be the
Gromov-Hausdorff distance [11]. Then:

Λ∗((C(X), LX), (C(Y), LY)) 6 GH((X, dX), (Y, dY)),

where LX and LY are, respectively, the Lipschitz seminorms associated to dX and dY.

Proof. This follows from Theorem (5.5) applied to [21, Theorem 6.6]. �

We pause to comment on the relationship between the dual Gromov-Hausdorff
propinquity and some other metrics in noncommutative metric geometry. The
unital nuclear distance of Kerr and Li [16] dominates the quantum propinquity,
hence it also dominates the dual Gromov-Hausdorff propinquity. It is very pos-
sible to define a matricial version of the dual Gromov-Hausdorff propinquity in
the spirit of the work of Kerr in [15], and such a metric would dominates Kerr’s
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distance for the same reasons as our current version dominates Rieffel’s metric.
Our dual Gromov-Hausdorff propinquity solves the matter of the coincidence
property of the quantum Gromov-Hausdorff distance in a different manner from
Kerr’s metric, which employs completely positive order-isomorphisms for this
purpose; it may however prove useful to work with a matricial version of the dual
Gromov-Hausdorff propinquity in the future. It is not clear how our dual Gromov-
Hausdorff propinquity compares to Kerr’s matricial distance. Last, another pos-
sible avenue for generalization of our current metric is to define a quantized dual
Gromov-Hausdorff propinquity in analogy with the quantized Gromov-Hausdorff
distance of [44], and again, the quantized dual Gromov-Hausdorff propinquity
would dominate Wu’s distance (on the class on which it would be defined, which
presumably would be the class consisting of pairs of a C*-algebra A endowed with
a sequence of Leibniz Lip-norms, one for each matrix algebra with entries in A).

We now propose two examples of convergences for the dual Gromov-Hausdorff
propinquity, both derived from earlier results about stronger metrics. We start
with families of Leibniz quantum compact metric spaces given by Examples (2.9).

Theorem 5.8. Let H∞ be a compact Abelian group endowed with a continuous length
function `. Let (Hn)n∈N be a sequence of closed subgroups of H∞ converging to H∞ for
the Hausdorff distance induced by ` on the class of closed subsets of H∞. Let σ∞ be a skew
bicharacter of the Pontryagin dual Ĥ∞. For each n ∈ N, we let σn be a skew bicharacter
of Ĥn, which we implicitly identity with its unique lift as a skew bicharacter of Ĥ∞. If
(σn)n∈N converges pointwise to σ∞, then:

lim
n→∞

Λ∗
((

C∗
(

Ĥn, σn

)
, Ln

)
,
(

C∗
(

Ĥ∞, σ∞

)
, L∞

))
= 0,

where for all n ∈ N∪ {∞} and a ∈ C∗
(

Ĥn, σn

)
we set:

Ln(a) = sup

‖a− α
g
n(a)‖C∗(Ĥn ,σn)

`(g)
: g ∈ H∞ \ {1H∞}


with 1H∞ is the unit of H∞ and αn is the dual action of Hn on C∗

(
Ĥn, σn

)
.

Proof. Apply [21, Theorem 6.8], which itself derives from the fact that the unital
nuclear distance [16] dominates the quantum Gromov-Hausdorff distance, and
the methods of [16] and [17] combined. �

A particular corollary regards the quantum tori and their finite dimensional
approximations:

Corollary 5.9. Let d ∈ N \ {0, 1}. LetN∗ = N∪ {∞} be the one point compactification
of N and we endow the space B of skew-bicharacters of Zd with the topology of pointwise
convergence. For any k = (k1, . . . , kd) ∈ N

d
∗, we denote by Zd

k = Zd
/

∏d
j=1 k jZ , where

by convention ∞Z = {0}. Every skew-bicharacter of Zd
k is identified with its unique lift

to B. We endowNd
∗ × B with the product topology.

Let σ a skew-bicharacter of Zd. Write ∞d = (∞, . . . , ∞) ∈ Nd
∗. Let l be a continuous

length function on Td where T = {z ∈ C : |z| = 1}. For all c ∈ Nd, θ ∈ B, let Ll,c,θ be
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the Lip-norm on the twisted C*-algebra C∗(Zd
c , θ) defined, for all a ∈ C∗(Zd

k , θ) by:

Ll,c,θ(a) = sup

{‖αg(a)− a‖C∗(Zd
k ,θ)

l(g)
: g 6= (1, . . . , 1)

}
where α is the dual action of the dual of Zd

k , seen as a subgroup of Td, on C∗(Zd, θ).
Then:

lim
(c,θ)→(∞d ,σ)

Λ∗
((

C∗
(
Zd

c , θ
)

, Ll,c,θ

)
,
(

C∗
(
Zd, σ

)
, Ll,∞d ,σ

))
= 0.

Proof. This result may be derived from Theorem (5.8), or from Theorem (5.5) ap-
plied to the work in [19], which provides a more explicit and quantitative con-
struction of bridges than the implicit approach of [16]. �

We can also recast Rieffel’s work on convergences of matrix algebras to the
sphere, as he develops in [35] the necessary estimates to obtain the desired con-
vergence for the proximity, and hence our dual Gromov-Hausdorff propinquity.

Corollary 5.10. Let G be a compact connected Lie semisimple group and ` a continuous
length function on G. Let π be an irreducible unitary representation of G on some Hilbert
space H . Let ξ be a normalized highest weight vector for π. For any n ∈ N, we denote by
πn the restriction of π⊗n to the irreducible space Hn for π⊗n containing ξ⊗n. Note that
πn is an irreducible representation for G of highest weight vector ξ⊗n.

Let Bn = B(Hn) be the matrix algebras of linear endomorphisms of Hn and let α be
the action of G on Bn by conjugation.Let H be the stability subgroup of the projection on
Cξ⊗n and note that H is independent of n ∈ N.

Now, G acts continuously and ergodically on both A = C
(G /H

)
and Bn, thus

defining Leibniz closed Lip-norms LA and Ln, respectively. We then have:

lim
n→∞

Λ∗((A, LA), (Bn, Ln)) = 0.

Proof. Apply Theorem (5.5) to [35, Theorem 9.1]. �

We shall observe, at the conclusion of this paper, that Rieffel proved in [36] that
the finite dimensional Leibniz quantum compact metric spaces which appear in
Corollary (5.10) form a Cauchy sequence for the quantum proximity. As the latter
does not satisfy the triangle inequality, this observation does not derive from [35,
Theorem 9.1], but instead uses new estimates based upon techniques which, in
turn, inspired our work in [21]. Since we are now going to prove that the dual
Gromov-Hausdorff propinquity is complete, Rieffel’s result in [36] provides an
alternative approach to Corollary (5.10).

6. COMPLETENESS

In this last section, we prove that the dual Gromov-Hausdorff propinquity is
complete. This property is a strong motivation for our introduction of this metric.
Indeed, the Gromov-Hausdorff is a complete metric on the class of compact metric
spaces [11], which is a very important property in metric geometry. Rieffel’s quan-
tum Gromov-Hausdorff is complete as well [39]. However, our quantum propin-
quity is not known to be complete, and our investigation in this matter reveals
difficulties tied to the restrictions we placed on the type of Lip-norms involved in
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[21]. The dual Gromov-Hausdorff propinquity, which we have so far proven sat-
isfies all desirable properties of the quantum propinquity, is the result of our work
on completeness for our new metrics, a property we very strongly feel is necessary
for any analogue to the Gromov-Hausdorff distance in noncommutative geometry.

Our work focuses on the dual Gromov-Hausdorff propinquity Λ∗, though it is
possible to extend it to various specialized noncommutative propinquities, with
some care.

In order to lighten our exposition, we group some common hypothesis to many
results in this section. We begin with a special type of sequences of Leibniz quan-
tum compact metric spaces and some associated tunnels, which will prove suffi-
cient to establish the completeness of the dual Gromov-Hausdorff propinquity, as
we will see at the end of this section: indeed, every Cauchy sequence contains a
subsequence with the properties listed in Hypothesis (6.5). The reason to choose
sequences with the properties listed in Hypothesis (6.5) is that it allows for the
construction of Leibniz quantum compact metric spaces which will be used as
tunnels. The content of Hypothesis (6.2) defines all the basic objects which will
be used repeatedly in this section to construct the limit of a Cauchy sequence of
Leibniz quantum compact metric spaces for Λ∗.

Notation 6.1. Let N ∈ N and set NN = {n ∈ N : n > N}. If (An)n∈NN is a
sequence of C*-algebras, then ∏n∈NN

An is the C*-algebra of bounded sequences
(an)n∈NN with an ∈ An for all n ∈ NN , with norm given by:

‖(an)n∈NN‖∞ = sup{‖an‖An : n ∈ NN} < ∞.

We begin by defining some structures associated with sequences of Leibniz
quantum compact metric spaces and associated tunnels. We will see at the end
of this section that we can work with tunnels, instead of journeys, toward our
goal. For now, we shall assume in this section:

Hypthesis 6.2. Let (An, Ln)n∈N be a sequence of Leibniz quantum compact metric
spaces and, for each n ∈ N, let:

τn ∈ Tunnels [(An, Ln)→ (An+1, Ln+1)].

For each n ∈ N we write τn = (Dn, Ln, πn, ρn), where (Dn, Ln) is a Leibniz quan-
tum compact metric space and πn : Dn � An and ρn : Dn � An+1 are *-
epimorphisms.

Let N ∈ N. Define:

SN : (dn)n∈NN ∈ sa

(
∏

n∈NN

Dn

)
7−→ sup {Ln(dn) : n ∈ NN} .

Let:

LN =

d = (dn)n∈NN ∈ ∏
n∈NN

Dn

∣∣∣∣∣∣
∀n ∈ NN dn ∈ sa (Dn),
SN(d) < ∞ and
∀n ∈ NN πn+1(dn+1) = ρn(dn)

 .
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For all d ∈ ∏n∈NN
Dn, we denote 1

2 (d + d∗) by <(d) and 1
2i (d− d∗) by =(d). We

then define:

SN =

{
d ∈ ∏

n∈NN

Dn : <(d),=(d) ∈ LN

}
.

We also let GN be the norm closure of SN in ∏n∈NN
Dn.

For all n ∈ NN , we denote the projection (dn)n∈NN ∈ GN 7→ dn ∈ Dn by Ξn,
and we denote πn ◦ Ξn : G → An by Πn. Note that we do not decorate either Ξn
or Πn with N, as there is no risk of ambiguity.

Outside of the results and proofs in this section, where we will rigorously refer
to the proper set of assumptions, the text in the rest of our paper will implicitly
use the notations in Hypothesis (6.2).

The spaces GN introduced in Hypothesis (6.2) will be used to construct new
Leibniz quantum compact metric spaces and tunnels. The first step toward this
goal is to establish the algebraic structures of these spaces.

Lemma 6.3. We assume Hypothesis (6.2).
Then LN is a Jordan-Lie subalgebra of sa

(
∏n∈NN

Dn
)
, while SN is the linear span of

LN ∪L∗N in ∏n∈NN
Dn and is a *-subalgebra of ∏n∈NN

Dn. Thus GN is a C*-subalgebra
of ∏n∈NN

Dn.

Proof. The unit (1Dn)n∈NN lies in LN . Let (dn)n∈NN , (d′n)n∈NN be elements in LN
and let t ∈ R. Then:

Ln(dn + td′n) 6 SN((dn)n∈N) + |t|SN((d′n)n∈NN )

for all n ∈ NN , so SN((dn + td′n)n∈N) < ∞. Moreover:

πn+1(dn+1 + td′n+1) = πn+1(dn+1) + tπn+1(d′n+1)

= ρn(dn) + tρn(d′n) = ρ(dn + td′n)

for all n ∈ NN . Hence (dn + td′n)n∈NN ∈ LN as desired.
Moreover, for all n ∈ NN :

Ln(dn ◦ d′n) 6 ‖dn‖Dn Ln(d′n) + ‖d′n‖Dn Ln(dn)

6 ‖(dn)n∈NN‖∞SN((d′n)n∈NN ) + ‖(d
′
n)n∈NN‖∞SN((dn)n∈NN ) < ∞

and, ρn+1(dn+1 ◦ d′n+1) = πn(dn ◦ d′n). The same computation holds for the Lie
product, so LN is closed under the Jordan and Lie product, as desired.

It is now easy to check that SN is a *-subalgebra of ∏n∈NN
Dn, and that it must

be the smallest such *-algebra (in fact, the smallest linear space) containing LN ∪
L∗N . This concludes our lemma. �

We continue progressing toward the construction of new Leibniz quantum com-
pact metric spaces based on the spaces GN with the following result:

Lemma 6.4. Assume Hypothesis (6.2). The pair (GN , SN) is a Lipschitz pair.

Proof. Let d = (dn)n∈NN ∈ sa (GN) with SN(d) = 0. Then for all n > N, we have
Ln(dn) = 0, thus dn = tn1Dn for some tn ∈ R. Now, for all n ∈ NN we have
tn+11An+1 = πn+1(dn+1) = ρn(dn) = tn1An+1 and thus d = t01GN as expected.

The domain of SN is dense in sa (GN) by definition of GN , thus our proof is
completed. �
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By Lemma (6.4), mkSN is a metric on S (GN) whose topology is finer than the
weak* topology [30], though it may not metrize the weak* topology, or even be
bounded. We shall prove in the next few lemmas that (GN , SN) is indeed a Lei-
bniz quantum compact metric space and can be used to build tunnels, under the
following additional assumption:

Hypthesis 6.5. Assume Hypothesis (6.2), as well as ∑∞
j=0 λ

(
τj
)
< ∞, and we de-

note ∑∞
j=N λ

(
τj
)

by MN .

This assumption is natural in our context, as in particular it would seem difficult
to prove that mkSN is bounded without it. Note that in particular, the sequence
(An, Ln)n∈N given by Hypothesis (6.5) is Cauchy for the dual Gromov-Hausdorff
propinquity. We thus hope to show, in the next few pages, that this sequence
indeed has a limit for the dual Gromov-Hausdorff propinquity.

As a first step, we show that we can lift elements from Dn to GN with n > N,
while keeping both the Lip-norm and norm close to the ones of the lifted element:

Lemma 6.6. Assume Hypothesis (6.5). Let n ∈ NN , dn ∈ sa (Dn) and ε > 0. There
exists d ∈ LN such that Ξn(d) = dn, Ln(dn) 6 SN(d) 6 Ln(dn) + ε and:

‖d‖GN 6 ‖dn‖Dn + 2(Ln(dn) + ε)MN .

Moreover, if d ∈ GN and k ∈ {0, . . . , N} then there exists f = ( fn)n∈Nk ∈ Gk such that
(kn)n∈NN = (dn)n∈NN with:

SN(d) 6 Sk( f ) 6 SN(d) + ε and ‖ f ‖Gk 6 ‖d‖GN + 2(SN(d) + ε)
N−1

∑
j=k

λ
(
τj
)
.

Proof. We proceed by induction. To simplify notations, let sn = ∑n
j=1

1
2j and, by

convention, s−1 = s0 = 0.
Assume that for some K > n, we have (dn, . . . , dK) ∈ ⊕K

j=nsa
(
Dj
)

such that
ρj(dj) = πj+1(dj+1) for all j such that n 6 j 6 K− 1, and:

Lj(dj) 6 Ln(dn) + sj−nε

while:

‖dj‖Dj 6 ‖dn‖Dn + 2(Ln(dn) + sj−n−1ε)
j

∑
j=n+1

λ
(
τj
)

for all j ∈ {n, . . . , N}. Note that this assumption is met for K = n trivially.
Let b = ρK(dK) ∈ sa (AK+1). By Definition (3.1), there exists dK+1 ∈ sa (DK+1)

such that πK+1(dK+1) = b and LK+1(dK+1) 6 LK+1(b) + 1
2K+1−n ε. Since LK+1(b) 6

LK(dK), we conclude that LK+1(dK+1) 6 Ln(dn) + sK+1−nε.
Moreover, by Proposition (4.5), we have:

‖dK+1‖DK+1 6 ‖b‖DK + 2LK+1(b)ρ (τK+1)

6 ‖dK‖DK + 2LK(dK)ρ (τK+1)

6 ‖dn‖Dn + 2(Ln(dn) + sK−nε)
K+1

∑
j=n+1

λ
(
τj
)
.
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Thus, our induction is complete and we have obtained a sequence (dj)j>K ∈
∏j∈Nn Dj with the desired property.

We can complete this sequence to a sequence of GN by a similar (finite) induc-
tion for j ∈ {N, . . . , n − 1}, which will prove the second assertion of our lemma
as well. We thus assume given a sequence (dj)j∈Nn ∈ Ln and we wish to find an
extension to LN for some N 6 n. Assume that for some j ∈ {N + 1, . . . , n}, we
have constructed dj ∈ sa

(
Dj
)

such that:

Ln(dn) 6 Lj(dj) 6 Ln(dn) + sn−j+1ε

and

‖dj‖Dj 6 ‖dn‖Gn + 2(Ln(dn) + sn−j+1ε)
n−1

∑
k=j

λ (τk).

These assumptions are met for j = n trivially. Now, let a = πj(dj). Then there
exists dj−1 ∈ sa

(
Dj−1

)
such that ρ(dj−1) = a and:

Lj−1(dj−1) 6 Lj(a) +
1
2j ε 6 Lj−1(dj−1) +

1
2n−j ε.

Thus Lj−1(dj−1) 6 Ln(dn) + sn−jε. Moreover, we conclude from Proposition (4.5)
that ‖dj−1‖Dj−1 6 ‖a‖Aj + 2Lj(a)λ

(
τj−1

)
. Hence:

‖dj−1‖Dj−1 6 ‖dn‖Dn + 2(Ln(dn) + sn−jε)
n−1

∑
k=j−1

λ (τk).

Thus our induction is complete. �

We thus establish that the quotient seminorms of SN for the canonical projec-
tions Ξn and Πn (n ∈ NN) are given by the Lip-norms on Dn and An, respectively:
thus, (GN , SN) can be used to form tunnels, except that we have yet to prove that
SN is a Lip-norm — a fact which will in fact rely on the next corollaries as well.

We start with:

Corollary 6.7. Assume Hypothesis (6.5). Let n ∈ NN . The map:

Ξn : (dj)j∈NN ∈ GN → dn ∈ Dn

is a *-epimorphism. Moreover:

∀d ∈ sa (Dn) Ln(d) = inf {SN(d) : d ∈ sa (GN), Ξn(d) = dn} .

Consequently, if ϕ, ψ ∈ S (Dn) then:

mkLn(ϕ, ψ) = mkSN (ϕ ◦ ΞN , ψ ◦ ΞN).

Proof. Immediate from Lemma (6.6). �

We also observe that we can describe the full state space of GN :

Corollary 6.8. The set co
(⋃

n∈NN
Ξ∗N(S (Dn))

)
is S (GN).
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Proof. The polar of
⋃

n∈NN
Ξ∗(S (Dn)) is:{

(dn)n∈NN ∈ GN : ∀n ∈ NN ‖dn‖Dn = 0
}
= {0}

which gives our conclusion by an application of the bipolar theorem as in [9,
Proposition 5.4]. �

Note that the state space of ∏n∈NN
Dn is very large, as it contains, in addition to

co
(⋃

n∈NN

)
, states which are given as limits along ultrafilters ofN, for instance —

and in general, it is not a separable space in the weak* topology. Thus GN is a much
more approachable object than ∏n∈NN

Dn for our purpose, and in particular, it can
be seen as a form of compactification of the set of finitely supported sequences in
∏n∈NN

Dn.
We continue to prove that the quotient seminorms of SN by the projections Πn

are given as expected:

Corollary 6.9. Assume Hypothesis (6.5). For all n ∈ NN and a ∈ sa (An), if Πn =
πn ◦ Ξn, we have:

Ln(a) = inf{SN(d) : d ∈ LN , Πn(d) = a}.

Proof. Let ε > 0. Let d ∈ Dn such that Ln(d) 6 Ln(a) + ε. By Lemma (6.6), there
exists g ∈ GN such that Ξn(g) = d and SN(g) 6 Ln(d) + ε. The Lemma is thus
proven since ΠN(g) = πn ◦ Ξn(g) and ε > 0 is arbitrary. �

Last, we also have another isometry between Leibniz quantum compact metric
space:

Corollary 6.10. Assume Hypothesis (6.5). Let K 6 N ∈ N and let:

TK
N : (dn)n∈NK ∈ GK 7−→ (dn)n∈NN ∈ GN .

The map TK
N is a *-epimorphism and the quotient seminorm of SK for TK

N is SN . In particu-
lar, the dual map (TK

N)
∗ induces an isometry from (S (GN), mkSK ) into (S (GK), mkSN ).

Proof. By Lemma (6.6), if d ∈ GN and for all ε > 0, there exists f ∈ GK such that
TK

N( f ) = d, SN(d) 6 SK( f ) 6 SN( f ) + ε. This completes our proof. �

Now, although SN is not yet proven to be a Lip-norm on GN , the metric mkSN on
S (GN) is well-defined. We thus can estimate the Hausdorff distance between the
state spaces of the Leibniz quantum compact metric spaces (Dn, Ln), for all n > N,
in (S (GN), mkSN ). Note that even though SN is not proven yet to be a Lip-norm
— in fact, we will use the following lemma toward this goal, the Monge-Kantoro-
vich metric associated with SN is well-defined, and we have constructed various
isometries for this metric in Corollary (6.7), Corollary (6.9) and Corollary (6.10).

Lemma 6.11. We assume Hypothesis (6.5). Then for all n > N:

HausmkSN
(Ξ∗n(S (Dn)), Ξ∗n+1(S (Dn+1))) 6 2 max{λ (τn), λ (τn+1)}.

Proof. Let ϕ ∈ S (Dn+1) and ε > 0. By Definition (3.7) and Corollary (6.7), there
exists:

µ ∈ co
(
π∗n+1(S (An+1)) ∪ ρ∗n+1(S (An+2))

)
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such that:
mkSN (Ξ

∗
n+1(ϕ), Ξ∗n+1(µ)) = mkLn+1(ϕ, µ)

6 ε + δ (τn+1).

Let ψ ∈ S (An+1), η ∈ S (An+2) and t ∈ [0, 1] such that µ = tψ ◦πn+1 + (1− t)η ◦
ρn+1.

Now, by Definition (3.4), there exists θ ∈ S (An+1) such that:

mkLn+1(θ ◦ πn+1, η ◦ ρn+1) 6 ρ (τn+1).

Thus, we have:

mkSN (Ξ
∗
n+1(ϕ), Π∗n+1(tψ + (1− t)θ))

6 mkLn+1(ϕ, tπ∗n+1(ψ) + (1− t)ρ∗n+1(η))

+ mkLn+1(tπ∗n+1(ψ) + (1− t)ρ∗n+1(η), tπ∗n+1(ψ) + (1− t)π∗n+1(θ))

6 λ (τn+1) + (1− t)mkLn+1(ρ∗n+1(η), π∗n+1(θ))

6 2λ (τn+1).

Last, by definition of GN , we have:

Ξ∗n+1 ◦ π∗n+1(tψ + (1− t)θ) = Ξ∗n ◦ ρ∗n(tψ + (1− t)θ)) ∈ Ξ∗n(S (Dn)),

since πn+1 ◦ Ξn+1 = ρn ◦ Ξn. The proof is similar when the roles of Dn and Dn+1
are exchanged. This concludes our lemma. �

In particular, under Hypothesis (6.5), the sequence (Ξ∗n(S (Dn)))n∈NN is Cauchy
for the Hausdorff distance associated with mkSN . However, without additional in-
formation on mkSN , we can not conclude about the convergence of this sequence.

We now prove, with the next few lemmas, that SN are Lip-norms for all N ∈ N.
The first matter to address is to prove that mkSN is bounded for all N ∈ N. To this
end, we work first with:

Notation 6.12. For all n ∈ N, let:

Hn =
{
(dj)

n
j=0 ∈ ⊕n

j=0Dj : ∀j ∈ {0, . . . , n− 1} ρj(dj) = πj+1(dj+1)
}

,

and let:
Mn((dj)

n
j=0) = max{Lj(dj) : j ∈ {0, . . . , n}}.

Lemma 6.13. Assume Hypothesis (6.5). Let TN : (dn)n∈N ∈ G0 7→ (dn)n∈{0,...,N} ∈
HN . Then TN is a *-epimorphism such that the quotient of S0 by TN is MN . In par-
ticular, T∗N induces an isometry from (S (HN), mkMN ) into (S (G0), mkS0). Moreover,
(HN , MN) is an Leibniz quantum compact metric space.

Proof. We apply Lemma (6.6). �

The key observation regarding the Leibniz quantum compact metric spaces
(Hn, Mn) (n ∈ N) is given by:

Lemma 6.14. Assume Hypothesis (6.5). There exists k > 0 such that for all n ∈ N, we
have:

diam
(
S (Hn), mkMn

)
6 k.
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Proof. By using the same method as in [39, Lemma 12.4,Corollary 12.5], we have:

diam
(
S (Hn), mkMn

)
6 diam

(
S (D0), mkL0

)
+ 2

n

∑
j=0

HausmkL(S (Dj), S (Dj+1)).

By Lemma (6.11), we conclude:

diam
(
S (Hn), mkMn

)
6 diam

(
S (D0), mkL0

)
+ 4

n

∑
j=0

λ
(
τj
)

6 diam
(
S (D0), mkL0

)
+ M0.

Conclude by setting k = diam
(
S (D0), mkL0

)
+ M0. �

We thus get, in a manner similar to [39, Lemma 12.6]:

Lemma 6.15. Assume Hypothesis (6.5). Let k be given by Lemma (6.14). For any d ∈ G0
with S0(d) 6 1, there exists t ∈ R such that ‖d− t1G‖∞ 6 k.

Proof. Let d ∈ G0 with S0(d) 6 1. Let n ∈ N. Let:

Ωn : (dj)j∈N ∈ G0 7→ (dj)j6n ∈ Hn

for all n ∈ N.
For any n ∈ N, set bn = Ωn(d), and note that there exists tn ∈ R such that:

‖dn − tn1Bn‖Hn 6 diam (S (Hn), Mn) 6 k

by [31, Proposition 2.2] and Lemma (6.14).
Let Bn = {t ∈ R : ‖bn − t1n‖Hn 6 k}. Then Bn is nonempty, closed and

bounded inR. Moreover, if t ∈ Bn+1 then ‖bn− t1Hn‖Hn 6 ‖bn+1− t1Hn+1‖Hn+1 6
k. Thus Bn+1 ⊆ Bn for all n ∈ N. Consequently,

⋂
n∈N Bn 6= ∅. Let t ∈ ⋂n∈N Bn. By

construction, we have ‖bn− t1Hn‖Dn 6 k for all n ∈ N, and thus ‖d− t1G0‖G0 6 k
as desired. �

Lemma 6.16. Assume Hypothesis (6.5). (S (GN), mkSN ) has finite diameter.

Proof. Since (S (GN), mkSN ) is isometric to a subset of (S (G0, mkS0) by Corollary
(6.10), it is sufficient to show our lemma for G0. Let k be given by Lemma (6.14).

Let d ∈ G0 with S0(d) 6 1, and let ϕ, ψ ∈ S (G0). Let t ∈ R be given by Lemma
(6.15):

|ϕ(d)− ψ(d)| = |ϕ(d− t1D)− ψ(d− 1D)| 6 2k.

This concludes our lemma. �

To conclude that SN is a Lip-norm on GN , we wish to apply Theorem (2.7). Since
we have shown in Lemma (6.16) that mkSN is bounded, the following Lemma is
sufficient to apply Theorem (2.7):

Lemma 6.17. Assume Hypothesis (6.5). Let D = diam
(
S (G0), mkS0

)
. The set:

l = {d ∈ L0 : S0(d) 6 1 and ‖d‖∞ 6 D}

is norm-compact in G0.
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Proof. Let d ∈ l. Then by definition:

d ∈ ∏
n∈N
{dn ∈ sa (Dn) : Ln(dn) 6 1 and ‖dn‖Dn 6 D}

and the latter set is compact by Tychonoff theorem, since each factor is compact as
(Dn, Ln) is an Leibniz quantum compact metric space for all n ∈ N. �

We can now conclude:

Proposition 6.18. Assume Hypothesis (6.5). (GN , SN) is a Leibniz quantum compact
metric space.

Proof. By Lemma (6.16), Lemma (6.17) and [30, Theorem 1.9], we thus conclude
that (G0, S0) is a compact quantum metric space. Moreover, G0 is a unital C*-
algebra, S0 is Leibniz as the supremum of Leibniz seminorms, and S0 is lower-
semi-continuous as the supremum of lower semi-continuous seminorms.

By Corollary (6.10), (GN , SN) is a quotient of (G0, S0) and thus it is also a com-
pact quantum metric space by [39, Proposition 3.1]. SN is a lower semi-continuous
Leibniz seminorm for the same reasons as S0 (note that SN is closed by [39, Propo-
sition 3.3] as well).

Our proposition is thus proven. �

We now have established that our spaces (GN , SN) are Leibniz quantum com-
pact metric spaces, and thanks to Corollary (6.9), we can use these spaces as part
of tunnels from (An, Ln), for n > N.

We now turn to the construction the prospective limit of the sequence (An, Ln)n∈N
for the dual Gromov-Hausdorff propinquity. The first step is to identify the state
space of the prospective limit.

Proposition 6.19. Assume Hypothesis (6.5). The sequences (Π∗n(S (An)))n∈N and
(Ξ∗n(S (Dn)))n∈NN converges in (S (G0), mkS0) to the same limit. We shall denote
this common limit by Z.

Proof. By assumption and Corollary (6.9):

HausmkS0

(
Π∗n(S (An)), Π∗n+1(S (An+1))

)
6 λ (τn)

and by Hypothesis (6.5), (∑ τ(n))n∈N is summable. Thus (Π∗n(S (An)))n∈N is a
Cauchy sequence in the complete set of all weak* compact subsets of S (G0) for
the Hausdorff distance associated with mkSN (which metrizes the weak* topology
of the weak* compact S (GN) by Proposition (6.18)).

Thus the sequence converges to some weak* compact subset Z in S (GN). Now,
for all n ∈ NN , we have:

HausmkSN
(Ξ∗n(S (Dn)), Z) 6 HausmkLn (S (Dn)), π∗n(S (An)))

+ HausmkSn
(Π∗n(S (An)), Z)

6 δ (τn) + HausmkSN
(Π∗nS (An)), Z)

so our proposition is proven since (δ (τn))n∈N converges to 0. �
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Using Kadisson functional calculus [12], we associate to every element a ∈ G0 a
continuous affine function â defined on the convex set S (G0), endowed with the
weak* topology, by setting for all ϕ ∈ S (G0):

â(ϕ) = ϕ(a).

The quantum Gromov-Hausdorff limit for the sequence (An, Ln)n∈N is the set:

P0 = { â|Z : a ∈ G0}
where â|Z is the restriction of â to Z ⊆ S (G0) for all a ∈ G0. Yet it is not clear, from
such a description, that we can use this order-unit space to build our candidate for
a unital C*-algebra, and that the quotient of S0 on this object is a closed Leibniz
Lip-norm.

To construct a C*-algebra candidate for our limit, we begin with:

Lemma 6.20. Assume Hypothesis (6.5). Then:

{d ∈ GN : ∀ϕ ∈ Z ϕ(d) = 0} = {(dn)n∈NN ∈ GN : lim
n→∞

‖dn‖Dn = 0}.

we denote:
IN =

{
(dn)n∈N ∈ GN : lim

n→∞
‖dn‖Dn = 0

}
by IN . Note that IN is a closed two-sided ideal of GN .

Proof. Let ε > 0 and d = (dn)n∈N ∈ G0, which we assume not zero without loss of
generality, and such that ϕ(d) = 0 for all ϕ ∈ Z. By density, let w = (wn)n∈N ∈ G0
with S0(w) < ∞ and ‖d− w‖∞ < 1

3 ε. Note that d 6∈ R1G0 and we can choose w
with S0(w) > 0. By Proposition (6.19), There exists N ∈ N such that for all n > N,
we have:

HausmkS0
(Ξ∗n(S (Dn)), Z) 6

1
3S0(w)

ε.

Let ϕ ∈ S (Dn) for some n > N. There exists ψ ∈ Z such that mkS0(ϕ ◦ Ξn, ψ) 6
1

3S0(w)
ε. Now:

|ϕ(dn)| 6 |ϕ(dn)− ϕ(wn)|+ |ϕ(wn)|

6
1
3

ε + |ϕ(wn)− ψ(w)|+ |ψ(w)|

=
1
3

ε + |ϕ ◦ Ξn(w)− ψ(w)|+ |ψ(w)|

6
2
3

ε + |ψ(w)− ψ(d)| as ψ(d) = 0,

6 ε.

Hence, for all n > N, we have shown ‖dn‖Dn < ε. Thus limn→∞ ‖dn‖Dn = 0.
Conversely, assume d = (dn)n∈N ∈ G is chosen so that limn→∞ ‖dn‖Dn = 0.

Let ψ ∈ Z and let ε > 0. There exists N ∈ N such that for all n > N, we have
‖dn‖Dn 6 ε. On the other hand, there exists M ∈ N such that for all n > M, there
exists ϕ ∈ S (Dn) such that mkS0(ϕ ◦ Ξn, ψ) < 1

2 ε by Proposition (6.19). Thus, for
n = max{M, N}, we have:

|ψ(d)| 6 |ψ(d)− ϕ(dn)|+ |ϕ(dn)| 6 ε.

As ε > 0 is arbitrary, we conclude that ψ(d) = 0 as desired. �
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We now have a candidate for our limit, as the quotient C*-algebra F = G0
/
I0 ,

where I0 is the ideal of G0 given in Lemma (6.20). We now must focus our atten-
tion on the Lip-norm we wish to endow it with. We start with:

Lemma 6.21. Let Q be the quotient seminorm of S0 on F = G0
/
I0 , using the assump-

tions and notations of Lemma (6.20). Let q : G0 � F be the canonical surjection. We
define:

∀a ∈ sa (F) Q(a) = inf {S0(d) : d ∈ sa (G0) and q(d) = a} .

The seminorm Q is a lower semi-continuous Lip-norm on F.

Proof. Since S0 is a closed Lip-norm, [39, Proposition 3.1, Proposition 3.3] shows
that Q is a closed Lip-norm on F. �

We have yet to prove that Q, as defined in Lemma (6.21), has the Leibniz prop-
erty. While in general, the quotient of a Leibniz Lip-norm is not Leibniz, there is a
natural condition to assure that the Leibniz property is inherited by quotient semi-
norms, which Rieffel called compatibility [35, Definition 5.1]. However, Rieffel’s
notion is too strong here. Instead, we are going to use a form of “asymptotic” com-
patibility, by using Proposition (4.5) together with all the tunnels we have built so
far — one for each N ∈ N, in the notations of Hypothesis (6.2). We begin by ob-
serving that our quotient Lip-norm does not change, of course, if we work with
any truncated subsequence:

Lemma 6.22. Let T0
N : (dn)n∈N ∈ G0 7−→ (dn)n∈NN ∈ GN . Let:

IN =
{
(dn)n∈NN ∈ GN : lim

n→∞
‖dn‖Dn = 0

}
.

Then the induced map QN defined by:

G
T0

N−→ GN
↓ ↓
F

QN−→ GN
/
IN

is a *-isomorphism such that, for all f ∈ F:

Q( f ) = inf {SN(d) : qN(d) = QN( f )} ,

where qN : GN � GN
/
IN is the canonical surjection.

Proof. We note that IN is a closed ideal of GN , so FN = GN
/
FN is a unital C*-

algebra. Now, T0
N maps I onto IN , and moreover if f ∈ IN and d ∈ G0 is chosen

so that T0
N(d) = f then d ∈ I0 by definition of these ideals. Note that such a d

exists by Lemma (6.6).
Hence, the map QN is a well-defined *-isomorphism.
Let f ∈ F with Q( f ) < ∞ and write:

QN( f ) = inf {SN(d) : d ∈ GN , qN(d) = f } .

Let ε > 0. By definition of Q in Lemma (6.21), there exists d ∈ G0 such that that
S0(d) 6 Q( f ) + ε, hence SN(T0

N(d)) 6 Q( f ) + ε. Hence QN( f ) 6 Q( f ) as ε > 0 is
arbitrary.
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Now, let d ∈ GN such that SN(d) 6 QN( f ) + 1
2 ε. Then by Lemma (6.6), there

exists g ∈ G0 such that T0
N(g) = d and S0(g) 6 SN(d) + 1

2 ε. Thus:

Q( f ) 6 S0( f ) 6 QN( f ) + ε.

As ε > 0 is arbitrary, we conclude that Q( f ) = QN( f ). �

Remark 6.23. Let Z be the limit of (Π∗n(S (An)))n∈N for the Hausdorff distance in
(S (G0), mkS0) as defined in Proposition (6.19). Let q : G0 � F be the canonical
surjection. By Lemma (6.20), we have q∗0(S (F)) = Z, with the map q∗0 being an
isometry by construction.

Now, by Lemma (6.22), we also have an isometry q∗N from S (F) onto some
subset ZN of S (GN). With the same Lemma, we conclude that Z is the isometric
image of ZN by T0∗

N , and moreover since T0∗
N is an isometry, we obtain that ZN

is the limit of (S (An))n∈NN for the Hausdorff distance associated with mkSN in
S (GN).

Now, in order to apply Proposition (4.5) — and as a step toward proving our
candidate for a limit is indeed the limit of our sequence — we compute the length
of the natural tunnels we have constructed.

Lemma 6.24. Assume Hypothesis (6.5) and let Q be defined as in Lemma (6.21). Let
ε > 0. There exists N ∈ N such that for all n > N, the quadruple (Gn, Sn, Πn, qn) is
a tunnel from (An, Ln) to (F, Q) of length less or equal to ε, where qn : GN � F is the
composition of the canonical surjection with the inverse of QN defined in Lemma (6.22).

In particular, for all ε > 0 and for all f ∈ sa (F), there exists N ∈ N and d ∈ sa (GN)
such that:

qN(d) = f and Q( f ) 6 SN(d) 6 Q( f ) + ε and ‖d‖GN 6 ‖ f ‖F + ε,

where qN : GN → F is the canonical surjection given by Lemma (6.22).

Proof. Let ε > 0. By Proposition (6.19), there exists N ∈ N so that for all n > N:

HausS0 (Ξ
∗
N(S (An)), Z) < ε and HausS0 (Ξ

∗
N(S (Dn)), Z) < ε.

Let n > N. By Corollary (6.9), Lemma (6.21) and Lemma (6.22), the quadruple
ωn = (Gn, Sn, Πn, qn) is a tunnel from (An, Ln) to (F, Q). Now, T0∗

N is an isometry
from (S (GN), mkSN ) into S (G0), S0), and we conclude that:

HausmkSn
(Π∗n(S (An)), q∗n(S (F))) = HausmkS0

(Π∗n(S (An)), Z)) 6 ε.

Thus, the reach of ωn is bounded above by ε.
Let ϕ ∈ S (Dk) for some k > n. Then there exists ψ ∈ Z = q∗n(S (F)) such

that mkSn(Π
∗
n(ϕ), ψ) 6 ε by Proposition (6.19). Since mkSn is a convex metric, we

conclude by Lemma (6.8) that:

HausmkSn
(S (Gn), Z) 6 ε.

This implies, in turn, that the tunnel ωn has depth at most ε.
The rest of the Lemma now follows from Proposition (4.5).

�

We can now conclude that our candidate for a limit is a Leibniz quantum com-
pact metric space.
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Lemma 6.25. Assume Hypothesis (6.5) and let Q be defined as in Lemma (6.21). The
seminorm Q is a Leibniz seminorm on sa (F). Thus (H, Q) is a Leibniz quantum compact
metric space.

Proof. Let f , g ∈ F. Let ε > 0. Let N f ∈ N, x ∈ sa
(
GN f

)
be given by Lemma

(6.24) for f , and Ng ∈ N, y ∈ sa
(
GNg

)
be given by the same Lemma for g. Up

to replacing x and y by T
N f
max{N f ,Ng}( f ) and T

Ng
max{N f ,Ng}(g), we may assume f , g ∈

sa (GN) for N = max{N f , Ng}.
Now:

Q( f ◦ g) 6 SN(x ◦ y)

6 SN(x)‖y‖GN + ‖x‖GN SN(x)

6 (Q( f ) + ε)(‖g‖F + ε) + (‖ f ‖F + ε)(Q(g) + ε).

As ε > 0 is arbitrary, we conclude that:

Q( f ◦ g) 6 ‖ f ‖FQ(g) + ‖g‖FQ( f ).

The proof for the Lie product is identical.
The conclusion of this lemma follows from Lemma (6.21). �

We have now reached the conclusion of our efforts, rewarded with the desired
result as follows. All the required work has been done to construct our limit and
prove that it was indeed a Leibniz quantum compact metric space, so we now
have:

Proposition 6.26. The sequence (An, Ln)n∈N converges to (F, LF) for the dual Gromov-
Hausdorff propinquity.

Proof. Let ε > 0. By Lemma (6.24), let N ∈ N such that for all n > N, we have that
the tunnel (Gn, Sn, Πn, qn) has length at most ε. Thus:

Λ∗((An, Ln), (F, Q)) 6 ε.

This completes our proof since (F, Q) is a Leibniz quantum compact metric space
by Lemma (6.25). �

We now are able to prove that the dual Gromov-Hausdorff propinquity is com-
plete. This result is the core feature of our new metric.

Theorem 6.27. The dual Gromov-Hausdorff propinquity Λ∗ is complete.

Proof. Let (An, Ln)n∈N be a Cauchy sequence for Λ∗. Let (Akn , Lkn)n∈N be a suse-
quence of (An, Ln)n∈N such that ∑n∈N Λ∗(Akn ,Akn+1) < ∞.

For each n ∈ N, let Υn be a journey from (Akn , Lkn) to (Akn+1 , Lkn+1) whose length
is no more that:

Λ∗((Akn , Lkn), (Akn+1 , Lkn+1)) + 2−n−1.
By construction, we note that the concatenation Υ0 ? · · · ? ΥN is a subfamily of
the concatenation Υ0 ? · · · ? ΥK for all K > N. Hence, we can define, without
ambiguity, the infinite concatenation ?n∈NΥn (which is not a journey itself).

Now, let us write:

?n∈NΥn =
(
Bn, L′n, τn,Bn+1, L′n+1 : n ∈ N

)
.
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It is easy to check that (Bn, L′n) is itself a Cauchy sequence for Λ∗, and moreover
we can pick a subsequence (B f (n), L′f (n))n∈N of (Bn, L′n)n∈N such that (B f (n), L′f (n))n∈N
and (τf (n))n∈N satisfy (6.5). Thus the sequence (B f (n), L′f (n))n∈N converges for Λ∗

by Proposition (6.26).
Consequently, (Bn, L′n)n∈N converges for Λ∗ as a Cauchy sequence with a con-

vergent subsequence. Now, the sequence (Akn , Lkn)n∈N is a subsequence of (Bn, L′n)n∈N
and thus, it converges as well. Thus, the original sequence (An, Ln)n∈N is a Cauchy
sequence with a convergent subsequence, and thus it itself converges for Λ∗. This
completes our proof. �

We conclude with an interesting remark. In [37], a new set of Lip-norms is
computed to prove that the sequence (Bn, Ln)n∈N described in Corollary (5.10) is
Cauchy. These new Lip-norms are in fact of the type used to define the quantum
propinquity in [21]. Now, since our dual Gromov-Hausdorff propinquity is com-
plete, the estimates in [37] actually prove Corollary (5.10) again, thanks to Theorem
(6.27).
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