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Abstract 

The current study investigated multistage testing (MST) as an alternative to 

classical linear testing (CLT) for the General Aptitude Test (GAT). The aim was to assess 

the effects of two assembly methods (narrow vs. wide range—NR vs. WR), two routing 

methods (Defined Population Intervals—DPI— and the Approximate Maximum 

Information method—AMI), and two panel structures (two-stage and three-stage) on 

precision of ability estimates and accuracy of classification for both sections of the GAT 

(Verbal and Mathematics). Thus, eight conditions were examined and compared: 2 

(assembly conditions) * 2 (panel structures) * 2 (routing methods).  

The dataset that included a sample of 9,108 examinees was obtained from the 

National Center of Assessment, Saudi Arabia. The MST designs were evaluated with the 

criteria that the more accurate condition was the condition with the smallest standard 

error mean for ability estimates, and the highest agreement percentage of classification 

between CLT and MST.  

Findings revealed trivial differences in the estimated ability and standard error 

means among all conditions, but the design influenced the correlations between MST and 

CLT ability estimates. The NR and the WR condition performed equally regarding 

accuracy of ability estimate and classification. The performance of the DPI and AMI 

were similar in precision of ability estimates, but the DPI performed better than AMI 

regarding classification accuracy in all conditions. The results indicated that the number 
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of stages was important. The correlation coefficients between the examinees’ scores on 

MST-3Stage conditions and CLT were higher than the coefficients between examinees 

scores on MST-2Stage conditions and CLT. 

Overall, MST can be an appropriate alternative to CLT and CAT when the MST 

designs are structured well using an optimal item pool. Factors such as assembling and 

routing methods did not have a substantial impact on the accuracy of ability estimates. 

That means there is flexibility to use either method—a simpler method would be as 

effective as a complex method. The number of stages had some impact on the precision 

of estimations; however, it is possible that increasing the number of items in the second 

stage MST-2Stage can compensate for differences. Two main recommendations from this 

study were: (a) the item pool should be satisfactory in MST regarding the coverage of 

content and range of item difficulty, and (b) the MST design with the simpler method and 

simpler panel structure and the complex design can perform equally. Thus, advice is to 

use a simpler approach and reduce effort and cost.  

 The main limitation of the current study was the small size of the item pool and 

the lack of hard and easy items. For future research, studies that compare the current 

combinations of various factors in different conditions of MST, using an optimal item 

pool, is needed to enhance the results. The influence of other factors, such as different 

panel structures of MST (1-2-3, 1-2-3-4), different routing, and other cut-scores can be 

examined to identify the optimal condition for MST and for GAT.    

 Keywords: Multistage Testing, Routing methods, Assembly methods, DPI, AMI, 

IRT-2PL, General Aptitude Test.   
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Chapter One: Introduction and Literature Review 

Introduction 

 Interest in large-scale assessment as it relates to production of an educated, 

available workforce has increased over the past century. The purpose of large-scale 

assessment is to provide extensive information about various populations. It helps 

stakeholders such as businesses and educators to improve systems and policies. The 

assessment of systems in education, healthcare, or other public services are desirable at 

the national and international levels. Large-scale assessment can be used to help ground 

inferences about large populations and conclusions about services. Examples of large-

scale assessment in education include the Trends in International Mathematics and 

Science Study (TIMSS) and the Program for International Student Assessment (PISA) 

that focus on comparisons across countries.  

One of the important purposes of large-scale assessment in education or in other 

fields is to provide basic information such as average proficiency and percentages of 

individuals at or above certain benchmarks which can be tied to performance in varied 

jobs. The organizations’ needs for assessment have been homogenized. That 

homogenization encourages the extensive use of large-scale assessment and consequently 

the costs associated with test development, administration of the assessment, and 

examinee time generally become expensive. Therefore, looking for assessment 

techniques that reduce both the cost and the amount of time that an individual spends on 
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the assessment has been a significant consideration from an engagement and data quality 

perspective (Yan, von Davier, & Lewis, 2014).  

A technique that can lead to a revolution in assessment methods is adaptive 

testing as an attempt to reduce measurement error without increasing test length for 

individual examinees. At the same time, this technique creates new challenges for many 

testing organizations to create well-established procedures for producing multiple 

computerized test forms (Luecht & Nungester, 1998). 

 In the scope of tests and measurements, adaptive tests have been developed to 

enhance measurement precision and efficiency while reducing examinee burden. The 

purpose of adaptive testing is to achieve the most precise estimates of person proficiency 

with the shortest test and this can be obtained by matching item difficulty and person 

ability. For this purpose, adaptive test designs, either computerized adaptive tests (CAT) 

or multistage tests (MST) use adaptation algorithms; where CAT has multiple adapting 

points at the item level, the MST has fewer adaptation points that occur between stages 

and/or between items in some MST designs (Kim & Moses, 2014; Yan et al., 2014).  

CAT and MST are designed to be neither too hard nor too easy for the examinee, 

so the test closely fits the person’s ability. CAT and MST work better in terms of 

minimizing error than non-adaptive tests, such as classical linear tests (CLT), which are 

known as paper-and-pencil tests or computer-based linear tests (CBT,) which use no 

adaptation algorithms (Zheng & Chang, 2015). The adaptation procedures aim to reduce 

the error in estimating item parameters and the person’s ability level while reducing the 

length of the test (Glas, 1988; Zheng & Chang, 2015).  
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 Multistage testing has seen increased interest as an alternative to both CLT and 

CAT (Kim, Chung, Park, & Dodd, 2013). It is assumed that MST is more effective with 

tests that aim to measure a wide range of ability “theta” where the test is administered at 

the level of item sets or modules (Han, 2013). An MST is designed with items selected 

from an item pool calibrated before the test administration, which benefits both 

developers and examinees: (a) MST allows developers to maintain a higher degree of 

control over the content balance and quality of test structure and administration, (b) MST 

also allows examinees to review their item responses within each module/block 

compared to CAT (Yan, von Davier, & Lewis, 2014). 

 CAT designs present difficult challenges and controversial trade-offs. They need 

to be short in length with specific requirements of extensive content coverage, 

measurement specifications, and test security. Satisfying all these requirements while 

meeting the same test standards as paper test increases the difficulty and the cost for test 

design (Yan, von Davier, & Lewis, 2014). In the mid-2000s, a series of ongoing research 

efforts were initiated to establish test designs with higher flexibility in infrastructure, and 

that are essentially more effective. Consequently, several simulation studies and pilot 

tests were conducted on MST, using new content and statistical characteristics to 

generate tests with desirable accuracy and efficiency in measurement.   

 Lately, the MST framework has been implemented in several large-scale 

assessment applications such as achievement tests, educational admissions tests, 

diagnostic tests, and medical licensure tests. Yan, von Davier, and Lewis (2014) 

presented some examples of transition from a CLT or CAT to an MST structure. More 
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information about the transition can be found in chapters 21, 22, and 23 in Yan, von 

Davier, and Lewis (2014). One example is the development of the licensing examination 

of Certified Public Accountants (CPA) by the American Institute of Certified Public 

Accountants (AICPA). The Uniform CPA exam is the only nationally standardized exam 

that is required for licensure in all 55 United States’ jurisdictions. The CPA aims to 

provide a reasonable guarantee that examinees who passed the CPA have the necessary 

knowledge and skills for initial licensure in the protection of the public interest 

(Breithaupt, Ariel, & Hare, 2014). In 1995, the AICPA Board of Examiners established a 

research program to evaluate the possibilities of computerization via MST; thereafter, a 

series of studies on MST were published in AICPA technical reports and in scholarly 

journals. The numerous studies on MST designs recommended the administration of 

MST for the computerized CPA. Example of these studies is the study conducted by 

Breithaupt, Ariel, and Hare (2010) that examined the effect of different MST designs and 

administration models with item bank development on maintaining the equality and 

security of the test. Also, Chuah, Drasgow, and Luecht (2006) evaluated the adequacy of 

item parameter estimates in terms of accuracy of ability estimates and classification using 

different sample sizes.  

  Another example of the use of MST is the transition of a K-12 assessment, the 

Educational Records Bureau (ERB) Comprehensive Testing Program 4 (CTP4). The 

bureau converted from LCT to MST. The ERB exam is not mandatory, but it aims to 

provide its membership with assessments, programs, and services to inform instructional 

and curriculum decisions. For transition purpose, the ERB used data resulting from 
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paper-based tests, which were online administrated, to develop an MST for CTP. This 

transition allows test difficulty to be better tailored to a student’s ability as well as 

generating a simplified testing process for teachers and test coordinators (Wentzel, Mills, 

& Meara, 2014).    

 International large-scale assessment programs have also become interested in 

MST. Recently, real-world and simulation data have been used to conduct studies with 

the intention to use MST designs for the purpose of assembly and delivery of the revised 

version of the graduate record examinations (GRE), isolated within the verbal and 

quantitative sections. The GRE is globally used for graduate admission, and consists of 

three sections: analytical writing, verbal reasoning, and quantitative reasoning; these 

exams are developed by the Educational Testing Service (ETS, 2011).  

Another large-scale international study is the Program for International 

Assessment of Adult Competencies (PI-AAC). The PI-AAC is a complex assessment that 

aims to assess and compare the basic skills and competencies of adults between ages 16-

65; these are skills considered to be essential for success and participation is used in 27 

countries (Chen, Yamamoto, & von Davier, 2014).   

Statement of the Problem 

 In order to design an MST, many decisions must be made. Different questions are 

asked and need to be answered prior to the realization of an MST. Questions regarding 

test design and scoring include: How long must the test be? How many stages are 

needed? How many modules are sufficient per stage? How many paths need to be 

provided between modules? What routing rules should be set between modules? What is 
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the desired difficulty level for each routing stage and module? How will the test be 

scored? These types of questions must be considered for each test, stage, module, path 

level, routing, and scoring method. 

 The wide interest in the use of MST leads test developers to address the above 

listed numerous questions related to the MST structure, such as number of stages, number 

of modules per stage, module lengths, module difficulty levels, module difficulty ranges 

at each stage, assembly approaches, and routing methods (Yan et al, 2014). These are just 

a sample of the many structures critical to the development of high efficiency and 

accuracy of an MST.  

 Different studies have investigated the impact of various MST designs on the 

estimation of person ability and/or on classifying examinees into correct categories (see 

Education Testing Service, 2011; Yan, von Davier, & Lewis, 2014). Most studies have 

examined the performance of various panel structure designs, module difficulty ranges, 

and routing methods, separately using simulation data for dichotomous or polychotomous 

item pools (Kim et al., 2013; Kim & Moses, 2014; Kim, Moses, & Yoo, 2015; Zheng, 

Nozawa, Gao, & Chang, 2012; Zheng & Chang, 2015; Zwitser & Maris, 2015). Rarely 

are there studies found that have combined the examination of the influence of several 

factors, such as panel structures, routing methods, and assembly methods.  

Thus, the current study addresses this gap in the literature and investigates the 

performance of various suggested panel structure designs, routing methods, and assembly 

approaches using real-world data from two content areas related to general aptitude, 

which are the verbal and quantitative sections of the General Aptitude Test (GAT). The 
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data were obtained from the National Center of Assessment (NCA) in higher education, 

located in Saudi Arabia. This study is potentially the first that attempts to design MST for 

the GAT using data from the administration of the CLT of the GAT (Arabic version). The 

results of this study provide practical information for MST design and can also be used 

with future studies on MST for the GAT to enhance the potential transition of the GAT 

from CLT to MST. 

Study Purpose 

 The purpose of the current study was to examine and compare the performance of 

two assembly conditions (small vs. large differences), two routing methods (Defined 

Population Intervals (DPI) vs. Approximate Maximum Information method (AMI), and 

two panel structures (two-stage vs. three-stage) in terms of precision of ability estimates 

and accuracy of classification decisions (i.e., above average/average/below average) for 

both sections of the GAT (verbal and quantitative). Therefore, eight conditions were 

tested and compared for each section of the GAT: 2 (assembly condition) * 2 (panel 

structures) * 2 (routing methods) design.  

Research Questions 

 The study aimed to answer the following research questions:  

a) Does the performance of two assembly conditions (NR and WR) yield 

comparable results in terms of ability estimates and accuracy in classification 

decisions for GAT-V/ GAT-M? 
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b) Does the performance of DPI and AMI routing methods yield comparable 

results in terms of ability estimates and accuracy in classification decisions for 

GAT-V/ GAT-M? 

c) Does the performance of two-stage MST and three-stage MST yield 

comparable results in terms of ability estimates and accuracy in classification 

decisions for GAT-V/ GAT-M? 

d) Do the examinees’ ability scores on classical linear testing (CLT) relate to the 

examinees’ scores on each condition of MST for both GAT-V and GAT-M?  

Literature Review 

 The literature review includes three parts. The first part reviews general 

information about  multistage testing including design, advantages of MST over CLT and 

CAT, implementations of MST, and examples of challenges in MST. A general overview 

of item response theory models are presented in the second section of the literature 

review. The last section provides a brief overview of the General Aptitude Test.  

Multistage Testing 

 Multistage testing is a process for creating an adaptive test that can be 

administrated in a sequential process. The general idea of MST is to assess the examinees 

through a design that allows for adaption of the difficulty level of the test to the level of 

the examinee’s proficiency or ability. Examinees are routed through a series of 

preassembled subsets of items and stages; thus, the testing procedure is systematically 

divided into multiple stages. The adaptation algorithms in MST are used in order to 

assign the examinees to an appropriate set of items, or what are called modules; therefore, 
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MST is a testing method that is intermediate between fully computerized adaptive testing 

and conventional linear testing (Kim et al., 2013; Kim & Moses, 2014; Zheng & Chang, 

2015). 

 MST design. The MST includes several elements that introduce new concepts in 

testing. These elements are panels, modules, stages, and pathways. Panels are like test 

forms that can be constructed from the same item pool. Each panel (form) includes a 

quantified number of stages. The stages comprise different sets of items, which are called 

modules or blocks. The module is considered the smallest unit and includes a set of items 

that encompass a range of certain difficulty levels (e.g., easy, medium, or hard). The 

pathways link a module with another module. Within a specific panel, the examinees 

would take particular paths to connect a module in a particular stage to another module in 

the next, depending on their performance at the previous stage (Kim et al., 2013; Kim & 

Moses, 2014). Figure 1 illustrates different designs for MST: Design A has two stages 

and four modules with three paths, Design B has three stages and six modules with four 

paths, and Design C has three stages and seven modules with seven paths. Designs B and 

C have more adaptation points in comparison to Design A, which gives examinees a 

chance to recover in the third stage; Design A does not have this feature. Design C has 

more modules and paths than Design B, which is appropriate for a test that measures a 

wide range of ability.  
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Figure 1. Three examples of different multistage testing structures 

  The number of panels, stages, modules, pathways, and items can vary from design 

to design. Different principles are relevant to the test designs, which include the purpose 

of the test, score usage, psychometric characteristics of items, and administration 

procedures (Kim & Moses, 2014). However, MST with additional stages as well as 

different modules in each stage permits more flexibility and a high level of adaptation for 

examinees. On the other hand, MST with more stages causes increased complexity in the 

test assembly, without necessarily increasing the measurement precision of the test. Kim 

and Moses (2014) pointed to a recent study by Wang, Fluegge, & Luecht (2012), which 

found that complex and simple MST designs performed equally well when the item bank 

was optimal, with high quality items that covered the range of the target ability. 

Therefore, the design decision should be based on the balance between a desired range of 

item difficulty that must be covered and the test precision that is needed. The two-stage 
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tests may be simple and easy to implement, but there is a high chance of routing error as 

a result of only one routing point. Thus, MST with three or four stages is most common 

in research applications (Yan, von Davier, & Lewis, 2014). 

 According to MST administration, all examinees are assigned to the first stage, 

which is called the routing stage, from one of the multiple panels/forms within the test. 

The routing stage usually includes one module, sometimes two, wherein the initial 

examinee’s proficiency/ability is estimated. In the second stage, the examinees are 

assigned to one of the different modules with different levels of difficulty (e.g., low, 

middle, high modules). For instance, a MST with two stages includes three modules at 

the second stage. Examinees with scores that are lower than or equal to a lower cutoff 

score in the routing stage will be assigned to an easy module. Examinees with scores on 

the routing test between two cutoff scores will take a medium module. Finally, examinees 

with scores on the routing test higher than the upper cutoff score will continue to a hard 

module (Kim et al., 2013; Zwitser & Maris, 2015). Consequently, the better the 

performance in an earlier stage, the more difficult the follow-up stage. So, the routing 

stage rules the selection of the next test (Glas, 1988). 

 MST features. According to Lord (1980), it is assumed that multistage testing 

improves the measurement of the examinees’ ability, but this depends on the existence of 

a large item pool that is calibrated. In this case, the estimation errors of item and person 

parameters would be reduced when the levels of item difficulty match the levels of 

persons’ ability for different clusters of examinees. This feature makes MST an 

alternative to both CLT and CAT. 
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MST vs. CLT. Kim, Chung, Park, and Dodd (2013) reporting large-scale studies 

found that MST is shorter in test length than CLT, and MST provides higher or at least 

equally predictive and concurrent validities compared to CLT. CLT requires a larger 

number of items, and the examinees must respond to all items in order to achieve equal 

precision in the final scores; MST uses a different strategy. All examinees must take an 

initial set of items at the first stage. Then, based on their performances, they are routed to 

different modules (e.g., easy, medium, and hard) at the second stage (Yan et al., 2014). 

Although CLT measures average ability examinees well, it is less accurate in measuring 

those examinees whose ability positions are located near the higher or lower ends of the 

measurement scale. Accordingly, measurement precision may vary across the different 

levels of examinee ability (Yan et al., 2014). 

 Zwitser and Maris (2015) point out that the beneficial feature of adaptive tests, 

including CAT and MST, is a strong match between the difficulty level of items and the 

proficiency of examinees. This feature reduces the likelihood of undesirable response 

behavior in the test, such as guessing and slipping. Guessing is an unexpected 

correct/incorrect response that fails to show the examinee’s true proficiency. In the same 

vein, slipping is the probability of obtaining a score of zero when at least one measured 

trait exists (Rupp, Templin, & Henson, 2010). Consequently, reducing the probability of 

guessing or slipping leads to reducing the need for estimating guessing parameters. This 

implies that MST can produce more parsimonious models compared to CLT. 

 Generally speaking, when the adaptive test designs are used with a large item 

pool, the model fit is expected to be better for adaptive testing than for CLT with a fixed 
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number of items per examinee. This implies that, despite the fact that the number of 

possible observations is the same in both situations, a measurement model for adaptive 

testing includes more parameters than the same model for CLT with a fixed number of 

examinees and that will help reduce the test error (Zwitser & Maris, 2015). 

MST vs. CAT. Adaptive tests include two major designs: computerized adaptive 

tests, and multistage tests in which adaptation algorithms are used. However, the adaptive 

algorithms differ substantially for both designs. According to Luecht and Nungester 

(1998), the item selection algorithms in CAT construct every individual test form while 

the examinee is taking the test through the following sequential processes: iteratively 

administering an item, estimating a provisional score, and subsequently selecting the next 

item from the active item bank while considering particular statistical optimization 

criteria. Consequently, adaptation to the examinee’s ability occurs at the item level in 

CAT. However, if for the first few items a capable examinee accidentally responds 

incorrectly, or a less capable examinee happens to guess correctly on those first few 

items, it is difficult to estimate their true ability levels, especially with a short test. In 

contrast, MST would essentially avoid this under-/over-estimation problem because the 

examinee’s ability is estimated by the end of the first stage over multiple items (Zheng & 

Chang, 2015). 

 Similar to CAT, MST adapts the difficulty level of the test to the examinee’s 

proficiency level. In MST, the item selection algorithms that specify adaptation to a 

person’s ability depend on the person’s cumulative performance on previous item sets. It 

does not depend on a single item’s difficulty, as is the case with CAT. Therefore, 
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adaptation to the examinee’s ability happens between stages of the test process. Thus, 

there are fewer adaptation points in MST compared to CAT (Kim & Moses, 2014).   

 MST allows examinees to answer the items in any order within a particular 

module. In contrast, using CAT, the examinees must answer each item individually in 

order, without skipping any, because the next item will be selected based on performance 

on the previous item. MST usually does not require as large a number of items as CAT 

requires to achieve the same standard error; however, in MST, the items in each module 

must meet specific criteria regarding the content, difficulty, distribution of the answer key 

positions (e.g. middle/extreme positions in three- or four-choice test), and length of the 

item (Kim & Moses, 2014; Yan, von Davier, & Lewis, 2014). In CAT, because the test is 

constructed during the test administration, the quality guarantee processes of the test form 

are limited to fulfilling particular item selection constraints. Therefore, CAT eliminates 

any chance to intervene in or review the criteria of both the next selected item and the 

individual test form for each examinee. Accordingly, the degree of trust in the test 

construction procedure for each test form would be insufficient in CAT because the items 

may be less able to cover the target range of test’s content compared to MST.  

 The test developers or content experts cannot review each individual test form for 

each examinee who is taking a CAT. Thus, CAT is inefficient in combining the content 

specifications of the test, even with the most refined content-balancing algorithm (Kim et 

al., 2013; Luecht & Nungester, 1998). In CAT, the most common criticism is the test is 

built on-the-fly from an item pool during the test administration; therefore, content 

specialists are unable to review every test form for every examinee before the test is 
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given to verify that all test forms have satisfied all content requirements and there are not 

context effects, such as one item influencing the response to another item (Keng, 2008; 

Kim et al., 2013). Thus, it is generally believed that CAT is incapable of integrating all 

the content specifications of the test. In contrast, the modules in MST are arranged into 

stages with pre-determined routing rules; thus, the MST has a better-quality control 

procedure that allows content specialists to review the test content in order to ensure the 

content balancing for each form before test administration (Keng, 2008). Since the MST 

consists of a small number of distinct modules, the test developers can ensure that each 

module satisfies certain requirements regarding item content, item difficulty, total word 

count, and distribution of answer key positions. Additionally, they can prevent or avert 

dependencies between items in the same module (Kim & Moses, 2014). The feature of 

constructing the MST forms prior to test administration gives MST substantial 

advantages compared to CAT. Table 1 sumarizes the main differences between CLT, 

CAT, and MST. 
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Table 1. 
  
Main Differences between CLT, CAT, and MST  
Domain  CLT CAT MST 
Adaptive points  N/A Multiple adaption 

points at the item 
level 

Fewer 
adaptation 
points between 
stages 

Content Specification   Sufficient Inefficient   Sufficient  

Content review before test 
administration 

Avaliable   N/A  Avaliable    
 

Content coverage  Adequate Inadequate Adequate 

Item response order  Answering 
items in any 
order  

Answering item 
individually in order, 
without skipping any 

Answering 
items in any 
order within a 
particular 
module 

Chance of guessing High High Low   

Recovering  N/A No chance to 
recover    

Recover from 
misrouting with 
3 stages and 
more  

Test length  Long  Long  Shorter than 
CAT and CLT 

 MST implementations. Generally, there are three implementations of MST: (1) 

paper-and-pencil test with separate administrations, (2) computer-based test with 

separately timetabled administrations, and (3) continuously administered test at a single 

administration. The first and the second tests are less common and are statistically 

analyzed in a similar way. The third implementation type is the most commonly used, as 

well as the most challenging for analyses (Yan, von Davier, & Lewis, 2014). MST is 

usually used in the context of achievement testing and classification, for example, MST is 

used for the Uniform Certified Public Accountant and the United States Medical 

Licensing Examination. Computer software is usually used to conduct and assemble the 
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MST’s panels and modules, with software such as the automated test assembly (ATA) 

program. The ATA program creates fixed-length parallel test forms either with or without 

statistical constraints. The ATA also applies optimization algorithms (e.g., linear 

programing, heuristics) to concurrently generate multiple panels, stages, and modules in 

the MST (Kim et al., 2013; Luecht & Nungester, 1998).  

 Briefly, the ATA optimization can be solved by using heuristic methods, such as 

the normalization weighted absolute deviation (NWAD), which is capable of managing 

complex content structures and requirements. With MST, the NWAD heuristic methods 

integrate specific mechanisms that can sequentially manage the assignment of modules to 

stages within a panel, as well as incorporate procedures for dealing with different 

simultaneous objective functions, such as using different target test information function 

(TIF) for modules or combining modules and building multiple test forms. Therefore, the 

total set of items for all stages in the MST accurately satisfies every content specification 

for a full-length test form (Luecht & Nungester, 1998).   

 Either the ATA program or the manual test construction can be used in the MST, 

but most MST studies have constructed and applied the Two-stage or Three-stage MST, 

which includes a single module at the first routing stage and three modules at the second 

and/or third stages.   

 MST challenges. Computerized testing encounters challenges regarding design, 

administration, production, and cost. Testing agencies that change the test forms from the 

CLT (paper-and-pencil) forms to the computerized forms recognize that computerized 

testing, such as CAT and MST, requires a higher level of proficiency compared to CLT 
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in term of design, assembling, routing, scoring, and linking methods. Along with the 

advantages of computerized tests, the literature on MST shows that it introduces a series 

of new challenges to assure the quality of all procedures. Different potential practical 

issues and considerations for operational MST processes can occur, from design to 

application. The most practical issues and psychometric considerations for operating 

MST are related to designing, assembling, routing methods, scaling, calibrating, linking, 

equating, and securing the test (Yan, von Davier, & Lewis, 2014).  

 Design challenges. Design issues and considerations of the MST have been 

discussed by large-scale studies that included a range of possible structures for MST (1-3, 

1-2-2, 1-3-3, 1-2-3, 1-3-2, 1-1-2-3, 1-1-2-3-3-4, etc.), meaning the MST can be a two 

MST design such as 1-3 design that includes one module in the first stage and three 

modules in the second stage. MST design also can be a three MST design such as 1-2-2, 

1-3-3, 1-2-3, 1-3-2 design that have usually one routing stage and two additional stages 

with different numbers of modules in the next stages. Zenisky and Hambleton (2004) 

concluded that the crucially important consideration in designing the MST is to determine 

the number and the characteristics of stages in the test as well as the number and features 

of modules per stage. However, the optimal measurement results for any design rely on 

the distribution of proficiency in the target population and the operational item bank. An 

example of the importance of the examinee population distribution would be that with a 

wide population proficiency distribution (e.g., achievement testing) more modules per 

stage are needed; this creates a better chance of spreading examinees out on the basis of 

proficiency. Another example that illustrates the significance of the item bank can be 
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seen when the MST design requires only two modules per stage (e.g., easy, hard) to make 

a pass-fail decision. In this case the item bank needs to include sufficient items within the 

hard and easy levels of difficulty (Yan, von Davier, & Lewis, 2014). In summary, the 

selection of the test design is more complex in MST than in CAT and CLT, and the test 

development decision must be determined by the test purpose and measurement 

requirements of the testing.  

 Assembly challenges. Test assembly methods present another challenge in MST 

due to the large number of possible paths. It is important to use statistical and non-

statistical requirements in order to have a balanced representation of items from each 

content area. The assembly approach in MST is different and more complex than in CLT. 

In general, there are two distinctive approaches for assembly in the MST: (1) automated 

test assembly ATA, which was noted earlier in this study, and (2) assembly-on-the-fly, 

which is a new method that uses the same item selection algorithms as those used in 

CAT, to construct individual modules for each examinee dynamically (Yan, von Davier, 

& Lewis, 2014; Zheng & Chang, 2015). 

 There are various ATA algorithm methods that are used in MST and these 

methods can be applied to assemble various modules from item banks, in addition to the 

capability of being used to assemble panels from modules. Zheng, Nozawa, Gao, and 

Chang (2012) discussed three common ATA methods: (a) early test assembly methods, 

(b) the 0-1 programming methods, and (c) heuristic methods. The early test assembly 

methods relying on statistics that stem from classical test theory CTT (e.g., item difficulty 

and discrimination statistics) or item response theory IRT (e.g., test information 
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function). The 0-1 programming methods are used to optimize an objective function over 

a binary space, but it is challenging when several parallel forms are required with an 

insufficient item bank because all forms must meet all test assembly restrictions. In 

heuristic methods, items are selected sequentially; thus, these methods are in a way 

greedy since tests or forms that are assembled earlier have access to more adequate items 

than those forms that are assembled later. The heuristic methods do not guarantee that all 

constraints will be satisfied, as the 0-1 programming approach does. However, the 

heuristic methods are faster and do not rely on solver software like the 0-1 programming 

methods (Zheng et al. 2012; Zheng & Chang, 2015). However, satisfaction of both 

features (easy computation and guarantee all constraints) has not been simultaneously 

obtained. Easy computation is obtained, as in the case with heuristic methods, and the 

guarantee that all constraints will be met is obtained in the case of the 0-1 programming 

methods. The limitations of these methods introduce opportunities for research on 

alternative methods, such as On-the-fly Multistage Testing (OMST), which allows 

achievement of both features simultaneously.  

 Assembling parallel forms is more challenging in MST than in CLT, especially 

when the item bank is limited, and multiple constraints need to be fulfilled. When a test is 

preassembled around a few difficulty anchors, the classical MST may not provide 

sufficient information nor suitable ability estimates for examinees at the two extreme 

ends of the scale. Additionally, test security may be threatened because items are bundled 

together in modules and modules are bundled together in panels (Yan, von Davier, & 

Lewis, 2014; Zheng & Chang, 2015). Therefore, if the examinees whose abilities are 
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similar shared test items, or the items were disclosed on the Internet, the test overlap rate 

might be high among them because they are likely to receive the same panel and pathway 

(Yan, von Davier, & Lewis, 2014). This can be solved in OMST by borrowing a feature 

of CAT. In the OMST, examinees’ abilities are estimated in the first stage, which is at a 

moderate difficulty level, and then the individual module is assembled for each examinee 

based on his/her ability estimate, in addition to other constraints (e.g., content coverage 

and item exposure rate). The OMST uses CAT methods wherein each item is 

administrated as long as it is selected, effectively updating the ability estimate after each 

item within the same module in a specific stage; this process continues until the exam is 

terminated. Finally, the total score of each examinee is estimated based on her/ his 

performances on all the administrated items. Figure 2 is an example of a design using on-

the-fly methods to assemble stages in OMST as was illustrated by Zheng and Chang 

(2015). The great advantage of OMST over classical MST is providing sufficient 

information and estimating examinees at the extreme ends of the ability scale (Yan, von 

Davier, & Lewis, 2014).  
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Figure 2. An example design using On-the-fly Assembling Method for MST. Adapted 
from “On-the fly assembled multistage adaptive testing,” by Y. Zheng and H. H.Chang, 
2015, Applied Psychological Measurement, 39(2), p. 106. 

 Routing and scoring challenges. Routing is basically a classification issue in 

MST; it is a process that uses special rules to route or classify examinees to different 

modules at each next stage, based on their score on the previous modules. The purpose of 

such a routing procedure is to gather information about the examinees in order to assign a 

module to them in the next stage. This is done by dividing the population in a certain 

number of subpopulations whose abilities are similar. The routing process is also 

important because it contributes to the results of the whole test (Yan, von Davier, & 

Lewis, 2014).  

 The two routing rules are: (1) statistical rules based on the number of correct 

responses and (2) dynamic rules based on the examinee’s performance on items in the 

first module, with consideration for the properties of items in the next modules. Statistical 
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routing rules are easier to implement than dynamic rules, yet dynamic rules have certain 

advantages over statistical rules (Weissman, 2007). 

 The two main methods of routing examinees are norm- or criterion-referenced 

routing. In norm-referenced routing, the examinees are assigned to the next module based 

on rank order, such as assigning one third of examinees to each module, or maybe 

assigning 30%, 40%, 30% to easy, medium, hard modules. This proportional method of 

routing has been known as Defined Population Intervals (DPI) in the literature. The DPI 

approach routes a proportion of examinees to various modules at the next stage. This 

technique sorts examinees, who have taken the target stage test (i.e., routing or second 

stage), in rank order consistent with their estimated abilities. Next, it assigns a certain 

percentage of the examinees to each module of the subsequent stage (Kim et al., 2013). 

Furthermore, the examinees can be rank-ordered within each module, according to their 

estimated abilities and can then be routed to a subsequent-stage module. Therefore, two 

methods of DPI can be used. The stage-level DPI (SL-DPI) method is used to route 

examinees to the next stages’ modules and the module-level DPI (ML-DPI) method to 

route examinees within each module. Another related strategy was explored by 

Armstrong (2004) where the modules are targeted to percentiles of the examinee 

population, so the strategy aims to assign examinees to modules based on percentile 

group membership (Yan, von Davier, & Lewis, 2014). 

  In a criterion-referenced routing strategy, the examinees are assigned according 

to their proficiency indicators that are compared to a performance-based rule. This 

approach matches observed performance and module assignment; therefore, it is called 
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the Maximizing Information (MI) approach. This approach has two options: Information-

based routing vs. number-correct routing. Information-based routing assigns examinees 

to modules according to ability estimates that are computed by using item response 

theory (IRT) methods. The MI method is also called the Approximate Maximum 

Information (AMI) method to route examinees to the next stage. The AMI method uses 

the test information functions (TIFs) by defining the connection between the cumulative 

TIFs of adjacent modules (Kim et al., 2013).  

 A number-correct (NC) routing method reviews and sums item-level performance 

for an examiner, and then the scores are used for module assignment. Armstrong, Jones, 

Koppel, and Pashley (2004), as well as Davey and Lee (2011), compared these two 

criterion-referenced routing approaches and found they are quite similar in terms of 

results. However, the information-based approach provides a better match between 

examinees and modules, whereas the NC approach is simpler to explain to examinees, 

which is a major consideration (Yan, von Davier, & Lewis, 2014).  

 Even though MST has many advantages, there are also potential disadvantages of 

misrouting that could potentially occur due to fewer adaptation points spatially in two-

stage MST. Thus, the challenge of routing is crucial because the opportunity for 

adaptation is limited, compared to the CAT. The impact of misrouting may include a bias 

in the estimation of the examinee’s ability if the examinees are assigned to modules that 

are not matched with their ability levels. The effects of misrouting may be exacerbated 

when there are few items in the routing stage and the chance of guessing is high. 

Additionally, the misrouting impact can be substantial with modules that cover a very 
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narrow range of ability or with modules that have more overlap in item difficulty (Kim & 

Moses, 2014). However, scholars have investigated the impact of routing methods. For 

example, Kim et al. (2013) compared three routing methods for four panel structures. 

They found similarity in terms of precision and in classification decisions with the same 

length of test. Kim and Moses (2014) also compared the differences in examinees’ scores 

with different conditions that included a small-difference condition with overlap in 

difficulty and a large-difference condition with distinction in difficulty; the results of 

their studies indicated minimal impacts of misrouting. 

 All this considered, MST has the potential to use different routing and scoring 

methods in combination. For example, the routing rule can be based on NC scores, while 

IRT estimation methods (such as maximum likelihood (ML), maximum a posteriori 

(MAP), or expected a posteriori (EAP) method), can be used to estimate the final score 

(Weissman, 2007). For MST, Lord (1980) states that it is not recommended to use NC 

scoring to estimate the final level of the examinee’s ability because the items each 

examinee receives are not statistically equivalent (Kim et al., 2013). Recently, other 

nonparametric approaches for MST have been introduced, such as a regression tree-based 

approach for routing and scoring that can be used when the IRT assumptions are not met 

or the sample sizes are too small (Yan, von Davier, & Lewis, 2014). 

 Linking and equating challenges. In practical implementations of MST, it is 

important to ensure the comparability of MST results over time; thus, essential principles 

for linking and equating MSTs should be taken into consideration. The calibration and 

linking of tests are involved in the initial phase of data collection. First, a conventional 
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test is administrated to develop initial modules and routing rules in order to use them in 

MST administrations. Afterward, data are collected from MST administrations and the 

scoring rules are established, modules are built, and the cut-scores for routing are 

equated. These procedures are necessary to ensure the comparability of tests over time; 

therefore, routing rules should be comparable for different administrations (Yan, von 

Davier, & Lewis, 2014). 

 Estimation and linking are substantial requirements for practical implementation 

of MST. Generally, IRT is used to provide the basic framework for linking, scoring, and 

equating. Different approaches to estimation of parameters can be used, including: (1) 

concurrent calibration, (2) sequential linking, and (3) simultaneous linking. In concurrent 

calibration, all parameters are estimated at once for multiple administrations. Sequential 

linking involves separate calibrations so when the parameter estimates are found for an 

administration, they are never changed based on later data obtained. Simultaneous linking 

involves additional separate calibrations where the parameter estimates are computed 

simultaneously for all administrations; as a result, the modification of older parameters 

can occur. With a small number of administrations and items in the item bank, concurrent 

calibrations are usually applied with a marginal maximum likelihood (MML) estimation 

once. In a separate calibration, such as sequential linking and simultaneous linking, MML 

is applied separately to each administration. However, if the number of administrations 

increases, simultaneous linking is more effective than sequential linking regarding the 

growth of random linking errors (Yan, von Davier, & Lewis, 2014).  
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 Nevertheless, other factors, such as item exposure, examinees’ motivation, and 

item representation can affect the parameter estimates from administration to 

administration; therefore, recalibration is needed in MST. Besides MML, conditional 

maximum likelihood (CML) and Bayesian approaches can be applied. The advantage of 

CML is that no assumptions are required regarding ability distribution in the population; 

in addition, its use does not require a random sample (Zwitser & Maris, 2015). Glas 

(1988) compared two estimation methods in MST, CML, and MML methods. He found 

that a CML estimation method is more powerful than a MML method. However, in MST 

the CML method breaks down because the estimation of all item parameters 

simultaneously fails to work. Moreover, it is impossible to estimate parameters in the 

different subgroups and to calibrate the estimates on scale via the common items. Zwitser 

and Maris (2015) used the Rasch model in their derivations and examples to prove that 

CML can be applied with MST, and that the Rasch model is less restrictive in adaptive 

testing compared to linear testing. 

 Security challenges. The threat of test security is higher in MST compared to 

CAT because the items are set together in modules and then the modules are set together 

in panels. Therefore, if the items are shared among groups or disclosed on the Internet, 

there will be a high chance that examinees who take the same pathway as the discloser 

will be able to answer items correctly, regardless of their ability levels (Zheng & Chang, 

2015).  

 The literature provides possible tools for monitoring quality and assessing test 

security. Various statistical indices used in CAT can also be used in MST. The most 



 

 28 

common index is the average test-overlap rate, or the expected proportion of common 

items among examinees. Item exposure rate can be also calculated as the ratio between 

the number of items administrated and the total number of examinees. If the test-overlap 

rate is high, the chance of sharing information divulged by those who took the test earlier 

will increase. Standard deviation (SD) of test-overlap rate is another index that is 

important to be conducted in MST. A large SD reveals that certain groups of examinees 

share more common items than other groups. The SD adds more information in the MST 

than the mean because at times during which the mean overlap rate is the same in MST 

and CAT, the SD of test overlap tends to be larger in MST, which poses a risk for test 

security (Wang et al., 2014). Other indices, such as an item polling index and organized 

item theft index, which are used in CAT, can be also applied in MST.  

 In MST, certain quality control and test security methods are considerations that 

can be applied during test assembly, before test administration, and some of them are 

statistical methods for detecting irregularities in post-administration analysis. For 

example, before test administrations, some considerations can involve large item pools, 

multiple forms of modules, and multiple parallel panels. Additionally, the on-fly-

assembly method of MST is less likely to expose items because the items are selected on 

the fly. Lee, Lewis, and Davier (as cited in Yan, von Davier, & Lewis, 2014) describe 

three statistical component procedures for monitoring quality control for MST. The three 

components are: (1) exploratory analyses for understanding the assessment and the 

examinees better to create a baseline, (2) short-term detection tools, and (3) long-term 

monitoring tools to assess the quality and security of the MST.  
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 The first component involves the use of variables obtainable from the data, 

including response data and timing data; thus, the data must be examined at item level, 

module level, and test level. Also, subgroup analyses using demographic information 

should be conducted. This step is to ensure that items function as expected and the 

examinees represent the target population composition. The second component (short-

term detection tools) is to detect test inconsistency in the performance on the test for each 

path of the MST based on residual analysis, profile analysis, or person fit analysis, which 

will potentially identify unexpected behaviors from regular behaviors. This analysis can 

be conducted across sections in the test or across items in a timed section. The pattern of 

module scores may be similar for different examinees. The unusual patterns may be due 

to cheating. The third component (long-term monitoring) is a crucial strategy for the 

testing industry wherein many tests are administrated per year globally. 

 It is necessary to investigate item and module performance over time, as well as 

test score distributions with summary statistics. Quality control charts, such as Shewhart 

and cumulative sum (CUSUM), can provide a visual examination of data with control 

limits to monitor the item and module performance over time in terms of accuracy and 

speed components. Thus, if the item or module becomes easier or less time-consuming 

over time, this item or module may be compromised. Moreover, investigating the 

differences in test scores of examinees or groups can be used to monitor examinee or 

group performance to demonstrate if there is an extreme change in the score. For a 

subgroup, the application of weighted liner mixed models to examine the data related to 

demographic information variables can be applied to detect the patterns in the data, 
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predict subgroup performance over time, and then develop prediction intervals for 

observations in future administration (Lee & von Davier, 2013). 

Item Response Theory 

 Item response theory ( IRT) is model-based measurement that has rapidly became 

a basis for assessment in the field of education, health, and social sciences. Most 

computerized adaptive tesing and multistage testsing are IRT-based applications. The 

IRT measurement models are applicable to CAT and MST for many design components 

that are necessary for CAT and MST adminstrations, such as routing, scoring, 

classification, and equating. In CAT and MST, multiple forms must be scored so each 

form yields comparable scores. Therefore, the item parameters must be estimated and 

scaled accurately and IRT accommodates the differences and provides comparable latent 

trait theta estimates (Weissman, 2014). IRT provides advantages over classical test theory 

(CTT). IRT is more psychometrically robust in creating measures of latent traits than 

CTT in addition to its benefit of reducing test length. The key feature of IRT over CTT 

that is IRT provides comprehensive descriptions of performance for each item in the test. 

IRT also produces item and scale indices for accuracy that freely vary across the full 

range of all possible scores. The bias of items and tests can be assessed in IRT by 

demographic subgroups while also measuring each examinee’s response pattern quality 

and consistency (Harvey & Hammer, 1999). Therefore, IRT is widely applied to calibrate 

and assess items, instruments, and also to score examinees on their abilities or other latent 

traits. IRT methodology provides critical improvements in measurement accuracy and 

reliability; thus, IRT-based techniques have been used to develop educational tests, such 
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as the Scholastic Aptitude Test (SAT) and the Graduate Record Examination (GRE) (An 

& Yung, 2014).  

 Item response theory uses a logistic regression formula to estimate responses 

using latent characteristics of individuals and items as predictors; thus, the examinees’ 

performances can be explained by latent traits (De Ayala, 2009; Zhang, 2013). The 

probability models are used in IRT to characterize the interaction between test takers and 

test items. The trait level in IRT is estimated based on both persons’ responses and on the 

properties of the administered items (Embretson & Reise, 2000). For example, in the two-

parameter IRT, the probability of a correct response is a function of two parameters: The 

distance between the person location (person ability) and the item location (item 

difficulty), and the differentiation among examinees’ locations at different points on the 

continuum (item discrimination). The three-parameter IRT model (3PL) adds a third 

parameter: guessing, which is useful if the test is presented in a multiple-choice item 

format. In this case, examinees with low proficiency may select the correct response by 

guessing. Therefore, the 3PL addresses issues that occur when the item response function 

has a lower asymptote that is a nonzero value (De Ayala, 2009).  

 Lord in the 1950s and Rasch in the 1960s introduced IRT as an alternative model-

based measurement theory (Embretson & Reise, 2000; Kean & Reilly, 2014). 

Additionally, IRT was developed to solve different practical testing issues, such as 

equating different test forms, score interpretation, and test score comparison within and 

between individuals (Embretson & Reise, 2000). Initially, IRT models were used for 

dichotomous items formats wherein there were only two possible scored values. Such 
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formats that fit this category are true/false or multiple choice with one correct response; 

this can be either the Rasch model or the two-/ three-parameter logistic model. However, 

later IRT models were extended to apply to other item formats, such as rating scales or 

the polytomous format, which was introduced by Andrich in 1978. In this item format, 

there are more than two possible scored values, as in Likert scales. Other advanced IRT 

models were also developed; for example, partial credit scoring was created by Masters 

in 1982 and multiple category scoring was originated by Thissen and Steinberg in 1984. 

These types of IRT models allow multiple responses with unequal scored values 

(Embretson & Reise, 2000; Harvey & Hammer, 1999). Additionally, IRT methodology 

can be applied to unidimensional models as well as multidimensional IRT models. 

IRT models. Persons and items are located on the same continuum in IRT; 

therefore, IRT models differ based on the number of parameters being used to model the 

responses to each item and all examinees. It is assumed that the relationship between the 

trait θ and the observed item response varies across the range of θ scores as a function of 

the item parameters (Harvey & Hammer, 1999). Consequently, there are different IRT 

models related to different item parameters. The most common IRT models used in 

psychological and educational measurement come down to three models: The one-

parameter logistic model, two-parameter logistic model, and three-parameter logistic 

model. Graded response, Guttman, and Mokken models are also other models that are 

frequently used with rating scales. The graded response model deals with ordered 

polytomous categories such as letter grading, A, B, C, D, and F, or attitude rating scales 

that range from strongly disagree to strongly agree (Samejima, 1997). Mokken and 
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Guttman scaling are used to evaluate whether the items measure the same underlying 

concept (unidimensional scale) based on the asssumption that the items are hierarchically 

ordered in their difficulty so it is assumed that respondents who answer a difficult item 

are more likley to answer  an easy item. The key difference between the two models is 

the probabilistic nature in a Mokken model ranging between 0 and 1.00 (DeJong & 

Molenaar, 1987). 

 One-parameter model (Rasch model). The 1PL, or the Rasch model, is the 

simplest of IRT models. It requires only a single item parameter to model the response 

process, which is the difference between the person parameter (b) and the item difficulty 

(d) parameter (Harvey & Hammer, 1999). The difficulty parameter is the location of 

items on the latent continuum that represents the construct. The upper end of the 

continuum indicates greater proficiency on the target trait than the case on the lower end. 

Therefore, by having both person and items located on the same continuum common 

scale, it is conceivable to predict the person’s response on an item (De Ayala, 2009). It is 

possible to predict the probability of a response as a function of both person and item 

locations; however, the relationship between the differences and item responses depends 

on the nature of the dependent variable, which is modeled as either log (odds) or 

probability. 

 In odds ratio format, the ratio of the probability of success for person s on item i 

(Pis) to the probability of failure (1- Pis) would be as follows (Embretson & Reise, 2000): 

In	[#$%/(1 − #$%] = 	θ − d.	  (1) 
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 The Rasch model is one that is simple, and that can be applied to any item if the 

item difficulty is known. In this model it is assumed that when the trait level is equal to 

item difficulty, the odds of success will be zero that yield an odds of 1.0 (0.50/0.50). This 

means that a particular person has an equal chance to succeed or fail on any given item. 

Consequently, the chance of success on a particular item increases as the trait level 

exceeds item difficulty (Embretson & Reise, 2000). In another form of the Rasch model, 

or what is called the one-parameter logistic model (1PL), the dependent variable is 

predicted as a probability rather than as log odds. The probability that person s passed 

item i is predicted from the combination of item difficulty and person ability, which has a 

nonlinear relationship with the dependent variable; therefore, the logistic model would be 

modeled as follows: 

       Ρ(Χ. = 1|θ, d.) = 	 456789:
;<456789:

        (2) 

 Where Ρ(Χ. = 1|θ, d.) is the probability of the response of 1, θ is the person 

location (person ability), d. is the item’s location (item difficulty), and e is a constant 

value equal to 2.7183…, according to Equation (1), the probability of a response of 1 on 

item i is a function of the distance between person ability (θ) and item difficulty (d). The 

dependent variable as a probability is more familiar than the log odds ratio expression 

(Embretson & Reise, 2000).    

 By implication, in the 1PL, all items in the test show an item characteristic curve 

(ICC) of identical shape (S-shaped curve). For the Rasch model, the predicted Rasch ICC 

is not as steep as the observed response function/ the empirical trace line. Therefore, to 

match the empirical trace line, the slope of the ICC needs to increase. This can be 
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completed by multiplying the exponent(θ − d.) by a, which is the slope (item 

discrimination (a)); therefore, Equation (2) becomes:  

Ρ(Χ. = 1|θ, d.) = 	 4=56789:
;<4=56789:

        (3) 

By adding (a) which is related to the slope of the logistic regression line, any variation 

in	>  leads to a change in the line's slope. However, the difference between the IPL and 

Rasch models lie in the constant value for this >, which is item discrimination. In the 

Rasch model, this value is constant at 1.0, whereas it does not have to be 1.0 in 1PL. In 

short, the Rasch model assumes that all items have the same discrimination ability, which 

is equal to 1.0; the IPL model however, assumes the discrimination parameter for all 

items is constant, and can be any value, whether 1.0 or other values. Mathematically, the 

two models are equivalent. Philosophically, the 1PL model puts more emphasis on fitting 

the data given the model’s constraints as accurately as possible. In the Rasch model, the 

focus is to construct the latent variable of interest (De Ayala, 2009). 

Two-parameter model. The one-parameter IRT model provides important 

information about performance using only one item property, which is item difficulty; it 

ignores the use of other item features, such as item discrimination. In the 1PL, it is 

assumed that all test items have identically shaped ICCs, in which case they would have 

the same discrimination. In empirical practice, the ICCs differ for each item due to some 

items having stronger or weaker relationships with the underlying latent construct. 

Therefore, the two-parameter logistic model (2PL) allows the ICCs to have different 

slopes, which means different items have different discrimination parameters (Harvey & 

Hammer, 1999). Items with higher “a” parameters are strongly related to the latent trait θ 
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and so provide more information regarding theta. This leads to a decrease in the standard 

error for estimated person ability, which increases measurement accuracy.  

The 2PL model places emphasis on incorporation of how well an item 

discriminates among examinees located at different points on the latent trait continuum. 

Thus, the probability of a response passing a particular item is a function of not only the 

distance between person location and item location, but also on item differentiation 

among examinees located at different points on the latent continuum. The model that 

takes item discrimination into account actually relaxes the constraint that items should 

have the same common slope. Consequently, the ability of the 2PL model to achieve 

model fit in several situations is higher than the1PL or Rasch models. This is due to the 

latter model’s allowing the slope to vary across items (De Ayala, 2009). In doing so, the 

1PL equation (2) becomes the 2PL model by multiplying the exponent (θ − d.)  by  “a”, 

as follows:  

Ρ(Χ. = 1|θ, d., ?$) = 	 4=@56789:
;<4=@56789:

    (4) 

The subscript on a indicates that each item i has its own discrimination parameter. The 

2PL equation (4) may include a scaling constant D to become:   

Ρ(Χ. = 1|θ, d., ?$) = 	 4A=@56789:
;<4A=@56789:

				(5)  

Item discrimination values vary from  −∞	CD	∞ ; however, the reasonable values 

range from 0.8 to 2.5, and an item with negative a should be eliminated because its 

performance is inconsistent with the model (De Ayala, 2009). 

Three-parameter logistic model. In 1PL and 2PL models, it is assumed the lower 

asymptote of the ICCs is fixed at zero, meaning the expected proportion of correct 
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response that would be expected from examinees who have very low ability. However, 

this factor may vary across items, especially in multiple-choice item formats. Individuals 

with low-proficiency and who do not know the correct response may potentially guess 

the correct response, which produces nonzero rates of correct responses to difficult items. 

This is a significant factor that needs to be addressed in the measurement models. The 

three-parameter model represents a third parameter, which is guessing, or the pseudo-

chance parameter, “c”, which allows the lower asymptote of the ICCs to adopt nonzero 

values for minimum values. Therefore, the three-parameter logistic model equation 

would be as follows, after extending the 2PL model equation (5) to include the third 

parameter “c”:    

Ρ(Χ. = 1|θ, d., ?$, E$) = E$ + (1 − E$) 4A=@56789:
;<4A=@56789:

	   (6) 

where Ρ(Χ. = 1|θ, d.) is the probability of the response of 1, θ is the person location,  

d.is the item’s item difficulty parameter, ?$  is the item’s discrimination parameter (slope 

of ICC), E$ is the pseudo-chance parameter (guessing effect), D is a scaling factor, and e 

is a constant value equal to 2.7183. In items that have values of ci greater than zero, the 

probability of correct responses at di become greater than 0.50. Thus, the relationship 

between the item discrimination and the slope depends on the item guessing parameter.   

 IRT Assumptions. IRT models involve stronger assumptions than other 

measurement models. Violation of these assumptions may yield difficulties in the results’ 

interpretation because the latent ability estimates produced by calibrating the data to the 

IRT model assume that the data fit the model well (Kean & Reilly, 2014). Two main 

assumptions are required for item response theory: (a) the item characteristic curves 
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(ICCs) or item response functions (IRF) have S-shaped curves, and (b) local item 

independence (Embretson & Reise, 2000; Harvey & Hammer, 1999).  

 The first assumption pertains to the ICCs’ specific form. The ICC’s shape 

illustrates the relationship between the changes in trait level and the changes in the 

probability of a particular response, which are the most important relationships in IRT 

existing between the underlying latent construct and the response to each item in the test. 

The ICC is considered a two-dimensional scatterplot of theta (X-axis), by item response 

probability (Y-axis) (Harvey & Hammer, 1999). The ICCs for dichotomous items (e.g., 

correct/ wrong) regress the probability of item success on trait level. In contrast, the ICCs 

for polytomous items (e.g., Likert scale) regress the probability of item responses in each 

category on trait level (Embretson & Reise, 2000). The forms of ICCs must be S-shaped, 

which plots the probability of a correct response related to person ability and item 

parameters. Therefore, the shape of the ICC is not only impacted by trait level but also by 

item characteristics, such as item location, item discrimination, and item lower 

asymptote. Item discrimination is related to slope and shows how rapidly the probability 

changes with trait level. Guessing the correct response influences the item lower 

asymptote; thus, the lower asymptote will be greater than zero. Embretson and Reise 

(2000) illustrated the impact of item parameters on three items through two figures. 

Figure 3 shows three items with different locations on the trait scale where item 1 is 

easier than items 2 and 3 because it requires lower trait ability than the others. Finally, 

Figure 4 shows three different items with different lower asymptotes, with the probability 

of correct responses to item 3 that never drop to zero. 
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Figure 3. The ICCs for three items with different difficulty levels. Adapted from Item 
response theory for psychologists (p. 46), by Embretson, S., & Reise, S., 2000, Mahwah, 
NJ: L. Erlbaum Associates. Copyright 2000 by L. Erlbaum Associates. 

 

 

Figure 4. The ICCs for three items with different lower asymptote levels. Adapted from 
Item response theory for psychologists (p. 47), by Embretson, S., & Reise, S., 2000, 
Mahwah, NJ: L. Erlbaum Associates. Copyright 2000 by L. Erlbaum Associates. 

The second assumption is that local independence of the item must be obtained. In 

other words, the responses to items are statistically independent in the test (Zhang, 2013). 
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This assumption is achieved if the relationships between items or persons are completely 

shaped by the IRT model. This means the probability of answering any item is 

independent of the outcome of any other item while controlling for person and item 

parameters (Embretson & Reise, 2000).   

The conditional independence of items specifies the relationships between items 

in that there are no further relationships remaining after controlling model parameters. 

Moreover, the local independence condition is associated with the number of dimensions 

of the underlying latent traits; this is empirical evidence for unidimensionality. However, 

item local independence can be obtained for both unidimensional and multidimensional 

data if the IRT model includes person parameters for each dimension. Furthermore, 

Embretson and Reise (2000) indicated that item local independence can be achieved with 

more complex dependence items when items are linked or interactive with each other, 

which is accomplished by including the interaction effects or linkages in the model.  

 Dimensionality in IRT. IRT models have essentially been developed for 

instruments that are unidimensional. Unidimensionality suggests that items are measuring 

only one latent trait, and when the items measure more than one latent trait, the scale 

becomes multidimensional (Zhang, 2013). Unidimensionality is an important assumption 

for IRT models. At the same time, multidimensional IRT models have been developed 

for instruments that include more than one dimension. Instruments with multiple scales 

can be analyzed either concurrently using a multidimensional IRT model or 

consecutively using a unidimensional model. It was found that IRT models are 
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comparatively robust with moderate violations of strict unidimensionality (Harvey & 

Hammer, 1999). 

IRT methods are typically used with instruments whose structure has already been 

determined using empirical methods such as exploratory or confirmatory factor analysis.  

Exploratory factor analysis can identify the dimensional structure of an instrument using 

data from a sample that represents the target population (Zhang, 2013). Next, 

confirmatory dimensionality analysis is used with another data set to confirm the number 

of dimensions (i.e. congruity between a known test structure and the statistical 

dimensional structure that is suggested by response data). Different dimensionality 

assessment procedures can be used, but all of them require similarities and distances 

between items.  

There is a linear factor analysis (LFA) to assess dimensionality of item responses 

with linear relations. Nonlinear factor analysis can be alternatively used with both linear 

and nonlinear relations among items in a multidimensional scale. Another analysis that 

can be used to evaluate dimensionality is “dimensionality evaluation to enumerate 

contributing traits” (DETECT), which is based on item-pair conditional covariances; this 

method was modified in order to apply to test designs with unestimable item pairs such as 

occur with multistage design because of intended item nonresponse data (Zhang, 2013). 

These techniques can be used for either linear classical tests or for computerized adaptive 

tests.  

For multistage testing, the different item responses collected at different stages are 

combined to get a final estimate of person proficiency, but the covariances of item pairs 
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cannot be estimated due to the multistage design. The similarities or distance of any two 

items cannot be estimated; this is called un-estimable item pair by design. In MST, there 

are no current methods that have the potential to be used with un-estimable item pairs to 

assess dimensionality. Recently, Zhang (2013) modified DETECT to apply to MST and 

any other test designs with un-estimable item pairs.  However, this modification has not 

been thoroughly tested with real data.  

IRT models are widely used in MST designs for item calibration and person 

ability estimation because IRT models have strong assumptions that ensure sample free 

person and item estimates, which is an important requerment for MST designs. 

Therefore, IRT is the major measurement model used for identifying item bias, equating, 

and establishing scoring rules. In this study, item parameters (item difficulty and item 

discrimination) of the item pool were needed for item assembly for each module (easy, 

medium, hard) in each condition, as well as for persons routing based on ability estimates 

in each module at each stage. Equating of different forms so that they are on the same 

scale is accomplished using IRT.   

General Aptitude Test 

 The General Aptitude Test (GAT) is a large-scale assessment developed and 

administered by the National Center of Assessment in Higher Education in Riyadh, Saudi 

Arabia (S.A). The GAT is one of the requirements for colleges’ and institutions’ 

admission to higher education in Saudi Arabia for high school graduates. The purpose of 

the GAT is to predict the academic success of undergraduate students (Alanazi, 2014; 

Alshumrani, 2007; Dimitrov & Shamrani, 2015). There are two versions of the GAT, in 
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both the Arabic and English languages, which measure analytical and deductive skills of 

students who graduated from high school. According to the National Center for 

Assessment (NCA) in Higher Education (2017), the general focus of the GAT is to 

measure the students’ capability for learning based on their proficiency in a particular 

area or topic. Five general abilities measured by the GAT are:  

a) Reading comprehension; 

b) identifying logical relationships;  

c) resolving problems using basic mathematical concepts; 

d) drawing inferences; and 

e) measuring capacity. 

The GAT is composed of two independent measures: verbal/qualitative (GAT-V) and 

math/quantitative (GAT-Q). The two sections include a varying number of items that 

assess examinee ability in different categories of content. The GAT-V includes items that 

measure four content areas, including:  

a) Verbal reading comprehension (VRC), in which passages are given to the 

examinees and they are asked to answer comprehensive questions relating to 

the passages; 

b) verbal analogy (VAN), in which the examinees are given a pair of words that 

they must match to the appropriate pair of words offered as multiple choices, 

by way of finding relationships between the two sets of pairs;   
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c) verbal contextual (VCA), in which the examinees are asked to find the 

synonym of a word from a list of choices that matches the meaning of the 

word given; and  

d) verbal sentence completion (VSC); in which a short sentence is given to 

examinees, who are asked to fill in one or two blanks with missing words to 

complete meaningful sentences, drawing from the multiple choices given 

(Alanazi, 2014; NCA, 2017). 

The GAT-Q focuses on mathematical problems that serve as examples of required skills 

related to problem-solving, logical reasoning, analysis, and measurements. The items in 

the GAT-Q measure the following five content areas:  

a) Arithmetic (MAR),  

b) Geometry (MGE),  

c) Analysis (MAN),  

d) Comprehension (MCO), and  

e) Algebra (MAL) (Alanazi, 2014, NCA, 2017). 

The duration of the GAT is two hours and a half. The test is divided into six parts, with 

25 minutes allotted for each test part.   

 The GAT is a multiple-choice format test in which there exists only one correct 

answer per question; thus, the responses are scored as dichotomous (1=correct, 

0=incorrect). The GAT is a 100-point test that carries a certain relative weight deciphered 

by the institutions to which examinees apply. According to the NCA (2017), the GAT 

scores are interpreted by relevant positioning of the examinees compared to other 
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students. Table 2 shows the scores and the related students’ positions by percent 

performance bands. 

Table 2. 
 
The GAT Score and the relevant student’s position as NCA clarified  

Score  Student’s position 

81 and above  Top 5% 

78 and above  Top 10% 

73 and above  Top 20% 

70 and above  Top 30%  

65 The average  

60 and below  Lowest 30% 

The widespread use of the GAT in SA and some other Arabic countries, such as 

Egypt, Kuwait, Bahrain, and Oman, indicates the importance of investigating the 

reliability and validity of GAT scores. Thus far, small-scale studies have been conducted 

to investigate the validity of the GAT, with the intention of ensuring the accuracy of the 

admissions decisions. Alshumrani (2007) conducted a predictive validity study of GAT 

scores on first-year college GPA for 2,170 male students from Umm AlQura University, 

SA, controlling for high school GPA, high school major, and college major. The results 

indicated that the 8% of the variance in GPA was explained by the GAT. The reliability 

of the GAT-V was investigated by Dimitrov and Shamrani (2015) with a sample of 

15,806 high school students from different regions of SA. The Cronbach’s coefficient 

alpha (α) for internal consistency reliability of the test scores was 0.90 for all items (0.82 

for Analogy, 0.75 for Sentence Completion, and 0.73 for Reading Comprehension). 
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Similarly, Alnahdi (2015) compared the predictive ability for three predictors: GAT 

score, high school GPA (HSGPA), and National Achievement Test score (NAT). This 

study was developed to predict the cumulative college GPA and graduation from the 

university using a sample of 27,420 students enrolled at Prince Sattam bin Abdulaziz 

University, SA.  Alnahdi (2015) found that the GAT is a statistically significant predictor 

of cumulative college GPA and explains 12% of the GPA variation and 7% of the 

variation in student graduation status.  

 Unidimensionality is a significant assumption necessary in using item response 

theory (IRT) for test calibration. Thus, Dimitrov and Shamrani (2015) examined the 

dimensionality of the GAT-V and compared four different CFA models: (a) single factor 

model; (b) three-factor model, which uses three uncorrelated latent factors to show three 

different content specific domains; (c) three-factor model, which uses three correlated 

latent factors to show three content-specific domains; and (d) bifactor model, which uses 

a single general factor of verbal aptitude loading on all items and three latent factors as 

content-specific aspects of the general factor. The study concluded that the bifactor 

model that uses a single general factor and three content domains (Analogy, Sentence 

Completion, and Reading Comprehension) fit the data better than the other models. 

Therefore, the CFA modeling of GAT-V data suggests that the GAT is fundamentally 

unidimensional, which justifies the use of IRT calibration of items and scoring of 

performance.   

 In order to know whether GAT items exhibit bias across various subgroups, 

Sideridis and Tsaousis (2013) used four different statistical strategies: uniform and non-
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uniform differential item functioning (DIF); measurement invariance for multi-group 

confirmatory factor analysis; and differential test functioning (DTF), using a large sample 

size (41,134 examinees). The different methodologies were applied across gender (male 

vs. female), provinces (Saudi Arabia vs. Bahrain), school type (public vs. private), and 

thirteen different regions, using five forms (A to E). The technical report suggested that 

the GAT items did not exhibit obvious uniform or non-uniform DIF and the effect size 

(Cohen’s d) was smaller than the threshold of 0.35; this was the case for all but two 

items, which showed noticeable non-uniform DIF. For measurement invariance of the 

GAT, the results validate the presence of configural and metric invariance across all 

population comparisons. The conclusion of GAT’ results indicate that the GAT possessed 

negligible amounts of bias across gender, province, school type, test form and region. 

Therefore, GAT is stable regarding its function for all factors tested (Sideridis & 

Tsaousis, 2013). 

 Given important utilization and stability of the GAT, more restrictive analytical 

studies are strongly needed to enhance the validity of the GAT’s applications. Further 

studies would be additionally helpful to examine the GAT based on demographic 

information of examinees, schools, curricula, and regions in order to understand the 

psychometric features of the General Aptitude Test. 
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Chapter Two: Method 

Procedure 

The GAT is usually administered in paper format twice during a school year (Fall, 

Spring). Therefore, each examinee has two opportunities to take the GAT paper test per 

academic year on scheduled dates. The examinees can also take the computer-based test 

at various times during the academic year. The GAT is a timed test; the duration of the 

test is two and half hours. The test is divided into six parts. Examinees have 25 minutes 

to answer and review the questions on each part. Then, they must move to the next part, 

so they are not allowed to review the previous parts when the new part is presented 

(NCA, 2017) 

The test was administered, and data were collected by the National Center of 

Assessment (NCA) in Higher Education, Riyadh, Saudi Arabia. The author obtained 

secondary data from the NCA, as well as the agreement to use the data for research 

purposes. Data were provided to the researcher via an emailed file. The data are a frame 

that represents the population of examinees who annually take the GAT. The data were 

anonymous and included responses to all items with no missing data, and only 

demographic information about sex and region were available. 

  For the current study, data from the GAT paper-based administration were used. 

The data comprised 45,738 examinees that took the General Aptitude Test in Fall 2015, 

administrated in 13 different regions. In order to have a suitable sample, 20% of the 
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dataset was selected for a random sample; precisely, 9,108 examinees, 4,183 males 

(45.9%) and 4,925 females (54.1%).  

Instrument 

 The instrument used to create the multiple forms of MST is the GAT developed 

by the NCA. According to the NCA (2017), the GAT aims to measure analytical and 

deductive skills of students (more information about GAT was presented in the literature 

review. The GAT comprises two independent measures:  

(a) Section1, measuring verbal ability (GAT-V,) and  

(b) Section 2, measuring math or quantitative ability (GAT-M). 

 The GAT consists of 96 items divided into 52 items in the verbal section and 44 

items in the quantitative section. Each section has several domains; Table 3 lists these 

domains and the number of items in each section. The items are in multiple-choice format 

where there is only one correct response. Thus, the GAT data are dichotomous with a 

score of “one” for a correct response and “zero” for each incorrect response. 
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Table 3.  
 
The Number of Items in each Domain of the Verbal and Quantitative/Math GAT  

GAT-V Number 
of items  

GAT-M Number 
of items  

Reading comprehension 
(VRC) 

20 Arithmetic (MAR) 16 

Analogy (VAN) 16 Geometry (MGE) 8 

Contextual (VCA) 10 Analysis (MAN) 8 

Sentence completion (VSC) 6 Comprehension (MCO) 8 

  Algebra (MAL) 4 

Total  52  44 

Total after deletion  48  43 

Assessment of the GAT 

 The CLT was the item pool for MST designs. The initial item analysis using CFA 

and 2PL IRT was conducted. Four items (VSC-D, VSC-E, VRC, VRC-S) in GAT-V and 

one item (MAR-L) in GAT-M were deleted because their discrimination indices were 

negative. The CLT version of GAT subtests was reassessed after deleting weak items 

from both sections. The unidimensionality of the GAT was separately assessed for GAT-

V and GAT-M via CFA using SPSS Statistic Version 25 and AMOS Version 22. The 

CFA analysis supported the GAT-V and GAT-M as unidimensional tests; the existence of 

one factor was not rejected. See Appendix C for GAT-V and Appendix D for GAT-M. 

The parameters of the item pool were estimated by IRT-2PL using BILOG-MG3. Tables 

1 and 2 in Appendix A display the values of the parameters of the item pool for each 

section. 
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The calibration for the GAT-V showed that the range of the item difficulty 

parameter (d) was from -2.59 to 4.66 with a mean of 0.232 and standard deviation (SD) 

of 1.51. The mean of the discrimination parameter (a) was 0.45 with SD of 0.20, ranging 

from 0.079 to 0.98. For GAT-M, the item difficulty parameters ranged from -1.88 to 2.91 

with a mean of 0.324 and SD of 0.96. The discrimination parameter (a) ranged from 

0.079 to 0.980 and the mean was 0.465 with SD of 0.16. The reliability indices were 0.86 

for GAT-V and 0.85 for GAT-M. 

The tenability of the functional form was assessed by examining the empirical test 

information function curve (TIC) and item characteristic curves (ICCs). The TIC of 

GAT-V represented in Figure 1 (solid line) in Appendix B that shows that the test 

information covered ability ranging from -4 to +4 with the peak information found when 

the theta level was -0.50; the curve was a little skewed toward the low level of ability 

more than the high ability levels, indicating that the information did not cover well the 

whole range of ability levels. The highest information coverage of ability centered 

between logit ability -2 and +1. The figure also shows that the standard error curve 

(dotted line) was inversely related to the test information curve. The standard errors (SE) 

were reduced at the low and medium levels between -2 and +1 of theta while it increased 

above +1 and below -2 level of ability. Moreover, the power of discrimination was 

somewhat higher for examinees between these two levels of theta. Additionally, there 

was little information about those who had ability levels at both edges: the test 

information was somewhat poor for ability levels higher than + 2 and lower than -2. In 

sum, this indicates the acuracy of ability estimation was not equal along the continuum of 
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the ability scale which was expected because fewer items and so less information was 

available at the upper and lower edges of the ability scale.  

The TIC of GAT-M represented in Figure 2 (solid line) in Appendix B shows that 

the test information covers ability ranging from -4 to +4. The peak information was in the 

center of theta at a level of zero, the curve was normal shape, so the information was 

covered well between -2 and +2. Consequently, the standard error curve (dotted line) 

decreased at the average ability levels between -2 and +2 of the theta continuum. The SE 

increased above the +2 and below -2 level of ability, implying the acuracy of ability 

estimations was not equal along the continuum of the ability scale because the test 

information was considerably less for ability levels higher than + 2 and lower than -2.  

MST Panel Structure Forms 

 The two subtests, verbal and quantitative, are assumed to be independent and they 

measure different content; thus, the multistage tests were designed separately, one for 

GAT-V and another for GAT-Q/M. MST panels were assembled from an item pool that 

contained 48 items for GAT-V and 43 items for GAT-M. The next section explains the 

construction of the MST panels that were applied with both sections of the GAT-V and 

GAT-M. Two panel structures with two different test lengths and two assembly 

conditions were constructed. 

 The two-stage MST panel structure designs. The first panel design included 

two stages, 1-3 panel structures that had one module for the first stage (the routing stage) 

with nine items, and three modules for the second stage (easy, medium, and hard 
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modules) with three items at each module; the test length was twelve items. See Figure 5. 

For the two-stage MST, there were three potential paths:  

a) Low-path that includes module 1M (routing) and module 2E (easy),  

b) Middle-path that includes module 1M (routing) and module 2M (medium), 

and   

c) High-path that includes 1M (routing) and module 2H (hard).  

 The three-stage MST panel structure designs. The second panel design 

included three stages, 1-3-3 panel structures that had one module for the first stage (the 

routing stage) with nine items, and three modules for the second and third stage (i.e., 

easy, medium, and hard modules.) There were three items at each module, which makes 

the test length 15 items. For the three-stage MST, there were nine potential paths because 

the nonadjacent routing was used (more details about nonadjacent routing can be found in 

routing method section). The nine paths were:  

a) Low-path includes module 1M (routing), 2E and 3E (EE);  

b) Low-medium-path includes 1M (routing), 2E and 3M (EM); 

c) Low-high-path includes 1M (routing), 2M and 3H (MH); 

d) Middle-low-path includes module 1M (routing), 2M and 3E (ME); 

e) Middle-path includes module 1M (routing), 2M and 3M (MM); 

f) Middle-high-path includes module 1M (routing), 2M and 3H (MH); 

g) High-low-path includes 1M (routing), 2H (hard), and 3E (HE); 

h) High-medium-path includes 1M (routing), 2H (hard), and 3M (HM); and 

i) High-path includes 1M (routing), module 2H (hard), and 3H (hard). 
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Assembly Conditions 

 Figure 5 shows all designs for two- and three-stage MST panel structures. All 

MST designs had two different assembly conditions for the second or third stage(s). The 

first assembly condition was the small-difference or narrow range (NR) condition, where 

the three modules at the second stage (for 1-2 and 1-3-3) and at the third stage (for 1-3-3 

MST) included items with slight differences in difficulty from each other; thus, the range 

in item difficulty was narrow.  

In contrast, in the large-difference or wide range (WR) condition, the three 

modules at the second stage (for 1-2 and 1-3-3) and at the third stage (for 1-3-3 MST) 

included items with significant differences from each other; thus, the range was wide. For 

all panel designs, the test information function (TIF) was fixed at 0.0 for the routing stage 

and medium modules, one standard deviation below the average of the item difficulty for 

easy modules, and one standard deviation above the average of the item difficulty for 

hard modules on the continuum “theta.”  
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Figure 5.  Two- and Three-Stage MST panel structure designs 

Routing Methods 

 Two routing methods were used to assign examinees to the next stage(s). The 

methods were Defined Population Intervals (DPI), and the Approximate Maximum 

Information method (AMI). The two approaches were described in the literature review 

section. In the MST design that used DPI, the examinees were sorted after each stage in 

rank order according to their score; then they were assigned to the next module using a 

set percentage to each module. The percentages 30%, 40%, and 30% were used to assign 

examinees to the easy, medium, and hard modules, respectively.  

 The second MST design used the AMI method. The examinees were routed into 

the next stage using the test information functions (TIFs); the connection between the 

cumulative TIFs of adjacent modules was determined. The cutscores of estimated ability 
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-0.524 and 0.524 were used to assign examinees to the low class (below average), 

medium class (average), and high class (above average).  

Nonadjacent routing was used in this study for equity purposes. In MST with 

more than two stages, there are two strategies of routing (adjacent vs. nonadjacent) 

regarding allowing  examinees to be routed into all avaliable modules in the next stages. 

In practiclity, adjacent routing is usually used in MST studies where examinees can only 

be routted to modules in the next stage that are adjacent in level of difficluty related to 

thier module in the current stage (Kim & kim, 2018). For example, in 1-3-3 design, if the 

adjacent routing is used, examinees who are assigned to the easy module in the second 

stage, have only a chance to be assigned to the easy or medium module, not to the hard.  

They cannot recover from low performance on stage 1 and cannot be aasigned to the hard 

module in the thrid stage, even if their performance is high in the easy module at the 

second stage. However, from the perspective of fairness and equity, the nonadjacent 

routing allows examinees to recover from the bad performance in the first stage, so they 

can be routed to the hard module if their performance is high enough in the easy module 

at second stage. In short, nonadjacant routing allows to have more paths than adjacant 

routing; for example, in a 1-3-3 design, there are nine possible paths if nonadjacent 

routing is used whereas there are only seven paths if adjacent routing is used  

Data Analysis 

  Descriptive item parameters (difficulty, discrimination) were obtained to generate 

the MST panel structures. The mean and SD of item difficulty were used to divide the 

items into three categories. The items with difficulty levels (d) that were above one SD of 
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the mean were assigned to the hard modules; the items with difficulty levels below one 

SD of the difficulty mean were assigned to easy modules. The rest of the items were 

assigned to medium modules. See Table 1 and Table 2 in Appendix A for more detail. 

Additionally, an initial analysis was conducted to examine the dimensionality of each 

subtest (GAT-V and GAT-M). To answer the research questions, different analyses and 

indices were used. BILOG-MG3 was used to estimate ability estimates and the standard 

errors using IRT with a 2PL model. The next section provides a description of the 

analysis for each question, separately. 

 Research question 1. Does the performance of two assembly conditions (NR, 

WR) yield comparable results in terms of ability estimates and accuracy in classification 

decisions for GAT-V/ GAT-M?  

 This question has two parts regarding comparison of the results of two assembly 

conditions in terms of ability estimates and accuracy in classification decisions. For 

ability estimation, the 2PL IRT model was run for all conditions to obtain the ability 

estimates and the standard errors (SE) for estimated ability to compare; the assembly 

condition with the smaller average SE was considered to be more accurate.  

For classification decisions each examinee either in CLT or MST was placed into 

one of three classes using DPI and AMI rules. For DPI conditions (MST and CLT), the 

top 30% of examinees were assigned to the high class (above average), 40% of them to 

the medium class (average), and the lowest 30% to the low class (below average). 

Regarding AMI conditions (MST and CLT), the examinee whose ability was 0.524 and 

higher was assigned to the high class (above average), the examinee whose ability was - 
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0.524 or less was assigned to the low class (below average), and the rest of the 

examinees, having had an estimated ability between -0.524 and 0.524, were assigned to 

the medium class. 

If both the ability scores on CLT and the estimated abilities on MST equally 

classified examinees as above average, average, and below average, this means the 

correct decision was made. If the estimated ability on CLT and on MST differently 

classified the examinees, this means the wrong decision was made. The percentage of 

agreement in classification between CLT and MST was considered as a percentage of 

correct classification, where the CLT was considered as the correct classification. The 

assembly condition that yielded a higher count of correct decisions distinguished it as the 

more accurate model. The percentage of classification errors was calculated. Therefore, 

all conditions were compared in terms of correct classification rate and false error rate 

(either false negative or false positive error.) Thus, the assembly condition with the 

highest percentage of correct classification was deemed the more accurate condition. All 

analysis procedures were independently applied for both GAT-V and GAT-M.  

 Research question 2. Does the performance of DPI and AMI routing methods 

yield comparable results in terms of ability estimates and accuracy in classification 

decisions for GAT-V and GAT-M? 

 To answer this question, a comparison between models that used the DPI method 

and models that used the AMI method was conducted under all conditions. The models 

were compared in terms of the amount of the error associated with ability estimates; 

models with a smaller average error were considered to be the more precise models. As in 
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research question 1, the MST model that yielded the highest proportion of correct 

classification decisions was deemed the most precise model. All analysis procedures were 

independently applied for both GAT-V and GAT-M. 

 Research question 3. Does the performance of two-stage MST and three-stage 

MST yield comparable results in terms of ability estimates and accuracy in classification 

decisions for both GAT-V and GAT-M? 

 As in research questions 1 and 2, the analysis for the third research question was 

conducted in the same manner but compared the performance of 1-3 MST and 1-3-3 

MST. The model with the smallest average error of ability estimates was the most precise 

model and the model with the highest percentage of correct classification decisions was 

the most accurate model.  

 Research question 4. Do the examinees’ ability scores obtained from classical 

testing correlate positively and statistically significantly to the examinees’ scores on the 

MST for each condition for both GAT-V and GAT-M?  

 For all conditions and for both sections of the GAT, the bivariate correlation 

between students’ scores and the students’ positions (using IRT calibration) on each MST 

condition were calculated. The Pearson correlation coefficient was used as index for the 

relationship. Coefficients of 0.70 and above were considered as strong correlations as 

well as a strong index of adequacy for MST as an alternative to classical linear testing. 

Table 4 provides a descriptive of the aim of each research question and the target 

outcomes that were used to evaluate the performance of each condition in MST for GAT. 
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Table 4.  
 
Brief Description of Conditions and Outcome Measures 
Target Point Conditions                 Outcome Measures  
Q1: Assembly 
conditions 

Two conditions:  
- small-difference 

or narrow range 
(NR) 

- large-difference or 
wide range WR 

- Ability estimation and 
Standard errors: model with 
lower average SE is more 
accurate. 

- Classification decisions: 
Model with highest 
percentage of correct 
classification decisions 
between examinees classes 
on CLT and estimated 
abilities classes on MST is 
more accurate.   

 
Q2: Routing 
methods 

Two conditions:  
- Defined 

Population 
Intervals (DPI) 

- Approximate 
Maximum 
Information 
(AMI).  

- Ability estimation and 
Standard errors: models 
with a smaller average error 
are the more precise models. 

- The MST model that yields 
the highest proportion of 
correct classification 
decisions is the most precise 
model 

 
Q3: Number of 
stages  

- Two conditions: 
- Two stages (1-3) 
- Three stages (1-3-

3)  

- Ability estimation and 
Standard errors: models 
with smaller average error 
are the more precise models. 

- The MST model that yields 
the highest proportion of 
correct classification is the 
most precise model 

 
Q4: 
Relationship to 
Raw Score  

 

All previous conditions - Bivariate correlation 
between examinees’ ability 
scores on CLT and the 
students’ positions on MST 

- Coefficient of 0.70 and 
above is considered a strong 
correlation. 
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Chapter Three: Results 

Presented in this chapter are the results of the series of analyses, the purpose of 

which was to assess the multiple form designs of multistage testing for GAT. The 

research questions are addressed in analyses of results of sequential MST designs using 

IRT. BILOG-MG3 was used for IRT analysis with a 2PL for assessing MST designs 

while SPSS Version 25 was used for statistical analyses, such as descriptive, t-tests, 

correlations, percentages, and classification.  

Research Question One 

 Does the performance of two assembly conditions yield comparable results in 

terms of ability estimation and accuracy in classification decisions for GAT-V and GAT-

M? 

 The two assembly conditions of items, narrow range (NR) and wide range (WR) 

of item difficulty, were applied to the second stage in MST-2stage, and to the second and 

third stage in MST-3stage for both subtests of the GAT. The comparison was conducted 

among all conditions in terms of ability estimates and accuracy in classification 

decisions. The results are presented separately in two sections: GAT-V and GAT-M.  

 GAT-V: Comparison between NR and WR in estimated ability. A comparison 

between NR and WR conditions in accuracy of estimated ability for GAT-V was 

conducted separately for both panel structure designs of MST: MST-2Stage and MST-

3Stage as follows: 



 

 62 

 GAT-V with MST-2stage. The examinees’ abilities were estimated in the routing 

stage, which included nine items, and in the second stage, which included three items in 

each module for both conditions NR and WR. Table 5 shows the descriptive statistics of 

item difficulty, aggregated over items in each module for the MST-2Stage GAT-V. It is 

notable that in the second stage the item difficulty range was 3.6 in the NR condition 

while it was nearly twice that (7.3) in the WR condition. The ability means and error 

means were estimated in NR and WR for all routing method conditions. 
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Table 5.  
 
Descriptive Statistics of Item Difficulty in Each Module in MST-2Stage GAT-V 
Difficulty 
difference  

Stage  Module/ 
level 

# 
items 

M SD Range Item ID 

NR 1 Routing  9 -0.11 0.75 2.2 VAN-A, VAN-J, 
VAN-N,  
VCA-B, VCA-H, 
VSC 
VRC-K, VRC-M, 
VRC-O 
 

2 Hard  3 0.34 1.55 3.6 VSC-A, VRC-C, 
VRC-Q 

2 Medium  3 VAN-D, VCA-G, 
VRC-D 

2 Easy  3 VAN-H, VCA, 
VRC-E 

WR 1 Routing  9 -0.11 0.75 2.2 VAN-A, VAN-J, 
VAN-N,  
VCA-B, VCA-H, 
VSC 
VRC-K, VRC-M, 
VRC-O 
 

2 Hard 3 0.68 2.83 7.3 VAN-F, VRC-H, 
VRC-L 

2 Medium  3 VAN-D, VCA-G, 
VRC-D 

2 Easy  3 VAN-I, VRC-B, 
VRC-N 

Results indicate there was a minuscule difference between NR and WR regarding 

the targeted estimates in all conditions. The ability means were quite similar in NR (0.892 

and 0.998) and WR (0.882 and 0.906) in DPI and AMI conditions, respectively. Although 

the differences among ability means were small, these differences were significant at p < 

0.001 with df of 9,107. The results of t-tests are provided in Table 6, which reveals that 
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the mean ability in NR was significantly higher than the mean ability in WR for both 

routing conditions DPI and AMI. 

According to Table 6, the standard error (SE) means for estimated ability were 

also similar in all conditions, resulting in 0.899 and 0.910 in NR and 0.916 and 0.924 in 

WR. The t-test results show that the NR SE means (0.899 and 0.910) were statistically 

significantly lower than the SE means (0.916 and 0.924) of WR conditions, for both DPI 

and AMI conditions. 

Table 6. 
 
Differences between NR and WR among All Conditions for MST-2Stage of GAT-V  
Condition Ability Mean t-test    SE Mean t-test 

 NR WR NR  WR 

DPI 0.982 0.882 112.12** 0.899 0.916 1254.4** 

AMI 0.998 0.906 118.48** 0.910 0.924 1362.2** 
Note. DPI = Defined Population Intervals, AMI =Approximate Maximum Information Method,  

** p < 0.001 with df 9,107 

The boxplots for ability means in all conditions for MST-2Stage are displayed in 

Figure 6. The top figures represent NR conditions and the bottom figures correspond to 

WR conditions. For AMI conditions (left side of the figure), the groups’ mean ability 

estimates of GAT-V in NR conditions were higher than the groups’ means in WR 

conditions, where outliers existed in group 2 (medium group) of WR conditions; this may 

have pulled the mean down. The ability means of the NR were slightly higher than the 

means in the WR conditions. For DPI conditions (right side of the figure), the groups’ 

means were quite similar between the two conditions. Group 1 (low group) had similar 

mean in both conditions NR and WR, but the WR had outliers in group 1. The outliers 

generally impact the estimations, so they are smaller or larger than the central value, 
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depending on the direction of the outliers. The outliers were in the low band in group 1 

for the WR condition which made the mean smaller than it likely should be. Thus, the 

mean of this group was underestimated because of the presence of outliers. 

Figure 6. Classes in all conditions in MST-2Stage for GAT-V, NR-AMI and WR-AMI 
(left), NR-DPI and WR-DPI (right)  

 GAT-V with MST-3Stage. The MST-3Stage consisted of three stages. The 

routing stage included nine items, while the second and third stages included three items 

in each module for both conditions, NRWR (NR at stage 2 and WR at stage 3), and 

WRNR (WR at stage 2 and NR at stage 3). The item summary information for each 

module in MST-3Stage of GAT-V is provided in Table 7. 
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Table 7. 
 
Descriptive Statistics of Item Difficulty in Each Module in MST-3Stage GAT-V 
Difficulty 
difference  

Stage Module/ 
level  

# items M SD Range  Item ID 

NR at Stage 2 
& WR at 
Stage 3 

1 Routing  9 -0.11 0.75 2.22 VAN-A, VAN-J, 
VAN-N,  
VCA-B, VCA-
H, VSC 
VRC-K, VRC-
M, VRC-O 
 

2 Hard  3 0.34 1.55 3.60 VSC-A, VRC-C, 
VRC-Q 

2 Medium  3 VAN-D, VCA-
G, VRC-D 

2 Easy  3 VAN-H, VCA, 
VRC-E 
 

3 Hard  3 0.78 2.81 7.25 VAN-F, VRC-H, 
VRC-L 

3 Medium  3 VAN-G, VCA-F, 
VRC-A 

3 Easy  3 VAN-I, VRC-B, 
VRC-N 

WR at Stage 2 
& NR at 
Stage 3 

1 Routing  9 -0.11 0.75 2.22 VAN-A, VAN-J, 
VAN-N,  
VCA-B, VCA-
H, VSC 
VRC-K, VRC-
M, VRC-O 
 

2 Hard 3 0.68 2.83 7.26 VAN-F, VRC-H, 
VRC-L 

2 Medium  3 VAN-D, VCA-
G, VRC-D 

2 Easy  3 VAN-I, VRC-B, 
VRC-N 
 

3 Hard  3 0.44 1.53 
 

3.36 VSC-A, VRC-C, 
VRC-Q 

3 Medium  3 VAN-G, VCA-F, 
VRC-A 

3 Easy  3 VAN-H, VCA, 
VRC-E 

The means of estimated abilities were slightly different between NRWR (1.298 

and 1.246) and WRNR (1.218 and 0.935) using DPI and AMI conditions, respectively. 

The t-test results are presented in Table 8 indicated there was a significant difference 
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between NRWR and WRNR in the mean of estimated abilities. The ability means were 

higher in NRWR conditions than the means in WRNR conditions, using the same routing 

method, DPI or AMI.  

Table 8 shows there was a small difference between the standard error means of 

estimated abilities in NRWR (0.862 and 0.940) and WRNR (0.882 and 0.935), either in 

DPI or AMI conditions. Nevertheless, the t-test results showed these small differences 

were statistically significant at p < 0.001 with degrees of freedom of 9, 107. For the DPI 

method, the NRWR condition had a significantly smaller SE mean than the SE mean of 

WRNR, while the WRNR had a significantly smaller SE mean than the NRWR condition 

with the AMI method, see Table 8 for details.  

Table 8. 
 
Differences between NR and WR among All Conditions for MST-3Stage of GAT-V 
Condition Ability Mean t-test    SE Mean t-test 

 NRWR WRNR NRWR WRNR 

DPI 1.298 1.218 108.5** 0.862 0.882 1258.4** 

AMI 1.246 0.962 163.2** 0.940 0.935 1217.4** 
Note. DPI = Defined Population Intervals, AMI =Approximate Maximum Information Method  

** p < 0.001 with df 9,107 

The classes’ means of NRWR conditions (top figures) were slightly higher than in 

the WRNR conditions (bottom figures), in which the same routing method was used, 

either DPI or AMI (Figure 7). The differences were noticeable in class 2 and 3 with DPI 

conditions. Group 1 in NRWR-DPI and WRNR-DPI were quite similar; the existence of 

outliers in class 1 may have pulled the mean slightly down in the WRNR-DPI condition. 

For AMI conditions, the top edge of the boxplot for class 3 in NRWR-AMI reached an 
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estimated ability about 3.5 while the class 3 in WRNR-AMI reached ability level of ~ 

2.5, which made the mean slightly higher in this group in NRWR-AMI compared to class 

3 in WRNR-AMI. There were outliers in class 1 and class 3 in the WRNR-AMI 

condition, which dropped the mean lower relative to the means of the same classes in the 

NRWR-AMI condition. 

 
Figure 7. Classes in all conditions in MST-3Stage for GAT-V, NRWR-AMI and WRNR-
AMI (left), NRWR-DPI and WRNR-DPI (right) 

 GAT-V: Comparison between NR and WR in accuracy of classification  

decisions in MST. The examinees were classified into three classes/levels according to 

their estimated abilities in MST GAT-V. For DPI conditions, the top 30% of examinees 

were assigned to the high class (above average), 40% of them to the medium class 

(average), and the lowest 30% to the low class (below average). Regarding the AMI 
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conditions, the examinee whose ability was 0.524 and higher was assigned to the high 

class (above average), the examinee whose ability was - 0.524 or less was assigned into 

the low class (below average), and the rest of the examinees, having had an estimated 

ability between -0.524 and 0.524 and were assigned to the medium class. 

  Table 9 displays the percentages of correct classification, false positive, and false 

negative decisions. The “correct” decision was made when the examinees were classified 

into the same class in MST and CLT. However, if the examinees were classified into 

classes in MST higher than their classes in CLT, a false positive (FP) classification 

decision was made. Lastly, the false negative (FN) classification decision was made when 

the examinees were classified into a lower class in MST than their class in CLT. 

Table 9. 
 
Percentage of Correct Classification Decisions in All Conditions of MST GAT-V 
Condition  Precision of 

classification 
decision   

  MST-2STAGE    MST-3STAGE 
NR 
  % 

WR 
  % 

NRWR 
    %  

WRNR 
% 

DPI 
CD 57.9 53.5 63.4 60.4 
FP 20.4   22.3 17.6 20.4 
FN 21.7   24.2 19.0 19.3 

AMI 
CD 39.6 39.1 31.7 35.7 
FP 60.4   60.7 68.3 64.3 
FN 0.0   0.2 0.0 0.0 

CD=correct decision, FP= false positive decision, FN= false negative decision  

The percentage of correct classification decisions were quite similar in the NR 

and WR conditions in which the same routing method was used, ranging from 57.9 % to 

39.1% as presented in Table 9. For MST-2Stage, the percentage of correct classification 

decisions was slightly higher in NR conditions (57.9% and 39.6%) than in WR conditions 

(53.5% and 39.1%), for both DPI and AMI conditions, respectively. It is noticeable that 
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NR and WR within the AMI condition incorrectly classified more than 60% of 

examinees into classes higher than their classes in CLT, which presented a case of a 

majority of false positive decisions.  

 For MST-3Stage, the NRWR with the DPI condition showed that the highest 

percentage of correct classification decisions was 63.4% with 36.6% incorrect decisions. 

Of the incorrect decisions, 19.0% were false negative decisions, and 17.6 % were false 

positive decisions. However, the WRNR showed a higher percentage of correct 

classification decisions (35.7%) when compared to the NRWR (31.6%) in the AMI 

condition. The highest percentages of incorrect decisions were false positive 

classification decisions (68.3% and 64.3) in NRWR and WRNR, respectively, wherein 

the examinees of the MST-3Stage were incorrectly assigned to classes that were higher 

than their classes in CLT.     

 GAT-M: Comparison between NR and WR in estimated ability. A 

comparison between NR and WR conditions in accuracy of estimated ability for GAT-M 

was conducted separately for both panel structure designs of MST: MST-2Stage and 

MST-3Stage as follows: 

 GAT-M with MST-2Stage. The examinees’ abilities were estimated in the routing 

stage, which was comprised of nine items, as well as in the second stage, which included 

three items in each module for both WR and NR conditions. Table 10 shows the 

descriptive statistics of item difficulty, aggregated over items, in each module for MST-

2Stage of GAT-M. The item difficulty range was 2.78 in the second stage of the NR 

condition, while it was 4.79 in WR, which was nearly double that of NR. 
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Table 10.  
 
Descriptive Statistics of Item Difficulty in Each Module in MST-2Stage GAT-M 
Difficulty 
difference  

Stage  Module/ 
level  

# items M SD Range Item ID 

Small/ NR 1 Routing  9 0.44 0.48 1.43 MAR-C, MAR-F, 
MAR-J, 
MGE-B, MGE-D, 
MAL-A, MAL-B, 
MCO-B, MCO-F 
 

2 Hard  3 0.23 1.09 2.78 MAR-A, MRR-O, 
MGE-E 

2 Medium  3 MAR-H, MGE-F, 
MAN-A 

2 Easy  3 MGE, MAN-C, MCO 
Large/WR 1 Routing  9 0.44 0.48 1.43 MAR-C, MAR-F, 

MAR-J, 
MGE-B, MGE-D, 
MAL-A, MAL-B, 
MCO-B, MCO-F 
 

2 Hard 3 0.37 1.66 4.79 MAR-G, MAN, 
MCO-G 

2 Medium  3 MAR-H, MGE-F, 
MAN-A 

2 Easy  3 MAR, MGE-A, 
MAN-D 

The differences in ability means in NR and WR were small; the means of abilities 

were slightly larger in the WR (0.87 and 0.89) than the ability mean in the NR (0.85 and 

0.87) conditions for both DPI and AMI (see Table 11). The results of t-tests revealed 

significant differences between the WR and NR regarding means of estimated abilities. 

The mean in WR conditions was significantly higher than the mean in NR conditions in 

which the same routing method was utilized, either DPI or AMI.  

The SE means were quite similar in NR (0.95) and in WR (0.94) for all 

conditions. However, these small differences were statistically significant at p < 0.001 

with df of 9,107, meaning the standard errors were smaller in WR than in NR, as seen in 

Table 11.   
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Table 11.  
 
Differences between NR and WR Among All Conditions for MST-2Satge for GAT-M 
Condition Ability Mean t-test  SE Mean t-test 

 NR WR NR WR 

DPI 0.851 0.870 103.96** 0.950 0.939 2138.8** 

AMI 0.877 0.895 102.55** 0.947 0.935 2100.3** 
Note. DPI = Defined Population Intervals, AMI =Approximate Maximum Information Method  

** p < 0.001 with df 9,107 

Figure 8 illustrates the degree to which the groups differed; the groups’ means 

were similar in NR and WR conditions. The figures additionally show outliers in the NR-

DPI (top right), which make the mean higher than the mean in the NR-AMI condition. 

However, the mean of all groups in NR conditions (top figures) were generally like the 

groups’ means in WR conditions (bottom figures), while the range of class 3 (high group) 

in NR and WR conditions with AMI were wider than in DPI conditions.  
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Figure 8. Classes in all conditions in MST-2Stage for GAT-M, NR-AMI, and WR-AMI 
(left), NR-DPI and WR-DPI (right)  

 GAT-M with MST-3Stage. The examinees’ abilities were estimated in the routing 

stage (nine items), second stage (three items per module), and in the third stage (three 

items per module), for both conditions: NRWR condition (NR at stage 2 with WR at 

stage 3) and WRNR condition (WR at stage 2 with NR at stage 3). Table 12 shows the 

aggregate item information for each module in the MST-3Stage of GAT-V. 
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Table 12.  
 
Descriptive Statistics of Item Difficulty for Each Module in MST-3Stage GAT-M 
Difficulty 
difference  

Stage  Module/ 
level  

# 
items 

M SD Range  Item ID 

NR at Stage 
2 & WR at 
Stage 3 

1 Routing  9 0.44 0.48 1.43 MAR-C, MAR-
F, MAR-J, 
MGE-B, MGE-
D, MAL-A, 
MAL-B, MCO-
B, MCO-F 
 

2 Hard  3 0.23 1.09 2.78 MAR-A, MRR-
O, MGE-E 

2 Medium  3 MAR-H, MGE-
F, MAN-A 

2 Easy  3 MGE, MAN-C, 
MCO 
 

3 Hard  3 0.37 1.66 4.79 MAR-G, MAN, 
MCO-G 

3 Medium  3 MAR-H, MGE-
F, MAN-A 

3 Easy  3 MAR, MGE-A, 
MAN-D 

WR at Stage 
2 & NR at 
Stage 3 

1 Routing  9 0.44 0.48 1.43 MAR-C, MAR-
F, MAR-J, 
MGE-B, MGE-
D, MAL-A, 
MAL-B, MCO-
B, MCO-F 
 

2 Hard 3 0.37 1.66 4.79 MAR-G, MAN, 
MCO-G 

2 Medium  3 MAR-H, MGE-
F, MAN-A 

2 Easy  3 MAR, MGE-A, 
MAN-D 

3 Hard  3 0.23 1.09 2.78 MAR-A, MRR-
O, MGE-E 

3 Medium  3 MAR-H, MGE-
F, MAN-A 

3 Easy  3 MGE, MAN-C, 
MCO 

The means of estimated abilities for examinees were slightly different in all 

conditions; WRNR had higher ability means (0.99 and 0.76), compared to the ability 
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means for NRWR conditions (0.76 and 0.47) using the same routing method, either DPI 

or AMI. Moreover, the t-test results indicated there was a statistically significant 

difference between NRWR and WRNR in the mean of estimated abilities at p < 0.001; 

the ability means were lower in the NRWR than in the WRNR conditions. See Table 13. 

Additionally, there were slight differences between the SE means for estimated 

abilities in NRWR (0.98 and 1.00) and WRNR (0.94 and 0.97) using DPI and AMI 

conditions, respectively. However, the t-test results, are presented at Table 13, indicated 

that these slight differences were statistically significant at p < 0. 001 with df = 9,107. 

The WRNR conditions had significantly smaller standard errors of estimated ability than 

the NRWR, which means the estimated ability was more accurate in WRNR conditions 

than in NRWR conditions for GAT-M. 

Table 13.  
 
Differences between NR and WR Among All Conditions for MST-3Stage for GAT-M 
Condition Ability Mean t-test  SE Mean t-test 

 NRWR WRNR NRWR WRNR 

DPI 0.763 0.992 113.9** 0.977 0.942 3146.5** 

AMI 0.472 0.761 111.3** 1.00 0.971 4802.6** 

Note. DPI = Defined Population Intervals, AMI =Approximate Maximum Information Method  

** p < 0.001 with df 9,107 

Regarding groups, Figure 9 shows that the estimated abilities were slightly higher in 

WRNR conditions with DPI in all groups when compared to the groups in NRWR. The 

same scenario occurred in WRNR conditions with the AMI method; the abilities were 

larger for all groups in WRNR conditions in relation to NRWR conditions. However, the 
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size of the group with low ability group shrank in both NRWR and WRNR using the 

AMI method. 

 

Figure 9. Classes in all conditions in MST-3Stage for GAT-M, NRWR-AMI, and 
WRNR-AMI (left), NRWR-DPI and WRNR-DPI (right) 

 GAT-M: Comparison between NR and WR in accuracy of classification 

decisions. The classification methods that were used in the GAT-V section were also 

applied to the GAT-M section. The examinees were classified into three classes 

according to their estimated abilities in MST: high (above average), medium (average), 

and low (below average) classes for both DPI and AMI conditions.  

For MST-2Stage, the percentages of correct classification decisions were 

generally small in all conditions, ranging from 60.2 to 39% (Table 14). The percentage of 

correct classifications were higher in NR (60.2%) than in WR (58.2%), using the DPI 
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method. On the other hand, the WR condition had slightly higher correct classification 

decisions (40.3%), compared to the NR-AMI condition (39%) with the AMI method. 

Generally, the incorrect classification decision percentages were high in both NR and 

WR with the AMI method. Approximately all incorrect decisions were positive false 

classification decisions (60.6% and 59.5%), wherein examinees were incorrectly 

classified into classes in MST that were higher than their classes in CLT.     

 For MST-3Stage, the NRWR and WRNR showed a slight difference in 

percentages of classification decisions while using the same routing method. The 

percentage of correct classification decisions was higher in WRNR (63.9%) than in 

NRWR (62.8%), using the DPI method; conversely, with the AMI method the percentage 

was higher in NRWR (57.6%) than in WRNR (38.9%). The highest percentage of 

incorrect classification was a false positive decision with AMI conditions; it was 

particularly higher in WRNR (61%) than in NRWR (40.2%). It is clear that the cut-scores 

in AMI conditions impacted the percentage of correct classification in MST by pulling 

examinees into levels that were higher than their levels in CLT. 
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Table 14.  
 
Percentage of Correct Classification Decisions in All Conditions of MST GAT-M 
Condition  Precision of 

classification 
decision   

     MST-2STAGE         MST-3STAGE 
NR 
  % 

WR 
  % 

NRWR 
    %  

WRNR 
% 

DPI 
CD 60.2 58.2 62.8 63.9 
FP 19.3   19.9 18.2 17.6 
FN 20.5   21.8 19.0 18.5 

AMI 
CD 39.0 40.3 57.6 38.9 
FP 60.6   59.5 40.2 61.0 
FN 0.4   0.2 2.3 0.2 

CD= correct decision, FP= false positive decision, FN= false negative decision  

Research Question Two 

 Does the performance of DPI and AMI routing methods yield comparable results 

in terms of ability estimates and accuracy in classification decisions for GAT-V and 

GAT-M? 

The two routing methods, DPI and AMI, were applied to assign examinees into 

the second stage of MST-2Stage, and into the second and third stages of MST-3Stage for 

both subtests of the GAT. Comparisons were conducted among all conditions in terms of 

ability estimates and accuracy in classification decisions. The results are separately 

presented in two sections, GAT-V and GAT-M.  

 GAT-V: Comparison between DPI and AMI in estimated ability. A 

comparison between DPI and AMI conditions in accuracy of estimated ability for GAT-V 

was conducted separately for both panel structure designs of MST: MST-2Stage and 

MST-3Stage as follows: 

 GAT-V with MST-2Stage. The examinees were assigned to the second stage 

modules based on their estimated ability in the first routing stage, using DPI and AMI 
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methods. To assign examinees to the next stage modules, the DPI required examinees to 

be sorted in rank order. The top 30% of the examinees were assigned to the hard module 

(HM), 40% to the medium module (MM), and the lowest 30% were assigned to the easy 

module (EM).   

The total sample was 9,108 examinees; therefore, the number of cases in the 

lowest/ highest 30% should have been about 2,732 examinees, who were assigned to the 

easy/ hard module. The lowest 30% group included examinees who had an estimated 

ability of -0.478 and lower. Out of the 68 cases that had the same ability level of -0.478, 

56 of them must be included in the lowest 30%, while twelve cases must be excluded, 

according to DPI strategy. However, the decision was made to include all of them in the 

easy module. The highest 30% group included examinees who had an estimated ability of 

0.497 and higher, out of which 107 cases had the same ability level of 0.497; 90 of them 

must be included in the highest 30%, and 17 must be excluded, according to DPI strategy. 

The decision was made to include all these cases in the hard module. Therefore, the 

modules in the second stage were: Easy Module, including 2,747 examinees (30.2%) 

with estimated abilities in the routing stage ranging from -1.79 to -0.478; Medium 

Module, including 3,612 examinees (39.7%) with estimated abilities in the routing 

module ranging from -0.475 to 0.495; and Hard Module, including 2,749 examinees 

(30.2%) whose estimated abilities in the routing stage ranged from 0.474 to 1.55. See 

Table 15 for details. 

For AMI, the examinees were assigned according to their proficiency indicators, 

which were compared to a performance-based rule, using the test information functions 
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(TIFs) with IRT. Additionally, the examinees were assigned to three modules based on 

their estimated proficiency in the routing stage. Next, their scores were compared to two 

cutoff scores (-0.524 and 0.524), which are indicators of the highest and lowest 30% of 

the normal continuum distribution of latent ability. Class 1 included examinees whose 

estimated ability was -0.524 or lower. Class 2 included examinees whose estimated 

ability was between -0.524 and 0.524. Class 3 included examinees whose estimated 

ability was 0.524 or higher. Table 15 demonstrates the modules in the second stage. The 

Easy Module included 2,522 examinees (27.7%) whose estimated abilities in the routing 

stage ranged from -1.79 to -0.525; the Medium Module included 3,977 examinees 

(43.7%) whose estimated abilities in the routing module ranged from -0.518 to 0.507; and 

the Hard Module included 2,609 examinees (28.6%) and their estimated abilities in the 

routing stage ranged from 0.524 to 1.55. 
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Table 15.  
 
Descriptive Statistics of the Samples from the Three Modules in the Second Stage in 
MST-2Stage for GAT-V Using DPI and AMI Methods. 

Routing 
method 

Module  
 # of Cases % 

Estimated Ability on Routing Stage  

Min Max Mean 
(SE) SD 

DPI 

Easy 2,747 30.2 -1.79 -0.478 
-0.944 
(0.007) 

 
0.35 

 
Medium 
 

3,612 39.7 -0.475 0.495 
-0.03 

(0.005) 
 

0.27 

Hard 2,749 30.2 0.497 1.55 0.939 
(0.006) 0.31 

AMI 

Easy 2,522 27.7 -1.79 -0.525 
-0.984 
(0.007) 

 
0.33 

 
Medium 
 

3,977 43.7 -0.518 0.507 
-0.008 
(0.005) 

 
0.30 

Hard 2,609 28.6 0.524 1.55 0.963 
(0.006) 0.30 

The ability means, and the error means were estimated in DPI and AMI for all 

conditions of the assembling methods NR and WR. The results indicated that there was a 

slight difference between DPI and AMI conditions regarding the estimated means for 

ability and standard error in all conditions. The ability means were quite similar in DPI 

(0.892 and 0.882) and AMI (0.998 and 0.906) in both NR and WR conditions, 

respectively. However, the difference in ability means was statistically significant even 

though it was small, p < 0.001 with df 9,107. The results of t-tests, which are presented in 

Table 16, indicate that the ability means of AMI were significantly higher than the ability 

means of DPI in both assembling conditions NR and WR.  
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The standard error (SE) means for estimated abilities were also similar in all 

conditions; however, the SE means were slightly smaller with DPI conditions (0.899 and 

0.916) than with AMI conditions (0.910 and 0. 924). The t-test results show that these 

differences were statistically significant, p < 0.001 with df of 9,107, meaning the SE 

associated with the estimated ability was smaller with DPI conditions (see Table 16). 

According to t-test results, the DPI method performed better than the AMI method 

regarding the accuracy of ability estimation. Figure 10 shows the differences between the 

SE means in DPI and AMI in MST-2Stage for GAT-V. The DPI-NR condition shows the 

smallest SE mean than other conditions of MST-2Stage for GAT-V.  

Table 16.  
 
Differences between DPI and AMI Among All Conditions for MST-2Stage of GAT-V  
Condition   Ability Mean t-test    SE Mean t-test 

 DPI AMI DPI AMI 

NR 0.982 0.998 112.1** 0.899 0.910            1254.3** 

WR 0.882 0.906 110.2** 0.916 0.924            1343.3** 
Note. DPI = Defined Population Intervals, AMI =Approximate Maximum Information Method  

** p < 0.001 with df 9,107 
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Figure 10. Differences in SE means between DPI and AMI in MST-2Stage for GAT-V 

 GAT-V with MST-3Stage. Examinees’ abilities were estimated in the GAT-V 

with MST-2Stage for all conditions. First, the examinees were classified using DPI and 

AMI methods, into three classes (high, medium and low), based on their abilities from 

stage 2. See Table 17 for details. Next, each examinee was classified into one of nine 

groups based on his/her class in the first and second stages. The nine groups represented 

the nine potential paths (see Chapter 2, p. 47). Finally, the examinees’ abilities were 

estimated in the GAT-V with MST-3Stage after their classes were specified. 
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Table 17. 
 
Descriptive Statistics for the Samples of the Three Modules in the Third Stage in 
MST-3Stage GAT-V using DPI and AMI Methods 
 

Modules  
 

# of 
Cases 

% 
Estimated Ability on the Second Stage  

Condition 
Min Max 

Mean 
(S.E) 

SD 

DPI-
NRWR 

Easy 2,732 30 -1.20 0.677 
-0.064 
(0.01) 

 
0.54 

 
Medium 
 

3,636 39.9 0.679 1.458 
1.10 

(0.003) 
 

0.21 

Hard 2,740 30.1 1.46 2.50 1.87 
(0.006) 0.27 

DPI-
WRNR 

Easy 2,741 30.1 -1.486 0.582 
-0.036 
(0.010) 

 
0.54 

 
Medium 
 

3,637 39.9 0.583 1.267 
0.963 

(0.003) 
 

0.19 

Hard 2,730 20 0.301 2.36 1.70 
(0.006) 0.30 

AMI-
NRWR 

Easy 588 6.5 -1.15 -0.528 
-0.810 
(0.007) 

 
0.17 

 
Medium 
 

1,724 18.9 -0.523 0.523 
0.12 

(0.007) 
 

0.32 

Hard 6,796 74.6 0.526 2.46 1.38 
(0.006) 0.46 

AMI-
WRNR 

Easy 498 5.5 -1.44 -0.529 
-0.975 
(0.010) 

 
0.23 

 
Medium 
 

1,893 20.8 -0.521 0.523 
0.169 

(0.006) 
 

0.24 

Hard 6,717 73.7 0.525 2.34 1.25 
(0.005) 0.44 

Table 18 provides the estimates of the ability means and standard error means 

with DPI and AMI for all conditions of assembling in both NRWR and WRNR. There 

was a difference between the DPI and AMI conditions in terms of estimated means of 
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ability and standard error in all conditions. The results of MST-3Stage GAT-V show that 

the estimated ability means were higher with DPI method. The ability means were 

significantly higher in DPI conditions (1.298 and 1.218) than the ability means in AMI 

(1.246 and 0.962) for both NRWR and WRNR conditions, respectively. The t-test results 

show that the difference among ability means were statistically significant, p < 0.001 

with df of 9,107.  

Similar to the results of t-tests in MST-2Stage GAT-V, the t-test results in MST-

3Stage indicate that the standard error means were smaller with the DPI method (0.862 

and 0.882) than the SE means with AMI method (0.940 and 0.935), in both conditions 

NRWR and WRNR. The t-test results that are represented in Table 18 shows that the 

difference among SE means was statistically significant, p < 0.001 with df of 9,107. 

Accordingly, the performance of the DPI method was slightly better than the 

performance of the AMI method in terms of the estimation accuracy of ability in the 

MST, either with two or three stages. Figure 11 shows the differences between DPI and 

AMI on SE means in MST-3Stage for GAT-V.  The DPI-NRWR condition shows the 

smallest SE mean compared to other conditions of MST-3Stage for GAT-V. 
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Table 18. 
  
Differences between DPI and AMI Among All Conditions for MST-3Stage of GAT-V   
Assembling 

Method 

Ability Mean t-test 

 

      SE Mean t-test  

 DPI AMI DPI AMI  

NRWR 1.298 1.246 108.5** 0.862 0.940 1258.4** 

WRNR 1.218 0.962 123.8** 0.882 0.935 1217.4** 
Note. DPI = Defined Population Intervals, AMI =Approximate Maximum Information Method  

** p < 0.001 with df of 9,107 
 

Figure 11. Differences in SE means between DPI and AMI in MST-3Stage for GAT-V 

 GAT-V: Comparison between DPI and AMI in accuracy of classification 

decisions.  The examinees were classified into three classes/ levels according to their 

estimated abilities in the MST of GAT-V for both MST-2Stage and MST-3Stage, 

including the categories of high class (above average), medium class (average), and low 

class (below average), using DPI and AMI rules.  
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  The percentages of correct classification, presented in Table 9 in research 

question one above, also include false positive and false negative decisions. The correct 

classification percentages illustrate cases in which the examinees had the same classes in 

CLT and MST for GAT-V. False positive decision percentages represent the cases of 

examinees who had classes in MST that were higher than their classes in CLT for GAT-

V, and the percentages of false negative decisions show the percentage of examinees who 

had lower classes in MST than their classes in CLT.  

There were differences between the DPI and AMI conditions in terms of 

percentage of correct classification decisions, relating to the examinees’ classification in 

CLT of GAT-V. For MST-2Stage, the percentages in DPI (57.9 and 53.5) were higher 

than in AMI (39.6 and 39.1). Figure 12 shows the percentage of agreement in 

classification decision of examinees between MST-2Stage and CLT for GAT-V. The 

DPI-NR had the highest percentage of agreement compared to other conditions. 
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Figure 12. Percentage of agreement in classification decision of examinees between 
MST-2Stage and CLT for GAT-V 

The same scenario occurred in MST-3Stage of GAT-V; the percentages of correct 

classification decisions were higher in DPI conditions (63.4% and 60.4 %) than in AMI 

conditions (31.7% and 35.7%) for both NRWR and WRNR conditions, respectively. The 

use of AMI methods leads to incorrect classification decisions that exceeded 60%; 

mostly, it was a false positive decision wherein the examinee was classified into classes 

in MST that were higher than their classes in CLT. Figure 13 shows the percentage of 

agreement in classification decision of examinees between MST-3Stage and CLT for 

GAT-V. The DPI-NRWR had the highest percentage of agreement compared to other 

conditions. 
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Figure 13. Percentage of agreement in classification decision of examinees between 
MST-3Stage and CLT for GAT-V  

It is interesting to directly compare the DPI classification to the AMI 

classification in MST, thus, the percentage of agreement between DPI and AMI in MST 

was computed. The percentage of agreement in classification between the two routing 

methods was small in all conditions, which was expected because the MST classifications 

with the DPI method were closer to the CLT classification than the MST classification 

with AMI. For MST-2Stage, the percentage of agreement between the DPI and AMI was 

36.6% in the NR condition while it was 35.6% in the WR condition. For MST-3Stage, 

the percentage of agreement between the DPI and AMI was 32.7% in the NRWR 

condition while it was 32.2 % in the WRNR condition.  

GAT-M: Comparison between DPI and AMI methods in accuracy of 

estimated ability. A comparison between DPI and AMI conditions in accuracy of 

estimated ability for GAT-M was conducted separately for both panel structure designs of 

MST: MST-2Stage and MST-3Stage as follows: 
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 GAT-M with MST-2Stage. DPI and AMI methods were used to route examinees 

to three modules in the second stage, based on their estimated ability in the routing stage. 

The same percentages and strategies that were used to assign examinees to the next stage 

in MST for GAT-V were also applied in GAT-M.   

For DPI, the examinees were sorted in rank order and divided into three classes: 

top 30% (HM), 40% (MM), and lowest 30% (EM). Therefore, the lowest 30% should 

include the 2,732 examinees who were assigned to the easy module and the same number 

of cases must be assigned to the hard module. Furthermore, the lowest 30% group should 

include examinees who had the estimated ability of -0.568 and lower; there are 143 cases 

in this ability level, and 88 of them must be placed in the lowest 30%, while 55 cases 

must be excluded, according to DPI strategy. Therefore, the decision was made to include 

all of them in the easy module. The highest 30% group should include examinees who 

had an estimated ability of 0.346 and higher. Since 21 cases had the same ability level, 

five of them must be included in the highest 30% and assigned to the hard module and 16 

must be excluded and assigned to the medium module, according to DPI strategy. The 

decision was made to include all of them in the medium module.  

Table 19 illustrates the classes in the MST-2Stage for GAT-M.  There were three 

modules in the second stage, which are categorized as follows. The Easy Module 

included 2,788 examinees (30.6%) whose estimated abilities in the routing stage ranged 

from -1.43 to -0.57. The Medium Module included 3,593 examinees (39.4%) whose 

estimated abilities in the routing module ranged from -0.56 to 0.35. The Hard Module 
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included 2,727 examinees (29.9%) and their estimated abilities in the routing stage 

ranged from 0.35 to 1.89. 

The examinees were also assigned to three modules according to their scores in 

the routing stage, which were compared to a performance-based rule, applying AMI rules, 

and using cut-scores of -0.524 and 0.524. The three modules are presented in Table 19. 

The Easy Module included 2,906 examinees (31.6%); their estimated abilities in the 

routing stage ranged from -1.43 to -0.556. The Medium Module included 3,802 

examinees (41.7%); their estimated abilities in the routing module ranged from -0.457 to 

0.520. The 2,400 examinees (26.4%) of the Hard Module had estimated abilities in the 

routing stage ranging from 0.524 to 1.89. 

Table 19.  
 
Descriptive Statistics of the Sample from the Three Modules in the Second Stage of 
MST-2Stage of GAT-M Using DPI and AMI Methods 
 

Modules  
 

# 
Cases 

% 
Estimated Ability on the Routing Stage  

Routing 
method 

Min Max 
Mean 
(SE) 

SD 

DPI 

Easy 2,788 30.6 -1.434 -0.568 
-0.866 
(0.005) 

 
0.28 

 
Medium 
 

3,593 39.4 -0.564 0.346 
-0.087 
(0.004) 

 
0.24 

Hard 2,727 29.9 0.349 1.892 1.00 
(0.009) 0.45 

AMI 

Easy 2,906 31.9 -1.434 -0.556 
-0.853 
(0.005) 

 
0.28 

 
Medium 
 

3,802 41.7 -0.457 0.520 
-0.030 
(0.004) 

 
0.26 

Hard 2,400 26.4 0.524 1.892 1.08 
(0.009) 0.42 
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The ability means, and the standard error means were estimated in DPI and AMI 

for all conditions of assembling methods, NR and WR, are presented in Table 20. The 

results indicate that the differences between the ability means in DPI and AMI conditions 

were small when using the same assembling methods, either NR or WR. The ability 

means were comparable in both conditions of DPI and AMI. Regardless of these trivial 

differences, the ability means in AMI conditions (0.877 and 0.895) were significantly 

higher than the ability means in DPI conditions (0.852 and 0.870), p < 0.001 with df 

9,107 in both assembling conditions NR and WR, respectively. See Table 20 for t-test 

values.  

The difference between the means of standard errors in the DPI and AMI 

conditions were small, using similar assembling methods, NR and WR. The SE means 

were smaller with AMI conditions (0.947 and 0.935) than with DPI conditions (0.950 and 

0.939) in both conditions of NR and WR. The t-test results indicated that the differences 

were statistically significant, p < 0.001 with df of 9,107. According to t-test results, the 

AMI method performed better than the DPI method regarding the precision of ability 

estimates. The differences between DPI and AMI on SE means in MST-2Stage for GAT-

M is displayed in Figure 14. The AMI-WR condition shows the smallest SE mean than other 

conditions of MST-2Stage for GAT-M. 
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Table 20. 
  
Differences between DPI and AMI Among All Conditions for MST-2Stage of GAT-M  
Condition   Ability Mean t-test    SE Mean t-test 

 DPI AMI DPI AMI 

NR 0.852 0.877 103.9** 0.950 0.947 2100.3** 

WR 0.870 0.895 102.9** 0.939  0.935 1773.9** 
Note. DPI = Defined Population Intervals, AMI =Approximate Maximum Information Method  

** p < 0.001 with df 9,107 

Figure 14. Differences in SE means between DPI and AMI in MST-2Stage for GAT-M 

GAT-M with MST-3Stage. The examinees were classified, using DPI and AMI 

methods, into three classes (high, medium and low), relying on their abilities in stage 2. 

Table 21 illustrates the classes in all conditions of MST-3Stage GAT-M. The examinees 

were individually assigned into one of nine groups based on his/her class in the first and 

second stages. The nine potential paths were explained in Chapter 2, p. 47. As the last 

0.95

0.939

0.947

0.935

0.925

0.93

0.935

0.94

0.945

0.95

0.955

NR WR

Means of SE in all Conditions of MST-2Stage for GAT-M 
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step, the examinees’ abilities and the standard errors were estimated in the GAT-M with 

MST-3Stage. 

Table 21.  
 
Descriptive Statistics of the Samples from the Three Modules in the Third Stage in 
MAT-3Stage GAT-M Using DPI and AMI Methods 
 

Modules  
 

# Cases % 
Estimated Ability in the Second Stage  

Condition 
Min Max 

Mean 
(SE) 

SD 

DPI-
NRWR 

Easy 2,733 30 -0.925 0.384 
-0.085 
(0.007) 

 
0.36 

 
Medium 
 

3,643 40 0.385 1.25 
0.872 

(0.004) 
 

0.25 

Hard 2,732 30 1.25 2.61 1.75 
(0.007) 0.34 

DPI-
WRNR 

Easy 2,733 30 -1.29 0.589 
-0.083 
(0.008) 

 
0.42 

 
Medium 
 

3,700 40.6 0.463 1.26 
0.892 

(0.004) 
 

0.25 

Hard 2,675 29.4 0.364 2.70 1.81 
(0.007) 0.36 

AMI-
NRWR 

Easy 424 4.7 -0.923 -0.524 
-0.718 
(0.005) 

 
0.11 

 
Medium 
 

1,731 30 -0.522 0.522 
0.076 

(0.005) 
 

0.29 

Hard 5,953 65.4 0.525 2.68 1.36 
(0.007) 0.52 

AMI-
WRNR 

Easy 585 6.4 -1.31 -0.527 
-0.769 
(0.010) 

 
0.25 

 
Medium 
 

2,483 27.3 -0.460 0.523 
0.136 

(0.005) 
 

0.25 

Hard 6,040 66.3 0.524 2.791 1.37 
(0.007) 0.56 
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The estimates of the ability and standard error means were calculated in DPI and 

AMI for all conditions of assembling, NRWR and WRNR, and are presented in Table 22. 

There was a difference between DPI and AMI conditions in terms of estimated means for 

ability and standard error in all conditions. The mean estimates of ability were higher in 

the DPI method than in the AMI method. The ability means were significantly higher in 

DPI conditions (0.763 and 0.992) than the ability means in AMI (0.472 and 0.761), p < 

0.001 with df 9,107 for both NRWR and WRNR conditions, respectively. 

For standard error means, the t-test results indicated that the standard error means 

were significantly smaller with the DPI method (0.977 and 0.942) than the SE means with 

the AMI method (1.00 and 0.971), p < 0.001 with df 9,107 in both conditions NRWR and 

WRNR. Therefore, the DPI method performed better than the AMI method in terms of 

the estimation accuracy of ability in MST for GAT-M with three stages. See Table 22 for 

details. Figure 15 presents the differences between DPI and AMI on SE means in MST-

3Stage for GAT-M. The DPI-WRNR condition shows the smallest SE mean than other 

conditions of MST-3Stage for GAT-M. 

Table 22. 
  
Differences between DPI and AMI Among All Conditions for MST-3Stage of GAT-M  
Assembling 

Method 
Ability Mean t-test 

 

      SE Mean t-test  

 DPI AMI DPI AMI  

NRWR 0.763 0.472 113.9** 0.977 1.00 5643.5** 

WRNR 0.992 0.761 115.2** 0.942 0.971 3146.5** 
Note. DPI = Defined Population Intervals, AMI =Approximate Maximum Information Method  
** p < 0.001 with df 9,107 
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Figure 15. Differences in SE means between DPI and AMI in MST-2Stage for GAT-M 

 GAT-M: Comparison between DPI and AMI accuracy of classification 

decisions.  The examinees were classified into three levels according to their estimated 

abilities in GAT-M with MST-2Stage and MST-3Stage: high class (above average), 

medium class (average), and low class (below average), using DPI and AMI rules.  

 Table 9 in research question one (above) illustrates the percentages of 

classification decisions in three statuses: correct, false positive, and false negative 

classification decisions. The percentage of correct classification represents cases in which 

the examinees had the same classes in CLT and MST for GAT-M; the false positive 

decision percentage represents the cases in which the examinees had classes in MST that 

were higher than their classes in CLT; and the percentage of false negative decisions 

shows the percentage of examinees who had lower classes in MST than their classes in 

CLT.  
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For MST-2Stage, the percentages in DPI (60.2% and 58.2%) were generally 

higher than in AMI (39% and 40%) for both conditions of assembling, NR and WR. 

Figure 16 shows the percentage of agreement in classification decision of examinees 

between MST-3Stage and CLT for GAT-M, and the DPI-NR had the highest percentage 

of agreement compared to other conditions. 

 

Figure 16. Percentage of agreement in classification decision of examinees between 
MST-2Stage and CLT for GAT-M 

Like MST-2Stage of GAT-M, the MST-3stage shows that the percentage of 

correct classification decisions was higher in DPI conditions (62.8% and 63.9%) than in 

AMI conditions (57.6% and 38.9%) for both NRWR and WRNR conditions, 

respectively. It is notable that the AMI method yielded incorrect classification decisions 

that exceeded 60%. In most of these cases, the incorrect classification decisions were 

false positive decisions wherein the examinees were classified into classes in MST higher 

than their classes in CLT. In conclusion, the AMI method was affected by increasing the 
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number of stages while the DPI method was independent from the impact of the number 

of stages in both sections of the GAT. Figure 17 shows the percentage of agreement in 

classification decision of examinees between MST-3Stage and CLT for GAT-M. The 

DPI-WRNR had the highest percentage of agreement compared to other conditions. 

 

Figure 17. Percentage of agreement in classification decision of examinees between 
MST-3Stage and CLT for GAT-M 

Finally, the percentage of agreement between the DPI and AMI in MST were 

computed. The percentage of agreement in classification between the two routing 

methods was small in all conditions. For MST-2Stage, the percentage of agreement 

between DPI and AMI was 38.8% in the NR condition while it was 39.2% in the WR 

condition. For MST-3Stage, the percentage of agreement between the DPI and AMI was 

44.4% in the NRWR condition while it was 39.4 % in the WRNR condition. 
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Research Question Three 

 Does the performance of MST-2Stage and MST-3Stage yield comparable results 

in terms of ability estimates and accuracy in classification decisions for GAT-V/GAT-M? 

Two test designs were developed for MST: MST with two stages and MST with 

three stages for both sections of the GAT. In all designs, the first stage included nine 

items, the second stage included three items in each module and the third stage also 

included three items in each module. Because of a limited item pool, it was impossible to 

develop MST with NR/WR in the second and third stages; there were too few easy and 

difficult items. Therefore, the alternative solution was to reverse the assembling method 

in the third stage. For example, if the assembling method in the second stage was NR, the 

method in the third stage was WR and in this case the design became NRWR. The 

designs were separately developed for all conditions of assembling (NR, WR, NRWR, 

and WRNR), as well as for both conditions of routing methods (DPI and AMI). The aim 

was to assess the performance of the number of stages in MST, as well as to evaluate the 

impact of the interaction between routing and assembling conditions in MST-2Stage and 

MST-3Stage for both sections of GAT.    

 GAT-V: Comparison between MST-2Stage and MST-3Stage in accuracy of 

estimated ability. The designs of MST-2Stage and the MST-3Stage for GAT-V are 

illustrated in Tables 7 and 9. The MST-2Stage included one module in the first stage 

(medium difficulty), and three modules in the second stage, with different difficulty 

levels (easy, medium, and hard). In the same manner, the MST-3Stage included one 

module in the first stage (medium difficulty), and three modules in the second and third 
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stages with different difficulty levels (easy, medium, and hard). The ability and the 

standard error means for all conditions were estimated in MST-2Stage and MST-3Stage 

and presented in Table 23.  

The results indicated that the ability means were significantly higher in MST-

3Stage (1.30, 1.25, 1.22, and 0.962) than the ability means in MST-2Stage (0.981, 0.998, 

0.882, and 0.907), using the same conditions of routing methods and the same assembling 

methods in the second stage. The t-test results show those differences to be statistically 

significant, p < 0.001 and degree of freedom of 9,107. See Table 23 for details. 

Table 23.  
 
Differences between MST-2Stage and MST-3Stage in Ability and SE Means Among 
All Conditions for MST of GAT-V 
Condition Ability Mean t-test    Ability Mean t-test 

 NR   NRWR  WR WRNR  

DPI 0.981 1.30 108.5** 0.882 1.218 123.8** 

AMI 0.998 1.25 163.2** 0.907 0.962 141.6** 

 SE Mean  SE Mean  

NR  NRWR WR WRNR 

DPI 0.897 0.862 1258.4** 0.916 0.881 1343.3** 

AMI 0.910 0.940 1217.4** 0.924 0.935 1416.5** 
** p < 0.001 with df 9,107 

Regarding the differences between standard error means between MST-2Stage 

and MST-3Stage, the differences were small. The standard error means for estimated 

ability were significantly smaller in MST-3Stage (0.862 and 0.881) than the SE means in 

the MST-2Stage (0.897 and 0.916), with the DPI condition, p < 0.001 and degree of 

freedom of 9,107. However, the t-test results show that the SE means were statistically 
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smaller in MST-2Stage (0.910 and 0.924) than in MST-3Stage (0.940 and 0.935) using 

the AMI conditions; the differences were significant, p < 0.001 and df = 9,107. In short, 

the performance of MST with 2 or 3 stages was enhanced by the type of routing method; 

the MST-3Stage performed better with the DPI method while the MST-2Stage performed 

better with the AMI method. T-test values are presented in Table 23.  

 GAT-V: Comparison between MST-2Stage and MST-3Stage in accuracy of 

classification decisions. As described in research questions one and two (see Table 9), 

the examinees were classified into three classes/ levels according to their estimated 

abilities in MST of GAT-V in both MST-2Stage and MST-3Stage, high, medium, and 

low class, using DPI and AMI rules.  

  The percentages of correct classification decisions, when the examinees had the 

same classes in CLT and MST for GAT-V, were higher in MST-3Stage (63.4% and 

60.4%) than MST-2Stage (57.9% and 53.5%) with the DPI method. In contrast, the 

percentages of correct classification decisions were higher in MST-2Stage (39.6% and 

39.1%) than MST-3Stage (31.7% and 35.7%) with the AMI method.  

The false positive decision percentages, in which the examinees were classified in 

classes in MST that were higher than their classes in CLT, were higher in MST-2Stage 

(20.4% and 22.3%) than in MST-3Stage (17.6% and 20.4), using the DPI method. 

However, the percentage of false positive decisions was higher in MST-3Stage (68.3% 

and 64.3%) than in MST-2Stage (60.4% and 60.7%), using the AMI method. As was 

illustrated in research questions one and two, the use of AMI methods led to incorrect 

classification decisions, and the highest percentage belonged to the false positive 
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decisions in which the examinees were classified into classes in MST that were higher 

than their classes in CLT for GAT-V.  

 GAT-M: Comparison between MST-2Stage and MST-3Stage in accuracy of 

estimated ability. The MST-2Stage and the MST-3Stage designs for GAT-M were 

described above (see Tables 10 and 12 in research question one). The MST-2Stage 

included one module in the first stage with medium difficulty, and three modules in the 

second stage with different difficulty levels: easy, medium, and hard. In the same 

manner, the MST-3Stage included one module in the first stage with medium difficulty, 

and three modules in the second and third stage with different difficulty levels: easy, 

medium, and hard. Next, the examinees’ abilities were computed for both designs.  

Table 24 shows the estimated ability means and the standard error means in MST-

2Stage and MST-3Stage for all conditions. The results indicated that ability means were 

significantly higher in MST-2Stage for NR-DPI (0.851), NR-AMI (0.87), and WR-AMI 

(0.895) than the ability means in MST-3Stage for NRWR-DPI (0.763), NRWR-AMI 

(0.472), and WRNR-AMI (0.760), respectively. In the WRNR-DPI condition, the ability 

mean was higher in WRNR-DPI (0.99) than the ability mean in WR-DPI (0.87).  All the 

t-test results show those differences to be statistically significant, p < 0.001 and degree of 

freedom of 9,107. 

  The differences between standard error means for MST-2Stage and MST-3Stage 

were statistically significant; p < 0.001, 9,107 df. The standard error means for estimated 

ability were significantly smaller in MST-2Stage conditions, NR-DPI (0.950), NR-AMI 

(0.947), WR-DPI (0.939) and WR-AMI (0.895) than the SE means in MST-3Stage 
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conditions, NRWR-DPI (0.978), NRWR-AMI (1.00), WRNR-DPI (0.942) and WRNR-

AMI (0.971), p < 0.001. In general, the MST-2Stage performed better than the MST-

3Stage in all conditions. T-test values are presented in Table 24.  

Table 24.  
 
Differences between MST-2Stage and MST-3Stage in Ability and SE Means Among 
All Conditions for MST GAT-M 
Condition Ability Mean t-test    Ability Mean t-test 
 NR   NRWR  WR WRNR  
DPI 0.851 0.763 103.9** 0.870 0.992 102.9** 
AMI 0.877 0.472 102.5** 0.895 0.760 101.3** 
  

SE Mean 
  

SE Mean 
 

NR  NRWR WR WRNR 
DPI 0.950 0.978 2138.8** 0.939 0.942 1773.9** 
AMI 0.947 01.00 2100.3** 0.935 0.971 1703.9** 
** p < 0.001 with df 9,107 

GAT-M: Comparison between MST-2Stage and MST-3Stage in accuracy of 

classification decisions.  The percentages of classification decisions are provided in 

Table 14 (p.77), wherein the examinees were classified into three classes/levels (high, 

medium, and low class) according to their estimated abilities in the GAT-M in both 

MST-2Stage and MST-3Stage, using DPI and AMI rules.  

The percentages of correct classification decisions were higher in MST-3Stage for 

conditions NRWR-DPI (62.8%) compared to NR-DPI (60.2), NRWR-AMI (57.6%) 

compared to NR-AMI (39.6%), and WRNR-DPI (63.9%) compared to WR-DPI (58.2%). 

The WR-AMI had slightly high correct classification decision percentage (40.3%) in 

comparison to the WRNR-AMI condition (38.9%).  
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The highest percentage of incorrect classification decision was due to a false 

positive decision with the AMI method, 60.6% and 59.5% in MST-2Stage, while it was 

40.2% and 61.0% in MST-3Stage. The percentages of incorrect classification with the 

DPI method were approximately equally divided between false positive and false 

negative decisions. For the DPI method, the percentages of false negative decisions, 

where examinees were incorrectly classified into lower classes in MST than their classes 

in CLT, were higher in MST-2Stage (20.5% and 21.8%) compared to the false negative 

percentages in MST-3Stage (19.0% and 18.5%).   

Research Question Four 

 Do the examinees’ estimated GAT ability scores on classical linear testing (CLT) 

significantly relate to the examinees’ estimated ability scores on each condition of MST 

for both GAT-V and GAT-M?  

The correlations between the estimated ability of examinees in GAT-CLT and in 

GAT-MST conditions were conducted for both sections of the GAT. Additionally, the 

correlations were computed by groups (high, medium, and low) in all conditions for 

GAT-V and GAT-M. The correlation coefficients were estimated using Pearson 

coefficients. 

 GAT-V: Correlations between estimated abilities in CLT and MST. 

Correlations between MST and CLT regarding the estimated ability of examinees on the 

GAT-V were calculated separately for both panel structure designs of MST: MST-2Stage 

and MST-3Stage as follows: 
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 GAT-V with MST-2Stage. The correlation coefficients between the estimated 

ability of examinees in CLT and in MST-2Stage conditions were statistically significant 

for all conditions of MST for the overall correlation, ranging from 0.63 to 0.69 (Table 

25).  The scatterplots that illustrate the correlations are provided in Figure 18 for all 

conditions of MST-2Stage. The figures at the left are for DPI conditions, the figures at 

the right are for AMI conditions, the top figures are for NR conditions, and the bottom 

figures are for WR conditions. 

  The correlation coefficients were similar in all conditions; the coefficients were 

moderately positive, ranging from 0.632 (WR-DPI and WR-AMI) to 0.687 (NR-DPI). 

The correlation values were different according to group; in all conditions, the low 

groups had the highest correlation coefficients compared to the others. However, a 

nonlinear association existed between the estimated ability of examinees in CLT and in 

MST for the high groups in all conditions. The medium groups had weak positive 

relations between the estimated ability of examinees in CLT and in MST for all 

conditions; the coefficients ranged from 0.352 to 3.64. 

Table 25. 
  
Correlation Coefficients between Estimated Ability in CLT and in MST-2Stage 
for GAT-V 
Group  NR-DPI NR-AMI WR-DPI WR-AMI 

All groups  0.687 0.686 0.632 0.632 

Group 1 (Low) 0.615 0.622 0.569 0.577 

Group2 (Medium) 0.361 0.364 0.352 0.355 

Group 3 (High) 0.091 0.081 0.00 -0.10 
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Figure 18. Scatterplots between CLT and MST-2Stage for GAT-V in all conditions, NR-
DPI, NR-AMI, WR-DPI, and WR-AMI from the top left to bottom right.   

 GAT-V with MST-3Stage. The correlations between the estimated ability of 

examinees in CLT and in MST-3Stage conditions were conducted for all groups 

individually. The correlations were statistically significant for all conditions of MST-

3Stage. The correlation coefficients for all conditions of MST-2Stage of GAT-V are 

presented in Table 26; the scatterplots are provided in Figure 19 for all conditions of 

MST-3Stage.   

The correlations between the estimated ability of examinees in CLT and in MST-

3Stage of GAT-V were strong and positive in all conditions, ranging from 0.75 to 0.87. 

The correlation coefficients were higher in AMI conditions, NRWR-AMI (0.84) and 

WRNR-AMI (0.87), than the correlation coefficients in DPI conditions, NRWR-DPI 

(0.75) and WRNR-DPI (0.76).  
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The correlation coefficients varied by groups in all conditions. Like the MST-

2Stage, the low groups in MST-3Stage had higher correlation coefficients than other 

groups; the correlations were moderate and positive between ability scores in CLT and in 

MST-3Stage for low groups, ranging from 0.59 to 0.62. For medium groups in MST-

3Stage, the correlation coefficients ranged from weak positive correlation in NRWR-DPI 

(0.342) to moderate positive in NRWR-AMI (0.56); however, the correlations were 

higher in WRNR than in NRWR conditions using the same routing methods, either DPI 

or AMI.    

Unlike the high groups in MST-2Stage of GAT-V, the high groups in MST-

3Stage AMI conditions had the highest correlation coefficients when compared to the 

medium groups. The coefficients were moderate and positive in high groups for AMI 

conditions, NRWR-AMI (0.57) and WRNR-AMI (0.58). The correlation coefficients 

were weak and positive in high groups for DPI conditions, NRWR-DPI (0.34) and 

WRNR-DPI (0.25). 

Table 26. 
  
Correlation Coefficients Between Estimated Ability in CLT and in MST-3Stage of 
GAT-V 
Group  NRWR-DPI NRWR-AMI WRNR-DPI WRNR-AMI 

All groups  0.748 0.841 0.756 0.873 

Group 1 (Low) 0.593 0.595 0.623 0.613 

Group2 (Medium) 0.342 0.482 0.429 0.557 

Group 3 (High) 0.336 0.569 0.252 0.583 
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Figure 19. Scatterplots between CLT and MST-3Stage of GAT-V in all conditions, 
NRWR-DPI, NRWR-AMI, WRNR-DPI, and WRNR-AMI from the top left to bottom 
right.   

 GAT-M: Correlations between estimated abilities in CLT and in MST. 

Correlations between MST and CLT of the estimated ability of examinees on GAT-M 

were calculated separately for both panel structure designs of MST: MST-2Stage and 

MST-3Stage as follows: 

 GAT-M with MST-2Stage. The correlations between the estimated ability of 

examinees in CLT and in MST-2Stage conditions were positive and statistically 

significant for all conditions of MST of GAT-M. Figure 20 includes four plots that 

represent the correlations between scores in CLT and MST for all conditions of GAT-M. 

According Table 27, the correlation coefficients were quite similar in all conditions of 
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MST-2Stage of GAT-M. The correlation coefficients were moderate and positive and 

ranged from 0.64 (WR-DPI) to 0.67 (NR-DPI).  

The correlations were varied among groups in all conditions, and the highest 

coefficients were moderate and positive (0.47) in low groups for WR-DPI and WR-AMI. 

The lowest correlation coefficients were 0.26 and 0.32 in high groups for WR-AMI and 

WR-DPI, respectively. For medium groups, the coefficients were slightly higher in AMI 

conditions than DPI conditions. Additionally, all correlations between estimated ability in 

CLT and in MST for all groups were weak and positive, ranging from 0.26 to 0.47.  

Table 27. 
  
Correlations Coefficients Between Estimated Ability in CLT and in MST-2Stage of 
GAT-M 
Group  NR-DPI NR-AMI WR-DPI WR-AMI 

All groups  0.657 0.673 0.640 0.646 

Group 1 (Low) 0.402 0.404 0.465 0.471 

Group2 (Medium) 0.381 0.420 0.380 0.409 

Group 3 (High) 0.368 0.331 0.323 0.263 
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Figure 20. Scatterplots between CLT and MST-2Stage of GAT-M in all conditions, NR-
DPI, NR-AMI, WR-DPI, and WR-AMI from the top left to bottom right. 

GAT-M with MST-3Stage. The correlations between ability scores in CLT and in 

MST-3Stage conditions were calculated. The correlations were high and statistically 

significant for all conditions of MST-3Stage, with values between 0.74 and 0.90. Table 

28 shows the correlation coefficients for all conditions of MST-2Stage. The linear 

positive correlations are obvious in the plots, which are presented as Figure 21. 

The correlations between the estimated ability of examinees in CLT and in MST-

3Stage were strong and positive in all conditions; the coefficients were higher in AMI 

conditions, WRNR-AMI (0.90) and NRWR-AMI (0.85), than the correlation coefficients 

in DPI conditions, WRNR-DPI (0.75) and NRWR-DPI (0.74).  

The correlation coefficients were also calculated by group for all conditions of 

GAT-M and were found to be different among those groups. Unlike MST-2Stage, the 
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high groups in MST-3Stage had the highest correlation coefficients compared to other 

groups. Particularly, the correlations between ability scores in CLT and in MST-3Stage 

for this group were strong and positive (0.80), which is a higher correlation compared to 

other groups in AMI conditions. The low groups had the lowest correlation coefficients; 

all were weak and positive and ranged from 0.30 to 0.46. The correlation coefficients in 

the medium group in MST-3Stage were also weak and positive (0.42 and 0.44 in DPI 

conditions) and moderate and positive (0.50 and 0.57 in AMI conditions), but higher in 

the medium groups than in the low groups.  

Table 28.  
 
Correlation Coefficients Between Estimated Ability in CLT and in MST-3Stage of 
GAT-M 
Group NRWR-DPI NRWR-AMI WRNR-DPI WRNR-AMI 

All groups  0.741 0.851 0.754 0.899 

Group 1 (Low) 0.336 0.305 0.452 0.464 

Group2 (Medium) 0.418 0.485 0.442 0.565 

Group 3 (High) 0.563 0.802 0.514 0.801 
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Figure 21. Scatterplots between CLT and MST-3Stage of GAT-M in all conditions, 
NRWR-DPI, NRWR-AMI, WRNR-DPI, and WRNR-AMI from the top left to bottom 
right.   

Summary 

Although the results varied across all conditions for both sections of the GAT, the 

accuracy of estimated ability was similar in all conditions and the mean differences did 

not exceed 0.06 SE. The results showed noticeable differences regarding the correlations 

between examinees’ scores on CLT and MST conditions. Generally, the MST-3Stage 

designs showed higher correlations between examinees’ scores on CLT and MST than 

MST-2Stage. Particularly, the AMI conditions of MST-3Stage for both GAT sections had 

correlations that exceeded r = 0.70, while the correlation coefficients in MST-2Stage did 

not reach 0.70. For GAT-V, the NRWR with the DPI method showed smaller SEs and a 
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correlation of 0.75; however, the WRNR-DPI condition also had a small SE and a 

correlation coefficient of 0.75 for GAT-M.  

Regarding the percentage of agreement in classification among conditions, the 

percentages were low when compared to CLT classification and did not reach 65%. 

However, the DPI method with MST-3Stage had the highest percentages in all conditions 

of assembling methods. The AMI conditions had a low percentage of agreement in both 

sections of the GAT.  

The performance of MST-3Stage with the DPI approach was better than the 

performance of MST-3stage with AMI in term of accuracy of estimated ability (see 

Figure 22) while MST-3Stage with AMI had high correlations with CLT. NRWR-DPI 

was better for GAT-V and WR-AMI for GAT-M. The MST-3Stage with AMI condition 

for both sections of the GAT showed the highest correlations between CLT and MST, but 

it also showed lowest accuracy of estimated ability and the lowest percentage of 

classification agreement. In conclusion, the benefit of replacing CLT with MST is high 

with using MST-3Stage, applying a DPI or AMI approach, and using either a NRWR or a 

WRNR condition. Figures 23 and 24 illustrate the differences between DPI and AMI 

regarding the correlation between CLT and MST in GAT-V and GAT-M, respectively. 

The difference was small between the two methods in MST-2Stage and it became larger 

in MST-3Stage. The AMI performed better than AMI in MST-3Stage because it showed 

higher correlations between CLT and MST.   
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Figure 22. Means of SE for ability estimates in all MST Conditions of GAT-V and GAT-
M 

 

Figure 23. Correlation coefficients on examinees’ scores between the MST and CLT for 
GAT-V  
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Figure 24. Correlation coefficients on examinees’ scores between the MST and CLT for 
GAT-M  
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Chapter 4: Discussion 

The current study investigated whether multistage testing (MST) could be used as 

an alternative to classical linear testing (CLT) for the General Aptitude Test (GAT). The 

use of MST has increased, as its target is to measure a wide range of ability while 

maintaining control over the content balance of an assessment (Yan, von Davier, & Lewis, 

2014). Like CAT, the administration of MST is based on a sequence of adaptive 

processes; yet, it takes place at the level of each stage, not at the item level, as is the case 

in CAT (Han, 2013). 

The transition from either CLT or CAT to MST has been accomplished for 

several tests, such as the CPA test (Certified Public Accountants), CTP4 (Comprehensive 

Testing Program 4), GRE (Graduate Record Examinations), and PI-AAC (Program for 

International Assessment of Adult Competencies). This transition makes test difficulty 

more suitable to a student’s ability level, in addition to producing easy testing processes 

for teachers and test coordinators (Yan, von Davier, & Lewis, 2014). The decision to 

transition from CLT or CAT to MST requires research that addresses numerous questions 

about MST designs, including appropriate number of modules and stages, module length, 

module difficulty ranges at each stage, best assembly methods, and routing methods (Yan, 

von Davier, & Lewis, 2014). 
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Numerous studies have investigated various MST designs and the effects of 

different factors on ability estimates and classification decision accuracy. None of these 

studies combined the effect of the number of stages, assembly method, and routing 

method using real-world data. Therefore, the current study addressed this gap in the 

literature and examined the performance of various panel structure designs, routing 

methods, and assembly methods. The present chapter comprises five subsections: a 

summary of the study, a summary of the major findings, implications for testing 

practitioners, limitations of the current study, and recommendations for future research.   

Summary of the Study 

The primary aim of this study was to compare the performance of two assembly 

methods (narrow vs. wide range), two routing methods (Defined Population Intervals—

DPI— vs. the Approximate Maximum Information method—AMI), and two panel 

structures (two-stage vs. three-stage) in terms of precision of ability estimates and 

accuracy of classification for both sections of the GAT. Thus, eight conditions were 

examined and compared: 2 (assembly condition) * 2 (panel structure) * 2 (routing 

method) for 2 GAT sections. Four research questions were answered for both the GAT-V 

and the GAT-M:  

a) Does the performance of two assembly conditions (NR, WR) yield 

comparable results in terms of ability estimates and accuracy in classification 

decisions? 

b) Does the performance of DPI and AMI routing methods yield comparable 

results in terms of ability estimates and accuracy in classification decisions? 
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c) Does the performance of two-stage MST and three-stage MST yield 

comparable results in terms of ability estimates and accuracy in classification 

decisions? 

d) Do the examinees’ ability scores on classical linear testing (CLT) correlate 

with the examinees’ scores on each condition of MST?  

BILOG-MG3 was used to generate the ability estimates and the standard errors 

using IRT-2PL. SPSS Version 25 was used for statistical analyses, such as computing 

descriptive statistics, t-tests, correlations, percentages, and classification information. 

Major Findings 

The main comparisons were individually conducted between two assembly 

conditions (NR vs. WR), two routing methods (DPI vs. AMI), and two panel structures 

(MST-2Stage vs. MST-3Stage). The following sections summarize the key results for 

each research question.  

 Assembly conditions. The comparison between narrow-range and wide-range 

conditions yielded trivial differences in the estimated ability means and SE means in all 

conditions. The result of the minor difference between the NR and WR was similar to the 

result found in Kim and Moses (2014), in which the two assembly methods (small-

difference vs. large-difference) had a slight impact.  

However, the small difference in SE means revealed that the performance of NR 

was slightly and statistically significantly better than the performance of WR in MST-

2Stage for GAT-V. A potential explanation of the statistically significant difference may 

be due to the large sample size. An alternative explanation is that the examinees faced 
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certain items that were easer/harder in difficulty level for WR than they faced in the NR 

condition at the second stage of the MST, which leads to under/overestimates of their 

abilities in the WR condition. But, the second explanation does not apply to the results of 

MST-2Stage for GAT-M because the WR condition performed somewhat better than the 

NR condition in GAT-M. This likely supports the first explanation of the statistical 

significance in the t-test results being a function of a negligible effect by very large 

sample size.   

For MST-3Stage, the limitation of the item pool (there were very few items 

varying from medium into easy or hard levels of difficulty) forced the assembly methods 

to be reversed between Stage 2 and Stage 3. Regardless of this limitation, the differences 

between the assembly methods were minor in terms of the means of estimated ability and 

SE. As stated by Yan, von Davier, and Lewis (2014), the item bank should include 

sufficient items within the hard and easy levels of difficulty; however, the results of the 

current study indicate that only very slight differences were found even with an 

insufficient item bank.   

For the GAT-V, the performance of NRWR was better than WRNR with the DPI 

condition, while the performance of WRNR was better than the NRWR’s performance 

with the AMI method. For GAT-M, the WRNR performed slightly better than NRWR in 

both routing methods. The different findings regarding effects of the assembly method 

between the two stages might be because the examinees who were assigned to the WR at 

stage 2 or stage 3 faced items with higher/lower difficulty levels than they faced in the 

NR condition, which may lead to inaccurate ability estimates in MST-3Stage with WR, 
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for either 2 or 3 stages. These multifaceted results in MST-3Stage can be explained by 

what Wang, Fluegge, & Luecht (2012) and Kim and Moses (2014) found in their studies: 

complex and simple MST designs performed equally well when the item bank was 

optimal, which requires including high quality items capable of covering the ability 

range. In the current study, the item pool was less than ideal.  

The classification results support the conclusion of a negligible difference 

between the NR and WR conditions and show that the NR condition performed slightly 

better than the WR condition with either DPI or AMI. Like the MST-3Stage results for 

mean differences, the percentage of agreement in classification was similar in the NR and 

WR conditions. However, in GAT-V the NRWR excelled with the DPI method, while 

WRNR excelled with the AMI method; the opposite happened in GAT-M. The results of 

classification suggest that the differences were not meaningful and could be affected by 

item bank components.  

Routing conditions. The performance of DPI was compared to the performance 

of AMI in terms of accuracy in ability estimates and in classification decisions. The 

results indicate that the differences were small between the two routing methods. This 

conclusion agreed with previous studies that compared routing method performance. 

Armstrong et al. (2004), as well as Davey and Lee (2011), found similarity between the 

routing methods in terms of results. 

  Even though other studies found similarities within routing methods, here the t-

test results varied between GAT-V and GAT-M. The DPI performed better than AMI in 

all conditions of MST-2/3Stage for GAT-V and in MST-3Stage for GAT-M. The AMI 
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method performed better than DPI in MST-2Stage for GAT-M. The differences were 

small, and did not exceed 0.004 SE, indicating that the use of either DPI or AMI had 

similar impact in terms of accuracy of ability estimates. Results showed that DPI may 

perform slightly better than AMI, but this conclusion needs additional support as well as 

examination using an optimal item bank in future studies. The conclusion that can be 

drawn from this result is that in the AMI method the mean scores were higher than in the 

DPI condition. Also, the SE, in almost all cases, likely differed because of overestimation 

of ability.   

The classification results support this conclusion concerning the AMI method; 

there were differences between DPI and AMI in terms of classification accuracy. The 

AMI conditions yielded a high percentage of incorrect classification decisions (exceeding 

60% in GAT-V and 40% in GAT-M). Typically, it was a false positive classification for 

most cases, wherein the examinees were classified into classes in MST that were higher 

than their classes in CLT.  

The results of precision in classification for the current study contradicted the 

results’ found by Kim et al. (2013), which compared different routing methods for four 

panel structures. They found similarities between routing methods in terms of precision 

and in classification decisions with the same test length. Item pool limitations likely 

affected the current results, as previously mentioned; the AMI method pushed examinees 

into higher classes in MST because the cut-score of the high class was +0.524. and it was 

easy for most examinees to reach this level of ability since AMI raised their score. The 
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use of a higher cut-score (such as +1.00) in future studies may change the classification 

results for the AMI method.    

The DPI method showed a higher percentage of agreement between MST and 

CLT in classification when compared to AMI. The matching in DPI classification 

between MST and CLT may be enhanced by the large sample size. The large sample 

helped to achieve a normal distribution of ability scores for CLT (M = 0.0, SD = 0.95). 

Therefore, the split by rank order worked well for MST, using 30%, 40%, and 30%. It is 

possible different results would be obtained if a smaller sample size were used.  

 Panel structure conditions. Comparison between the MST-2Stage and MST-

3Stage were conducted for all conditions. The differences between the two panel 

structures were small but, again, statistically significant.  

The t-test results show that the performances of MST-2Stage and MST-3Stage 

were affected by the routing methods. While the MST-3Stage performed better with the 

DPI method, the MST-2Stage performed better with the AMI method in GAT-V. For 

GAT-M, the MST-2Stage performed better than the MST-3Stage in all conditions of 

routing methods. Generally, the agreement percentage between MST and CLT in 

classification was higher in MST-3Stage than in MST-2Stage. This was expected due to 

the fact that in MST-2Stage there is only one chance of routing; giving examinees a 

second opportunity of routing, as in MST-3Stage, can make up for misrouting that may 

occur in a MST-2Stage.  

The lack of items with high and low difficulty levels in the item bank led to a 

limitation in range of item difficulty for MST-3Stage. However, the results show that a 
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difference existed between the MST-2Stage and MST-3Stage, which indicated the impact 

of the number of stages in MST. 

In short, the practical results of this study regarding the number of stages in MST 

suggest that the application of MST-2Stage or MST-3Stage would yield essentially 

comparable results. However, as mentioned by Yan, von Davier, and Lewis (2014), the 

construction of MST-2Stage may be simple, but there is a high chance of misrouting 

since only one routing point exists. This statement was supported by the results of 

classification in the current study. Thus, MST-3Stage would be recommended for GAT 

rather than MST-2Stage.   

 Relationship between examinees’ scores on CLT and MST. The results of 

correlations between the examinees’ ability on CLT and MST for both sections of GAT 

reveal that MST-3Stage had higher correlations with CLT than MST-2Stage with CLT, 

regarding examinees’ scores for all conditions of assembly and routing methods. This 

conclusion supports the conclusion in the previous section regarding the impact of the 

number of stages in MST. The correlations were impacted by increasing the number of 

stages; in other words, increasing the number of indicators yielded an increase in the 

amount of variability in MST-3Stage compared to MST-2Stage. Thus, the r values were 

greater between MST-3Stage conditions and CLT than the r values between MST-2Stage 

conditions and CLT. As is known. higher variability in scores on X and Y generally leads 

to greater correlation between X and Y (Goodwin & Leech, 2006). 

The correlations between the scores in MST and CLT were also affected by the 

routing method. The correlations between the scores in CLT and MST were higher in 
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AMI conditions than in DPI conditions, especially in MST-3Stage. The effect of these 

routing methods was opposite to the effect of routing methods for classification, wherein 

the conditions of DPI showed MST in combination with the DPI method had higher 

percentages in classification agreement with CLT than the case of MST with the AMI 

method. In the end, the importance for GAT is the correlation more than the 

classification, since it is the examinees’ scores that will be used when they are admitted 

to college, not their classification.   

Correlations by group were weak or moderate at best. This was not unexpected 

due to the range restriction of scores that impacted the size of r. The narrow range of 

scores shrinks the value of r due to shrinking variability (Goodwin & Leech, 2006). 

Additionally, the size of r was affected by the size of the group; for instance, group 3 in 

MST-3Stage with the AMI method had a large sample size in addition to having the 

highest correlation between CLT and MST compared to the other groups.  

In conclusion, the results of this study support previous research regarding the 

impact of the assembling and routing methods. This study provided evidence that using 

either assembly method (NR or WR), either routing method (DPI or AMI), and either two 

stages or three stages mattered little regarding accuracy in ability estimations. The 

number of stages mattered when the target was to achieve ability estimates in MST that 

highly correlated to those estimates from CLT. Giving examinees a second chance of 

routing to an adaptive point in MST led to estimations of examinees ability that were 

comparable to CLT.  
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Implications for Testing Practitioners 

Implications can be derived from the results of the current study. Some of these 

inferences may be new and some of them support the results of prior research; however, 

all can help testing practitioners. First of all, the implications of the study have the 

potential to be used differently depending on the content and the purpose of the test. The 

test may be diagnostic, in which case it is used to classify the examinees, or it may be an 

ability test aiming to estimate the examinees’ scores for certain abilities, regardless of 

their classification; for either case, additional explanation will be provided later. All the 

following implications result from the current study, which had limitations that are 

explained in the next section.   

  Regarding the methods of assembling and routing, the designs of MST required a 

wide variety of item difficulty levels to create a test with high accuracy. The study 

provided evidence that the difference between NR and WR, and between DPI and AMI 

was of little concern; the difference was so small that the impact was minor.  

What is a concern involves the test’s purpose in addition to the combination of the 

assembly and routing methods used in conjunction with the different number of stages 

desired. The combination of NR-AMI in MST-2Stage had the potential to fare well if the 

test aimed to estimate examinee ability regardless of classification. In contrast, the 

combination of NR-DPI in MST-2Stage performance would be better for a test that aims 

to classify examinees.  

Another finding of this study that may be of interest to test developers is the 

number of stages in MST. The MST-3Stage performed better than MST-2Stage regarding 
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the accuracy of estimates and classification. The combination of the AMI method with 

either WRNR or NRWR worked better in MST-3Stage, as well as in achieving accurate 

score estimates. On the other hand, the combination of the DPI method with either 

NRWR or WRNR worked better in MST-3Stage for classification, which categorizes 

examinees into distinct levels. 

The more satisfactory performance of the DPI method compared to the AMI 

method in classification is due to the cut-scores used in the AMI method. The cut-scores 

of 0.524 and -0.524 pulled examinees into levels in MST that were higher than their 

levels in CLT. This means that the match between CLT and MST in classification 

appears superior with the DPI method; however, it does not signify that DPI is better than 

AMI in achieving the best equity and fair classification of examinees. This is an essential 

aspect to take into consideration when choosing between the application of the two 

methods, AMI or DPI.  

The current study provided evidence that the transition from CLT to MST for 

GAT is possible; however, a sufficient item bank is necessary. The item bank should 

have items with an inclusive variety of item difficulty levels, including easy and hard 

items. The current item bank was designed for the CLT form, which consists of more 

items of medium difficulty than items with easier or harder levels of difficulty. Further 

studies are needed to confirm the correct transition from CLT to MST.   

Limitations 

The main limitation of the current study was the use of a small item pool with an 

insufficient range from hard to easy in terms of item difficulty. This limitation impacted 
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the designs of MST for GAT, especially in MST-3Stage. Therefore, this limitation should 

be taken into account when interpreting the results of the comparison between the NR 

and WR conditions, and inferences from this study’s results must be made with caution. 

The possibility of the estimated ability being influenced by this limitation was a concern, 

as was the risk that the analysis may have provided an under/over-estimation of examinee 

ability, which is another limitation. The content of the GAT was not covered well in MST 

using the current item pool, some content domains only have items with medium 

difficulty level (e.g., algebra in GAT-M), other content domains did not have enough 

hard items (e.g., sentence completion in GAT-V, analysis in GAT-M) because of the lack 

of breadth in the item pool itself in each domain. Consequently, the groups received test 

items that did not cover the full range of GAT content, for example in MST for GAT-M, 

the hard module group in the second stage did not receive any items on algebra because 

all algebra items in the item pool had medium difficulty. This would impact the accuracy 

of ability for an examiner, and it may consequently affect the validity of the results. The 

possibility of differential validity for groups (easy, middle, and hard modules) is one 

aspect that may be affected by the lack of content coverage. Content validity and other 

types of validity such as predictive validity of MST for GAT might differ across groups. 

The groups (modules) that have differential coverage of test content may exhibit different 

levels of validity which leads to test bias. Therefore, differential validity or statistical 

adjustments for test bias need to be investigated by future studies that use empirical data. 

The sample size was large enough to create separate groups with suitable sizes, 

but the large sample size may have impacted the results of the analyses conducted 
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between the targeted conditions. The differences between conditions of MST might not 

have practical importance though differences were statistically significant, and the results 

of this study may differ with different sample sizes.      

Regarding the analysis, there are few programs available to analyze the MST 

designs, which was a challenge in the current study. BILOG-MG3 only provides the 

analysis of MST with two stages, and it has a limited capability to analyze MST with 

more than two stages. Therefore, the author used the groups analysis in BILOG-MG3 to 

conduct analyses of the MST-3Stage, which allowed the use of nine groups (representing 

the nine paths in MST-3Stage), so the calibrations of items could be obtained.      

Recommendations for Future Research 

 The application of MST requires further research into the key factors that may 

impact MST design features and influence the quality of proficiency estimation as well as 

classification accuracy. The implications and the limitations of the current study reveal a 

collection of recommendations that may serve as a guide for future study.  

The limitation of the current study’s item pool suggests the importance of using 

an enhanced item bank in future studies when comparing the current combinations among 

different factors in different conditions of MST. The lack of easy and hard items in the 

item bank of this study led to interpret the study’s results with caution. Additional 

research is needed to confirm the inferences of this study; future studies are advised to 

use the current conditions in combination with a sufficient item bank including items of 

both hard and easy levels of difficulty. It may prove difficult to find an optimal bank with 
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real-world data; thus, the use of simulation may be an alternative solution even though 

limitations exist with simulated data.      

The AMI method needs supplementary study that uses different cut-scores for 

routing examinees. Comparisons must be made between the performance results of 

different cut-off scores. The current study used the 0.524 and -0.524 as cut-scores; other 

cut-scores, such as +1 and -1, could be used to route examinees to the next stage. 

Similarly, the use of the DPI method needs additional investigation using different sets of 

percentages, such as 20%, 60%, and 20%, to assign examinees to the next stage. The use 

of percentages of 30%, 40%, and 30% worked well in this study for classification 

accuracy for MST related to CLT. Further information regarding the use of the DPI 

method with these percentages needs to be investigated with an enhanced item bank and a 

different sample. In addition, series of pilot studies that aim to determine the most 

efficient cut-scores of MST for GAT are necessary because it could be good alternative to 

using other routing methods, and instead of using DPI or AMI.     

Because of the conflicting results related to the performance of DPI and AMI 

regarding estimation and classification accuracy, further studies should be conducted to 

compare different conditions of routing methods, for both DPI and AMI. Perhaps a 

pertinent comparison would be among AMI conditions that include two or three possible 

cut-scores, or a comparison between two or three conditions of the DPI method that 

include a variety of percentages in a 1-3 or 1-3-3 MST design.  

The number of stages and the length of modules in MST are also areas of interest 

for future studies. The length of the modules in the current study was short: three items in 
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each module at the second stage in MST-2Stage, as well as at the third stage in MST-

3Stage. This led to difficulty in convergence with IRT-3PL because some items were 

excluded during the calibration process. Therefore, offering a longer module length in the 

second/ third stages (e.g., 5 to 7 items), as well as an equal length of modules in the 

routing method, may result in future studies with second and third stages that can be 

calibrated using IRT-3PL. This may also have an impact on the results of estimation and 

classification accuracy. Additionally, the comparison between CLT and MST regarding 

the impact of guessing presents an interesting angle of study, from which future studies 

may benefit. It is posited that the influence of guessing can be smaller on estimate 

accuracy in MST than in CLT because the item difficulty levels fit examinee ability 

levels in MST better than in CLT.           

The limited item pool also restricted the number of items in the second stage to 

only three, which caused a problem for convergence analysis using an IRT-3PL model. 

Therefore, the IRT-2PL was used in the current study wherein convergence was reached 

in all conditions of MST. Since the GAT is a multiple-choice test, IRT-3PL may be the 

more appropriate model and it is recommended that it be investigated in future research. 

 Finally, the current study used the Bayes Expected a Posteriori (EAP) method in 

test scaling, and then used rescaling so that the posterior latent distribution mean is the 

location and the SD is the scale. Other scaling method options are available in BILOG-

MG3, which can be used and compared in future studies, such as ML (Maximum 

Likelihood) and Bayes modal Maximum a Posteriori (MAP) methods. 
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 Appendix A 

Item Parameter Estimates for GAT  

Table A1.  
 
Item parameters of the Item Pool for GAT-V 
# ITEM  ITEM ID a1 d2 LEVEL # ITEM  ITEM ID a1 d2 LEVEL 

ITEM01  VAN 0.528 -1.057 M ITEM01  VCA_H 0.419 1.385 M 

ITEM02 VAN_A 0.931 -0.498 M ITEM02 VCA_I 0.541 0.188 M 

ITEM03 VAN_B 0.406 -0.548 M ITEM03 VSC 0.743 -0.831 M 

ITEM04 VAN_C 0.485 -0.165 M ITEM04 VSC_A 0.167 2.131 H 

ITEM05 VAN_D 0.432 -0.398 M ITEM05 VSC_B 0.46 -0.594 M 

ITEM06 VAN_E 0.367 1.654 M ITEM06 VSC_C 0.385 0.513 M 

ITEM07 VAN_F 0.12 3.944 H ITEM07 VRC_A 0.524 -0.751 M 

ITEM08 VAN_G 0.396 0.966 M ITEM08 VRC_B 0.228 -2.592 E 

ITEM09 VAN_H 0.979 -1.124 E ITEM09 VRC_C 0.201 2.436 H 

ITEM10 VAN_I 0.468 -1.513 E ITEM10 VRC_D 0.398 -0.76 M 

ITEM11 VAN_J 0.658 -0.313 M ITEM11 VRC_E 0.597 -1.032 E 

ITEM12 VAN_K 0.506 0.413 M ITEM12 VRC_F 0.543 -0.252 M 

ITEM13 VAN_L 0.147 1.113 M ITEM13 VRC_G 0.453 1.041 M 

ITEM14 VAN_M 0.504 0.894 M ITEM14 VRC_H 0.118 4.052 H 
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ITEM15 VAN_N 0.49 0.752 M ITEM15 VRC_I 0.079 -2.048 E 

ITEM16 VAN_O 0.454 0.512 M ITEM16 VRC_J 0.229 1.146 M 

ITEM17 VCA 0.788 -1.171 E ITEM17 VRC_K 0.457 -0.047 M 

ITEM18 VCA_A 0.559 -0.819 M ITEM18 VRC_L 0.19 4.664 H 

ITEM19 VCA_B 0.471 -0.761 M ITEM19 VRC_M 0.699 -0.71 M 

ITEM20 VCA_C 0.52 -0.195 M ITEM20 VRC_N 0.818 -2.043 E 

ITEM21 VCA_D 0.443 0.359 M ITEM21 VRC_O 0.344 0.045 M 

ITEM22 VCA_E 0.382 -0.796 M ITEM22 VRC_P 0.555 -0.108 M 

ITEM23 VCA_F 0.404 0.277 M ITEM23 VRC_Q 0.245 2.158 H 

ITEM24 VCA_G 0.378 0.781 M ITEM24 VRC_R 0.414 0.849 M 

a1 = item discrimination, d2 = item difficulty, E= easy, M= medium, H= hard.  
 

Table A2.  
 
Item parameters of the Item Pool for GAT-M 
# ITEM  ITEM ID a1 d2 LEVEL # ITEM  ITEM ID a1 d2 LEVEL 

ITEM01  MAR 0.806 -1.879 E ITEM23 MGE_G 0.447 0.495 M 

ITEM02 MAR_A 0.382 1.631 H ITEM24 MAN 0.33 1.698 H 

ITEM03 MAR_B 0.593 -0.234 M ITEM25 MAN_A 0.411 -0.006 M 

ITEM04 MAR_C 0.451 0.429 M ITEM26 MAN_B 0.51 0.321 M 

ITEM05 MAR_D 0.431 0.738 M ITEM27 MAN_C 0.598 -0.987 E 
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ITEM06 MAR_E 0.254 0.645 M ITEM28 MAN_D 0.685 -1.379 E 

ITEM07 MAR_F 0.522 0.85 M ITEM29 MAN_E 0.496 -0.384 M 

ITEM08 MAR_G 0.24 2.91 H ITEM30 MAN_F 0.407 -1.09 E 

ITEM09 MAR_H 0.826 -0.029 M ITEM31 MAN_G 0.425 0.288 M 

ITEM10 MAR_I 0.686 -0.294 M ITEM32 MAL 0.413 0.874 M 

ITEM11 MAR_J 0.688 -0.286 M ITEM33 MAL_A 0.613 -0.254 M 

ITEM12 MAR_K 0.31 -0.477 M ITEM34 MAL_B 0.531 0.267 M 

ITEM13 MAR_M 0.486 0.457 M ITEM35 MAL_C 0.498 0.257 M 

ITEM14 MAR_N 0.431 1.015 M ITEM36 MCO 0.181 -1.149 E 

ITEM15 MAR_O 0.465 1.537 H ITEM37 MCO_A 0.154 0.13 M 

ITEM16 MGE 0.472 -0.844 E ITEM38 MCO_B 0.783 0.537 M 

ITEM17 MGE_A 0.421 -0.905 E ITEM39 MCO_C 0.267 0.846 M 

ITEM18 MGE_B 0.558 0.594 M ITEM40 MCO_D 0.418 0.089 M 

ITEM19 MGE_C 0.356 0.515 M ITEM41 MCO_E 0.22 0.931 M 

ITEM20 MGE_D 0.45 1.144 M ITEM42 MCO_F 0.567 0.719 M 

ITEM21 MGE_E 0.416 1.254 M-H ITEM43 MCO_G 0.26 2.274 H 

ITEM22 MGE_F 0.518 0.67 M      

a1 = item discrimination, d2 = item difficulty, E= easy, M= medium, H= hard. 
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Appendix B 

Test Information Curves 

Figure B1. Test Information Curve of CLT for GAT-V Using IRT with 2PL  

 

 

 

 

 

 

 

 

 

 

 

 

Test information curve: solid line Standard error curve: dotted line
The total test information for a specific scale score is read from the left vertical axis.
The standard error for a specific scale score is read from the right vertical axis.
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Figure B2. Test Information Curve of CLT for GAT-M Using IRT with 2PL  

 

  

Test information curve: solid line Standard error curve: dotted line
The total test information for a specific scale score is read from the left vertical axis.
The standard error for a specific scale score is read from the right vertical axis.

-4 -3 -2 -1 0 1 2 3 4
0

1

2

3

4

5

6

7

Scale Score

In
fo

rm
at

io
n

TEST0001  FORM:          1               

0

0.22

0.44

0.65

0.87

1.09

S
tan

d
ard

 E
rro

r



 

 143 

Appendix C 

Evidence for unidimensionality of GAT-V 

Table C1. Summary of Model Fit for Single Factor Model for GAT-V  
Statistic Result Thresholds* 
X2m  4995.88 Insignificant at a 0.05  
dfm 1080 
P <0.001 
RMSEA (90%CI) 0.0.020 (0.019 - 0.021) =<0.05(<0.05, <0.10) 
SRMR 0.0204 =<0.08 
GFI 0.97 =>0.90 
AGFI 0.97 =>0.90 

 

The single factor model was programmed using AMOS with 48 items. Table 1 

shows the fit indices for single factor model. The chi-square was significant and that was 

expected with the large sample because this statistical significance test is sensitive to 

sample size. 

The results for the Root Mean Square Error of Approximation RMSEA, which is 

scaled as a badness-of-fit index, was 0.020 which is smaller than threshold 0.05 and the 

lower bound of the 90% confidence interval for this statistic was 0.019 < 0.05 and upper 

bound was 0.021 < 0.10 (Kline, 2010), thus, the adequate fit hypothesis was not rejected, 

P > 0.05. 

The value of the Standardized Root Mean Square Residual (SRMR) that measures 

the mean absolute correlation residual and finds the overall difference between observed 

and predicted correlations, was 0.0204, smaller than Hu and Bentler’s recommended 

threshold of 0.08 (Kline, 2010). This implies the model had reasonable fit. The values of 

the Goodness-of-fit (GFI) statistic was 0.97 and the Adjusted Goodness-of-fit (AGFI) 

statistic was also 0.97; these values are greater than recommended threshold of 0.90, 
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indicating a well-fitting model (Hopper et al., 2008; Kline, 2010). Overall, the results of 

fit statistics indicate that the data fit a single factor model well and the unidimensionality 

of GAT-V was supported.  
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Appendix D 

Evidence for unidimensionality of GAT-M 

Table D1. Summary of Model Fit for Single Factor Model for GAT-M  
Statistic Result Thresholds* 
X2m  3447.8 Insignificant at a 0.05  
dfm 860 
P <0.001 
RMSEA (90%CI) 0.0.018 (0.018 - 0.019) =<0.05(<0.05, <0.10) 
SRMR 0.019 =<0.08 
GFI 0.98 =>0.90 
AGFI 0.98 =>0.90 

 

The single factor model was programmed using AMOS with 48 items. Table 1 

shows the fit indices for single factor model. The chi-square was significant and that was 

expected with the large sample because this statistical significance test is sensitive to 

sample size. 

The results for the Root Mean Square Error of Approximation RMSEA, which is 

scaled as a badness-of-fit index, was 0.018 which is smaller than threshold 0.05 and the 

lower bound of the 90% confidence interval for this statistic was 0.018 < 0.05 and upper 

bound was 0.019 < 0.10 (Kline, 2010), thus, the adequate fit hypothesis was not rejected, 

P > 0.05. 

The value of Standardized Root Mean Square Residual (SRMR) that measures the 

mean absolute correlation residual and finds the overall difference between observed and 

predicted correlations, was 0.019, smaller than Hu and Bentler’s recommended threshold 

of 0.08 (Kline, 2010). This implies the model had reasonable fit. The values of the 

Goodness-of-fit (GFI) statistic was 0.98 and the Adjusted Goodness-of-fit (AGFI) 

statistic was also 0.98; these values are greater than recommended threshold of 0.90, 
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indicating a well-fitting model (Hopper et al., 2008; Kline, 2010). Overall, the results of 

fit statistics indicate that the data fit a single factor model well and the undimensionality 

of GAT-M was supported.  
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