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Abstract

We first discuss a framework for discrete quantum processes (DQP).
It is shown that the set of g-probability operators is convex and its set
of extreme elements is found. The property of consistency for a DQP
is studied and the quadratic algebra of suitable sets is introduced. A
classical sequential growth process is “quantized” to obtain a model for
discrete quantum gravity called a quantum sequential growth process
(QSGP). Two methods for constructing concrete examples of QSGP
are provided.

1 Introduction

In a previous article, the author introduced a general framework for a discrete
quantum gravity [3]. However, we did not include any concrete examples or
models for this framework. In particular, we did not consider the problem of
whether nontrivial models for a discrete quantum gravity actually exist. In
this paper we provide a method for constructing an infinite number of such
models. We first make a slight modification of our definition of a discrete
quantum process (DQP) p,, n = 1,2,.... Instead of requiring that p, be a
state on a Hilbert space H,,, we require that p, be a g-probability operator
on H,. This latter condition seems more appropriate from a probabilistic
viewpoint and instead of requiring tr(p,) = 1, this condition normalizes the



corresponding quantum measure. By superimposing a concrete DQP on a
classical sequential growth process we obtain a model for discrete quantum
gravity that we call a quantum sequential growth process.

Section 2 considers the DQP formalism. We show that the set of ¢-
probability operators is a convex set and find its set of extreme elements.
We discuss the property of consistency for a DQP and introduce the so-
called quadratic algebra of suitable sets. The suitable sets are those on
which well-defined quantum measures (or quantum probabilities) exist.

Section 3 reviews the concept of a classical sequential growth process
(CSGP) [1, 4, 5, 6, 8, 9]. The important notions of paths and cylinder sets
are discussed. In Section 4 we show how to “quantize” a CSGP to obtain
a quantum sequential growth process (QSGP). Some results concerning the
consistency of a DQP are given. Finally, Section 5 provides two methods for
constructing examples of QSGP.

2 Discrete Quantum Processes

Let (€2, A, v) be a probability space and let

H_L2(Q,A,u)_{f:Q—>(C,/|f|2du<oo}

be the corresponding Hilbert space. Let A; C Ay C --- C A be an increasing
sequence of sub o-algebras of A that generate A and let v, = v | A, be the
restriction of v to A,, n = 1,2,.... Then H, = Ly(2, A,,v,) forms an
increasing sequence of closed subspaces of H called a filtration of H. A
bounded operator T" on H,, will also be considered as a bounded operator
on H by defining Tf = 0 for all f € H;->. We denote the characteristic
function xq of 2 by 1. Of course, |1 = 1 and (1, f) = [ fdv for every
f € H. A g-probability operator is a bounded positive operator p on H that
satisfies (p1,1) = 1. Denote the set of g-probability operators on H and
H, by Q(H) and Q(H,), respectively. Since 1 € H,, if p € Q(H,,) by our
previous convention, p € Q(H). Notice that a positive operator p € Q(H) if
and only if ||p'/?1]| = 1 where p'/? is the unique positive square root of p.

A rank 1 element of Q(H) is called a pure g-probability operator. Thus
p € Q(H) is pure if and only if p has the form p = |¢))(¢| for some ¢ € H
satisfying

=1

(1,4)] = ]/wdu
2



We then call v a g-probability vector and we denote the set of g-probability
vectors by V(H) and the set of pure g-probability operators by Q,(H). Notice
that if ¢» € V(H), then |[¢|| > 1 and ||¢|| = 1 if and only if ¢ = a1 for some
a € C with |¢| = 1. Two operators p1, p2 € Q(H) are orthogonal if p1ps = 0.

Theorem 2.1. (i) Q(A) is a conver set and Q,(H) is its set of extreme
elements. (ii) p € Q(H) is of trace class if and only if there exists a sequence
of mutually orthogonal p; € Q,(H) and o; > 0 with > o; = 1 such that
p = > a;p; in the strong operator topology. The p; are unique if and only if
the corresponding «; are distinct.

Proof. (i) If 0 < A < 1 and py,ps € Q(H), then p = Ap1 + (1 — N)p2 is a
positive operator and

(pL 1) =((Ap+ (1 = A) p2)1,1) = AMp11, 1) + (1 = A)(p21,1) = 1

Hence, p € Q(H) so Q(H) is a convex set. Suppose p € Q,(H) and p =
Ap1 + (1 — A)py where 0 < A < 1 and p1,pe € Q(H). If p1 # po, then
rank(p) # 1 which is a contradiction. Hence, p; = ps so p is an extreme
element of Q(H). Conversely, suppose p € Q(H) is an extreme element.
If the cardinality of the spectrum |o(p)| > 1, then by the spectral theorem
p = p1 + p2 where py,ps # 0 are positive and p; # apy for a € C. If
p1l, pol # 0, then (p11,1), (p21,1) # 0 and we can write

P2
<p217 1>

P1
<p117 1>

Now (p11, 1>_1p1, (pal, 1>_1p2 € Q(H) and
(P11, 1) + (p21,1) = (p1,1) =1

which is a contradiction. Hence, p;1 = 0 or py1 = 0. Without loss of
generality suppose that p;1 = 0. We can now write

p=(p1,1) + (p21,1)

p=3p1+ 3(p1+2p2)

Now p11 # 0, (p1 + 2p2)1 # 0 and as before we get a contradiction. We
conclude that |o(p)| = 1. Hence, p = aP where P is a projection and a > 0.
If rank(P) > 1, then P = P, + P, where P; and P, are orthogonal nonzero
projections so p = aP+aP,. Proceeding as before we obtain a contradiction.
Hence, rank(P) = 1 so p = aP is pure. (ii) This follows from the spectral
theorem. []



Let {H,:n=1,2,...} be a filtration of H and let p, € Q(H,), n =
1,2,.... The n-decoherence functional D, : A, x A, — C defined by

Dn(A’ B) = <anBa XA>

gives a measure of the interference between A and B when the system is
described by p,. It is clear that D, (2,,Q,) =1, D,(A, B) = D, (B, A) and
A — D,(A, B) is a complex measure for all B € A,. It is also well-known
that if A;,..., A, € A, then the matrix with entries D,,(A;, Aj) is positive
semidefinite. We define the map u,: A, — R by

NH(A) = Dn(A>A> = <anA7XA>

Notice that p,(€,) = 1. Although p, is not additive, it does satisfy the
grade-2 additivity condition: if A, B,C € A, are mutually disjoint, then

pn(AUBUC) = (AU B) 4 (AU C) + pn(BUC)
— pin(A) = pin(B) = pin(C) (2.1)

We say that p,1 is consistent with p, if D,1(A, B) = D,(A, B) for all
A, B € A,. We call the sequence p,, n = 1,2,..., consistent if p, 1 is
consistent with p, forn =1,2,.... Of course, if the sequence p,, n = 1,2, ...,
is consistent, then p,11(A) = u(A) VA € A, n = 1,2,.... A discrete
quantum process (DQP) is a consistent sequence p,, € Q(H,,) for a filtration
H,,n=12,.... ADQP p, is pure if p, € Q,(H,),n=1,2,....

If p, is a DQP, then the corresponding maps u,,: A, — R™ have the form

n(A) = (puxa xa) = [|92xa )

Now A — p}/ 2)( 4 is a vector-valued measure on A,,. We conclude that p, is

the squared norm of a vector-valued measure. In particular, if p,, = [1,) (]
is a pure DQP; then g, (A) = [(tn, x4)|* 80 i, is the squared modulus of the
complex-valued measure A — (1, x4)-

For a DQP p, € OQ(H,,), we say that a set A€ A is suitable if lim (p;x 4, xa)
exists and is finite and in this case we define p(A) to be the limit. We denote
the set of suitable sets by S(p,,). If A € A,, then

lim (ijA,XA> = <anAuXA>

so A € S(p,) and pu(A) = p,(A). This shows that the algebra Ay = UA, C
S(pn). In particular, Q € S(p,) and u(2) = 1. In general, S(p,,) # A and p

4



may not have a well-behaved extension from 4, to all of A [2, 7]. A subset
B of A is a quadratic algebra if (,Q2 € B and whenever A, B,C € B are
mutually disjoint with AUB, AUC, BUC € B, we have AUBUC € B. For
a quadratic algebra B, a g-measure is a map pug: B — RT that satisfies the
grade-2 additivity condition (2.1). Of course, an algebra of sets is a quadratic
algebra and we conclude that u,: A, — RT is a g-measure. It is not hard to
show that S(p,) is a quadratic algebra and pu: S(p,) — R is a g-measure
on 8(pn) [3]-

3 Classical Sequential Growth Processes

A partially ordered set (poset) is a set x together with an irreflexive, tran-
sitive relation < on x. In this work we only consider unlabeled posets and
isomorphic posets are considered to be identical. Let P, be the collection
of all posets with cardinality n, n = 1,2,.... If x € P,, y € P11, then x
produces y if y is obtained from x by adjoining a single new element to x that
is maximal in y. We also say that z is a producer of y and y is an offspring
of z. If x produces y we write x — y. We denote the set of offspring of = by
z — and for A C P,, we use the notation

A—={yePyi:z—yx e A}

The transitive closure of — makes the set of all finite posets P = UP,, into
a poset.

A path in P is a string (sequence) 1, Zs, ... where x; € P; and x; — %41,
1=1,2,.... An n-path in P is a finite string x125 - - - x,, where again z; € P;
and r; — x;.1. We denote the set of paths by € and the set of n-paths by
Q,. The set of paths whose initial n-path is wy € €2,, is denoted by wg =.
Thus, if wg = x129 - - - x,, then

wo=>={w €N w=1u1,29 TpYns1Ynt2" " }

If x produces y in r isomorphic ways, we say that the multiplicity of x — y
is 7 and write m(z — y) = r. For example, in Figure 1, m(z — y) = 3. (To
be precise, these different isomorphic ways require a labeling of the posets
and this is the only place that labeling needs to be mentioned.)



x
Figure 1
If x € P and a,b € x we say that a is an ancestor of b and b is a successor
of a if a < b. We say that a is a parent of b and b is a child of a if a < b
and there is no ¢ € = such that a < ¢ < b. Let ¢ = (¢g, ¢1,...) be a sequence

of nonnegative numbers called coupling constants [5, 9]. For r,s € N with
r < s, we define

Ae(s,7) = Z (z:i)ck = Z (S i T)CTM

k=r k=0

For x € P, y € P,y1 with  — y we define the transition probability

pe(r — y) = m(z — y)~—F——=

where « is the number of ancestors and 7 the number of parents of the
adjoined maximal element in y that produces y from x. It is shown in [5, 9]
that p.(z — y) is a probability distribution in that it satisfies the Markov-
sum rule

D Apelw =)y € Purw —yh =1

In discrete quantum gravity, the elements of P are thought of as causal
sets and a < b is interpreted as b being in the causal future of a. The distri-
bution y — p.(x — y) is essentially the most general that is consistent with
principles of causality and covariance [5, 9]. It is hoped that other theoretical
principles or experimental data will determine the coupling constants. One
suggestion is to take ¢ = 1/k! [6, 7]. The case ¢; = ¥ for some ¢ > 0 has
been previously studied and is called a percolation dynamics [5, 6, 8.

We call an element z € P a site and we sometimes call an n-path an n-
universe and a path a universe The set P together with the set of transition
probabilities p.(z — y) forms a classical sequential growth process (CSGP)



which we denote by (P,p.) [4, b, 6, 8, 9]. It is clear that (P, p.) is a Markov
chain and as usual we define the probability of an n-path w = y1y5 - - -y, by
Pe(w) = pe(yr = Y2)pe(yo = Y3) =+ Pe(Yn-1 = Yn)

Denoting the power set of €2, by 2% (Q,,2% p") becomes a probability
space where

prA) =) {plw): we A}

for all A € 2%, The probability of a site z € P, is
pi(z) = Z {Ph(w): w € Q,,w ends at x}

Of course, z — p”(x) is a probability measure on P,, and we have

P AHEES!

azEPn

Example 1. Figure 2 illustrates the first two steps of a CSGP where the
2 indicates the multiplicity m(z3 — xg) = 2. Table 1 lists the probabilities
of the various sites for the general coupling constants ¢, and the particular
coupling constants ¢j, = 1/k! where d = (¢o + ¢1)(co + 2¢1 + ¢2).

Figure 2



ZT; T i) I3 Ty Iy Tg T xTs

(n) (LL’ ) 1 c1 co ci(citc2) ﬁ 3coct cpc2 ﬁ

Pe ? co+c1 cotci d d d d d

LA 1 1 3 1 3 L 1

po(x) | 1 2 2 14 7 7 4 | 7
Table 1

For A C ,, we use the notation
A==U{w=:we A}

Thus, A = is the set of paths whose initial n-paths are elements of A. We
call A = a cylinder set and define

A, ={A=:ACQ,}

In particular, if w € €, then the elementary cylinder set cyl(w) is given by
cyl(w) = w =. It is easy to check that the A, form an increasing sequence
A; € Ay C -+ of algebras on © and hence C(Q2) = UA, is an algebra of
subsets of 2. Also for A € C(Q2) of the form A = A; =, A; C ), we define
pe(A) = pP(Ay). It is easy to check that p. is a well-defined probability
measure on C(2). It follows from the Kolmogorov extension theorem that
p. has a unique extension to a probability measure v, on the o-algebra A
generated by C(€2). We conclude that (£2,.4, v.) is a probability space, the
increasing sequence of subalgebras A, generates A and that the restriction
ve | A, = p. Hence, the subspaces H, = Ly(Q2, A, p) form a filtration of
the Hilbert space H = Lo(92, A, v,).

4 Quantum Sequential Growth Processes

This section employs the framework of Section 2 to obtain a quantum sequen-
tial growth process (QSGP) from the CSGP (P, p.) developed in Section 3.
We have seen that the n-path Hilbert space H, = Lao(Q, Ay, p?) forms a fil-
tration of the path Hilbert space H = Lo(2, A, v.). In the sequel, we assume
that p?(w) # 0 for every w € Q,, n =1,2,.... Then the set of vectors

eg = pZ(w)1/2ch1(w)a w e Qn

8



form an orthonormal basis for H,, n = 1,2,.... For A € A, notice that
xa € H with [[xa]l = p2(A)"2

We call a DQP p,, € Q(H,) a quantum sequential growth process (QSGP).
We call p,, the local operators and pu,,(A) = D, (A, A) the local g-measures for
the process. If p = lim p,, exists in the strong operator topology, then p is a
g-probability operator on H called the global operator for the process. If the
global operator p exists, then fi(A) = (pxa, xa) is a (continuous) g-measure
on A that extends p,, n = 1,2,.... Unfortunately, the global operator does
not exist, in general, so we must be content to work with the local operators
2, 3, 7]. In this case, we still have the g-measure p on the quadratic algebra
S(pn) € A that extends p, n = 1,2,.... We frequently identify a set
A C Q, with the corresponding cylinder set (A =) € A,,. We then have
the g-measure, also denoted by ji,, on 2% defined by p,(A) = u,(A =).
Moreover, we define the ¢g-measure, again denoted by pu,,, on P, by

tn(A) = p, ({w € Q,: wend in A})
for all A C P,. In particular, for = € P,, we have
tn ({x}) = pn {w € Q,: w ends with z})

If A € A, has the form A; = for A1 C ), then A € A,,; and A =
(A; —) = where Ay -C Q1. Let p, € Q(H,), pnr1 € Q(H,41) and let

Dn(A, B) = (puxs:Xa), Dus1(A, B) = (pn+1xB, Xa) be the corresponding
decoherence functionals. Then p,.; is consistent with p, if and only if for
all A, B C 2, we have

Dy [(A—)=,(B—)=|=D,(A=,B=) (4.1)

Lemma 4.1. For p, € Q(H,,), pn+1 € Q(H,y1) we have that p,.q is consis-
tent with p, if and only if for all w,w' € Q,, we have
Dy [(w—=) =, (W =) =] =Dy(w=,0" =) (4.2)

Proof. Necessity is clear. For sufficiency, suppose (4.2) holds. Then for every
A, B C (), we have

Dy [(A _>> =, (B _>) :>)] = Z Z Dy1 Dy [(w _)) =, (w, _>) :>]

weEAW'EB

— Z Z D,(w=,u'=)=D,(A=,B =)

weEAwW'EB

and the result follows from (4.1). O



For w = 129 -+ -2, € Q, and y € P, with x,, — y we use the notation
wy € Q41 where wy = x129 - - - x,y. We also define p.(w — y) = pe(z, — v)
and write w — y whenever x,, — .

Theorem 4.2. For p, € Q(H,), pni1 € Q( H,1) we have that p,q is
consistent with p, if and only if for every w,w" € €, we have

(pnelely = > > pelw = 1) pe(w — )" pusrellelt)  (4.3)

TE€Pn4+1 YEPn 1
w'—x W=y

Proof. By Lemma 4.1, p,.; is consistent with p, if and only if (4.2) holds.
But

Dn<w :>>w/ :>) = <anw = Xw:>> = <ancy1(w’) chl(w)>
= Pl (W) s (W) (puel, )

Moreover, we have

Dn+1 [(W _>) =, (w/ _>) :>] = <pn+lX(w’ﬂ):>>X(WH):>>

= Z Z (Prt1Xwz= s Xwy=)

TEPn+1 YEPr+1
W —x w—=yY

= Z Z <pn+1chl(w’x)7XCy1(Wy)>

:EE’P,L+1 YEPn+1
w—x WY

= D W) P wy) (el et

TE€EPn+1 YEPnt1
w—x WY

N ) 12n 122/‘ E 1/2 n+l n+l
_pc( / / pcwﬁxpcw_’y/<pnwz7wy>
CISEPn+1 yEPn.H
W' —z w—y

The result now follows. O]

Viewing H,, as Ly(,, 2%, p") we can write (4.3) in the simple form

<an{w’}a X{w}> = </0n+1Xw’—>7 Xw—>> (44)

Corollary 4.3. A sequence p, € Q(H,) is a QSGP if and only if (4.3) or
(4.4) hold for every w, o' € Q,, n=1,2

g Ly oo
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We now consider pure g-probability operators. In the following results we
again view H, as Ly(§,, 2% pm).

Corollary 4.4. If p, € Qu(Hy), pur1 € Qp(Husr) with py = [n)(tnl,
Prs1 = |Uni1)(Uni1l|, then pnyq is consistent with p, if and only if for every
w,w" € Q, we have
<¢m X{w}><X{w’}7 wn> = <¢n+17 Xw—>><Xw’—>7 ¢n+1> (45>
Corollary 4.5. A sequence |¢,){(¢,| € Q,(H,) is a QSGP if and only if
(4.5) holds for every w,w’ € €.
We say that 1,1 € V(H,41) is strongly consistent with v, € V(H,) if

for every w € 2,, we have

(Vs X)) = (i1, Xo) (4.6)

By (4.5) strong consistency implies the consistency of the corresponding ¢-
probability operators.

Corollary 4.6. If 1,11 € V(H,11) is strongly consistent with ,, € V(H,),
n=12,..., then |,)(¥n] € Q,(H,) is a QSGP.

Lemma 4.7. If ¢, € V(H,) and V41 € H,.1 satisfies (4.6) for every
w € Q,, then ¥y € V(Hpiq).

Proof. Since 1, € V(H,) we have by (4.6) that

|<¢n+17 1>| = Z <¢n+17 Xw—>> = Z <¢n7 X{w}>
UJeQn WEQTL
= |(¥n, 1)| =1
The result now follows. O]

Corollary 4.8. If ||¢1|| = 1 and ¢, € H, satisfies (4.6) for all w € Q,,
n=1,2,..., then |1,){(¢,| is a QSGP.

Proof. Since ||11]| = 1, it follows that ¢; € V(H;). By Lemma 4.7, ¢, €
V(H,), n=1,2,.... Since (4.6) holds, the result follows from Corollary 4.6.
0

Another way of writing (4.6) is
> e wn) g (wa) = pi (W)t (@) (4.7)

w—T

for every w € €,,.

11



5 Discrete Quantum Gravity Models

This section gives some examples of QSGP that can serve as models for
discrete quantum gravity. The simplest way to construct a QSGP is to form
the constant pure DQP p,, = [1)(1], n = 1,2,.... To show that p, is indeed
consistent, we have for w € 2, that

St we) = 3 @)pelw — 2) = pw) 3 pelw — @) = plw)

w—T w—T w—T

so consistency follows from (4.7). The corresponding g-measures are given
by
pn(A) = [(1,xa) " = pr(A)?

for every A € A,,. Hence, u, is the square of the classical measure. Of
course, |1)(1] is the global g-probability operator for this QSGP and in this
case S(p,) = A. Moreover, we have the global g-measure p(A) = v.(A)? for
Ac A

Another simple way to construct a QSGP is to employ Corollary 4.8. In
this way we can let ¢ = 1, 15 any vector in Ly(Qy, 22, p?) satisfying

<¢27 X{$1$2}> + <w2X{11$3}> = <¢17 X{$1}> =1
and so on, where x1, x9, 3 are given in Figure 2. As a concrete example, let
d}l = 17

wQ = % [pg(l‘lx?)ilx‘{ﬂhm} +pz(ﬂ31$3)><{xlm3}]

and in general
1

¢n =
€2,

> pHw) X

weNy,

The g-measure pq is p1 ({21}) = 1 and s is given by

pr ({an12}) = (2 Xoroa))|” = £
2 ({T173}) = ‘<w27X{m1:p3}>‘2 = ;11
Ha(Q22) = (12, 1) = 1
In general, we have i, (A) = |A]* / | |° for all A € Q,,. Thus p, is the square

of the uniform distribution. The global operator does not exist because there
is no g-measure on A that extends p, for all n € N. For A € A we have

A lw): Q.
mMm:/%Mm;|ﬂkﬂgﬁe Y

12



Letting p, = |¢n)(¥,| we conclude that A € S(p,,) if and only if

lim AN {cyl(|c;2) :| we U}

exists. For example, if |A| < oo then for n sufficiently large we have
AN {cyl(w): w € Q,}| = |A4|

so A € S(p,) and p(A) = 0. In a similar way if |A] < oo then for the
complement A’, if n is sufficiently large we have

A" N {cyl(w): w € Q,} = Q] — |4

so A" € S(p,) with pu(A’") = 1.
We now present another method for constructing a QSGP. Unlike the
previous method this DQP is not pure. Let o, € C, w € (), satisfy

3 auplw)? =1 (5.1)
wey

and let p, be the operator on H,, satisfying
(pnel, e) = auay (5.2)

Then p, is a positive operator and by (5.1), (5.2) we have

(pl, 1) <Pnzpc 1/2 n ch 1/2 Z>

—ch g ) et )

Z P (w 1/2

Hence, p, € Q(H,). Now

Qi1 ={wzr:w € Qp,z € Ppyy,w — z}

13



and for each wx € Q,.1, let G, € C satisfy

3 Bt (wa) 2| = 1

wr€Qn 41

Let p,+1 be the operator on H,,; satisfying

<pn+1621—1a GZ;Z}> = BW/I/% (5?))

As before, we have that p,i1 € Q(H,41). The next result follows from
Theorem 4.2.

Theorem 5.1. The operator p,.1 is consistent with p, if and only if for
every w,w’ € €, we have

QO = Z ﬁw’w’pc(w, - ZL',)I/2 Z ﬂpc(w - x)l/Q (54)

' €Pn+1 TEPn+1
w' =z’ w—T

A sufficient condition for (5.4) to hold is

Z BozPe(w — :lc)l/2 = (5.5)

TEPp+1
w—T

The proof of the next result is similar to the proof of Lemma 4.7.

Lemma 5.2. Let p, € Q(H,) be defined by (5.2) and let pp11 be the operator
on Hyyy defined by (5.3). If (5.5) holds, then ppy1 € Q(Hpi1) and ppyq is
consistent with p,.

The next result gives the general construction.

Corollary 5.3. Let py = I € Q(H,) and define p, € Q(H,) inductively by
(5.3). Then p, is a QSGP.
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