
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

8-1-2018

Improving the Accuracy of Mobile Touchscreen QWERTY Improving the Accuracy of Mobile Touchscreen QWERTY

Keyboards Keyboards

Amanda Kirk
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kirk, Amanda, "Improving the Accuracy of Mobile Touchscreen QWERTY Keyboards" (2018). Electronic
Theses and Dissertations. 1512.
https://digitalcommons.du.edu/etd/1512

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Denver

https://core.ac.uk/display/217244227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1512?utm_source=digitalcommons.du.edu%2Fetd%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Improving the Accuracy of Mobile Touchscreen

QWERTY Keyboards

A Thesis

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and Computer

Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Amanda Kirk

August 2018

Advisor: Dr. Nathan Sturtevant

c© Copyright by Amanda Kirk 2018

All Rights Reserved

Author: Amanda Kirk
Title: Improving the Accuracy of Mobile Touchscreen QWERTY Keyboards
Advisor: Dr. Nathan Sturtevant
Degree Date: August 2018

Abstract

In this thesis we explore alternative keyboard layouts in hopes of finding

one that increases the accuracy of text input on mobile touchscreen devices.

In particular, we investigate if a single swap of 2 keys can significantly improve

accuracy on mobile touchscreen QWERTY keyboards. We do so by carefully

considering the placement of keys, exploiting a specific vulnerability that

occurs within a keyboard layout, namely, that the placement of particular

keys next to others may be increasing errors when typing. We simulate the

act of typing on a mobile touchscreen QWERTY keyboard, beginning with

modeling the typographical errors that can occur when doing so. We then

construct a simple autocorrector using Bayesian methods, describing how we

can autocorrect user input and evaluate the ability of the keyboard to output

the correct text. Then, using our models, we provide methods of testing and

define a metric, the WAR rating, which provides us a way of comparing the

accuracy of a keyboard layout. After running our tests on all 325 2-key swap

layouts against the original QWERTY layout, we show that there exists more

than one 2-key swap that increases the accuracy of the current QWERTY

layout, and that the best 2-key swap is i ↔ t, increasing accuracy by nearly

0.18 percent.

ii

Acknowledgements

I, firstly, would like to thank my Thesis Advisor, Dr. Nathan Sturtevant,

for his patience, flexibility, inspiration, and mentorship throughout this process.

To the Computer Science Department staff and faculty at the University

of Denver: I appreciate your support, guidance, and for allowing me this

opportunity in the first place. My experience in your graduate program

was life changing. To my colleagues Andy, Zach, Andrew, Sally, and the

rest – I could not have gotten through without your companionship, nor

would my experience in graduate school been as exceptional. Thanks for

keeping my stress levels down and bringing laughter to an otherwise serious

academic environment. To my partner, thank you for all your love and support,

especially in moving our family to Denver, allowing me to follow my dreams.

Finally, to my family, thank you for always believing in me, sacrificing so much

for me, and pushing me to be the best I can be.

iii

Table of Contents

1 Problem Statement 1
1.1 Introduction . 1
1.2 Approach . 3
1.3 Thesis Overview . 6

2 Background 7
2.1 History . 7
2.2 Related Work . 9

2.2.1 Alternative Keyboard Layouts 10
2.2.2 Alternative Input Methods 12
2.2.3 Software Solutions . 15

3 Error Model 20
3.1 Motivation . 20
3.2 Noisy Channel Model . 21
3.3 Modeling Typographical Errors 24
3.4 Weighted Outcomes . 25
3.5 Neighborhood Definition . 27
3.6 Probability Distribution . 29
3.7 Extending the Error Model to Whole Words 32
3.8 Simulating Typos . 34

4 Autocorrector Model 36
4.1 Motivation . 36
4.2 Methodology . 37

4.2.1 Generating Candidates 39
4.2.2 Calculating Rank . 41
4.2.3 Full Example . 45

5 Experimental Results 50
5.1 Measuring Keyboard Layout Accuracy 50

iv

5.2 2-Key Swap Results . 54

6 Conclusion 69

Bibliography 73

v

List of Tables

3.1 Neighborhood Definition for QWERTY Layout 30
3.2 Defined Error Model . 31

4.1 Ranks for Candidates(tre) . 47
4.2 P (tre|c) for Candidates(tre) 48
4.3 P (c) for Candidates(tre) . 49

5.1 All 2-Key Swap Relative WAR Ratings 57
5.2 All 2-Key Swaps Outperforming QWERTY 65
5.3 Best Swap per Letter . 68
5.4 Top Ten 2-Key Swaps . 68
5.5 Worst Ten 2-Key Swaps . 68

vi

List of Figures

1.1 Example of QWERTY Keyboard Layout 2
1.2 Neighbors of Q . 3

2.1 Example of Dvorak Simplified Keyboard Layout 11
2.2 Example of Colemak Keyboard Layout 12
2.3 Example of Maltron Keyboard Layout 12
2.4 Example of 8Pen Keyboard 13
2.5 Example of MessageEase Keyboard 14
2.6 Example of Thumbly Keyboard 14
2.7 Example of SwiftKey Keyboard 15

3.1 Noisy Channel Error Model 22
3.2 Defined Grid of Keys for QWERTY Layout 28

vii

Chapter 1

Problem Statement

1.1 Introduction

With computing device usage growing rapidly throughout the world and

already prevalent in most of it [27], it makes sense that much research has gone

into improving human-computer interaction [38]. There are now various input

methods available that enhance and enable our interactions with computers,

such as speech recognition [25], muscle movement detection [2], character

recognition [16], and camera-based sensors [50]. Though to date, the most

widely used and central component to human-computer interaction is the

keyboard, with text-entry being the main way we accomplish work through

and communicate with computational devices. While the QWERTY keyboard

layout [64], shown in Figure 1.1, is known as a well-suited configuration for

desktop systems, the same has not been shown to be true for mobile devices,

although being widely adopted by them. QWERTY keyboards pose a definite

problem for text-entry in mobile computing [34]. Where QWERTY keyboards

1

may have been ergonomic and efficient for desktop users, the large keyboard

configuration doesn’t fare well on such small devices as the ones we are growing

accustomed to using today. The advantages of QWERTY are also compromised

when considering the fact that users tend to type on mobile devices using

a single hand, whereas QWERTY was intended for two-handed typing [22].

Despite the concerns surrounding the usage of QWERTY keyboards on mobile

devices, QWERTY continues to dominate in the mobile realm because of

familiarity, preexisting hardware and software, and training available.

Figure 1.1: Example of QWERTY Keyboard Layout

According to the Pew Research Center [13], more than 75 percent of

Americans now have smart phones, which typically employ virtual, touchscreen

technology. Nearly all of these virtual touchscreen keyboards utilize the QWE-

RTY layout. Most mobile device users are aware of the typing errors, or typos,

that come with typing on a mobile touchscreen keyboard and have experienced

the headache that comes with having to correct errors frequently or, in extreme

cases, when mistakenly sending an invalidly typed message over the airwaves.

Much time and energy is spent correcting these errors [66][48] and is often a

main pain point for mobile users. These typos can only have been increased

2

as a result of squeezing the large QWERTY layout onto small mobile devices,

making the infamous fat finger problem [52] more prevalent than ever.

1.2 Approach

In our research, we explore alternative keyboard layouts in hopes of finding

one which results in increasing the accuracy of text input on mobile devices.

We do so by carefully considering the placement of keys, exploring a specific

vulnerability that occurs within a keyboard layout. Namely, that the position

of specific keys close to certain other keys may increase typos. In particular,

it is well known that the most common type of error when typing is the

substitution of an adjacent letter for the intended letter [15], e.g., typing

sprlling on the QWERTY keyboard when you intended to type spelling. In

this case, typing an r, which is adjacent to e, instead of the intended e. We

call any key that is adjacent to a target key, a neighbor of the target key.

For example, the neighbors of the key q are w, a, and s (Figure 1.2).

Figure 1.2: Neighbors of Q

When a typo results in a non-dictionary word, such as sprlling, it is quite

easy for even a simple autocorrector to detect this as an error and attempt to

3

correct it. For errors that result in a well-spelled word, such as attempting to

type dog but typing dig instead, autocorrectors typically will not try to correct

the word, as it may not determine a word that is already well-spelled and

within reasonable context to be erroneous. This problem has been improved

upon by utilizing bi-grams and Hidden Markov Models [4], but remains one

of the major issues facing autocorrection performance today. It is easy to

see, then, that a keyboard layout influences mistypings, substitution errors in

particular. Consider if i and u were not adjacent on the keyboard we were

typing on. Say we swapped z with i on the QWERTY layout so that u and

i were no longer neighbors. The aforementioned typo would have resulted in

the string dzg, rather than dig and the autocorrector would sprint into action

to assist the user, since dzg is not well-spelled. As it is much more likely to

press a neighbor of the intended key than a non-neighbor, we should question

the arrangement of keys on the keyboard layout we are using.

Consider the fact that, on the QWERTY keyboard, the keys i and o are

next to one another. One can quickly see that there are many well-spelled

words that result from this type of substitution error. Many words, when

swapping out an i for an o or an o for an i, will still be well-spelled, resulting in

the keyboard not being able to recover from a great many of errors. Examples

of such substitutions include: does ⇐⇒ dies, dog ⇐⇒ dig, moss ⇐⇒ miss,

fond ⇐⇒ find, hot ⇐⇒ hit, pot ⇐⇒ pit, son ⇐⇒ sin, rode ⇐⇒ ride,

lock ⇐⇒ lick, lost ⇐⇒ list. Thus, one can conclude that the keyboard

layout itself, or having i and o next to one another, in particular, decreases the

accuracy of the keyboard due to dampening the effectiveness of the autocorrector.

4

This “Problem With Neighbors” is amplified further on MT keyboards

as the keys are even closer to one another than on traditional keyboards.

There are many examples of these types of problematic key placements on

the QWERTY keyboard. Our intuition is that separating certain keys, such

as vowels, making them non-neighbor, would result in better autocorrect

performance, and thus, higher keyboard accuracy overall. Our research aims

to answer the question: Can we significantly improve the accuracy of a mobile

touchscreen (MT) QWERTY keyboard by swapping just two keys?

We will investigate alternative layouts which involve a single swap of two

keys (2-key swap) on the original QWERTY layout, aiming to separate those

keys that, when close together, would have increased the probability of error.

We test all 325 2-key swaps, comparing their accuracy to that of the original

QWERTY layout. Our aim is to aide in improving the text-entry problem,

increasing accuracy with a very small change to the ever-pervasive QWERTY

layout. Given that QWERTY is likely here to stay, a single 2-key swap would

be a small, doable change, with a large payoff. The familiarity of QWERTY

would not be jeopardized, as navigating a small change to QWERTY would

be an easy adaptation. The preexisting software and hardware would also not

be disrupted, but by a small degree.

Our approach involves modeling the keyboard, constructing an error model

and an autocorrector so that we can simulate typing on the keyboard to

measure it’s accuracy. Then, using our models, we measure accuracy of the

original QWERTY layout as a baseline. We then measure the accuracy of all

2-key swap layouts, analyzing which layouts show better performance than

5

QWERTY. Our results show that there exist more than one 2-key swaps that

would increase the accuracy of the current QWERTY layout, and we provide

the best 2-key swap derived from the QWERTY layout, which is shown to

increase accuracy by nearly 0.18 percent.

1.3 Thesis Overview

The remainder of this thesis is organized as follows: In Chapter 2, we

provide the audience with historical context on QWERTY and the text-entry

problem. We will explore related work and the state of the art on improving the

accuracy of MT QWERTY keyboards. In Chapter 3, we begin to construct our

error model, simulating the error that happens when typing on a QWERTY

keyboard. In Chapter 4, we describe how we accomplish constructing a simple

autocorrector for our keyboard model. In Chapter 5, we discuss our methods

of using the total keyboard model in conjunction with a large corpus of test

strings to measure accuracy of a keyboard layout. We then test all 325

2-key swaps, comparing each layout’s accuracy to the original QWERTY

configuration, and present our results. In Chapter 6, we summarize our

contributions and provide suggestions for future work.

6

Chapter 2

Background

In this chapter, we provide the audience with historical context on QWERTY

and the text-entry problem. We will also explore related work and the state

of the art on improving the accuracy of MT QWERTY keyboards.

2.1 History

Today’s modern keyboards are, not surprisingly, direct descendants of the

typewriter. Though two lesser mentioned technologies that had a direct hand

in deriving today’s keyboards were the teleprinter, which was used to type

and transmit stock market text data from keyboard to stock ticker machines,

and the keypuncher, which was used as an early data entry device, punching

holes into paper to record and verify data. As typewriters, keypunches, and

teleprinters became more electromechanical, they began to employ what we

know today as keyboards. The development of the earliest computers integrated

electric typewriter keyboards. This included the ENIAC [41] computer, which

7

used a keypunch device as both the input and output device, and the BINAC

[56] computer, which also made use of an electromechanically controlled typewr-

iter for both data entry and data output.

The QWERTY layout was devised and created in the early 1870s by

Christopher Latham Sholes, with the layout becoming popular with the success

of the Remington No.2 typewriter of 1878. The first computer terminals, such

as the Teletype [44], were typewriters that could produce and be controlled by

various computer codes. These early computer typewriters used the QWERTY

layout. Due to the large amount of familiarity, preexisting hardware, and

training available, the QWERTY layout translated seamlessly to the computat-

ional sector, with nearly all electronic computer keyboards utilizing the QWE-

RTY layout.

While keyboards remain the central input device for computational devices,

there have been many other input methods introduced to enhance human-comp-

uter interaction. One of the most commonly used input devices, second

to the keyboard, is the pointing device [54]. Most often times, a pointing

device takes the form of a mouse, but other examples include touchscreen,

the pointing stick, and the joystick. Pointing devices allow the user to input

spatial data to the computer, which is often utilized to create a simple and

intuitive way to navigate a computer’s graphical user interface (GUI). Other

common inputs include audio [11] (e.g. microphone, etc.) and video input

[19] (e.g. digital camera, scanner, etc.). More advanced forms of input have

also been introduced. Optical character recognition [16] allows the conversion

of text from an image to editable text on the computer. Speech recognition

[25] translates audible vocalizations to machine-editable text on the computer.

8

Muscle-movement and camera-based sensors [50] allow gestures to be translated

to the computer. A popular example of this input type is the Microsoft Kinect

[67], which enables the user to control and interact with their gaming console

or computer through a user interface using physical gestures.

With the introduction of smart mobile devices came the rise of software,

or virtual, keyboards [43], which often take the form of computer programs

that display an image of a keyboard on the screen. By the click of a pointing

device or tapping of the finger on a specific letter from the virtual keyboard,

software writes the respective letter on the respective spot. Virtual keyboards

are commonly used as an on-screen input method in devices with no physical

keyboard such as a pocket computer, personal digital assistant (PDA), tablet

computer or touchscreen-equipped mobile phone. Software keyboards have

become very popular on touchscreen enabled mobile devices due to the cost

and space requirements of hardware keyboards. QWERTY has been widely

adopted by both mobile devices with hard keyboards as well as those with

virtual touchscreen keyboards.

2.2 Related Work

The problem of text-input accuracy has been around since the time of

typewriters, and was one of the reasons why the QWERTY layout was developed

in the first place. Since then, much research has gone into increasing accuracy

on text-input mechanisms, such as the keyboard [55]. With human-computer

interaction being more prominent than ever, bettering the text-input methods

we currently employ would have drastic effects in overall productivity, both for

9

persons and businesses alike. We now use computational devices for numerous

tasks, both in our daily lives and in our workplaces, allowing us to automate

or speed up much of what we do. With text-entry being a main way we

accomplish work and boost productivity and users now turning to their mobile

devices to accomplish many of these tasks, increasing the accuracy of one of our

most commonly used methods of text-entry, the mobile touchscreen keyboard,

is a meaningful path of research to pursue.

There are various directions that research has gone in in order to tackle

the text-input problem on mobile devices [39]. Text entry evaluation focuses

on two quantities: speed and accuracy. While much work has been done

on speed [30], given its relative ease to evaluate and measure, accuracy is

much more complex to model and measure. One method of improving the

accuracy of text-input to mobile devices has been to investigate alternative

keyboard layouts entirely [60], moving away from QWERTY. Another research

direction has been to consider new input methods for text-entry altogether

[12], rather than typing as we traditionally do. Thirdly, researchers have

proposed improving accuracy via software that utilizes predictive techniques,

probabilistic methods, and/or machine-learning to decrease error by correcting

and/or preventing typos [39].

2.2.1 Alternative Keyboard Layouts

Several alternative keyboard layouts have been developed over the years,

claimed by their designers and users to be more efficient, intuitive, ergonomic,

and accurate than QWERTY. The most widely used alternative is the Dvorak

Simplified Keyboard [46] (Figure 2.1). This layout places the most commonly

10

used letters in the home row, where they’re easy to reach, and the least

commonly used letters on the bottom row, where they’re hardest to reach.

While QWERTY results in most of the typing being performed with the

left hand, Dvorak results in most typing being performed with the right

hand. Another increasingly popular alternative is Colemak [17] (Figure 2.2).

Colemak is more similar to the QWERTY layout, so its easier to switch to

from a standard QWERTY keyboard, with only 17 changes made from the

QWERTY layout. Like Dvorak, it’s designed so the home row of keys is

used more frequently. It also claims to reduce how far your fingers need to

move while typing. Another, more extreme, example of an alternative layout

is Maltron [37] (Figure 2.3). Rather than a single rectangular grouping of

letter-based keys, Maltron includes two square sets of letters, both of which

flank a number pad in the middle.

Figure 2.1: Example of Dvorak Simplified Keyboard Layout

The advantages and disadvantages of these alternative layouts have long

been debated [61], some arguing that they perform better than the QWERTY

configuration. Nonetheless, these alternatives have not yet seen widespread

adoption.

11

Figure 2.2: Example of Colemak Keyboard Layout

Figure 2.3: Example of Maltron Keyboard Layout

2.2.2 Alternative Input Methods

Another direction that research has gone in an effort to improve the accuracy

of MT keyboards is to investigate alternative touch screen input, altogether,

moving away from traditional typing. Below, we share some popular examples

of alternative input methods for MT keyboards.

• 8Pen [1] (Figure 2.4): The 8Pen Keyboard features a small wheel which

is used by dragging your finger around the different segments to select

each letter. The layout claims to allow for the most common letter

12

sequences to be produced with swift, intuitive, and fluid gestures, which

help eliminate typos.

Figure 2.4: Example of 8Pen Keyboard

• MessageEase [45] (Figure 2.5): The MessageEase keyboard has a tap

and swipe design, where the user taps common letters and swipes outward

for lesser used letters. MessageEase claims to use Fitts’ Law, letter

frequency tables, and bi-gram frequency data to minimize the distance

a finger travels while texting. Also, with fewer keys compared to a

regular keyboard, MessagEase keys are 3.5 times larger, diminishing the

fat finger problem.

• Thumbly [59] (Figure 2.6): The Thumbly keyboard is designed to be

used with one hand, or more specifically, with a single thumb. Thumbly

claims that it’s keys are ergonomically arranged and are easily reached

with one thumb using a comfortable side-to-side motion, also allowing

for automatic detection of switching hands during use.

• SwiftKey [58] (Figure 2.7): The SwiftKey keyboard uses a gesture-based

input method known as SwiftKey Flow, where the user swipes or drags

their finger across all letters they want to by typed. The designers claim

13

Figure 2.5: Example of MessageEase Keyboard

Figure 2.6: Example of Thumbly Keyboard

that the swipe method is much better for thumb typing and predictive

text capabilities.

14

Figure 2.7: Example of SwiftKey Keyboard

While the above keyboards have been well researched and implemented,

none of these alternative input methods have seen widespread adoption. Altern-

ative inputs, such as gesture-based keyboard input, face many challenges of

their own [53], making the question of if they are any better than QWERTY

even more difficult to answer and further minimizing their chance for mainstream

adoption.

2.2.3 Software Solutions

The third and most diverse area of research attempting to improve the

accuracy of MT QWERTY keyboards has been to create smart software which

can reduce errors while typing. There has been much innovation and progress

with this approach [31], as scientists aim to make smart phones even smarter

via mechanisms such as text prediction and autocorrection. The problem of

reducing MT QWERTY keyboard input error with software can be approached

form various directions, as error while typing can occur for many reasons

including the fat finger problem [52], where a user’s fingertip touches a larger

15

area than intended, or when the touch location on the screen is different than

the user intended altogether [26]. The user could also not know the correct

spelling to begin with, which would result in a typo needing to be corrected.

Also, with mobile devices, error can be introduced due to the movement of the

person typing, as users are now often walking, jogging, or altering their body

positions while doing so.

With each of these problems comes an array of work in the literature

that attempts to make the chance of error due to them less likely. For the

touch offset problems, research has gone into reducing the fat finger issue

and making the target key more likely to be registered than an accidental

key. Similar methods have also been devised to improve pressure input issues.

Goodman et al. [21] used a language model and a key press model to select

the most probable key sequence of the user, rather than the sequence dictated

by strict key boundaries. This led to a significant overall error rate reduction.

Kristensson and Zhai [32] proposed a geometric pattern matching technique

to be used either as an enhanced spell checker or as a way to enable users to

escape the Fitts’ law constraint in stylus typing. Henze et al. [23] collected

millions of data points from touchscreen data and modeled the offsets using

polynomials to improve typing accuracy. Weir et al. [62] presented a machine

learning approach for learning user-specific touch input models to increase

touch accuracy on mobile devices. The model was based on flexible, non-para-

metric Gaussian Process regression and was learned using recorded touch

inputs, showing the importance of user specificity in offset models. Bi et al.

[6] derived an expansion of Fitts law for finger touch input, conducting three

experiments in 1D target acquisition, 2D target acquisition, and touchscreen

16

keyboard typing tasks. These experiments showed that the derived law was

more accurate than Fitts law in modeling finger input on touchscreens. Later,

Bi and Zhai [7] conceptualized finger touch input as an uncertain process and

derived a statistical target selection criterion called Bayesian Touch Criterion

from combining the basic Bayes rule of probability with the generalized dual

Gaussian distribution hypothesis of finger touch, which showed to be significantly

more accurate than the commonly used Visual Boundary Criterion. Rudchenko

et al. [49] studied key-target re-sizing, which dynamically adjusts the underlying

target areas of the keys based on their probabilities, which showed to significantly

reduce errors. Goel et al. [20] used accelerometer data to decrease errors

due to walking while typing, constructing a classification model using the

displacement and acceleration of the device and inference about the user’s

footsteps. Hoffmann et al. [24] developed the TypeRight keyboard, which

prevents errors by increasing the resistance of keys for words that are not

well-spelled. Before each keystroke, the resistance of keys that would lead

to a typing error according to dictionary and grammar rules is increased

momentarily to make them harder to press, thus avoiding typing errors rather

than indicating them after the fact. Stewart et al. [57] conducted a series

of user studies to understand the fundamental characteristics of pressure in

user interfaces for mobile devices, providing insight to clarify a longstanding

discussion on mapping functions for pressure input by looking at how holding

a device influences target acquisition time.

Another software-oriented approach for increasing accuracy on MT QWE-

RTY keyboards is the utilization of autocorrection and text prediction. These

approaches largely depend on language modeling and statistical properties

17

of text [55] to determine the most probable sequence of keys that the user

intended to type in order to prevent or correct any typos the user may have

made. The study of natural language processing [29] has contributed greatly to

modeling language, which is pivotal to many autocorrection and text prediction

methods. The study of typographical errors [35] has also played a major role

in the effectiveness of autocorrection and text prediction, allowing for precise

error models to be utilized. Kukich [33] surveyed documented findings on

spelling error patterns, providing descriptions of various non-word detection

and isolated-word error correction techniques, and reviewed the state of the art

of context-dependent word correction techniques. Levenshtein [36] orginally

approached error correction in data entry as a combinatorics and coding theory

problem, investigating the construction of optimal codes capable of correcting

deletions, insertions, and reversals. Shannon [51] did fundamental work on

the well-known noisy channel, a model which has been successfully applied

to a wide range of problems, including spelling correction. Brill and Moore

[8] derived an improvement to noisy channel spelling correction via a more

powerful model of spelling errors by learning generic string to string edits,

along with the probabilities of each of these edits, resulting in significant

improvements in accuracy. Brown et al. [10] addressed the problem of predicting

a word from previous words in a sample of text, using n-gram models based on

classes of words, which formed the foundation of many context driven methods

of spelling correction used today. Mayes et al. [40] created a real world

spelling corrector which considered the context of the words being typed, using

a tri-gram-based noisy channel model to correct errors that would otherwise be

skipped by traditional autocorrectors. Yin et el. [65] proposed a new approach

18

for improving text entry accuracy on touchscreen keyboards by adapting the

underlying spatial model to factors such as input hand postures, individuals,

and target key positions. Whitelaw et al. [63] devised a way to use the web

for language independent spell checking, requiring no annotated data-set, as

most systems using statistical models do, modeling the web as a large noisy

corpus, instead.

19

Chapter 3

Error Model

In this chapter, we construct our error model, simulating the errors that

occur when typing on an MT QWERTY keyboard.

3.1 Motivation

Our goal is to measure the accuracy of the QWERTY layout against

variants of the QWERTY layout on MT keyboards. We first need a complete

model of the keyboard itself, which includes simulating the action of typing

on the keyboard. The first major step towards measuring the accuracy of a

particular keyboard layout is to quantify the likelihood that words typed by

the user are correctly output to the device screen so that if a user intends to

type a word and attempts to type it, that intended word is output to the screen

correctly. In other words, given a corpus and a particular keyboard layout,

we need to measure the probability that each word in the corpus is accurately

output to the screen, matching the intended text, when a user attempts to

20

type each word in the corpus. There are two main components to modeling

the accuracy of an MT keyboard layout. First, something that could harm

the accuracy of the keyboard is error. Thus, an error model needs to be

constructed to demonstrate the errors that can occur when a user attempts

to type a word. Second, errors can sometimes be reversed by an automatic

spelling corrector, or autocorrector, which are nearly guaranteed on modern

mobile devices. A model of the autocorrector is therefore needed, as it can

reduce errors and increase accuracy. Both of these components contribute

to whether the correct word is output to the device screen and, as such, we

must construct a model for each in order to measure the total accuracy of

MT keyboard layouts. We construct both models generally, so that they can

be applied to any keyboard layout. This will allow us to easily compare the

accuracy of different layouts against one another. In this chapter, we start by

constructing an error model for MT keyboards.

3.2 Noisy Channel Model

The noisy channel model [51] is a framework used for problems such as

speech recognition [5], machine translation [9], spell checkers [8], and general

language models [10]. In this section, we show how we can model error under

the noisy channel framework.

When modeling the scenario of typing on an MT keyboard it can be useful

to think of the process as an input string being sent over a noisy channel so that

the output string may either be correct or incorrect due to the various mishaps,

or noise, that can occur during its travel over the channel. When viewing the

21

Figure 3.1: Noisy Channel Error Model

act of typing on an MT keyboard within a noisy channel framework, the input

string is represented by the word the user attempts to type, and the output

string represents the word output to the device screen. The noise in our model

represents the typographical errors that could have occurred and effected the

correctness of the word being passed over the channel.

To translate the problem of modeling error as a noisy channel, we first

formally describe the scenario. Given an alphabet of letter characters A, let

A∗ be the set of finite strings over A. For our purposes, A = {a, · · · , z}, the

English alphabet. Let D be the dictionary of legal English words such that

D ⊆ A∗. Suppose a string s ∈ A∗ is output to the device screen when the

word w was intended. We have two possibilities: Either s is correctly output

to the screen, matching the intended word (s = w) or some noise has occurred

causing a different and incorrect word to be output to the screen (s 6= w).

Figure 3.1 shows an illustration of this noisy channel model example. Given

a word w ∈ D, which a user intends to type, the word travels over the noisy

channel, representing errors that can occur, and a word s ∈ A∗ is output to

the device screen. Here, s may or may not equal w. You can also see that s is

output to the screen with the probability P (s|w).

22

There are two main components to the noisy channel framework when

applying it to our problem: the language model and the noisy channel model.

A user attempts to type the word w which comes from the language model D,

in this case, the English dictionary of words. The word w then goes through

the noisy channel with word s finally output to the screen. If s 6= w, then s has

been erroneously output to the screen according to the probability distribution

P (s|w), the probability that s is output to the screen given the user intended w.

This probability should represent real-world noise and accurate presumptions

about typographical errors. For example, P (the|the) should be very high and

P (tge|the) should be relatively high, while P (loveliness|the) should be very

low. In an effort to model error, we are clearly more interested in the case

where s 6= w, as this is when some sort of noise, or error, has occurred.

In order to fully quantify the uncertainty involved with typing on an MT

keyboard, we need to build a model which describes all of the possible output

we can expect to get during the act of typing. Very simple error models using

the noisy channel framework have been used [40], as well as improved upon or

made more complex by using, for example, context-based prediction [14]. We

construct an error model building off of basic principles which enumerates the

various outcomes that can occur when a user types a single character on an

MT keyboard. We then extend this model to whole words. The next sections

provide details of the error model we have defined to simulate the noisy channel

view of typing on an MT keyboard.

23

3.3 Modeling Typographical Errors

Typographical errors, commonly referred to as typos, are mistakes which

occur when a user is typing on the keyboard. Many factors contribute to the

occurrence of typographical errors such as mechanical failure, the slip of a

finger, or the lack of vocabulary knowledge on behalf of the user. Of course,

typos can also be a result of many other factors, particularly on MT keyboards,

including keyboard size, key arrangement, movement while typing, whether

two handed typing or one handed typing is used, and the infamous fat finger

problem [52]. The most common typographical errors that appear while typing

a word include adding duplicate or additional letters (insertion), mistakenly

typing letters different from those intended (substitution), or missing letters

entirely (deletion). Much research has been done in the realm of studying

these errors, what causes them, and how to quantify them [55] [35] [42] [18].

Working towards a character error model, we consider four outcomes that

can occur when a user types a single character on an MT keyboard. For each

of these outcomes, we give an example using a single character and also an

example using that single character outcome within a word. The outcomes we

will consider are:

• Outcome 1 : Correct - The user intends to hit a specific key, and hits

the intended key correctly.

– Example: h→ h or hello→ hello

24

• Outcome 2 : Substitution - The user intends to type a specific key,

but hits a different key by mistake.

– Example: e→ x or hello→ hxllo

• Outcome 3 : Insertion - The user intends to a hit a specific key, but

mistakenly inserts an additional key before or after the intended key.

– Example: l→ lx or hello→ helxlo

• Outcome 4 : Deletion - The user intends to hit a specific key, but

mistakenly misses hitting any key whatsoever.

– Example: e→ null or hello→ hllo

These outcomes are traditionally referred to in terms of edit operations

[36], which will be explained and used in our autocorrector model (Chapter

4). First, to finish the error model, we need a probability distribution for

the outcomes described above. Since error models under the noisy channel

framework have been shown to be significantly improved by associating specific

probabilities to the individual outcomes that are possible [14], we explain how

we distribute probabilities over all of these different scenarios in the following

sections.

3.4 Weighted Outcomes

We know that the probability of the four outcomes outlined in the previous

section will vary (i.e., each outcome should have its own probability of occurring).

25

For example, from experience, we know that actually hitting the key we intend

is much more probable than making an error, or in other words, we type

correctly more often than typing incorrectly. We also know that if we make

an error, it is most likely that of the substitution type since hitting the wrong

key is the most frequent error over all error types considered [35]. Thus, we

need to decide on what probability value to assign to each of our outcomes.

An important distinction comes into play when considering distance between

keys in relation to substitution errors. As described in section 1.2, when

discussing the “Problem with Neighbors”, hitting a key that is right next to the

one you are intending to press is more likely than hitting a key that is farther

away on the keyboard. This fact is also evident on traditional keyboards

(used with desktops or laptops), but is made worse on MT keyboards by the

size constraints of the mobile device which force the keys to be smaller and

much closer to one another than they are on the larger, traditional keyboards,

making the boundaries of keys more difficult to feel. For example, when we

attempt to type the on the QWERTY layout, it is more probable that we make

a substitution error which results in the word rhe than making a substitution

error that results in the word zhe. This is because r is closer to t on the

keyboard than z is. This tells us that the probability of a substitution error

should not be distributed evenly over all of the keys on the keyboard, rather,

each key has a probability of being substituted relative to the distance between

itself and the intended key. The closer a key is to the intended key, the higher

probability it should have of being substituted by mistake. In our error model,

we use the distance between keys to impact both the weight of a substitution

error occurring relative to other error types and we also weigh certain keys as

26

more likely to be hit on accident than others depending on their distance to

the intended key.

3.5 Neighborhood Definition

Before defining the weighted probability distribution for the different outco-

mes that can occur when typing, we must integrate the distance between two

keys as a factor into our probability of substitution errors since, as revealed

in the previous section, it is not uniformly distributed over all keys. To do

this, we distinguish two important types of substitution errors: neighbor

substitution and non-neighbor substitution. We define a neighbor of the key

δ as any key β, β 6= δ such that distance(δ, β) = 1 and a non-neighbor of δ

to be any key that is more than distance one away from δ on the keyboard

or distance(δ, β) > 1. Each key on a keyboard layout then has a static set of

neighbors and a static set of non-neighbors. Let A be our alphabet of character

keys on the keyboard, i.e., A = {a, b, c, · · · , y, z}. We denote Nδ as the set of

neighbors for key δ so that the set of non-neighbors for δ, NONδ, is the set

difference A−{Nδ, δ}. We define the distance function using regular euclidean

distance, by assigning each key on the keyboard a coordinate location, as shown

in Figure 3.2. We represent the keyboard as a grid of keys in a 2-dimensional

array, where grid[i][j] represents the key with coordinate location (i, j).

27

Figure 3.2: Defined Grid of Keys for QWERTY Layout

Using Euclidean distance, the distance between two keys δ and β is then

defined to be

distance(δ, β) =
√

(x1 − x2)2 + (y1 − y2)2,

where the location of δ in the keyboard grid is (x1, y1) and the location of β

on the keyboard grid is (x2, y2). In order to avoid vertical/horizontal bias, we

additionally define any two keys that are both distance 1 away horizontally and

distance 1 away vertically to be a total distance 1 away from each other. That

is, keys that are directly diagonal to a given key are considered neighbors of

that key. Thus, adding to the definition above, if |x1−x2| = 1 and |y1−y2| = 1

we set distance(δ, β) = 1.

With our grid locations for keys in place for a particular layout, it is

easy to compute the distance between keys and further, the neighbors of a

particular key. For example, the key q on the QWERTY layout has the

neighbor set Nq = {w, a, s} and non-neighbor set NONq = A − {Nq, q} =

{a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} − {w, a, s, q} =

{b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, r, t, u, v, x, y, z}.

28

Now that we have a way to compute the neighbors of any key on our

keyboard, we can construct the “neighborhood” of keys for a particular layout

using our defined grid locations for the keys on the keyboard. See Table 3.1

for a list of neighbor sets for each key in the QWERTY layout, along with

the total number of neighbors for each key. We call this comprehensive list

of neighbors the neighborhood of a keyboard layout. The neighborhood

of any keyboard layout can now be easily calculated by simply defining the

grid for the keys, since distance only depends on grid locations. As we will

see, the neighborhood calculation will be very important when measuring the

accuracy of keyboard layouts. Next we define the probability distribution for

the different outcomes that can occur when typing on an MT keyboard, each

with their own weight.

3.6 Probability Distribution

We assign the total probability of error to be α = 0.1. This means that

we will hit the correct key 90 percent of the time. Now, to distribute α over

the different errors that can occur, we weigh the probability of substitution

to be more likely than insertion or deletion. We then weigh the probability

of substituting a neighbor to be higher than substituting a non-neighbor.

Table 3.2 shows a summary of the values we have assigned to our probability

distribution. This probability distribution is used directly under our noisy

channel framework for modeling error and is referenced furthermore simply as

our error model.

29

Key Neighbors Number of Neighbors
A S Q Z W X 5
B N V G H F 5
C V X D F S 5
D F S E C R V X W 8
E R W D F S 5
F G D R V T B C E 8
G H F T B Y N V R 8
H J G Y N U M B T 8
I O U K L J 5
J K H U M I N Y 7
K L J I O M U 6
L K O P I 4
M N J K H 4
N M B H J G 5
O P I L K 4
P O L 2
Q W A S 3
R T E F G D 5
S D A W X E C Z Q 8
T Y R G H F 5
U I Y J K H 5
V B C F G D 5
W E Q S D A 5
X C Z S D A 5
Y U T H J G 5
Z X A S 3

Table 3.1: Neighborhood Definition for QWERTY Layout

Notice that the probability of insertion is distributed uniformly over all

keys, so that any of the 26 keys are equally likely to be inserted. This

probability is further split evenly between inserting either before or after

the intended letter, so that the probability of inserting before or after the

intended letter will be 0.005, respectively. Also, the probability of substituting

a neighbor is distributed evenly over all neighbors of the intended key, while the

probability of substituting a non-neighbor is distributed over all non-neighboring

30

Outcome Total Probability of Outcome
Correct Key 0.9
Substitution(Neighbor) 0.05
Substitution(Non-Neighbor) 0.03
Insertion 0.01
Deletion 0.01

Table 3.2: Defined Error Model

keys of the intended key. Let us take the key a for example. When typing a,

we sample over our error model (Table 3.2) to see the corresponding outcomes.

Below is the list of probabilities for the possible outcomes that can occur when

trying to type the letter a on the QWERTY keyboard, according to our error

model. Letting A be our alphabet of character keys on the keyboard, i.e.,

A = {a, b, c, · · · , y, z}. we have the following outcomes when attempting to

type a:

• Outcome 1 - Correct : We type a correctly with probability 0.9

• Outcome 2 - Insert Before : We type σa with probability 0.005
26

, where

σ ∈ A and is chosen uniformly over A. There are 26 different letters

that could be inserted before the intended character, which makes the

total probability of this outcome 0.005.

• Outcome 3 - Insert After : We type aσ with probability 0.005
26

, where

σ ∈ A and is chosen uniformly over A. There are 26 different letters

that could be inserted after the intended character, which makes the

total probability of this outcome 0.005.

• Outcome 4 - Deletion : We type NULL, the empty string, with

probability 0.01.

31

• Outcome 5 - Neighbor Substitution : We type σ with probability

0.05
|Na| = 0.05

5
, where σ ∈ Na and is chosen uniformly over a’s set of

neighbors, Na. There are 5 different neighboring letters that could be

substituted in place of the intended character, which makes the total

probability of this outcome 0.05.

• Outcome 6 - Non-Neighbor Substitution : We type σ with probability

0.03
|NONa| = 0.03

20
, where σ ∈ NONa and is chosen uniformly over a’s set

of non-neighbors, NONa. There are 20 different non-neighboring letters

that could be substituted in place of the intended character, which makes

the total probability of this outcome 0.03.

3.7 Extending the Error Model to Whole Words

Now that we have an error model for characters, we can simulate what

happens when a user types a whole word on an MT keyboard according to our

character error model. We extend our character error model to accomplish

this. For each character in the intended word, we sample our probability

distribution to see the resulting character that actually gets registered to

the display. Concatenating these results, we get the resulting word that is

displayed on the screen. To showcase what the resulting outcomes would look

like when typing a whole word using our extended character model, we show

the set of possible outcomes when attempting to type the word the on the

QWERTY keyboard given only a single error can occur:

• Outcome 1 - Correct: the

32

• Outcome 2 - Deletion: he, te, th

• Outcome 3 - Insertion: athe, bthe, cthe, dthe, ethe, fthe, gthe, hthe,

ithe, jthe, kthe, lthe, mthe, nthe, othe, pthe, qthe, rthe, sthe, tthe, uthe,

vthe, wthe, xthe, ythe, zthe, tahe, tbhe, tche, tdhe, tehe, tfhe, tghe, thhe,

tihe, tjhe, tkhe, tlhe, tmhe, tnhe, tohe, tphe, tqhe, trhe, tshe, tuhe, tvhe,

twhe, txhe, tyhe, tzhe, thae, thbe, thce, thde, thee, thfe, thge, thie, thje,

thke, thle, thme, thne, thoe, thpe, thqe, thre, thse, thte, thue, thve,

thwe, thxe, thye, thze, thea, theb, thec, thed, thef, theg, theh, thei, thej,

thek, thel, them, then, theo, thep, theq, ther, thes, thet, theu, thev,

thew, thex, they, thez

• Outcome 4 - Substitution: ahe, bhe, che, dhe, ehe, fhe, ghe, hhe, ihe,

jhe, khe, lhe, mhe, nhe, ohe, phe, qhe, rhe, she, the, uhe, vhe, whe, xhe,

yhe, zhe, tae, tbe, tce, tde, tee, tfe, tge, tie, tje, tke, tle, tme, tne, toe,

tpe, tqe, tre, tse, tte, tue, tve, twe, txe, tye, tze, tha, thb, thc, thd, thf,

thg, thh, thi, thj, thk, thl, thm, thn, tho, thp, thq, thr, ths, tht, thu,

thv, thw, thx, thy, thz

To tie the concept of generating outcomes directly from our error model,

let us show how we can extend our character model to calculate P (s|w) for

whole words, where w is the whole word we intend to type and s is the whole

word that is output to the screen after going through the noisy channel. Here,

P (s|w) is the probability that, given we tried to type w, s was output to

the screen. When dealing with characters, this was simple to compute directly

from our error model. To extend to whole words, we assume that the individual

probabilities of making an error for each character in the word are independent

33

of one another. The following are examples from the previous outcome set,

attempting to type the word the and allowing up to one error to occur:

• Example: the → the. We calculate the probability of this outcome

by extending our character error model and assuming independence to

yield the quantity P (the|the) = P (t|t)P (h|h)P (e|e) = (0.9)(0.9)(0.9).

• Example: the → he. A deletion has occurred. Following the same

method as before, P (he|the) = P (NULL|t)P (h|h)P (e|e) = (0.01)(0.9)(0.9).

• Example: the→ they. An insertion has occurred. Thus, P (they|the) =

P (t|t)P (h|h)P (ey|e) = (0.9)(0.9)(0.005
26

).

• Example: the → toe. A non-neighbor substitution has occurred since

h and o are not neighbors. Thus, P (toe|the) = P (t|t)P (o|h)P (e|e) =

(0.9)(0.03
17

)(0.9), where 17 is the number of non-neighbors of h.

• Example: the → thw. A neighbor substitution has occurred since

e and w are neighbors. Thus, P (thw|the) = P (t|t)P (h|h)P (w|e) =

(0.9)(0.9)(0.05
5

), where 5 is the number of neighbors of e.

3.8 Simulating Typos

When simulating the action of typing a word, we sample each letter, using

our defined error model to see what is actually typed, character by character,

concatenating these results together to get the total resulting word. The results

are based on the weighted probabilities we assigned in our error model. Put

simply, this means we will get the correct result most of the time and if error

34

occurs it is most likely to be that of a neighbor substitution. Put more strictly,

the results will comply and agree with our error model completely, which means

if we sample a letter many times we will see the correct result around 90 percent

of the time, a substitution around 8 percent of the time, a deletion around 1

percent of the time, and an insertion around 1 percent of the time.

35

Chapter 4

Autocorrector Model

In this chapter, we describe how we accomplish constructing an autocorrector

for our keyboard model.

4.1 Motivation

In the previous chapter, we successfully modeled error when typing on an

MT keyboard so we could simulate real-world typos. Yet simulating error when

typing on the MT keyboard is only one component of our complete model of

the MT keyboard. To go in the other direction is to model the automatic

spelling corrector, or autocorrector. Given a typed word, which may match

the intended word or be a result of an error, an autocorrector attempts to map

back to the intended word correctly so that the word displayed matches the

word that was intended. In other words, we want to model the keyboard’s

ability to reverse or prevent the errors that can occur when typing. The

autocorrector obviously plays a major role in the accuracy of an MT keyboard

36

since it can maintain accuracy, or even increase it, by reversing error. In this

chapter, we use Bayesian methods to construct an autocorrector which we can

use to simulate the keyboards ability to recover from typos, completing our

model of the MT keyboard and allowing us to measure the total accuracy of

a keyboard layout.

4.2 Methodology

The problem of autocorrection is as follows: given a word that the user has

typed, let us try to find the best candidate to suggest as a “correction” for

that word. The “correct” word is one which we find the most probable that

the user actually intended. To do this, we first generate a set of candidate

words. We then calculate a rank for each of these candidates, with a higher

rank signifying a better candidate. Finally, we suggest the candidate with the

highest rank as the word the user intended. Note that the word we suggest

may be the original word typed, itself, if we determine it to be the word most

likely to be intended by the user. Similar to spam filters, email classifiers, and

other spell checkers, we employ Bayesian probability and language models as

the foundation of our autocorrector. As even the most basic autocorrectors

have been shown to perform relatively well [14], using these methods in our

work will be sufficient to model an MT keyboard.

To autocorrect a word, our autocorrector first determines the list of candidate

suggestion words. For each of the candidates, the autocorrector then calculates

a rank, which is the probability that the user intended the candidate word.

37

Described formally, the rank of a candidate c for word w is

Rank(c) = P (c|w),

or the probability the user intended c, given w was typed to the screen, possibly

by error. The autocorrector calculates the rank for the entire set of candidates

C of w and ends by suggesting the candidate with the highest rank, or

Autocorrect(w) = argmaxc∈CRank(c) = argmaxcP (c|w).

A summary of our method of autcorrecting a word follows. Given word w

is typed to the screen, our autocorrector will go through the process below of

suggesting a word:

1. Step 1: Find Set of Candidates

FindCandidates(w) = C (4.2.1)

2. Step 2: Calculate Rank ∀ c ∈ C

Rank(c) = P (c|w) (4.2.2)

3. Step 3: Return Candidate with Largest Rank

Autocorrect(w) = argmaxc∈CRank(c) (4.2.3)

38

We will further explain how to generate the set C from Step 1 (Equation

4.2.1) in Section 4.2.1. To calculate Step 2 (Equation 4.2.2), we apply Bayes’

Theorem, which is defined as

P (A|B) =
P (B|A)P (A)

P (B)
, (4.2.4)

where B 6= 0, to get

Rank(c) = P (c|w) =
P (w|c)P (c)

P (w)
.

Since P (w) is the same across all candidates c, it is safe to ignore it as the

term would simply scale all ranks by the same factor. Thus, the definition of

rank (Equation 4.2.2) turns into

Rank(c) = P (w|c)P (c). (4.2.5)

This further transforms Equation 4.2.3 into

Autocorrect(w) = argmaxcRank(c) = argmaxcP (w|c)P (c). (4.2.6)

We describe how to calculate the terms P (w|c) and P (c) in sections 4.2.2.1

and 4.2.2.2, respectively. We will also end this chapter with a full example of

our autocorrect method, tying all of the steps in this section together.

4.2.1 Generating Candidates

In this section, we seek to formalize how to accomplish the first step in

our autocorrect process (Equation 4.2.1), how to generate a list of candidate

39

suggections, C, for a word typed, w, or Candidates(w) = C. It is common in

language modeling to quantify how dissimilar two words are by edit distance

[55], which is the number of edits it would take to transform one word into

another. An edit can be a deletion (removal of a letter), a substitution (the

alteration of one letter for another), or an insertion (adding a letter). The

edit distance we use is sometimes referred to as Levenshtein distance, from his

work on self-correcting binary codes [36], and is defined as eddista,b(|a|, |b|) for

the two strings a and b, or

eddista,b(i, j)

max(i, j) ifmin(i, j) = 0,

min

eddista,b(i− 1, j) + 1

eddista,b(i, j − 1) + 1

eddista,b(i− 1, j − 1) + 1

otherwise.
(4.2.7)

Here, eddista,b(i, j) is the distance between the first i characters of a and the

first j characters of b. For example, the edit distance between “kitten” and

“sitting” is 3 which can be seen as follows: kitten → sitten (substitution of s

for k), sitten → sittin (substitution of i for e), sittin → sitting (insertion of g

at the end).

To generate our candidate set C for word w, we want to generate a set

of all words c ∈ C that, when attempting to type the word c, could have led

to, possibly by error, the word w being output to the device screen. We want

to utilize our error model so that we consider all possible errors within our

error model that could have led to the output, w. Notice that we can easily

enumerate the set C by using the definition of edit distance. For example,

considering all words within edit distance one of w would give us all words

40

that are within one substitution, one insertion, or one deletion away from w,

which is exactly in line with our error model when simulating typing the word

w and allowing up to one typo to occur. Thus, to generate our set C, we will

calculate all words c such that eddist(w, c) = 1. The resulting set C can be

very large. For a word of length n, there will be n deletions, 26n substitutions,

and 26(n + 1) insertions for a total of 53n + 26 candidates. For example, the

word something has 503 candidates. To help reduce the number of candidates

we generate, we can remove any duplicates and also remove any words that

are not well-spelled, since the autocorrector will not consider correcting to a

word that doesn’t exist within the dictionary of well-spelled words. For our

autocorrector, we cross-checked all candidates with a stored English dictionary

[28] to ensure we only considered candidates who were well-spelled. Due to the

large number of candidates and the constraints of our computational resources,

we limit our work to only consider up to one typo while typing a word, as going

up to two typos would be too computationally expensive for the autocorrection

that we require. Additionally, most mistakes in typing have corrections within

edit distance one [47], so considering candidates that are edit distance one

away from the typed word on our keyboard will suffice for our autocorrector.

This explains why we only consider words that are edit distance one away

when generating the set C.

4.2.2 Calculating Rank

Once we have the candidate list C for the word w, we need to calculate the

rank for each c, which is defined as (Equation 4.2.5) Rank(c) = P (w|c)P (c).

There are two parts to calculating our expression for rank. First, the term

41

P (w|c) is the probability a user would type the word w if c were intended,

possibly by mistake. We can use our error model from Chapter 3 to calculate

the probability of this error occurring. The second term in the expression,

P (c) can be derived from a language model, and seeks to answer how likely it

is that the word c appears in English text, overall. We outline how to calculate

both of these quantities in the following subsections.

4.2.2.1 Calculating P (w|c)

We calculate P (w|c), that is, the probability we typed w, given we intended

to type c. This is where our error model (Table 3.2) comes in. Recall Chapter

3, where we defined the likelihood of an error occurring when typing a word.

We constructed a probability distribution for the outcomes involved when

typing a word on an MT keyboard. Given we try to type the character a, our

outcomes are summarized below.

• Outcome 1 - Correct : We type a correctly with probability 0.9

• Outcome 2 - Insert Before : We type σa with probability 0.005
26

, where

σ ∈ A and is chosen uniformly over A. There are 26 different letters

that could be inserted before the intended character, which makes the

total probability of this outcome 0.005.

• Outcome 3 - Insert After : We type aσ with probability 0.005
26

, where

σ ∈ A and is chosen uniformly over A. There are 26 different letters

that could be inserted after the intended character, which makes the

total probability of this outcome 0.005.

42

• Outcome 4 - Deletion : We type NULL, the empty string, with

probability 0.01.

• Outcome 5 - Neighbor Substitution : We type σ with probability

0.05
|Na| = 0.05

5
, where σ ∈ Na and is chosen uniformly over a’s set of

neighbors, Na. There are 5 different neighboring letters that could be

substituted in place of the intended character, which makes the total

probability of this outcome 0.05.

• Outcome 6 - Non-Neighbor Substitution : We type σ with probability

0.03
|NONa| = 0.03

20
, where σ ∈ NONa and is chosen uniformly over a’s set

of non-neighbors, NONa. There are 20 different non-neighboring letters

that could be substituted in place of the intended character, which makes

the total probability of this outcome 0.03.

Recall that our error model was a character model that we extended to

whole words by calculating error independently per character and concatenating

the results for the entire string.

Thus, we need to calculate P (w|c) independently per character or

P (w|c) =
∏
i

P (wi|ci), (4.2.8)

for 0 ≤ i ≤ length(c), where wi and ci are the ith character of w and c,

respectively.

43

For example, let w =tre and c =the, so that we intended to type the but

tre was output to the screen. Then we would calculate P (tre|the) as follows:

P (tre|the) = P (t|t)P (r|h)P (e|e)

From our error model, we can see that the first term represents a “correct”

outcome, the second term represents a non-neighbor substitution, and the

third also represents a correct outcome. Then, the above equation turns into

P (t|t)P (r|h)P (e|e) = (0.9)(
0.03

17
)(0.9),

since the total defined probability of a non-neighbor substitution is 0.03 and

the number of non-neighbors (Section 3.5) of h is |NONh| = 17. Notice that

the above scenario could also be a result of a different combination of errors

such as P (t|t)P (null|h)P (re|e), where the user incurs a deletion error and also

an insertion error. Though, with our definition of edit distance, we will always

choose the scenario with minimum edits. Since the minimum number of edits

to transform the to tre is one, i.e. a single substitution, we would use this

scenario over an alternative that involves more than one edit.

4.2.2.2 Calculating P (c)

To calculate P (c) we need to construct a language model, so that we can

answer the question of how likely c is to appear in English text, overall. To

do this, we want to analyze how frequently c appears over all of the English

language relative to other words, which will tell us how likely, or probable, it

is. To construct our language model, we process a large English corpus [3] and

44

use a hash map to track the frequencies of all words in the corpus. We call

this hash map our frequency map. The corpus we use was provided by the

American National Corpus and contains 14,623,927 words derived from spoken

data, written data, and switchboard transcriptions including conversations,

narratives, and interviews. We directly use our frequency map to calculate

P (c). Let freq(c) be the total number of times c appears in our large corpus

and totalCorpWords be the total number of words in our corpus. For example,

the word the had a frequency of 79403 in our frequency map, while the word

humble had a frequency of 13. We then define the probability of c to be

P (c) =
freq(c)

totalCorpWords
. (4.2.9)

4.2.3 Full Example

Now, we provide a full example to tie together all of the sections of this

chapter and review the total process of our autocorrector. An updated summary

of our autocorrector’s process is below. Given word w is typed to the screen,

our autocorrector will go through the process below of suggesting a word:

1. Step 1: Find Set of Candidates (Section 4.2.1)

• Generate all words c, such that eddist(w, c) = 1 (Equation 4.2.7).

• Remove any duplicates from the candidate set, C.

• Remove any candidates c ∈ C, such that c /∈ D, where D is the

English dictionary of well-spelled words.

2. Step 2: Calculate Rank ∀ c ∈ C (Section 4.2.2).

45

• Rank(c) = P (c|w) = P (w|c)P (c) (Equations 4.2.8 and 4.2.9).

3. Step 3: Return Candidate with Largest Rank.

• Autocorrect(w) = argmaxc∈CRank(c) (Equation 4.2.6).

For our example, the autocorrector detects the word tre has been typed

on the MT keyboard. The autocorrector will now follow the steps above to

provide a suggestion.

1. Step 1: Find Set of Candidates

The autocorrector generates the candidate set, or any word that is within

edit distance one of the word tre, removes duplicates and checks each of

these candidates against the dictionary, removing any words that are not

well-spelled. The resulting set of candidates, C for the word tre is :

C = { re, are, ere, ire, ore, pre, tee, the, tie, toe,

tue, try, tare, tire, tore, tree, true, trek }.

2. Step 2: Calculate Rank ∀ c ∈ C (Section 4.2.2).

Using the equation for Rank (Equation 4.2.2), the autocorrector calculates

Rank(c) for all candidates in C. The resulting ranks for the candidates

of tre are summarized in Table 4.1.

3. Step 3: Return Candidate with Largest Rank

We can see that the candidate c = the is clearly the winner, with the

largest rank among the set C. Thus, the autocorrector would return the

46

Candidate Rank
the 1.0442850471902756e-4
are 4.0300120346243876e-6
true 1.375011040939805e-6
tree 2.6158746632513367e-7
tore 1.207326767654463e-7
try 9.613898335026279e-8
toe 2.8745875420344356e-8
tire 2.012211279424105e-8
tie 1.6768427328534208e-8
tee 7.452634368237426e-9
trek 6.7073709314136835e-9
ore 3.193986157816039e-9
tue 1.1178951552356138e-9
pre 9.720827436831423e-10
re 6.369772964305492e-10

Table 4.1: Ranks for Candidates(tre)

word the as a suggestion. To see how the rank broke down a bit further,

we provide the values of the two terms used to determine rank, namely

P (w|c) and P (c). First, a summary of the values calculated for P (tre|c)

for each of the candidates c ∈ C are provided in Table 4.2. Then, in

Table 4.2, you can see there were many words other than the that had a

higher probability of being meant to be typed, given a user typed tre to

the screen. Because it is more probable, per our error model, to have a

neighbor substitution, you can see that P (tre|tee) is more probable than

P (tre|the), since e is a neighbor of r, while h is not. This exemplifies

why our language model is so important, as bringing in the term P (c)

will weigh these probabilities according to real life frequency data. The

values for P (c), over all c ∈ C, are provided in Table 4.3.

47

Candidate P(tre|c)
re 1.730769230769231e-4
are 0.0012150000000000002
ere 0.0012150000000000002
ire 0.0012150000000000002
ore 0.0011571428571428572
pre 0.0010565217391304347
tee 0.008100000000000001
the 0.0014294117647058824
tie 0.0012150000000000002
toe 0.0011571428571428572
tue 0.0012150000000000002
try 0.0012150000000000002
tare 0.007290000000000001
tire 0.007290000000000001
tore 0.007290000000000001
tree 0.007290000000000001
true 0.007290000000000001
trek 0.007290000000000001

Table 4.2: P (tre|c) for Candidates(tre)

From Table 4.3, it is clear that the word the is much more probable than

the word tee in our frequency map, thus our total ranking (Equation

4.2.4) for the ends up being higher when ranking the candidates, and

the is inevitably chosen over tee as the suggested word to correct to.

48

Candidate P(c)
re 3.680313268265395e-6
are 0.003316882333024187
ere 9.200783170663487e-7
ire 9.200783170663487e-7
ore 2.760234951199046e-6
pre 9.200783170663487e-7
tee 9.200783170663487e-7
the 0.07305697861001928
tie 1.380117475599523e-5
toe 2.4842114560791416e-5
tue 9.200783170663487e-7
try 7.912673526770599e-5
tare 9.200783170663487e-7
tire 2.760234951199046e-6
tore 1.6561409707194277e-5
tree 3.58830543655876e-5
true 1.8861605499860147e-4
trek 9.200783170663487e-7

Table 4.3: P (c) for Candidates(tre)

49

Chapter 5

Experimental Results

In this chapter, we discuss our methods of testing using the total keyboard

model in conjunction with a large corpus of test strings, allowing us to measure

the accuracy of a keyboard layout. We then test all 325 2-key swaps, comparing

each layout’s accuracy to the original QWERTY configuration. We also present

our results, showing which 2-key swap performed the best.

5.1 Measuring Keyboard Layout Accuracy

With our total keyboard model in place, we are able to proceed with

measuring the total accuracy of an MT keyboard layout. We begin with the

QWERTY layout to have a baseline to measure against. Once our baseline

accuracy measurement is achieved, for all 325 2-key swaps, we iterate through

swapping two keys at a time on the QWERTY layout. For each 2-key swap, we

measure the accuracy of the layout, allowing us to decide which 2-key swaps

perform better than the original QWERTY layout and by how much.

50

In measuring the accuracy of a keyboard layout, what we are trying to

determine at a high level is how accurate the keyboard is at outputting to

the screen what the user intended to type. To do this, we use a large set of

testing words, T , which includes hundreds of thousands of misspelled words.

The autocorrector is then ran on each w ∈ T , suggesting a word s. We

determine the accuracy of this suggestion by calculating the probability that

the user intended s in the first place, P (s|w), which provides us the likelihood

that what the autocorrector model suggested was correct. In other words,

we are measuring the probability that s, our suggestion, was indeed the word

intended, given w was (perhaps erroneously) output to the screen, or

P (intended s|typed w). Notice that we can again apply Bayes’ Rule (Equation

4.2.4) to get

P (s|w) =
P (w|s)P (s)

P (w)
.

Since P (w) is the same over all s, we ignore it as a scaling factor, so that what

we truly need to calculate is

P (s|w) = P (w|s)P (s). (5.1.1)

Equation 5.1.1 above gives us a measurement of how accurate our keyboard

was in its autocorrection of w to s. The first term, P (w|s), is the probability

of making the errors that would result in w being to the screen, given s was

intended in the first place, or P (w typed|s intended), which we can determine

directly from our error model (Table 3.2). Multiplying by P (s) allows us to

weigh this probability by the frequency of s over the English language (see

Section 4.2.2.2).

51

We construct T to include all mispellings of s within edit distance one, so

that from our tests, we can measure the total probability that we autocorrected

to s correctly over all w ∈ T . In this way, we get a weighted total probability of

autocorrecting back to s from all of the possible erroneous words that could be

typed by mistake (within edit distance one of s). Though, this only provides

the accuracy of a keyboard layout for a single word, s. To get an overall

weighted accuracy for a keyboard layout, we will repeat this process for many

words, to see how the keyboard performs in getting a large corpus correctly

output to the screen.

We begin testing a layout by configuring our grid of keys, as described in

Section 3.5. When we swap 2 keys on the QWERTY keyboard, we update

the locations of the two letters in the grid (Figure 3.2) which causes the

neighborhood of keys (Table 3.5) to be updated. Then, to generate a large set

of testing words, we derive the set T from our frequency map F . Recall that

F was provided by the American National Corpus and contains 14,623,927

words derived from spoken data, written data, and switchboard transcriptions

including conversations, narratives, and interviews. We derive T by enumerating

all possible errors, within edit distance one, that could occur when typing each

word in F . We generate T in line with our error model (Table 3.2), so that it

contains thousands of misspelled words for us to test on. For each word, w ∈ T

, we run our autocorrect algorithm (Chapter 4). We then calculate Equation

5.1.1 for this autocorrection, giving us the probability that we autocorrected

correctly. Using the above method, for each word s ∈ F , we measure the total

probability that we output s correctly to the screen, over all w ∈ T . This total

probability is what we call the Weighted Accuracy Rating (WAR rating) for s,

52

so that for each word s ∈ F , we will have a WAR rating. Let J be the set of

words that autocorrect to some s ∈ F such that J ⊂ T . We define the WAR

rating for s to be

WAR(s) =
∑
w∈J

P (w|s)P (s). (5.1.2)

This gives us an accuracy rating for a single word. To get the total measure of

accuracy for a keyboard layout, we want to tally this rating over a dictionary

of words. We call this total probability over all testing words the Overall WAR

Rating for a keyboard layout or

OverallWAR =
∑
s∈F

WAR(s). (5.1.3)

That is, to determine how well a keyboard layout performs, we test it by

typing all possible errors (T) for thousands of words from the English corpus

(F), and then observe the totality of how well we autocorrected, calculating

the likelihood that we intended the suggested autocorrections. The Overall

WAR rating will be the accuracy metric we use to determine and compare

performance of keyboard layouts.

We ran our tests on both the QWERTY layout, as well as the 325 2-key

swap layouts so that for each keyboard layout, each word in F received a WAR

rating. Further, we were able to use Equation 5.1.3 to determine an Overall

WAR rating for each keyboard layout itself, which tells us how accurate the

layout was at outputting all of the words from our large corpus correctly to

the screen. Next, we present our results, providing the Overall WAR ratings

for all of the layouts we tested on and comparing their performance to the

original QWERTY layout.

53

5.2 2-Key Swap Results

Recall from Section 5.1 that the WAR rating (Equation 5.1.2) for a word

s ∈ F on a particular keyboard layout is the total probability that we output

s correctly to the screen, over all w ∈ T , where F is our language model and

T is our set of testing words. This gives us an accuracy rating for a single

word. An Overall WAR rating provides us this total probability over an entire

dictionary of words, s ∈ F , as defined in Equation 5.1.3, so that the higher the

Overall WAR rating, the better the accuracy of the keyboard layout. As these

ratings are total probabilities, they will remain in the range of zero and one,

inclusive, with a WAR rating of one meaning 100% accuracy for the keyboard

layout. We started by running our tests on the original QWERTY layout,

which yielded an Overall WAR rating of 0.85294, or 85.294% accurate. We

have summarized our test results for all 2-key swaps in Table 5.1. For each

2-key swap, we provide the relative increase or decrease in WAR rating relative

to the original QWERTY layout. In Table 5.2 we provide a comprehensive list

of the swaps that performed better than QWERTY, along with their Overall

WAR ratings. In Table 5.3, we provide a summary of the best swap per letter

with their associated Overall WAR ratings. In Table 5.4 we provide a list

of the top 10 swaps that performed better than QWERTY and their Overall

WAR ratings, followed by Table 5.5 which provides the bottom 10 swaps which

had the lowest accuracy ratings, overall, along with those WAR ratings.

A few interesting notes of observation include the fact that nearly half

of the 2-key swaps performed better than QWERTY, with 157 out of 325

alternative layouts having a better WAR rating. We also observed that 13 out

54

of 26 letters’ best swap was with the letter i, while all but one of the overall

top ten swaps was a swap with i. We can also see that the best overall 2-key

swap layout is when the keys i and t are swapped, with the i↔ t swap having

an overall WAR rating of 0.8544658504333, which is an accuracy increase of

approximately 0.1785%. This means that if we attempted to type 100,000

words on the original QWERTY layout we would expect to see about 85,294

of the words correctly output to the device screen, while if we typed these

same words on the i ← t layout we would see 85,447 words typed correctly.

This would result in over 150 words which we wouldn’t have to fix manually,

adding up to a lot of time saved for the user. It is easily suspected that the

best place to place a vowel such as i would be away from other vowels, to

avoid our “Problem with Neighbors”, as exemplified in Section 1.2, and that

the placement of i, o, and u so closely together on the QWERTY layout may

be the largest culprit of this problem since it is the biggest cluster of vowels on

QWERTY. Since i lay in between o and u it would make sense if it was more

susceptible to this problem than o and u do by themselves since it is adjacent

to not one, but two vowels, compounding the problem. Thus, it makes sense

that we see a trend in which many of the best swaps involve i, removing it

from it’s place between o and u. Note that there are only 7 keys that are not

neighbors of any vowel: t, g, c, v, b, n, and m. Four of these, when swapped

with i, place in the top ten swaps. The others’ best 2-key swap involve a

swap with themselves and i. This further hints that our intuition is correct,

as placing i away from any vowels seems to help in boosting accuracy more

prominently than swaps involving other keys. Notice that any 2-key swap has

a double effect in that we must consider how the update of the neighborhood

55

for each other the 2 keys will effect accuracy. For example, we may wonder

why the swap between i and t, in particular, is the best swap rather than,

say, swapping i with any of the other keys that would isolate it from vowels

(i.e., g, c, v, b, n,m). We suspect that this is due to the fact that the increase

in accuracy due to i being placed around non-vowels is only one factor in the

overall increase in accuracy. We also must consider the increase (or decrease)

in accuracy that comes with swapping the other key with i. For example,

notice that t is originally surrounded by letters such as f and r. We can

immediately think of words that are problematic within this placement (i.e.,

right, fight, tight, etc), which enhance the “Problem with Neighbors” for t.

Moving t away from this placement into the old position of i would reduce

some of these problems. This could be a factor in why i↔ t performs better

than the other 2-key swaps involving i. Overall, we can see that it would be

best to reconfigure i’s placement on the QWERTY layout and that the swap

of i↔ t would have the best performance increase of nearly 0.18 percent.

56

Table 5.1: All 2-Key Swap Relative

WAR Ratings

Swap +/- WAR

A↔B 0.00034

A↔C 0.00013

A↔D 0.00050

A↔E -0.00017

A↔F 0.00058

A↔G 0.00056

A↔H 0.00054

A↔I -0.00031

A↔J 0.00166

A↔K 0.00204

A↔L 0.00199

A↔M 0.00079

A↔N 0.00047

A↔O 0.00029

A↔P 0.00117

A↔Q -0.00019

A↔R 0.00059

A↔S 0.00007

A↔T 0.00098

A↔U 0.00111

A↔V 0.00018

Swap +/- WAR

A↔W 0.00075

A↔X -0.00006

A↔Y 0.00074

A↔Z -0.00035

B↔C -0.00022

B↔D -0.00049

B↔E -0.00029

B↔F 0.00029

B↔G -0.00018

B↔H 0.00000

B↔I -0.00097

B↔J 0.00031

B↔K 0.00034

B↔L 0.00043

B↔M 0.00010

B↔N 0.00052

B↔O -0.00044

B↔P 0.00008

B↔Q 0.00000

B↔R -0.00017

B↔S 0.00023

B↔T 0.00032

57

Swap +/- WAR

B↔U -0.00008

B↔V -0.00013

B↔W 0.00018

B↔X 0.00002

B↔Y 0.00011

B↔Z -0.00013

C↔D -0.00025

C↔E -0.00005

C↔F -0.00028

C↔G -0.00013

C↔H -0.00018

C↔I -0.00108

C↔J 0.00003

C↔K 0.00006

C↔L 0.00012

C↔M 0.00007

C↔N 0.00059

C↔O -0.00076

C↔P -0.00006

C↔Q 0.00001

C↔R -0.00001

C↔S -0.00033

Swap +/- WAR

C↔T 0.00071

C↔U -0.00034

C↔V 0.00003

C↔W -0.00006

C↔X -0.00002

C↔Y 0.00031

C↔Z -0.00008

D↔E 0.00009

D↔F 0.00013

D↔G 0.00000

D↔H 0.00024

D↔I -0.00102

D↔J -0.00019

D↔K -0.00036

D↔L -0.00025

D↔M -0.00009

D↔N 0.00034

D↔O -0.00044

D↔P -0.00047

D↔Q -0.00037

D↔R 0.00031

D↔S 0.00010

58

Swap +/- WAR

D↔T 0.00083

D↔U -0.00044

D↔V -0.00051

D↔W -0.00002

D↔X -0.00042

D↔Y 0.00016

D↔Z -0.00042

E↔F 0.00004

E↔G 0.00001

E↔H 0.00025

E↔I -0.00038

E↔J 0.00044

E↔K 0.00095

E↔L 0.00113

E↔M 0.00008

E↔N 0.00053

E↔O -0.00088

E↔P 0.00068

E↔Q 0.00040

E↔R 0.00006

E↔S 0.00085

E↔T 0.00126

Swap +/- WAR

E↔U -0.00006

E↔V -0.00025

E↔W 0.00065

E↔X 0.00053

E↔Y 0.00003

E↔Z 0.00036

F↔G 0.00045

F↔H 0.00011

F↔I -0.00096

F↔J 0.00026

F↔K -0.00023

F↔L 0.00006

F↔M 0.00083

F↔N 0.00077

F↔O -0.00035

F↔P -0.00043

F↔Q -0.00038

F↔R 0.00017

F↔S 0.00117

F↔T 0.00079

F↔U -0.00029

F↔V -0.00044

59

Swap +/- WAR

F↔W 0.00019

F↔X -0.00032

F↔Y 0.00038

F↔Z -0.00046

G↔H 0.00015

G↔I -0.00100

G↔J -0.00029

G↔K -0.00026

G↔L 0.00008

G↔M 0.00012

G↔N 0.00094

G↔O -0.00016

G↔P -0.00020

G↔Q -0.00042

G↔R 0.00015

G↔S 0.00127

G↔T 0.00042

G↔U -0.00055

G↔V -0.00022

G↔W 0.00026

G↔X -0.00032

G↔Y 0.00007

Swap +/- WAR

G↔Z -0.00043

H↔I -0.00067

H↔J -0.00015

H↔K 0.00030

H↔L 0.00034

H↔M -0.00010

H↔N 0.00058

H↔O -0.00065

H↔P 0.00001

H↔Q -0.00001

H↔R -0.00016

H↔S 0.00134

H↔T 0.00025

H↔U -0.00072

H↔V -0.00017

H↔W 0.00022

H↔X -0.00031

H↔Y -0.00029

H↔Z -0.00043

I↔J -0.00060

I↔K -0.00002

I↔L -0.00019

60

Swap +/- WAR

I↔M -0.00104

I↔N -0.00110

I↔O -0.00016

I↔P 0.00010

I↔Q 0.00030

I↔R -0.00132

I↔S -0.00029

I↔T -0.00152

I↔U -0.00061

I↔V -0.00116

I↔W 0.00007

I↔X -0.00007

I↔Y -0.00087

I↔Z 0.00025

J↔K 0.00002

J↔L 0.00033

J↔M 0.00016

J↔N 0.00030

J↔O 0.00053

J↔P 0.00015

J↔Q -0.00004

J↔R -0.00005

Swap +/- WAR

J↔S 0.00049

J↔T 0.00023

J↔U 0.00001

J↔V 0.00006

J↔W 0.00034

J↔X -0.00001

J↔Y 0.00007

J↔Z -0.00003

K↔L 0.00008

K↔M 0.00005

K↔N 0.00022

K↔O 0.00011

K↔P 0.00006

K↔Q -0.00005

K↔R -0.00014

K↔S -0.00005

K↔T -0.00016

K↔U 0.00010

K↔V 0.00003

K↔W 0.00014

K↔X 0.00000

K↔Y 0.00006

61

Swap +/- WAR

K↔Z -0.00007

L↔M 0.00011

L↔N -0.00003

L↔O 0.00000

L↔P -0.00009

L↔Q 0.00007

L↔R -0.00026

L↔S -0.00046

L↔T -0.00039

L↔U 0.00023

L↔V 0.00014

L↔W 0.00012

L↔X 0.00019

L↔Y 0.00013

L↔Z -0.00001

M↔N -0.00008

M↔O -0.00043

M↔P -0.00016

M↔Q 0.00014

M↔R -0.00014

M↔S 0.00005

M↔T 0.00012

Swap +/- WAR

M↔U -0.00026

M↔V 0.00019

M↔W 0.00031

M↔X 0.00022

M↔Y 0.00003

M↔Z -0.00003

N↔O -0.00056

N↔P -0.00036

N↔Q 0.00028

N↔R 0.00060

N↔S 0.00013

N↔T 0.00031

N↔U -0.00023

N↔V 0.00038

N↔W 0.00081

N↔X 0.00047

N↔Y 0.00042

N↔Z 0.00023

O↔P -0.00099

O↔Q -0.00008

O↔R -0.00001

O↔S -0.00019

62

Swap +/- WAR

O↔T -0.00099

O↔U 0.00030

O↔V -0.00071

O↔W 0.00056

O↔X -0.00010

O↔Y -0.00039

O↔Z -0.00015

P↔Q 0.00006

P↔R -0.00049

P↔S -0.00089

P↔T -0.00092

P↔U 0.00000

P↔V 0.00005

P↔W -0.00024

P↔X 0.00008

P↔Y -0.00014

P↔Z 0.00000

Q↔R -0.00043

Q↔S -0.00097

Q↔T 0.00145

Q↔U -0.00004

Q↔V -0.00006

Swap +/- WAR

Q↔W -0.00019

Q↔X 0.00000

Q↔Y 0.00007

Q↔Z 0.00000

R↔S 0.00086

R↔T 0.00025

R↔U -0.00063

R↔V -0.00023

R↔W 0.00013

R↔X -0.00024

R↔Y 0.00026

R↔Z -0.00051

S↔T 0.00043

S↔U -0.00015

S↔V -0.00009

S↔W -0.00009

S↔X -0.00049

S↔Y 0.00118

S↔Z -0.00111

T↔U -0.00071

T↔V 0.00024

T↔W 0.00119

63

Swap +/- WAR

T↔X 0.00102

T↔Y -0.00016

T↔Z 0.00096

U↔V -0.00033

U↔W 0.00025

U↔X -0.00005

U↔Y -0.00031

U↔Z -0.00006

V↔W 0.00005

V↔X -0.00001

V↔Y 0.00013

V↔Z -0.00007

W↔X 0.00003

W↔Y 0.00091

W↔Z -0.00017

X↔Y 0.00026

X↔Z 0.00000

Y↔Z -0.00004

64

Table 5.2: All 2-Key Swaps

Outperforming QWERTY

Swap WAR

A ↔ E 0.85311

A ↔ I 0.85325

A ↔ Q 0.85313

A ↔ X 0.85300

A ↔ Z 0.85329

B ↔ C 0.85316

B ↔ D 0.85343

B ↔ E 0.85324

B ↔ G 0.85312

B ↔ H 0.85295

B ↔ I 0.85391

B ↔ O 0.85338

B ↔ R 0.85311

B ↔ U 0.85302

B ↔ V 0.85307

B ↔ Z 0.85307

C ↔ D 0.85320

C ↔ E 0.85300

C ↔ F 0.85322

C ↔ G 0.85307

C ↔ H 0.85312

Swap WAR

C ↔ I 0.85403

C ↔ O 0.85370

C ↔ P 0.85301

C ↔ R 0.85295

C ↔ S 0.85327

C ↔ U 0.85329

C ↔ W 0.85300

C ↔ X 0.85297

C ↔ Z 0.85302

D ↔ G 0.85294

D ↔ I 0.85396

D ↔ J 0.85313

D ↔ K 0.85330

D ↔ L 0.85319

D ↔ M 0.85303

D ↔ O 0.85338

D ↔ P 0.85341

D ↔ Q 0.85331

D ↔ U 0.85338

D ↔ V 0.85345

D ↔ W 0.85297

D ↔ X 0.85336

65

Swap WAR

D ↔ Z 0.85337

E ↔ I 0.85332

E ↔ O 0.85382

E ↔ U 0.85300

E ↔ V 0.85320

F ↔ I 0.85390

F ↔ K 0.85317

F ↔ O 0.85329

F ↔ P 0.85337

F ↔ Q 0.85333

F ↔ U 0.85323

F ↔ V 0.85339

F ↔ X 0.85326

F ↔ Z 0.85340

G ↔ I 0.85394

G ↔ J 0.85324

G ↔ K 0.85320

G ↔ O 0.85310

G ↔ P 0.85314

G ↔ Q 0.85336

G ↔ U 0.85349

G ↔ V 0.85317

Swap WAR

G ↔ X 0.85326

G ↔ Z 0.85337

H ↔ I 0.85362

H ↔ J 0.85309

H ↔ M 0.85304

H ↔ O 0.85360

H ↔ Q 0.85296

H ↔ R 0.85310

H ↔ U 0.85367

H ↔ V 0.85311

H ↔ X 0.85326

H ↔ Y 0.85323

H ↔ Z 0.85337

I ↔ J 0.85354

I ↔ K 0.85296

I ↔ L 0.85313

I ↔ M 0.85399

I ↔ N 0.85404

I ↔ O 0.85310

I ↔ R 0.85426

I ↔ S 0.85323

I ↔ T 0.85447

66

Swap WAR

I ↔ U 0.85355

I ↔ V 0.85410

I ↔ X 0.85301

I ↔ Y 0.85381

J ↔ Q 0.85298

J ↔ R 0.85300

J ↔ X 0.85295

J ↔ Z 0.85298

K ↔ Q 0.85300

K ↔ R 0.85308

K ↔ S 0.85299

K ↔ T 0.85310

K ↔ X 0.85294

K ↔ Z 0.85301

L ↔ N 0.85297

L ↔ P 0.85303

L ↔ R 0.85320

L ↔ S 0.85340

L ↔ T 0.85333

L ↔ Z 0.85295

M ↔ N 0.85303

M ↔ O 0.85338

Swap WAR

M ↔ P 0.85310

M ↔ R 0.85308

M ↔ U 0.85321

M ↔ Z 0.85298

N ↔ O 0.85350

N ↔ P 0.85330

N ↔ U 0.85317

O ↔ P 0.85393

O ↔ Q 0.85302

O ↔ R 0.85296

O ↔ S 0.85313

O ↔ T 0.85393

O ↔ V 0.85365

O ↔ X 0.85304

O ↔ Y 0.85333

O ↔ Z 0.85309

P ↔ R 0.85344

P ↔ S 0.85383

P ↔ T 0.85386

P ↔ U 0.85295

P ↔ W 0.85318

P ↔ Y 0.85308

67

Swap WAR

V ↔ X 0.85295

V ↔ Z 0.85301

W ↔ Z 0.85311

Y ↔ Z 0.85298

Table 5.3: Best Swap per Letter
Letter Best Swap WAR
A A↔Z 0.85329
B B↔I 0.85391
C C↔I 0.85403
D D↔I 0.85396
E E↔O 0.85382
F F↔I 0.85390
G G↔I 0.85394
H H↔U 0.85367
I I↔T 0.85447
J J↔I 0.85354
K K↔D 0.85330
L L↔S 0.85340
M M↔I 0.85399
N N↔I 0.85404
O O↔P 0.85393
P P↔O 0.85393
Q Q↔S 0.85391
R R↔I 0.85426
S S↔Z 0.85405
T T↔I 0.85447
U U↔H 0.85367
V V↔I 0.85410
W W↔P 0.85318
X X↔S 0.85343
Y Y↔I 0.85381
Z Z↔S 0.85405

Table 5.4: Top Ten 2-Key Swaps
Swap WAR
I ↔ T 0.85447
I ↔ R 0.85426
I ↔ V 0.85410
S ↔ Z 0.85405
I ↔ N 0.85404
C ↔ I 0.85403
I ↔ M 0.85399
D ↔ I 0.85396
G ↔ I 0.85394
O ↔ P 0.85393

Table 5.5: Worst Ten 2-Key Swaps
Swap WAR
A ↔ K 0.85091
A ↔ L 0.85095
A ↔ J 0.85128
Q ↔ T 0.85149
H ↔ S 0.85160
G ↔ S 0.85167
E ↔ T 0.85169
T ↔ W 0.85175
S ↔ Y 0.85177
A ↔ P 0.85177

68

Chapter 6

Conclusion

In this thesis we explored alternative keyboard layouts in hopes of finding

one that increases the accuracy of text input on mobile touchscreen devices.

We did so by carefully considering the placement of keys, exploring a specific

vulnerability that occurs within a keyboard layout, namely, what we call the

“Problem with Neighbors”. We provided history and related work on the

text input problem, specifically in regards to the use of MT keyboards. We

described our approach of simulating the act of typing on an MT QWERTY

keyboard, beginning with modeling the keyboard and the typographical errors

that can occur. We then constructed a simple autocorrector using Bayesian

methods, describing how we autocorrect user input to evaluate how well a

keyboard corrects the input. Then, using our models, we provided a method

of testing the accuracy of a keyboard layout, defining the overall WAR rating

metric.

We ran our testing methods on the QWERTY layout as a baseline. We

then measured the accuracy of all 325 2-key swap layouts, analyzing which

69

layouts showed better performance than QWERTY. We showed that there

exists more than one 2-key swap that increases the accuracy of the current

QWERTY layout, and we provided the best 2-key swap derived from the

QWERTY layout, i ↔ t, which was showed to increase accuracy by nearly

0.18 percent. We believe this swap would be a small, doable change, with

a large payoff. The familiarity of QWERTY would not be jeopardized, as

navigating a small change to QWERTY would be an easy adaptation. The

preexisting software and hardware would also not be disrupted, but by a small

degree.

There are several areas for future research:

1. Improving our Error Model: There are more complex models of

typographical errors, particular when touchscreens are involved [8], that

could be worked into our research to make things more robust. There

have also been studies on the effect of movement [20] that could be

integrated. A physical model of fingers could be utilized in our work,

including size and orientation of individual fingers, especially the thumb,

and which keys are obscured by fingers as they hover over the keyboard.

These suggestions could expand our error model to make it more accurate.

2. Improving our Autocorrection Model: We constructed an autocorre-

ctor based on Bayesian principles. This model could be improved by

using many of the various enhancements to autocorrectors that exist in

the literature [39]. One suggestion would be to employ n-grams [10].

The autocorrector in this work could be improved by utilizing context

and other predictive techniques.

70

Another obvious improvement would be to consider words farther than

edit distance one away.

3. Improving our Neighborhood Definition: We used a grid definition

for our keyboard layouts which is how we derived our neighborhood of

keys, based on distance from one key to any other. There have been more

specific approximations [7][6][65] and work done on distance between keys

in research on touch pressure issues that could be incorporated to get an

even more accurate grip on the neighborhood issues that exist.

4. Improving our Language Model: Wherever a language model was

used within our work, we could have used a more varied or larger corpus.

Specifically for our frequency map, which we used to model word frequency

over the English language, getting a corpus of mobile text would be much

more preferable. At the time of our research, mobile text data was not

readily available due to privacy issues. The consequence of this is that

our autocorrect is based more on written and spoken English, rather than

mobile text. For mobile use, we would likely want to weigh words a bit

differently (eg: the word “hi” or “hey” could be much more frequent over

texting data than in written data such as transcriptions or even emails).

Additionally, the WAR ratings we calculate are dependent on the size of

the dictionary, so a larger corpus would result in a more precise accuracy

measurement.

5. Study Ethical Implications: Any research that involves data from

only a portion of the population needs to be investigated for adversely

effecting that portion of the population. For example, the data we

71

used for our language model could be representative of only certain

demographics of the overall population and therefore the benefits of

our work may benefit one portion of the population while adversely

effecting another. Thus, the ethical implications of our research should

be investigated in future work.

72

Bibliography

[1] 8Pen, 2014. [Online; accessed 17-April-2018].

[2] S. Amendola, L. Bianchi, and G. Marrocco. Movement detection

of human body segments: Passive radio-frequency identification and

machine-learning technologies. IEEE Antennas and Propagation

Magazine, 57(3):23–37, June 2015.

[3] anc American National Corpus. Oanc contents. [Online; accessed

23-April-2018].

[4] Sbastien Aupetit, Nicolas Monmarch, and Mohamed Slimane. Hidden

markov models training by a particle swarm optimization algorithm. J.

Math. Model. Algorithms, 6:175–193, June 2007.

[5] L. R. Bahl, F. Jelinek, and R. L. Mercer. A maximum likelihood approach

to continuous speech recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, PAMI-5(2):179–190, March 1983.

[6] Xiaojun Bi, Yang Li, and Shumin Zhai. Ffitts law: Modeling finger

touch with fitts law. In Proceedings of the SIGCHI Conference on Human

73

Factors in Computing Systems (CHI 2013), pages 1363–1372, New York,

NY, USA, 2013.

[7] Xiaojun Bi and Shumin Zhai. Bayesian touch - a statistic criterion of

target selection with finger touch. In Proceedings of UIST 2013 The ACM

Symposium on User Interface Software and Technology, pages 51–60, New

York, NY, USA, 2013.

[8] Eric Brill and Robert C. Moore. An improved error model for noisy

channel spelling correction. In Proceedings of the 38th Annual Meeting

on Association for Computational Linguistics, ACL ’00, pages 286–293,

Stroudsburg, PA, USA, 2000. Association for Computational Linguistics.

[9] Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della

Pietra, Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S.

Roossin. A statistical approach to machine translation. Comput.

Linguist., 16(2):79–85, June 1990.

[10] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della

Pietra, and Jenifer C. Lai. Class-based n-gram models of natural language.

Comput. Linguist., 18(4):467–479, December 1992.

[11] C. J. C. Burges, J. C. Platt, and S. Jana. Extracting noise-robust features

from audio data. In 2002 IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 1, pages I–1021–I–1024, May 2002.

[12] Lee Butts and Andy Cockburn. An evaluation of mobile phone text input

methods. In Australian Computer Science Communications, volume 24,

pages 55–59. Australian Computer Society, Inc., 2002.

74

[13] Pew Research Center. Mobile fact sheet. Technical report, Pew Research

Center, Washington, D.C., February 2018.

[14] Kenneth W. Church and William A. Gale. Probability scoring for spelling

correction. Statistics and Computing, 1(2):93–103, December 1991.

[15] James Clawson, Alex Rudnick, Kent Lyons, and Thad Starner. Automatic

whiteout: Discovery and correction of typographical errors in mobile text

input, 2007. [Online; accessed 19-April-2018].

[16] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang,

D. J. Wu, and A. Y. Ng. Text detection and character recognition in

scene images with unsupervised feature learning. In 2011 International

Conference on Document Analysis and Recognition, pages 440–445,

September 2011.

[17] Colemak. Colemak keyboard layout, 2018. [Online; accessed

18-April-2018].

[18] Fred J. Damerau and Eric Mays. An examination of undetected typing

errors. Information Processing & Management, 25(6):659 – 664, 1989.

[19] I. Essa, S. Basu, T. Darrell, and A. Pentland. Modeling, tracking and

interactive animation of faces and heads//using input from video. In

Computer Animation ’96. Proceedings, pages 68–79, June 1996.

[20] Mayank Goel, Leah Findlater, and Jacob O. Wobbrock. Walktype:

using accelerometer data to accomodate situational impairments in mobile

touch screen text entry. In CHI, 2012.

75

[21] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker.

Language modeling for soft keyboards. In Proceedings of the 7th

International Conference on Intelligent User Interfaces, IUI ’02, pages

194–195, New York, NY, USA, 2002. ACM.

[22] D. Gopher and D. Raij. Typing with a two-hand chord keyboard: will

the qwerty become obsolete? IEEE Transactions on Systems, Man, and

Cybernetics, 18(4):601–609, July 1988.

[23] Niels Henze, Enrico Rukzio, and Susanne Boll. Observational and

experimental investigation of typing behaviour using virtual keyboards

on mobile devices. In Conference: CHI Conference on Human Factors in

Computing Systems, CHI ’12, May 2012.

[24] Alexander Hoffmann, Daniel Spelmezan, and Jan O. Borchers. Typeright:

a keyboard with tactile error prevention. In Conference: Proceedings

of the 27th International Conference on Human Factors in Computing

Systems, pages 2265–2268, April 2009.

[25] J. Holmes and W. Holmes. Speech Synthesis And Recognition. Taylor &

Francis, 2nd edition, 2001.

[26] Christian Holz and Patrick Baudisch. The generalized perceived

input point model and how to double touch accuracy by extracting

fingerprints. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’10, pages 581–590, New York, NY, USA,

2010. ACM.

76

[27] ICT. Facts and figures: The world in 2015. Technical report, ICT,

February 2016.

[28] SIL International. English wordlist. [Online; accessed 23-April-2018].

[29] D. Jurafsky and J.H. Martin. Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition. Prentice Hall series in artificial intelligence.

Pearson Prentice Hall, 2009.

[30] Robin Kinkead. Typing speed, keying rates, and optimal keyboard

layouts. Proceedings of the Human Factors Society Annual Meeting,

19(2):159–161, 1975.

[31] Per Ola Kristensson, Stephen Brewster, James Clawson, Mark Dunlop,

Leah Findlater, Poika Isokoski, Benot Martin, Antti Oulasvirta, Keith

Vertanen, and Annalu Waller. Grand challenges in text entry. In Extended

Abstracts on Human Factors in Computing Systems, CHI ’13, pages

3315–3318, April 2013.

[32] Per Ola Kristensson and Shumin Zhai. Relaxing stylus typing precision by

geometric pattern matching. In International Conference on Intelligent

User Interfaces, Proceedings IUI, pages 151–158, January 2005.

[33] Karen Kukich. Techniques for automatically correcting words in text.

ACM Comput. Surv., 24(4):377–439, December 1992.

[34] Luis A. Leiva1, Alireza Sahami, Alejandro Catal, Niels Henze, and

Albrecht Schmidt. Text entry on tiny qwerty soft keyboards. In The

33rd Annual ACM Conference, pages 669–678, April 2015.

77

[35] D. D. Lessenberry. Analysis of errors. Technical report, Smith and Corona

Typewriters, Syracuse, New York, 1928. Reprinted in: Dvorak, Merrick,

Dealy & Ford (1936).

[36] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Physics Doklady., 10(8):707–710, February 1966.

[37] PCD Maltron Ltd. Maltron history, 2018. [Online; accessed

18-April-2018].

[38] Jos A. Macas, Antoni Granollers Saltiveri, and Pedro Miguel Latorre

Andrs, editors. New Trends on Human-Computer Interaction: Research,

Development, New Tools and Methods. Springer, 2009.

[39] Scott MacKenzie and William Soukoreff. Text entry for mobile computing:

Models and methods, theory and practice. Human-Computer Interaction,

17:147–198, September 2002.

[40] Eric Mays, Fred J. Damerau, and Robert L. Mercer. Context based

spelling correction. Information Processing & Management, 27(5):517

– 522, 1991.

[41] Scott McCartney. ENIAC: The Triumphs and Tragedies of the World’s

First Computer. Walker & Company, 1999.

[42] R. Morris and L. L. Cherry. Computer detection of typographical errors.

IEEE Transactions on Professional Communication, PC-18(1):54–56,

March 1975.

78

[43] Takao Nakagawa and Hidetake Uwano. Usability evaluation for software

keyboard on high-performance mobile devices. In HCI International 2011

Posters Extended Abstracts, volume 173, pages 181–185, July 2011.

[44] R. A. Nelson and K. M. Lovitt. History of teletype development. Technical

report, Teletype Corporation, 5555 West Touhy Avenue Skokie, Illinois,

October 1963. [Online; accessed 17-April-2018].

[45] Saied B. Nesbat. A system for fast, full-text entry for small electronic

devices. In Proceedings of the 5th International Conference on Multimodal

Interfaces, ICMI ’03, pages 4–11, New York, NY, USA, 2003. ACM.

[46] Donald Norman and Diane Fisher. Why alphabetic keyboards are not

easy to use: Keyboard layout doesn’t much matter. Human Factors,

24:509–519, January 1984.

[47] Peter Norvig Norvig.com. How to write a spelling corrector. [Online;

accessed 23-April-2018].

[48] Sherry Ruan, Jacob Wobbrock, Kenny Liou, Andrew Ng, and James

Landay. Speech is 3x faster than typing for english and mandarin text

entry on mobile devices, August 2016.

[49] Dmitry Rudchenko, Tim Paek, and Eric Badger. Text text revolution:

A game that improves text entry on mobile touchscreen keyboards. In

Pervasive Computing: 9th International Conference, Pervasive 2011,

Proceedings, pages 206–213, January 2011.

[50] S. Saha, B. Ganguly, and A. Konar. Gesture based improved

human-computer interaction using microsoft’s kinect sensor. In

79

2016 International Conference on Microelectronics, Computing and

Communications (MicroCom), pages 1–6, January 2016.

[51] C. E. Shannon. A mathematical theory of communication. SIGMOBILE

Mob. Comput. Commun. Rev., 5(1):3–55, January 2001.

[52] Katie A. Siek, Yvonne Rogers, and Kay H. Connelly. Fat finger

worries: How older and younger users physically interact with pdas. In

Human-Computer Interaction - INTERACT 2005, pages 267–280, Berlin,

Heidelberg, 2005.

[53] Brian A. Smith, Xiaojun Bi, and Shumin Zhai. Optimizing touchscreen

keyboards for gesture typing. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems, CHI ’15, pages

3365–3374, New York, NY, USA, 2015. ACM.

[54] R. William Soukoreff and I. Scott MacKenzie. Towards a standard for

pointing device evaluation, perspectives on 27 years of fitts law research

in hci. International Journal of Human-Computer Studies, 61(6):751 –

789, 2004.

[55] Robert William Soukoreff. Quantifying Text Entry Performance. PhD

thesis, York University, 2010.

[56] N. Stern. The binac: A case study in the history of technology. Annals

of the History of Computing, 1(1):9–20, January 1979.

[57] Craig Stewart, Michael Rohs, Sven G. Kratz, and Georg Essl.

Characteristics of pressure-based input for mobile devices. In Conference

80

on Human Factors in Computing Systems - Proceedings, volume 2, pages

801–810, January 2010.

[58] SwiftKey, 2018. [Online; accessed 17-April-2018].

[59] Thumbly, 2014. [Online; accessed 17-April-2018].

[60] Horabail Venkatagiri. Efficient keyboard layouts for sequential access

in augmentative and alternative communication. Augmentative and

Alternative Communication, 15(2):126–134, 1999.

[61] Horabail Venkatagiri. Efficient keyboard layouts for sequential access

in augmentative and alternative communication. Augmentative and

Alternative Communication, 15(2):126–134, 1999.

[62] Daryl Weir, Simon Rogers, Roderick Murray-Smith, and Markus

Lchtefeld. A user-specific machine learning approach for improving touch

accuracy on mobile devices. In Proceedings of the 25th annual ACM

symposium on User interface software and technology, pages 465–476,

October 2012.

[63] Casey Whitelaw, Ben Hutchinson, Grace Y. Chung, and Gerard Ellis.

Using the web for language independent spellchecking and autocorrection.

In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing: Volume 2 - Volume 2, EMNLP ’09, pages 890–899,

Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[64] Wikipedia, The Free Encyclopedia. Qwerty. [Online; accessed

16-April-2018].

81

[65] Ying Yin, Tom Ouyang, Kurt Partridge, and Shumin Zhai. Making

touchscreen keyboards adaptive to keys, hand postures, and individuals -

a hierarchical spatial backoff model approach. In Conference on Human

Factors in Computing Systems - Proceedings, pages 2775–2784, April

2013.

[66] Shumin Zhai, Per-Ola Kristensson, and Barton Smith. In search of

effective text input interfaces for off the desktop computing. Interacting

with Computers, 17:229–250, May 2005.

[67] Z. Zhang. Microsoft kinect sensor and its effect. IEEE MultiMedia,

19(2):4–10, February 2012.

82

	Improving the Accuracy of Mobile Touchscreen QWERTY Keyboards
	Recommended Citation

	tmp.1538072648.pdf.vaDuW

