
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2018

Motivations, Team Dynamics, Development Practices and How Motivations, Team Dynamics, Development Practices and How

They Impact the Success of Open Source Software: A Study of They Impact the Success of Open Source Software: A Study of

Projects of Code for America Brigades Projects of Code for America Brigades

Le Chang
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Interpersonal and Small Group Communication Commons, Performance Management

Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Chang, Le, "Motivations, Team Dynamics, Development Practices and How They Impact the Success of
Open Source Software: A Study of Projects of Code for America Brigades" (2018). Electronic Theses and
Dissertations. 1528.
https://digitalcommons.du.edu/etd/1528

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/332?utm_source=digitalcommons.du.edu%2Fetd%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1256?utm_source=digitalcommons.du.edu%2Fetd%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1256?utm_source=digitalcommons.du.edu%2Fetd%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.du.edu%2Fetd%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1528?utm_source=digitalcommons.du.edu%2Fetd%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Motivations, Team Dynamics, Development Practices and How They

Impact the Success of Civic Open Source Software—A Study of Projects of

Code for America Brigades

A Thesis

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Le Chang

November 2018

Advisor: Dr. Matthew Rutherford

 ii

Author: Le Chang
Title: Motivations, Team Dynamics, Development Practices and How They Impact the
Success of Civic Open Source Software—A Study of Projects of Code for America
Brigades
Advisor: Dr. Matthew Rutherford
Degree Date: November 2018

Abstract

Open data movement has nurtured the growth of civic open source software

(OSS) in the recent decade. This emerging phenomenon has demonstrated a way that a

community can collectively utilize technology to solve its problems.

 This study is based on software projects in brigades of Code for America, which

is a network of organizations that group volunteers to create digital solutions to

community problems. In this study, we analyze the software engineering practices of

current civic open source software development, participants’ motivations and

perceptions of the projects, and provide insights on the antecedents of success of the

application development.

 A conceptual model is developed to capture potential correlated factors and

determinants of the success of civic OSS. We find that leadership, team member’s

identification as a core team member, and his/her perception of the public benefit level of

the project are predictors for his/her satisfaction level. Additionally, we find that

compared to team members who are very uninterested in the technologies used in the

projects, those who have strong interests in the technologies experience an increase in the

odds of stronger willingness to continue in the projects.

 iii

Acknowledgements

I would first like to thank my thesis advisors Dr. Matthew Rutherford, Dr.

Susanne Sherba, and Dr. Cathy Durso. They provide me with guidance from the very

beginning of my thesis idea formation, to survey design, and to data analysis and writing.

Dr. Matthew Rutherford set high standards for my thesis. He not only showed great

insights into steering the directions of my work, but also provided practical suggestions

on survey design details. Dr. Susanne Sherba, an expert in Software Engineering field,

inspired my thesis idea when I took her class. Her enthusiasm and solid software

engineering knowledge was the anchor of my work. Dr. Cathy Durso taught me the

statistics knowledge and skills essential to analyzing my thesis data. Her abundant

experience in survey design and data analysis helped me gain more insights out of the

data and enhanced my thesis quality.

I would also thank members of Code for Denver, Code for Boulder, staff of Code

for America and a lot of other brigade members. They helped test my pilot survey,

publicize my survey, and provided me with incredible resource and support of this

research.

Finally, I would like to thank my mother, my in-laws, and my husband for their

unfailing support throughout my entire graduate program, including this thesis. Without

their constant encouragement, none of my accomplishments would be possible.

 iv

Table of Contents

Chapter One: Introduction ... 1	
1.1 Research question .. 3	
1.2 Major contributions ... 4	
1.3 Thesis outline ... 4	

Chapter Two: Literature Review ... 5	
2.1 Open source software .. 6	
2.2 Open data and civic open source software .. 7	

2.2.1 Open data .. 7	
2.2.2 Civic open source software .. 8	
2.2.3 Code for America ... 9	

2.3 Motivations .. 11	
2.4 Team dynamics .. 12	

2.4.1 Communication and coordination .. 12	
2.4.2 Development centrality .. 13	
2.4.3 Task assignment ... 14	

2.5 Project features .. 15	
2.5.1 End users .. 15	
2.5.2 Project leaders .. 15	
2.5.3 Partnerships .. 16	
2.5.4 Team size .. 17	

2.6 Requirement engineering ... 17	
2.7 Development process ... 19	
2.8 Success measures ... 20	
2.9 Determinants of success .. 21	

2.9.1 End user .. 21	
2.9.2 “Onion” team structure ... 21	
2.9.3 Partnership, life cycle phase, and activity level 21	

Chapter Three: Research Method .. 23	
3.1 Survey distribution and respondents ... 23	
3.2 Survey questionnaire ... 24	
3.3 Data analysis method ... 27	

Chapter Four: Findings and Results .. 30	
4.1 Demographics and context-related information .. 31	

4.1.1 Brigade locations .. 31	
4.1.2 Gender and roles ... 32	
4.1.3 Length of involvement and participation frequency 34	
4.1.4 Core team member ... 35	
4.1.5 Interest in the technology ... 35	
4.1.6 Motivations ... 36	

4.2 Project features .. 38	
4.2.1 End user .. 38	

 v

4.2.2 Project phase ... 39	
4.2.3 Project leadership ... 40	
4.2.4 Project partner .. 41	
4.2.5 Project MVP ... 42	

4.3 Team dynamics .. 42	
4.3.1 Core and non-core team size .. 42	
4.3.2 Team gender composition .. 47	
4.3.3 Team communication ... 48	

4.4 Software engineering practices .. 50	
4.4.1 Team-partner/user communication ... 50	
4.4.2 Requirement elicitation .. 52	
4.4.3 Partner’s involvement ... 53	
4.4.4 Software design .. 55	
4.4.5 Task assignment ... 57	
4.4.6 Development centrality .. 58	
4.4.7 Project progress rate ... 59	

4.5 Conceptual model, hypothesis test and prediction model 60	
4.5.1 Variables and conceptual model ... 60	
4.5.2 Hypothesis .. 61	
4.5.3 Logistic regression model ... 70	

Chapter Five: Limitations and Discussions ... 79	
5.1 Response bias .. 79	

5.1.1 Sample size ... 79	
5.1.2 Representativeness ... 79	

5.2 Accountability ... 81	
5.3 Logistic regression model .. 82	
5.4 Success measures ... 83	

Chapter Six: Conclusion and Future Work ... 84	
6.1 Conclusion ... 84	
6.2 Future work ... 86	

References ... 88	

Appendix: Survey questionnaire ... 93	

 vi

List of Figures

Chapter Two

Figure 1: OSS Team Structure (adapted from [16]) .. 14

Chapter Four
Figure 2: Brigades ... 31	
Figure 3: Primary Role and All Roles ... 32	
Figure 4: Length of Involvement ... 34	
Figure 5: Motivations .. 36	
Figure 6: Reasons for Leaving .. 37	
Figure 7: End User ... 38	
Figure 8: Existence of a Government/Community Partner 41	
Figure 9: MVP Completion ... 42	
Figure 10: Core Team Size .. 43	
Figure 11: Non-core Team Size .. 44	
Figure 12: Female Number vs. Male Number ... 47	
Figure 13: Primary Team Communication Means .. 48	
Figure 14: Team Communication Effectiveness ... 49	
Figure 15: Team-Partner Communication Effectiveness .. 50	
Figure 16: Team-User Communication Frequency ... 51	
Figure 17: Requirement Elicitation Methods .. 52	
Figure 18: Systematic Architecture and Component Design 55	
Figure 19: Task Assignment .. 57	
Figure 20: Development Centrality ... 58	
Figure 21: Progress Rate of Project ... 59	
Figure 22: Conceptual Model of Variables ... 61	
Figure 23: Relationship between “End.user” and “Participation.level” 63	
Figure 24: Relationship between “End.user” and “Willingness.to.continue” 63	
Figure 25: Relationship between “Core.team.member” and “Satisfaction” 64	
Figure 26: Relationship between “Core.team.member” and

“Willingness.to.continue” .. 65	
Figure 27: Relationship between “Partner.present” and “Will.be.completed” 66	
Figure 28: Relationship between “Partner.present” and “Will.be.used” 66	
Figure 29: Satisfaction Level ... 71	
Figure 30: Willingness to Continue ... 75	

 vii

List of Tables

Chapter Three

Table 1: Missingness of Variables ... 28

Chapter Four
Table 2: Project Phase When Initially Joining It ... 40	
Table 3: Core vs. Non-core Team Size ... 45	
Table 4: Partner's Involvement Frequency .. 54	
Table 5: Developers' Knowledge of the Architecture and Component Design 55	
Table 6: Results of Initial Regression for Satisfaction .. 72	
Table 7: Results of Refined Regression for Satisfaction ... 73	
Table 8: Odds Ratios of Regression for Satisfaction ... 74	
Table 9: Results of Initial Regression for Willingness to Continue 76	
Table 10: Results of Refined Regression for Willingness to Continue 77	
Table 11: Odds Ratios of Regression for Willingness to continue 77	
Table 12: Results of Initial Regression for Progress Rate ... 78	

 1

Chapter One: Introduction

Technology is developing unprecedentedly fast and penetrating our lives, making

them easier and better. However, when it comes to various problems facing every

community, technology still fails to play its part. Demand for more effective technical

civic services is increasingly rising. But government does not always have sufficient

resources to create timely technology solutions. Private sector does not see enough

business value in providing technology solutions to municipal services. That is how civic

open source software comes to the rescue.

Civic open source software (civic tech) is emerging and becoming increasingly

influential in all dimensions. With the fuel of the open data initiative and faster

application development technologies, there has been a civic tech movement in the last

ten years, which is a relatively new phenomenon that deserves our study.

We treat civic open source software as a special type of open source software

(OSS). Civic open source software helps significantly to enhance awareness of municipal

problems, engages citizens, improves governments, and facilitates wiser actions and

social change. Many of the projects have significant civic benefits. But more important

than providing a technical solution, civic tech use prototypes and temporary or sample

solutions to bring some civic challenges to the table and enable more people to get

involved and together find the best solution and take actions [23]. Civic tech might not be

the ultimate solution to some municipal problems, but it is definitely an important start to

2

address many problems or at least let people know that solutions are possible. There are

many successful civic open source software groups that develop solutions across the

world. But they are also facing challenges, such as how to deliver a solution that truly

benefits the public, truly improve citizen’s life quality, improve government efficiency,

and how to ensure ongoing engagement of volunteers to facilitate the development and

maintenance of civic OSS.

This study provides facts and analyses of the practices of current civic open

source software development, discovering the important factors that impact the vitality

and success of the projects. It provides insights for such organizations and volunteers to

understand the status quo and improve their software development practices.

Software applications being developed by Code for America (CFA)1 are analyzed

in this study. CFA was founded in 2009. It is a network of over 5000 people creating

technology solutions for the problems of over 100 local governments, NGOs, and

individuals [56]. The goal of Code for America is to make sure the services provided by

the governments are easy for both the governments and the users to use [51]. The reason

why CFA is chosen is that it is one of the most representative civic tech groups that

develop civic open source software and steer the civic tech direction. They have shipped

successful applications and the network is increasingly influential. As a volunteer in one

of the brigades, I am able to observe and study their practices. This study aims at

understanding the application development mechanisms and providing insights of how to

improve the practices.

1 https://www.codeforamerica.org

3

1.1 Research question

The software applications developed by brigades of CFA are what we define as

civic tech. They are local groups of developers, designers, activists, project managers, etc.

They collaborate to create open source software that helps the local communities address

pressing challenges. The types of applications they are developing are not confined to just

using open data. The source code of all applications is usually on github and everyone is

welcome to join and contribute. The development model of these applications is open

source software (OSS) development. But it is different than what we consider as

“conventional OSS”. The “conventional OSS” is developed by volunteers geographically

distributed all over the world. Volunteers barely meet. Almost all their communications

are through emails, version control systems and bug report systems. There is abundant

research revealing the development processes of “conventional OSS” and the developers’

motivations, how team coordinate, the quality of the software, and the determinants of

success. But for civic open source software created in CFA brigades, members are

usually co-located and meet regularly. Their development process is not exactly the same

as “conventional OSS”. The unique software development process of civic open source

software is not systematically studied in the literature. Specifically, we are interested in

the development practices of civic open source software, volunteers’ motivations, and

success determinants of civic applications. Therefore, in this study, the research questions

are:

What are the motivations of volunteers?

What are the team dynamics?

What is the development practice?

4

 What factors impact the success?

1.2 Major contributions

The software development practices of civic open source software are still

evolving and facing uncertainties. A significant number of studies have been focused on

the practices and success of conventional open source software. There is, nonetheless,

very little research done on practices of civic open source software.

This study collects raw data from across the United States to get valuable insights

into how the volunteers work as a team, what the actual software requirement engineering

process, software design, and implementation practices are, and what the relationships

among those features are. Additionally, we also discover factors that attribute to the

participant’s satisfaction level and the project progress rate.

1.3 Thesis outline

The second chapter provides relevant literature review on open source software

and civic tech development practices, developers’ motivations, how teams coordinate the

work, what success measures are applicable and what factors impact their success. Next,

Chapter 3 introduces the research methods used in this study. Chapter 4 presents the

results of the analyses from the data we collected. Chapter 5 discusses the limitations and

the scope of this study. Finally, Chapter 6 summarizes the conclusions and suggests

future work.

 5

Chapter Two: Literature Review

Open Source Software research has been done in different disciplines. In the

Software Engineering and Information Science fields, current OSS research focuses on

the following three topics: 1) OSS communities [1], including developers’ motivations

[2,3], barriers for newcomers [4], and social structure [5], 2) OSS development [1],

including development process [6,7,8,42], how the team assign tasks [8], core team size

[8], coordination mechanisms [9], and code ownership [8]. 3) OSS Characteristics [1],

which include the quality of the software and testing [10,11], defect density [8],

determinants of its success [12], success measures [13], and the bug repair interval [8].

The methods used in OOS research are diverse. Since most OSS are implemented

remotely, their source code repositories, email communications, bug reports system,

version control system, documentations and design artifacts are all online (hosted on

SourceForge.net or other websites) and easily accessible. Researchers are able to collect

large amounts and varieties of data [6]. According to the review of OSS research by

Klaas-Jan Stol et al. [1], case study, quantitative analysis, survey, grounded theory and

ethnography are being used in OSS research. Some research studies successful OSS such

as Linux, Apache server, and Mozilla Firefox browser [8,17,31,40,46], while others

collect a large quantity of OSS projects to analyze the overall characteristics [2,7,12,50].

6

2.1 Open source software

Open source software refers to the software that is released under an open source

license [15,16]. Anyone can modify and redistribute the software. Different than

traditional software development approach, this development model, with its source code

available to anyone [17], has made tremendous contribution to technology development

[18] and impacted everyone’s life. Sommerville [15] even claims open source software as

“the backbone of the Internet and software engineering”. Many open-source products are

highly widely used in various fields. The Linux operating system, Java and the Eclipse

IDE, MySQL, React.js framework, and Hadoop are just a few successful examples and

they all play an important role in today’s technology stack.

Because of the success of Apache server, Linux, and Mozilla, which all came out

in the 90s, open source software is perceived as a fundamentally new way to develop

software and even threatens commercial software. Take Apache web server as an

example. According to the Netcraft survey [53], although its market share decreases after

2014, it was the dominant web server between the year 1996 and 2014. As the number of

active websites queried by Netcraft grew from 7 million to 180 million in that period,

Apache kept hosting 40-70% of all the sites. The Mozilla browser, originating from a

commercial product, became open source in 1998. Mozilla Firefox 1.0 was released in

2004 and was a big success with over 100 million downloads in 2004, despite the fact

that in 2002, over 90% people use Internet Explorer browser [54].

Eric S. Raymond’s [17] famous metaphor—the “cathedral” model, which

represents the proprietary software, and the “bazaar” model, which represents the open

7

source software development such as Linux, contrasts the different characteristics of

software development models between open-source and proprietary software. In his view,

the open source software development model is like a bazaar of different approaches,

under which the developers proactively take on tasks and software is frequently released,

while the commercial software is “built like cathedrals, carefully crafted by individual

wizards working in splendid isolation” and only released when it is completed finished

[17]. Tasks of commercial software are assigned in a top-down manner. Eric S. Raymond

consciously lead an open source project, fetchmail, with the bazaar style to test the

theories about software engineering that are derived from the practices of Linux

development. He claims that it is a huge success and the best open source software adopts

the “bazaar model”.

Nikolai Bezroukov [19] critiques Raymond’s views on open source software. He

points out that the “bazaar” model described by Raymond gives a false illusion of it being

a “magic bullet” for almost all problems while it is actually facing some challenges and

has its limitations. He believes that OSS community is like scientific community, in

which people are motived by status and reputation and these motives may cause burnout

in leaders and harm the quality of the product.

2.2 Open data and civic open source software

2.2.1 Open data

The dawn of civic technology is significantly attributed to the open data

movement. In 2009, President Barack Obama signed the Open Government Initiative,

8

championing an unprecedented transparency in government. This means that government

must make efforts to make their data available to the public and the leaders are seeking

greater awareness and usage of this data among the citizens. They sought to involve

software developers to make sense of the data, turn it into meaningful information and

incorporate it into applications that improve public services and economy [20].

2.2.2 Civic open source software

“Civic open source software” is interchangeably used as “civic tech” in this study.

Nowadays, technology, cities and civic networks have been more and more interrelated.

We have heard the terms “e-gov”, “cyberdemocracy”, “digital democracy”, which all

provide some context or suggest important meanings of civic tech. There is not an exact

definition of civic tech. However, there are some features that characterize civic tech —

“the common good”, empowerment of citizens, justice and openness [21]. In short, civic

tech is technological solutions created by citizens for the public benefit [22].

Some activists believe that technology is a powerful democratizing force [23]. In

fact, the founder of the GNU project and also the early advocate of OSS, Richard

Stallman, has explicitly stated the political aspect of OSS, in the context of the Free

Software Movement since 1983. He believes that everyone should have freedom to

control any software, and proprietary software is a tool that is taken advantage of by the

people with unfair power [24]. Naturally, some researchers study civic tech from a social

movement point of view. They perceive civic tech or some open source software as a

platform to take collective action [25]. There is no doubt that civic tech helps increase

9

citizens’ participation in public life. In the United States, the civic apps movement

started in 2009 and the Obama administration has been supporting it ever since. Civic

apps become the bridge between citizens and government, as they are new tools of

information and communication [25].

A significant number of civic open source software is related to Internet or mobile

applications, which focus on some open datasets coming from local government or NGO

[21]. In our study, some applications created in Code for America do not necessarily use

open data. But as we reviewed in the literature, “public benefits” have multiple themes,

so civic applications comes in all kinds of types and representations. The development

practices of all these types of OSS in Code for America brigades are what we study in

this research.

2.2.3 Code for America

Code for America (CFA) is under the umbrella of Code for All2, a network of

organizations that use digital technology as new platforms for citizens to engage in the

public sphere more impactfully [26]. The civic tech movement is not something

happening just in United States, it is worldwide. There is Code for Japan, Germany,

Tanzania, and a number of other countries. Thousands of brigades comprising local

groups of volunteers and civic hackers utilize their technology, design, and project

management skills to tackle community problems.

2	https://codeforall.org	

10

Andrew Schrock makes an interesting metaphor of CFA brigade programs, saying

that the way they connect small teams of like-minded civic hackers with local

governments is just like the similar model of early firefighters [23]. This metaphor

vividly depicts how CFA encourages grassroots engagement, regardless of their skill sets,

to participate and solve community problems.

Two successful projects of CFA are GetCalFresh and the Detroit Water Project.

GetCalFresh is a mobile-friendly web application delivered by Code for America. It

provides a less than 10-minute efficient online SNAP (food stamps) application without

in-office visits and lengthy paperwork. It allows easy photograph or other document

uploading. As a result, it helps people get CalFresh (SNAP benefits in California)

efficiently, dramatically reducing the number of people who are eligible for food benefits

but have never applied [27]. This project partners with state governments, county offices

and other community groups to help together remove barriers for eligible residents.

 The Detroit Water Project, originated from a website by Code for America fellow,

Tiffani Ashley Bell, is a web application that find donors to help families who do not

have running water. According to [28], the project has raised over $180000 donations in

direct payments to the Detroit Water Department on behalf of the residents who had their

water service cut off because they cannot afford it. Since 2014, about 1000 families in

Detroit and Baltimore have been connected to donors through the project to help pay their

water bills.

Both projects strengthen the relationship between governments and the

community. As Andrew Schrock [23] points out, even if technology could not solve all

11

the problems, the process of engaging people to collaborate is meaningful. The point of

civic tech is that it makes us think through problems, not rush to a solution.

2.3 Motivations

Motivation of developers is a central theme in OSS research. Only if we fully

understand participants’ motivations, can we know how to better manage OSS projects

and get the desired results. Motivations that have been discussed in literature include

sharing information and interest [2,20], self-realization [2], improving software for

personal needs [2,3], solving a problem that can not be solved by commercial software

[2], getting help in implementing an idea for software [2], enhancing career opportunities

[2,3,20], monetary rewards [2] (some OSS projects pay developers), a sense of joy and

accomplishment [3,29], altruism [30], and learning new skills [29,2]. Most of them can

be categorized into intrinsic and extrinsic motivations.

G. Hertel et al. [3] collected data from one of the most influential OSS, the Linux

kernel project. They conduct a survey based on two theoretical frameworks from social

science to get insights of the developers’ motivations. The first model is inspired by the

motives of people volunteering in community work and acting in social movements. The

second model specifies motivations of people working in teams [3]. R. Ghosh et al. find

that learning new skills is the top reason for nearly 80% of developers to start with OSS,

and half of them want to share knowledge through OSS [2]. Furthermore, they find that

sharing knowledge is more important to make developers continue in OSS development

[2].

12

These motivations are not independent. J. Roberts et al. [31] develop a theoretical

model explaining the relationships between developers’ intrinsic/extrinsic motivations,

participations and performances. They also find that developers’ motivations are

interrelated, and different motivations impact their participation differently.

2.4 Team dynamics

2.4.1 Communication and coordination

Team effectiveness is an important question in various subjects and industries.

How teams communicate and coordinate their work and expertise are especially

important in software engineering as software engineering is a human-centered activity.

Rising et al. [32] claim that scrum teams can cope with frequent changes in software

requirements. From research [33] in which team members are equipped with wearable

electronic sensors that gather data regarding their social behavior, Pentland finds that the

communication pattern is the most important explanatory factor of a team's success. He

believes that the communication pattern is as significant as the total effects of all other

factors— personality, skills and intelligence [33]. Additionally, in [34], Faraj et al. claim

that the expertise coordination among the team members is strongly related to the

performance of the team.

When it comes to teams communications specifically in open source software

development, a tremendous amount of research reveals how team coordinate and

communicate the work of “Conventional OSS.” “Conventional OSS”, as we define, is

developed by individuals dispersed worldwide. Some of them work in small teams [3].

13

Those teams are somewhat “virtual teams.” Developers rarely meet. Developers mostly

use electronic media to communicate, lacking spontaneous discussion [35]. However, the

success of many OSS with such distributed contributors is impressive. J. Herbsleb et al.

[36] analyze how distributed teams overcome the obstacles to informal communication.

Y. Yamauchi et al. [35] find that coordination after spontaneous work is effective and the

rational team culture helps resolve disagreements among members. Since developers

rarely meet, their communication tends to be more rational. Due to geographical

dispersion, they have to adopt computer-mediated communication, which has an

impersonal nature and is task-focused [35]. The asynchrony of email makes developers

communicate more logically with more reflections and little emotional factors. This

culture focuses on results, rather than vague ideas and discussions. [35]

2.4.2 Development centrality

Most OSS teams are self-organized [16]. Team structure is like an onion [8], as

shown in Figure 1 (adapted from [16]). The most inner circle comprises the core

developers. Then the co-developers (the non-core team) make up the second layer. Then

outside co-developers are the active users. And the outermost and largest number of

actors are passive users.

14

Figure 1: OSS Team Structure (adapted from [16])

It is concluded in some research that in OSS projects, a small number of

developers, or even just a single person, completes most of the work [8,9]. There is a

much larger number of co-contributors than core members, and an even larger group of

users who help report bugs. Contribution is skewed among developers. Some researchers

find that more successful teams are associated with more skewed contribution

distributions [9].

2.4.3 Task assignment

Different than software development in corporate settings, where leaders assign

tasks, developers of OSS tend to choose tasks to work on [8,15,37]. For small projects,

which normally do not require explicit coordination mechanisms [19], this is feasible.

The leader of a project only needs to perform simple coordination to keep the project

rolling.

15

2.5 Project features

2.5.1 End users

In [19], Bezroukov claims that for any project to continue to evolve, even if it is

completed successfully, a majority of users are indispensible. He finds that open source

software is more successful if developers are personally interested in it. He points out that

the initial prototype of an OSS, usually completed by an individual, is usually developer-

oriented. Developers build the software out of their personal needs for better software and

out of the pleasure of hacking. For OSS projects like operating systems, programming

languages, or editors, where developers are the end users, the feedback is often of high

quality. Meanwhile, the developers of these kinds of projects are more likely to respond

to the feedback and fix bugs efficiently. For other projects, however, the incentives for

feedback providing and bug responding may be much less. And the quality of feedback

from developers may not be as high as those of developer-oriented software projects.

2.5.2 Project leaders

OSS projects are normally self-organized. In informal organizations, team

members communicate constantly. When most team members are competent and

experienced, informal teams can be very successful [15]. In a loose hierarchy, team

members are likely to be on a same level and the decisions may be devolved to team

members [14]. In a case study of GNOME project, German points out that it has a

decentralized decision making mechanism [38]. However, a project leader is still needed

16

to make strategic decisions. As Bezroukov[19] claims, open source may look democratic,

but it is actually not. Linux itself is actually the best example. The creator of Linux, Linus

Torvalds, has the authorization of rejecting any patches. He controls the Linux kernel.

For any project to survive, particularly in its early stages, a determined and committed

leader is crucial [19]. As for how leaders are selected, studies show that they are

recognized if they are technologically outstanding. These leaders are emergent rather than

nominated [35].

2.5.3 Partnerships

A lot of civic open source software involves partnerships. Code for America

explicitly suggests that all brigades partner with the local governments and communities

[39].

Since civic open source software is for the public good, partnering with city

agencies, NGO or advocacy groups is a great way for civic technologist to know what

problems truly need to be addressed, how to better envision a solution and how to get

access to the best data. Also, partnerships help motivate volunteers of civic open source

software. If the partners exist, the applications they develop are more likely to be used

and publicized through partners.

However, as Lee et al. [20] suggest, within the city governments, there are many

barriers to perfect cooperation with the civic groups, such as the overworked employees,

susceptibility to scrutiny, and procurement legislations of the civic agencies.

Communications between governments and developers are limited. If city agencies are

17

restrained from involvement in the development phases, chances are they will not adopt

or further invest in the software applications [20].

2.5.4 Team size

Eric Raymond [17] claims that one important reason for good quality of OSS is

the number of developers and users—“given enough eyeballs, all bugs are shallow”. In

[8], Mockus et al. claim that the core team size of OSS is not larger than10-15 people.

And a much larger group of co-developers repair defects.

Klug et al. [9] find that although team success is not explained by team size alone,

team size is a significant predictor of team success. Teams of ten core team members are

300% more likely to succeed than teams of just one core team member.

2.6 Requirement engineering

The requirement engineering practices of Open source software radically contrast

the conventional requirement elicitation processes of proprietary software development.

In a case study of the Firefox web browser, John Noll [40] believes that in OSS

development, developers assert requirements instead of eliciting requirements from target

users. Some other research also reports the same phenomenon [41]. Apart from being

asserted based on developers’ personal experience or knowledge of the user needs,

requirements also derive from bug reports, requests for better usability, or competitions

of similar software [40,42]. According to the requirement gathering process of the

Mozilla project described in [42], decisions of including certain functionalities or changes

18

are based on discussion of bug reports. In the Mozilla project, anyone is welcome to

implement a desired change. And interestingly, it is almost certain that it will be accepted

to the code base once it is implemented.

Developers of OSS usually start with building software they need themselves

[43]. As they are the end users, they have strong domain knowledge of the software

requirements, which contributes significantly to the success of the project. But this is

only true for advanced OSS that target at developer users. When developing OSS for less

technical users, not using traditional requirement elicitation methods might pose risks of

poor usability [44]. End users might not understand the technical terminology or user

interface presented in the software by developers as a result of lack of user-centered

design expertise. In light of these problems, Henderson believes that many traditional

requirement elicitation methods could be adopted by OSS as a supplement [45].

In a series of interviews of developers of civic apps, Ermoshina [25] finds a

pattern for the way that civic apps are transformed from experience into apps. That is,

they normally begin with a personal problem. Then it is converted to an universal

solution, which can be implemented through an application. However, it might not

always be the case that these apps have a high civic benefit level [20]. Many challenges

truly facing the local governments or NGOs are unknown or neglected by developers.

Without thorough and effective communications between government agencies and the

developers, it is hard for the developers to come up with a solution that really helps

complement public services.

19

After several years of evolving of civic tech, developers, as Lee et al. [20]

indicate, are more exposed to civic needs and the civic agencies are involved earlier in

the software life cycle. Accurate problem descriptions of current challenges are presented

to developers. In addition, the data repositories and expected features that the software

would need are also provided. Developers are more informed when partnering with

governments, NGOs or other advocacy groups that the software targets[20].

2.7 Development process

A number of studies describe the OSS development process based on interviews

of core developers, email archives of their source code change history, bug tracking

systems or communications history [8,42,46].

Mockus et al. [8] describe the development process of the Apache server based on

a description drafted and fact-checked by core team members of the Apache server

project. They reveal a special development and decision-making process, including the

email lists and a quorum voting system. The Apache project has an Apache Group (AG),

an organization of core developers, who are identified and nominated among the

community. As the authors of [8] describe, each developer goes through the following

processes during the software development — identifying a problem, deciding who will

implement code to solve the problem, finding a solution, writing the code, requesting the

AG to review changes, and finally committing to the repository.

20

2.8 Success measures

To discover what makes an OSS project successful, we need to first define the

meaning of success in civic open source software. There is some research analyzing the

success measures for OSS and civic technology [47,12,9].

Success measurement for OSS is a multidimensional construct. It is used

according to the specific cases. Researchers have been focusing on the system process,

activity level and the impact on individuals [47]. Lee et al. [13] develop an OSS success

model drawing on the features of OSS and a classic information system success model.

They summarize five measures for OSS success—“Software quality”, “Community

service quality”, “OSS use”, “User satisfaction”, and “Individual net benefits” [13]. In

[12], researchers find that some success measures are inter-related.

Crowston et al. [47] examine the validity of applying the success measures used in

information systems research in the free/libre open source software (FLOSS) context.

After reviewing the success measures in literature and analyzing the different process

models of general information system and FLOSS, they provide a series of measures of

FLOSS effectiveness and suggestions on how to operationalize them. These measures

are: Project output, which has indicators such as progress of a project and developer

satisfaction; Process, which is indicated by the number of developers, activity level,

release cycle, and the time interval to implement features; Outcome for project members,

which has indicators including career opportunities and reputation gaining.

 Gasser and Scacchi [6] provide a summary of characteristics of empirical OSS

studies. They identify the different objects of the studies, their corresponding success

21

measures and the drivers of the corresponding measures. The most relevant research

object they have identified is the software process, measured by project efficiency and

adaptability to changes.

2.9 Determinants of success

2.9.1 End user

If developers or other team members are end users of the software themselves, the

requirements engineering will be easier and more efficient as they know what they need

and can develop quickly with high quality [16]. The project itself, if is something used by

developers, suggests potential high quality of the OSS.

2.9.2 “Onion” team structure

Mockus et al. [8] have made a hypothesis that even for a project that has a strong

core team, if it cannot attract a large quantity of co-developers, the project will fail due to

the lack of people helping with bug fixing or implementations of small features. The

success of Apache server also shows that a magnitudinal larger number of users who help

find and report bugs are correlated with the quality of the software [8]. Therefore, the

team structure could be a factor that impacts the success of the project.

2.9.3 Partnership, life cycle phase, and activity level

Stewart and Ammeter find that sponsored projects are more popular (popularity

operationalized as the number of subscribers to the projects and the traffic level of the

22

project’s website) than non-sponsored projects, but project vitality is not affected by

sponsorship [7]. Wynn [48] finds that the level of fit between the project life cycle phase

and the project characteristics is another factor that affects the project success.

Subramaniam et al. [12] find that the current project activity levels influence the

subsequent activity levels. Stewart and Ammeter [7] find that projects in the alpha stage

show greater increases in popularity than those in mature stage.

23

Chapter Three: Research Method

We conduct an anonymous online survey to collect the data. Survey items

include demographics, features of civic open source software projects, team dynamics,

software engineering practices and volunteers’ perceptions of the projects. The survey is

distributed through anonymous links to all brigade members across the United States.

Data is collected in Jan 18th – Mar 27th 2018.

3.1 Survey distribution and respondents

The survey was sent out to all 63 brigades of CFA. We obtained the

comprehensive list of brigades of Code for America from the Code for America website.

And we got the contact information of brigade leaders, brigades’ Slack channels, and

their social media account names from a shared brigade contact directory and with the

help of CFA full-time staffs. The survey was posted in TWICT (this week in civic tech)

newsletter in February, which is maintained by CFA and subscribed by many brigade

members. The anonymous survey link was first sent via email to all brigades leaders

along with the request for them of helping send out the survey to their brigades. Then, to

publicize the survey as much as possible, it was posted in CFA and brigades’ Slack

channels (the main team communication tools used by most brigades), brigades’

Facebook pages, twitter accounts and meetup pages. Anyone who has ever participated in

24

the software application development projects, no matter they were active or not at the

time of seeing the survey, is welcome to fill it out.

Within an approximately two-month time frame, we got 143 responses. It is worth

noting that a non-response bias exists in our data, which limits the generalizability of the

results. The locations, roles of volunteers in the brigades, and brigades members’ limited

access to the survey are the major reasons for the non-response bias. We will discuss

these limitations in detail in Chapter 5. From all the responses we have got, we removed

responses for which the completeness is less than 50%. This left 115 observations.

Respondents of the survey include all actors in the civic open source software

ecosystem—brigade captains/co-captains, developers, designers, project managers, and

government or community partners. They are all integral parts of civic OSS and provide

important viewpoints for us to find the insights regarding our research questions.

3.2 Survey questionnaire

Questions in the survey are mostly multiple choices with options for free form

answers. The survey takes 8-10 minutes to complete.

Since members of brigades might have been involved in multiple projects or have

engaged in more than one brigade, respondents are asked to identify a project (a civic

open source software application) they have participated in and base their answers on that

project. Explicitly asking them to identify a certain brigade and a certain project helps

avoid repeated or noisy data.

25

The survey consists of five parts, which include motivations of volunteers, team

dynamics, software development practices, and their perceptions of the projects. In terms

of the inferential statistics analysis, the survey questions contain response variables

(willingness to continue his/her participation in the project, satisfaction level, and project

progress rate), and explanatory variables (demographics, team size, team partners, and a

number of other items) that could possibly explain the response variables.

The first part asks respondents about demographics, motivations and context-related

information:

• The brigade that they are volunteering in or have volunteered in

• Gender

• Current activeness status

• Length of their engagement

• Frequency of his/her participation in the project

• Roles in the project

• Primary role in the project

• Whether he/she is a core team member

• Interest in the technology

• Motivations

The second part is about the features of projects:

• Whether he/she is the target end user of the software application

• The initial status when he/she first joined the project

• Whether the project is well led

26

• Whether there is a government or community partner involved

• Whether the MVP (minimum viable product) is completed

The third part consists of questions about team dynamics. We ask:

• Size of core team and non-core team

• Number of male and female team members

• Communication frequency within team

• Primary team communication means

• Team communication effectiveness

The fourth part of the survey contains questions about the software engineering

practices:

• Team-partner communication effectiveness

• Requirement elicitation means

• Requirement elicitation frequency

• Requirement documentation

• How, when and how often partner is involved

• Systematic software architecture or component design

• Documented user interface

• Task assignment

• Development centrality (how contribution is distributed)

• Time interval for substantial project progress

The last part of the survey consists of questions regarding volunteers’ perceptions of

the project. We ask:

27

• Level of civic benefit

• Whether the software will be completed and used

• Self-efficacy

• Willingness to continue his/her participation (if he/she is active at the time of

taking this survey) or return to participate in the project (if he/she is not active at

the time of taking this survey)

• Reasons for leaving (we ask those who were not active in the brigades at the time

of taking the survey)

• Overall satisfaction level of the project.

Lastly, we ask the respondents an open question about their comments regarding

participating in the projects or the survey. The full survey questionnaire is listed in the

Appendix.

3.3 Data analysis method

After obtaining the raw data, data cleaning is conducted to prepare for analysis.

We check the accuracy of the data, change data format, and assign each question a

“variable” name to represent the item. All data cleaning, analyses and visualizations are

conducted using the R programming language and software environment (version 3.4.3).

In the analysis, descriptive statistics are used to provide a view of the data

features. Along with it, we use graphics to help with the visualization of the descriptive

data. We also use inferential statistics method to infer from the sample data the

28

associations between the project features, team dynamics and the success measures, and

discover the antecedents of the success of the project.

For inferential statistics analysis, we first use multiple imputation to handle the

missing values. Multiple imputation is an increasingly adopted method used in research

to help fully utilize the recorded data and avoid introducing a substantial amount of bias.

Among our 115 observations, 71.3% are complete. As for the percentage of missingness

in the variables (survey items) that are used in our inferential analyses, the results are

shown in Table 1.

Variable Missingness
Partner.presence 0.9%
Participation.frequency 0.9%
Team.communication.frequency 6.1%
Female.number 5.2%
Core.team.size 6.1%
Team.communication.means 8.7%
Team.communication.effectiveness 8.7%
Project.progress.efficiency 14.8%
Interest.of.tech 1.7%
Will.be.used 0.9%
Self.efficacy 7.8%
Willingness.to.continue 0.9%
Satisfaction 3.5%

Table 1: Missingness of Variables

The MICE package for R is used in our study. In this package, to impute

categorical variables with more than 2 levels, “polyreg” (Bayesian polytomous

regression) is used. And to impute ordered categorical variables with more than 2 levels,

“polr” (Ordinal logistic regression) is used. We specify an imputation model for each

variable and impute data on a variable-by-variable basis. In total, we create 10

predictions for each missing value.

29

After we get the 10 fully imputed data sets, Spearman’s rank correlation test,

simple linear regression, and Fisher’s exact test are performed to test our hypothesis. In

our analysis process, if both variables are ordinal variables, we use Spearman’s rank

correlation coefficients and simple linear regression on the ranks of both variables to test

the correlations. If one of the variables is nominal but the other variable is ordinal, we

treat the ordinal variable as nominal variable and use Fisher’s Exact test to test the

independence of the two values. If both variables are nominal, we use Fisher’s Exact test.

To identify predictors of success of civic OSS, we use Ordinal logistic regression.

Ordinal logistic regression is an extension of binary logistic regression. It is used when

the dependent variable is an ordered categorical variable. This model fits our data and

research questions in that we want to discover what factors affect the success measures,

which are ordered categories in our case. After we conduct the analysis on 10 imputed

data sets separately, the results are combined using Rubin’s rule.

30

Chapter Four: Findings and Results

As we specified in Chapter 3, the inferences are limited by the non-response bias

and therefore should be used with caution. The descriptive results of the analysis are

presented in section 4.1- 4.4, where we report the results of the development practices

such as how teams communicate with partners, what the requirement elicitation process

is, and whether the project has systematic design and development centrality of the team

members. The results of inferential analysis are presented in section 4.5. In this section, a

conceptual model capturing groups of variables is presented. Our hypotheses are tested

and the predictors of the success measures are explored. (As there are some items that

allow more than one answers, we do not impute these items. Therefore, the results in

section 4.1-4.4 are based on the 115 observations without imputation. The results in

section 4.5 are combined results based on imputed data sets.)

31

4.1 Demographics and context-related information

4.1.1 Brigade locations

Figure 2: Brigades

The geographic locations that the respondents represent are quite dispersed, while

certain brigades provide more responses. Code for Denver, DC, Atlanta, and Boulder

have 22,11,7, and 6 responses respectively. This is partly due to the fact that we are based

in the Denver area. And the size of the brigades, the extent that the leaders promote the

survey and the activity level of brigades influence the survey response rate across

different brigades.

32

4.1.2 Gender and roles

Among the 115 observations, 63% are males, and 32% are females. 103 respondents

are currently active in the projects, while 12 are not.

Figure 3: Primary Role and All Roles

Figure 3 shows the distribution of respondents’ primary role and all roles they take.

33 respondents are brigade captains/co-captains. There are 19 front-end developers and

33

18 back-end developers respectively. 13 respondents are product managers and 10 are

government/community partners. A few respondents are UX designer or testers.

In CFA brigade projects, members may share multiple roles. As shown in Figure 3,

compared to the counts of each “Primary role”, the counts of “Roles” at least double

(except for “brigade captain/co-captain”), which means that most of them take on

multiple roles in the projects. Testing and documenting are the two roles that significantly

soar when respondents choose all roles they take. This indicates that testing and

documenting are mostly shared by team members.

 As for the reason why the number of “brigade captain/co-captain” for “Roles” is less

than the number for “Primary Role”, we find that some respondents do not include

“brigade captain/co-captain” in their answers to “All Roles” even though they identify

“brigade captain/co-captain” as their primary role. It might be due to the gap of the

understanding of the questions between respondents and us as survey designers. This

accountability issue is also discussed in Chapter 5.

34

4.1.3 Length of involvement and participation frequency

Figure 4: Length of Involvement

Lengths of engagement vary from less than three months to more than five years, as is

shown in Figure 4. It is worth noting that the highest percentage of length is 3-5 years,

which might not represent the actual distribution of such length of involvement among

brigade members. This might be due to the fact that we sent survey directly to the brigade

captains and posted it in their slack channels. Brigade leaders usually are involved for a

relatively long time, and might be more interested in taking the survey.

As for the frequency of members’ participation, 37.9% come to the meetup once a

month and 40% once a week, which together account for 77.9% of all respondents. There

are 6% respondents who come to the meetup more than twice a week. We ask those

35

respondents how many hours per week they spend on the projects. 3 of them spend 6-15

hours, 3 of them spend 16-25 hours and 1 respondent, who is a brigade captain/co-

captain, spends even more than 25 hours every week.

4.1.4 Core team member

Among the respondents, 70.4% consider themselves as core team members, while

14.8% do not think so. 14.8% choose “maybe”, suggesting that they are not sure how

significant their work is to the whole project.

4.1.5 Interest in the technology

From our observations and what the literature has revealed, learning new skills

and sharing skills are important motives for developers to participate in the “conventional

OSS” and the civic OSS development. Therefore, we want to know if developers and

other team members are interested in the technology being used in the projects and how

this factor may affect the project.

We ask respondents their interest level using a 5-level Likert scale (ranges from

“very uninterested” to “very interested”). Among all the respondents, 37.4% are very

interested in the programming languages, frameworks or other technologies used by the

project, while 23.5% are interested, 18.3% are neutral, 10.4% are not very interested, and

6.1% are very uninterested. Specifically, we are interested in the results from just front-

end and back-end developers. Among all the developers, 83% of them are very interested

36

or interested in the technology being used. Only 5.1% are not interested or very

uninterested.

4.1.6 Motivations

Figure 5: Motivations

From the results, we can see that 88 out of 105(83.8%) respondents want to help their

local communities. And there are 28(26.7%) people who want to solve a problem that

cannot be solved by commercial product. This is a reflection of the motives found in the

voluntary actions in community work [3]. On the other hand, 54(51.4%) people want to

improve technical or management skills. And 40 (38.1%) respondents want to share their

knowledge and skills through volunteering in the projects. These two motives show their

37

strong motivations to work in teams. Some respondents also report that they are

motivated because they treat it as a social activity or want to make career advancements.

We also ask those who are not active in the projects at the time of taking the survey

why they have left the projects. 12 respondents are inactive and provide the reasons.

Results vary a lot. Limited time, skills mismatch/low self-efficacy, and poor project

vitality are the top reasons that discourage volunteers.

Figure 6: Reasons for Leaving

38

These responses shown in Figure 6 indicate that project features, such as

leadership, support from partner, vitality, and volunteers’ personal factors, such as self-

efficacy, are reasons that volunteers leave, and we can logically infer that, they are also

important candidates to be considered as the factors that affect project success.

4.2 Project features

4.2.1 End user

Researchers have revealed that the developers of “conventional OSS” are

normally end users of the software product, which is an important reason for their success

even though they do not practice rigorous requirement engineering process. Therefore,

we are interested in knowing whether the developers and other team members are the end

users of the civic OSS projects. We want to compare these projects with “conventional

OSS” and see if this could be a factor affecting the success of civic OSS.

Figure 7: End User

39

Figure 7 shows that among all respondents, 46% are not the end users, while 35%

are the end users. 19% say that they may be the end users. In particular, we want to know

the results among developers. Our results show that only 32% of the developers are target

users. This suggests that the majority of the civic OSS projects are not specifically

targeting at software developers or technical users.

Developers may be the end users of the software because it helps their personal

lives or because it is a software development tool (i.e. an operating system, a

programming language, or a web development framework) that they need in their

programming work. Good “conventional OSS” tends to be started by developers who

“scratch their personal itches” [55]. Our results show that few developers are the end

users of the civic tech that they participate in.

4.2.2 Project phase

CFA brigade projects adopt Agile software development methodology, where

software development phases are iterative and interwoven. We ask respondents to choose

the project phases (they can choose multiple answers in that a project can be under

multiple phases at the same time) when they initially joined it. As shown in Table 2, 79

out of the 115 (68.7%) respondents joined the project when it was under the initial

planning phase, or initial planning together with software design, implementation and

other phases. This is consistent with the literature and our observation that people are

more likely to be attracted to a project that is in its early phase. In the alpha phase of a

40

project, participants can get a greater sense of achievement and learn new skills fast since

a new project requires a lot of break-through work.

Table 2: Project Phase When Initially Joining It

4.2.3 Project leadership

“Conventional OSS” is known to be mostly self-organized. But researchers have

also suggested that successful OSS, like Linux, actually has leaders who help control the

software. In our data, 67.8% respondents think that the projects are well led by the

leader(s). 8.7% think that the projects are not well led. And 23.5% respondents point out

that their projects do not have a clear leader. This result suggests that overall, there are

leaders in the projects, and a majority of the projects are well led.

41

4.2.4 Project partner

Figure 8: Existence of a Government/Community Partner

We observe that 78.1% respondents’ projects have a government/community

partner. This is consistent with what CFA advocates—work with local government and

community organizations, from whom they will get access to more data and know the

major challenges facing the community. From our observations of the projects of Code

for America brigades, participants work with city servants and citizens affected by the

problems to gather requirements and form a solution. The existence of a

government/community partner not only provides requirements, but can also help team

members form a feel that their project will be used (Hypothesis 3). We will show the

result of the hypotheses tests in section 4.5.2.

42

4.2.5 Project MVP

From our observation, most CFA projects are ongoing. Minimum viable product

(MVP) is an important milestone for CFA projects to mark their achievements. Our data

shows that 57.3% of the respondents choose to report on a project that has already

reached its MVP milestone. 28.1% report that the MVP of the project that they choose

will soon be completed. Only 14.6% of the respondents say that the MVP of the project

of their choice is not completed or they do not know.

 Figure 9: MVP Completion

4.3 Team dynamics

4.3.1 Core and non-core team size

As reviewd in the literature, successful OSS tend to have a core team of less than

or equal to 10-15 developers, who will create about 80% of the new functionalities. In

43

our civic open source software project, our core team is not limited to developers; anyone

who contributes to the project substantially, such as the UX designers and project

managers, is also considered as core team members.

Figure 10: Core Team Size

As shown in Figure 10, in our data, 41 repondents report that their core team size

is less than 3 people and 57 repondents report a core team size of 3-6 people. Together,

98 (90.7%) respondents indicate that the core team size of CFA projects is 1-6 people,

which is smaller than the core team size of “convential OSS”, even though civic tech

teams include roles other than developers. This difference of team size can be explained

by the differences between civic tech projects and the “convential OSS”. Civic tech

focuses on local community, where the number of available participants are limited by

the size of the community and the number of local civic technologiests. Civic tech

44

projects tend to focus on involving local people to volunteer, not attempting to get more

volunteers from other areas online, although the repository is public. And those outside

the certain community might not be interested enough to join the projects. Additionally,

with the help of new web and mobile development frameworks, most of the applications

developed in CFA brigades are light weight, not requiring much advanced technical

skills. Therefore, the team size can still be considered fit and effective although they are

relatively small.

Figure 11: Non-core Team Size

The non-core teams are those who help with the defect detection, reuqirements

analysis and other software related work. In our results, 10 respondents report a non-core

team of 0 person, and 49 respondents report a non-core team of 1-3 people. 38

respondents report a non-core team of 4-10 people, 8 respondents report a non-core team

45

of 11-30 people, while 3 respondents report a non-core team of size over 30. As we can

see from the comparison of Figure 10 and Figure 11, there are slightly more non-core

teams of size over 10 people than core-teams of size over 10, but the pattern is not

obvious. In order to check the comparison of core-team size and non-core team size for

each project respectively, we create a cross tabulation of the data. Results are shown in

the Table 3.

 Non-core team size

Core team size 0 1-3 4-10 11-30 >30 Total

<3 5 21 13 0 1 40

3-6 4 26 22 5 0 57

7-10 0 2 3 2 1 8

11-20 0 0 0 1 0 1

>20 0 0 0 0 1 1

Table 3: Core vs. Non-core Team Size

From Table 3, we can see that 5 out of 40 (12.5%) respondents report that their

core team size is less than 3 and they do not have any non-core team member. 21 out of

40 (52.5%) respondents report that their core team size is less than 3 and their non-core

team size is 1-3 people. For projects that have a core team of size 3-6, 4 out of 57 (7%)

respondents report that they do not have any non-core team member, while 26 out of 57

(45.6%) respondents report a non-core team of size of 1-3 people. These results show that

about a half of the projects do not have a larger number of non-core team members.

46

The literature suggests that successful OSS developments tend to have an “onion”

team structure. That is, they have a much larger group of non-core developers to fix bugs

and even a larger group of participants who report problems. Our survey results reveal

that for civic OSS projects in CFA, most projects do not have the same “onion” team

structure. In CFA projects, the majority of projects have 1-6 core team members. About

half of all projects have approximately a non-core team no larger than the core team, and

half of them have a slightly larger number of additional contributors than the core-team.

Few projects have a significantly larger group of non-core contributors like successful

“conventional OSS”. One of the possible reasons is that most CFA projects are under

development and are not released yet. There are no ways for these projects to get a very

large number of users to report bugs.

47

4.3.2 Team gender composition

Figure 12: Female Number vs. Male Number

We ask respondents how many males and females that their teams have

respectively. And we give them some range choices: 0, 1-3, 4-10, and 11-30. Referring to

Figure 12, which shows the distributions of the frequency of male number and female

number in each size group, we can see a pattern that in CFA brigade projects teams are

generally composed of more males than females. The mode of the distribution of female

number is 1-3 people, while the mode of the distribution of male number is 4-10 people.

9 respondents report that no female member is on their teams while no respondent report

0 male member on their team. 73 people report 1-3 female members on their team, while

42 people report 1-3 male members on their team. 26 people report 4-10 female members

on their team, while 61 people report 4-10 male members on their team. Only 1 person

48

reports 11-30 females on their team, while 6 respondents report 11-30 males on their

team.

4.3.3 Team communication

Team members in the brigades generally communicate frequently. 56.5% of the

respondents report that they communicate weekly or more frequent than weekly. Over

90% of the respondents communicate at least monthly.

Figure 13: Primary Team Communication Means

Figure 13 shows the primary team communication means. Different than the

“conventional OSS”, which almost exclusively uses email, version control system and

other electronic media to communicate (In early days of “conventional OSS”, there might

not be convenient team chatting applications such as Slack that can be used by OSS

teams), civic OSS projects in CFA brigades rely more heavily on face-to-face

49

communication and chatting applications, which are more spontaneous and less formal

than emails or VCS used in “conventional OSS”. 60% of the respondents report that they

primarily communicate through chatting application while 28.6% of the respondents

primarily communicate face to face. It reflects the fact that they are co-located and their

communications involve more informal discussions. These communication means appeal

to some participants’ motivations of sharing knowledge, hanging out with like-minded

civic hackers, and gaining reputation within the community. They also facilitate solving

implementation issues of the projects.

Figure 14: Team Communication Effectiveness

From the Figure 14, it is observed that 49.1% of the respondents think that their

teams have moderate effectiveness in their communications, while 35.2% of the

respondents report that their teams communicate very effectively.

50

4.4 Software engineering practices

4.4.1 Team-partner/user communication

For projects that have a government or community partner, we ask respondents to

rate the effectiveness of the communications between the team and the partner. Results

are shown in Figure 15. As we review in the literature, involvements of partners are

important to the success of the projects. Our result shows that, the majority of

respondents consider their communications with partners moderately or very effective.

Figure 15: Team-Partner Communication Effectiveness

51

Figure 16: Team-User Communication Frequency

As for the frequency of the communications between the team and the target users

(“users” include organizational partners and individuals who will use the application), 29

respondents email users whenever they have questions regarding the requirements. 18

respondents indicate that their target users come to the meetups every time and they talk

in the meetup, while 14 respondents indicate that they talk to their target users whenever

they show up in the meetup. Among all the respondents, 17 never communicate with

users or only communicate with them during their initial pitch of the idea, which

indicates that the team asserts the requirements with their personal experience or

knowledge of the users. This is consistent with what researchers have discovered for the

OSS requirement elicitation. In the free form answers, one member indicates that users

are part of the development team and they communicate constantly. Another member

52

reports that they respond to users’ requests of features and bug reports via the project’s

Facebook page.

4.4.2 Requirement elicitation

Requirement engineering is an important part of the entire software engineering

process. The methods of requirement elicitation used in CFA brigade projects are shown

in Figure 17. The highest vote - 68 (66.2%) out of all respondents, suggests that a

common practice for them is to use general knowledge to come up with the requirements,

which is consistent with what the literature reveals for “conventional OSS”. The next two

major methods they use are interviewing stakeholders and holding meetings with target

users. What respondents report in the free form answers suggest that they also use social

media to interact with target users, or even integrate users into the project development.

Figure 17: Requirement Elicitation Methods

53

Asserting the requirements may lead to potential problems for software

development later on. However, due to the limited resource and voluntary nature of the

developers and the organizational partners, it is inevitable to assert some requirements

when partners are not available or target users are hard to reach out to.

When it comes to how the requirements are recorded, 33.8% of the participants

report that they document requirements as user stories in natural language, 23.4% of the

respondents use Waffle board or some other tools to record the features of the

application, 21.8% of the respondents use prototypes to illustrate the requirements, 5.6%

of the respondents choose “Use case diagram”, a few free form answers indicate that they

use github issues to record the requirements, and 9.9% of the respondents report that

requirements are not recorded at all. These results reveal that civic OSS projects in CFA

brigades generally adopt an informal requirement documentation process. Natural

languages describing the use cases, Waffle board, and prototypes that specify

requirements are the major means of the requirement documentation. Little effort is

invested in formal requirement specifications.

4.4.3 Partner’s involvement

As we review in the literature, the earlier the partner is involved, the more likely

the partner is going to use the application. In terms of the project phase when the partner

initially gets involved in the projects, 70.6% of the respondents report that it is during the

requirement elicitation phase, 20.6% of the respondents report that it is during design

54

phase. There are 9% of the respondents reporting that the partner is initially involved

during implementation, testing or release phase of the projects.

As for how often the partner is involved in the project, the results are dispersed.

From Table 4, we can see that most of them range from once a week, to less than once a

month.

Frequency %

Less than once a month 22.5%

Once a month 17.5%

Once in two weeks 18.8%

Once a week 26.2 %

Twice a week 1.25 %

More than twice a week 5%

I don't know 8.8%

Table 4: Partner's Involvement Frequency

The involvement of partners during the initial requirement elicitation helps steer

the direction of the software application. Although the frequency of the partner’s

involvement varies, about 69% of the projects meet every month or more frequent than

every month. Considering that most brigades meet weekly, or every other week, the

involvement of partners is quite frequent.

55

4.4.4 Software design

Figure 18: Systematic Architecture and Component Design

43% of the respondents report that their projects do not have a systematic

architecture or component design. We further retrieve the responses only from developer

respondents in that UI designer, tester, or project manager might not have idea about the

architecture design. Results are shown in Table 5. Nearly half of the developers report

that they do not have a systematic architecture or component design. And 19.2% of them

do not know if there is a systematic design.

No Yes I don't know

Developer 48.1% 32.7% 19.2%

Table 5: Developers' Knowledge of the Architecture and Component Design

56

The absence of extensive architecture design fits most of the software applications

in CFA brigades, although the ideal characteristics of an architectural design should

consider scalability, high cohesion and low coupling [15]. From our observations in Code

for Denver/Boulder and the civic tech project repositories [52], most of the projects are

web or mobile applications targeting at local community users rather than developer

users, which is also proved in our survey results shown in Figure 7. Therefore, most of

the projects simply use the existing popular MVC (model-view-controller) architecture,

or do some customization based on existing MVC pattern. In addition, since the

applications focus on local community, they do not have a very large user base, and

scalability and maintenance is not highly prioritized. This leads to little extensive

architecture design.

When it comes to whether the projects have documented interface design, 57% of

the respondents report that they have wireframes or prototypes to document their user

interfaces. 36.6% of the respondents indicate that they do not have these documented user

interfaces.

57

4.4.5 Task assignment

Figure 19: Task Assignment

Consistent with the “conventional OSS”, the civic OSS development also

witnesses tasks taken by developers themselves. 75.3% of respondents give this feedback.

19.4% of them report that project leaders assign tasks after communicating with

developers.

58

4.4.6 Development centrality

Figure 20: Development Centrality

The results of the development centrality among team members are also

consistent with the “conventional OSS”. 81.7% respondents report that a core team

develops most of the features while others help with bug detection, documenting or

peripheral feature development. In the free form answers, 3 respondents report that

everyone is equal in that they all contribute according to their skills or what are assigned

to them. A few respondents report that they have a strong mixture of active and inactive

developers. And a few respondents report that they are at initial planning phase and have

not had any experience with the distribution of contributions at the time of taking this

survey.

59

4.4.7 Project progress rate

Figure 21: Progress Rate of Project

Our data provides a good overview of the progress efficiency. The progress rates

for the projects vary, ranging from less than one week to more than three months. 26 out

of 98(26.5%) respondents report that they make good progress in two weeks, while 9

(9.2%) respondents report that nothing is developed in the project yet. This maybe due to

the initial phase their project is in.

60

4.5 Conceptual model, hypothesis test and prediction model

4.5.1 Variables and conceptual model

We convert our survey items to variables, group them into clusters and illustrate

the key dimensions in civic open source software with a conceptual model.

Predictor factors (Explanatory variables):

Volunteer input: whether the volunteer is the end user of the application, the level

of their interest in the technology being used in the application, whether the volunteer is a

core member, their self-efficacy (the degree they think they can contribute to the

application), and their participation level.

Project features: project size (the number of core team members), partner’s

involvement, and the level of public benefit of the project.

Team dynamics: whether the team is well led, gender composition of the team,

the primary team communication means.

Intermediate measures (Explanatory variables):

Volunteer’s perception: perception of whether the application will be completed

or will be used, their team communication effectiveness.

Success measures (Response variables):

System creation: team member’s satisfaction level, team member’s willingness to

continue in the project, and project progress rate.

We illustrate the potential relationships of the predictor factors, intermediate

measures and success measures in the conceptual model in Figure 22.

61

Figure 22: Conceptual Model of Variables

4.5.2 Hypothesis

Based on the literature and our observations, we form 11 hypotheses. We use the

Spearman’s rank correlation, simple linear regression, and Fisher’s Exact test to test them

on the imputed data sets separately and combine the results. The hypotheses and results

are as follows.

62

H1. Team member’s participation level and willingness to continue in the project

are not independent of him/her being an end user.

 The range of the p-values of our Fisher’s exact tests between the team

member’s category of being an end user or not and the team member’s participation

frequency is from 0.009 to 0.03. The upper bound of the p-value is smaller than the

critical value 0.05, indicating the significance of the evidence. It suggests that team

member’s participation frequency is dependent of him/her being an end user of the

application. However, our result fails to provide evidence that the team member’s

willingness to continue in the project is dependent of him/her being an end user of the

software project that he/she participate in, with the p-values ranging from 0.18 to 0.67.

The lower bound of this range is greater than our critical value 0.05, indicating the lack of

evidence against the null hypothesis. Figure 23 and Figure 24 show the heat map of the

data points — End User versus Participation Level and Willingness to Continue. The

darker the color, the more frequent the data falls in that area.

63

Figure 23: Relationship between “End.user” and “Participation.level”

Figure 24: Relationship between “End.user” and “Willingness.to.continue”

64

H2. Team member’s satisfaction level and willingness to continue in the project

are not independent of him/her being a core team member.

 It is proved that being a core team member or not is not independent of the team

member’s satisfaction level. The range of the p-values is from 1.95e-05 to 0.0004. The

upper bound of this range is smaller than 0.05, indicating that the dependency between

the pair of variables exists. It is also proved that being a core team member or not is not

independent of the team member’s willingness to continue in the project. The range of p-

values is from 1.04e-05 to 7.62e-05. The upper bound of the range is smaller than 0.05,

indicating the existence of dependency. Figure 25 and Figure 26 show the heat map of the

data points — Core team member versus Satisfaction or Willingness to Continue.

Figure 25: Relationship between “Core.team.member” and “Satisfaction”

65

Figure 26: Relationship between “Core.team.member” and “Willingness.to.continue”

H3. Team member’s perception of the project’s likelihood that it will be

completed or will be used is not independent of the partner’s involvement.

 Our Fisher’s Exact test result does not show evidences that there is a

dependency between the presence of a partner of a project and the volunteers’ perception

that the project will be completed. The p-values range from 0.14 to 0.15. The lower

bound of the range is greater than 0.05, which fails to reject the independence of the pair

of variables.

 However, the result of the test for the partner’s presence and the team member’s

perception that the project will be used by target users indicates a dependency between

the two variables. The p-values range from 0.0002 to 0.0013. The upper bound of the

range is smaller than 0.05. Figure 27 and Figure 28 show the heat map of the data points

— Partner.present versus “Will.be.completed” or “Will.be.used”.

66

Figure 27: Relationship between “Partner.present” and “Will.be.completed”

Figure 28: Relationship between “Partner.present” and “Will.be.used”

67

H4. Team members’ high interest in the technology used in the software

application is correlated with high participation level and high willingness to continue.

The result of Spearman’s rank correlation coefficient fails to show a correlation

between team members’ interest in the technology and team members’ participation level

in the project. The average correlation coefficient is 0.116. To see how significant this

averaged coefficient is, we regress the participation level on the team member’s interest

in the technology on 10 imputed data sets and get the pooled p-value 8.805658e-02 (>

0.05) according to Rubin’s rules. However, our result shows evidence that team

member’s interest in the technology does correlate to his/her willingness to continue in

the project. The average correlation coefficient is 0.256, and the combined p-value based

on linear regressions on the ranks of this pair of variables is 6.459888e-03, which is

smaller than our critical value 0.05 and hence shows that the evidence is significant.

H5. Team member’s self-efficacy level (operationalized as the degree that he/she

thinks he/she can contribute to the application) is positively correlated to his/her

willingness to continue.

The average correlation coefficient from our Spearman’s correlation coefficient

analyses is 0.354. The combined p-value based on linear regressions of this pair of

variables is and 1.800383e-03 (< 0.05), which is significant and indicates that as the level

of team member’s self-efficacy increases, his/her willingness to continue in the project

tends to grow stronger.

68

H6. Team communication effectiveness is correlated with the project progress

rate and satisfaction level.

Our results show that as team communication becomes more effective, the project

tends to make progress faster and the team member tends to be more satisfied with the

project. The correlation coefficient between the team communication effectiveness and

the project progress rate is 0.285. Based on the combined result of linear regressions on

this pair of variables on 10 data sets, the pooled p-value is 2.508233e-04 (< 0.05),

indicating a significant evidence of the positive correlation. The correlation coefficient

for the Team communication effectiveness and the satisfaction level is 0.416. The pooled

p-value from the combined result of the linear regressions on this pair of variables on 10

data sets is 3.244151e-04 (< 0.05), indicating the significance of the positive correlation

as well.

H7. Team size (operationalized as core team size) is positively associated with

progress rate.

 Our result gives evidences that the progress rate is associated with the size of

the team. The average correlation coefficient is 0.185. The combined result of linear

regressions shows that the pooled p-value is 1.035558e-03 (< 0.05).

H8. Since the highest motivation of volunteers’ is “help the community”, we

propose that “public benefit” level is positively associated with team member’s

participation level and their willingness to continue.

69

 Our results do not show associations between the “public benefit” level of the

project and the team member’s participation level. The correlation coefficient is -0.081.

The pooled p-value is 0.25 (> 0.05), which is insignificant. In addition, our results do not

show evidence that the “public benefit” level of a project is correlated to the team

member’s willingness to continue. Although the correlation coefficient is 0.252. the

combined result of simple linear regressions shows that the pooled estimate is 0.1566, the

pooled standard error of the estimates is 0.0823, and the pooled p-value is 5.975516e-02

(> 0.05), failing to indicate the significance of the correlation.

H9. Team member’s perception that the software will be used by target users is

positively correlated to their willingness to continue and satisfaction level.

The spearman correlation coefficient for the pair of variables “will be used” and

“willingness to continue” is 0.246. However, the pooled p–value from the combined

result of linear regressions on this pair of variables is 0.4911749 (> 0.05). It fails to show

an evidence of the existence of the correlation between team member’s perception that

the project will be used and his/her willingness to continue in the project.

Our result proves that there’s a strong positive correlation between team

member’s perception that the project will be used and his/her satisfaction level. The

correlation coefficient is 0.488. And the pooled p-value is 3.193897e-07 (< 0.05), which

is significant.

H10. The number of female team members is correlated with the team

communication effectiveness.

70

The average correlation coefficient between the two variables is 0.175.The pooled

p-value is 2.321803e-05 (< 0.05), which indicates an association between the number of

female members on a team and the team communication effectiveness.

H11. The Leadership is correlated with the team communication effectiveness.

Our results indicate that the leadership is positively correlated with the team

communication effectiveness. The correlation coefficient is 0.311 and the pooled p-value

is 5.593157e-03 (< 0.05). The better the team is led by its leader(s), the better the team

communication tends to be.

4.5.3 Logistic regression model

We want to develop models for the prediction of the progression rate of the

project, participants’ willingness to continue and their satisfaction level. Modeling of the

success patterns of civic OSS is essential for better planning, organizing, and practicing

the development process.

Through Logistic regression, we examine the factors associated with the

participants’ satisfaction level, their willingness to continue and the progress rate of the

project. We also examine the significance of those explanatory variables.

Since our success measures— participants’ satisfaction level, their willingness to

continue and the progress rate of the project, are all ordered categorical variables, we use

ordinal logistic regression to perform the analysis.

71

 First, we report the distribution of respondents’ satisfaction level of the projects

and our results of Logistic regression for their satisfaction level.

Figure 29: Satisfaction Level

Figure 29 shows the distribution of satisfaction rating of our respondents. Our

sample has an increasing pattern regarding the satisfaction ratings. To develop a

regression model, based on literature, previous analysis and our observations, we try

independent variables including “Interest of tech”, “Core team member”, “Well led”,

“Public beneficial”, “Will be used”, and “Female number”. We run regressions on ten

imputed data sets. For all variables that are suitable to run with the regression, we get the

following combined results of coefficients and related statistics shown in Table 6.

72

Table 6: Results of Initial Regression for Satisfaction3

From the p-values in Table 6, we can see that the p-values of three groups of

“Female number” are all greater than 0.05.Therefore we drop those variables to refine our

model until we find a set of variables that have at least one significant p-value. The

results are in Table 7.

3	The estimates are drawn by using the “pool” function of the MICE package. The “pool”
function combines estimates by Rubin’s Rules.	

73

Table 7: Results of Refined Regression for Satisfaction4

The results indicate that a strong leadership of the project, the team member’s

identification as a core member, and the public benefit level of the project are significant

predictors for the team member’s satisfaction level. It is worth noting that after we refine

our model by selecting variables according to their p-values, the p-values of those

variables in the refined model are biased downward. Therefore, this selected model is

indicative of possible relations among the variables, rather than verified relations among

the variables.

We convert the coefficients to odds ratios. The result is shown in Table 8.

4	The estimates are drawn by using the “pool” function of the MICE package. The “pool”
function combines estimates by Rubin’s Rules.		

74

Table 8: Odds Ratios of Regression for Satisfaction

As for whether a project is well led or not, compared to the reference group –

“Not well led”, the odds of having a higher satisfaction rating for “There is not a clear

leader” is 14.87 times greater, and the odds of having a higher satisfaction rating for a

“well led” project is 41.58 times greater.

When it comes to how being a core team member predicts his/her satisfaction

rating, compared to the reference group –“Not a core team member”, the odds of having a

higher satisfaction rating for those who are core team members is 7.97 times greater.

 As for how “Public.beneficial” predict the satisfaction level of team members, to

our surprise, the estimates of coefficients are negative and odds ratios are less than 1,

indicating that project with higher level of “Public.beneficial” is less likely to have higher

level of satisfaction among team members. As we can see from Table 7,

“Public.beneficial: Undecided” and “Public.beneficial: Agree” are significant. Referring

to Table 8, compared to the reference group – “Public.beneficial: Strongly disagree”, the

odds of having a higher satisfaction rating for those who are not decided on the project’s

75

level of public benefit is 0.026 times greater. In other words, it is less likely to have

higher satisfaction levels for those who are undecided on the project benefit level

comparing to those who strongly disagree that the project is beneficial to the public. For

those who agree that the project has public benefit, the odds of having higher satisfaction

rating is 0.009 times greater, compared to those who strongly disagree that the project is

beneficial to the public. In other words, team members who agree that the project is

beneficial to the public experience a decrease in the odds of having higher satisfaction

level, compared to those who do not think the project has public benefit.

 Next, we report the distribution of respondents’ willingness to continue their

participation in the projects and our results of Logistic regression for their willingness to

continue in the project.

Figure 30: Willingness to Continue

76

Figure 30 shows the distribution of respondents’ willingness to continue in the

project. We run regression on explanatory variables including “End user”, “Interest of

tech”, “Self efficacy”, “Partner’s involvement”, “Public benefit”, “Team communication

means”, and “Female number”. The combined results of regressions on imputed data sets

are shown in Table 9.

Table 9: Results of Initial Regression for Willingness to Continue5

We ask our respondents the level of their interests in the technologies being used

in the project. The Likert scales are from 1 to 5. “1” is very uninterested, while “5” is

very interested. The reference group is “1” (very uninterested). As we can see from the

table, all p-values except for “Interest.of.tech: 4” and “Interest.of.tech: 5” are greater than

0.05. To refine the model with only one predictor “Interest.of.tech”, we get the following

results in Table 10.

5	The estimates are drawn by using the “pool” function of the MICE package. The “pool”
function combines estimates by Rubin’s Rules.		

77

Table 10: Results of Refined Regression for Willingness to Continue6

As shown in Table 10, two of the p-values are less than 0.05, which indicate the

significance of those two levels of the predictor. The results indicate that strong interests

of the technologies used in the project are significant predictors for the team member’s

willingness to continue in the project. Similar to our regression on team member’s

satisfaction level, the p-values of these two levels of variables in the refined model are

biased downward after we drop other variables. This selected model is indicative of

possible relations among the variables. We convert the coefficients to odds ratios. The

result is shown in Table 11.

Table 11: Odds Ratios of Regression for Willingness to continue

Referring to Table 11, we observe that the odds of being more willing to continue

in the project for those who are interested in the technologies used in the project is 14.05

6	The estimates are drawn by using the “pool” function of the MICE package. The “pool”
function combines estimates by Rubin’s Rules.		

78

times greater than that of those who are very uninterested in the technologies used in the

project. Similarly, the odds of being more willing to continue in the project for those who

are very interested in the technologies used in the project is 7.75 times greater than that of

the reference group.

Lastly, to discover the predictors for the progress rate of the projects, we first run

regression on variables including “Core team size”, “Well led”, “Team-partner

communication frequency”, “Team communication means”. We drop “Core team size”

and “Team-partner communication frequency” because they cause the over-fitting

problem. We end up with the following results in Table 12.

Table 12: Results of Initial Regression for Progress Rate7

From Table 12, it is observed that none of the variables are predictors with all

their p values being greater than 0.05. Therefore, we cannot build a model that predicts

the project progress rate based on the above factors that we are interested.

7	The estimates are drawn by using the “pool” function of the MICE package. The “pool”
function combines estimates by Rubin’s Rules.		

79

Chapter Five: Limitations and Discussions

5.1 Response bias

5.1.1 Sample size

Limited access to inactive brigade members is an important reason for response

bias. We distributed the survey by emailing the list of brigade leaders and also posted the

survey in various brigade communication platforms, including the Slack channels (the

major communication platform). The number of people (active or inactive) in the Slack

channels of all brigades vary from about 30 people to more than 1500 people, suggesting

that there might be a significant number of brigade members who have not seen this

survey or they have seen this survey but do not take it. They might not want to take the

survey because it is time-consuming for them, or they are not currently active, or they do

not hold strong opinions on the projects in the brigade, or they have not participated in a

software application project that they think is suitable for this study.

5.1.2 Representativeness

Locations of respondents

From the results in Chapter 4, we can see that responses from certain brigades are

substantially more than those from some other brigades. A large number of observations

80

are from Code for Denver. Although we sent the survey to 63 brigades across the United

States, we only got responses from 37 brigades and a few from brigades not listed in our

survey.

Roles of respondents

A large number of observations are reported by brigade captains/co-captains, as

we can see from Figure 3 in section 4.1.2. The percentage of brigade captains/co-captains

in our observations may not be consistent with the percentage of them in the actual

brigade projects.

Projects of respondents’ choices

It might be tempted to think that who respond to this survey are those who have

participated in a relatively successful project, or at least an on-going project. But from

our observations, many participants, especially those who have been involved for a long

time, have experienced some unsuccessful or abandoned projects. And at the beginning

of our survey, respondents are instructed to identify any project to answer the survey.

Therefore, it is not fair to believe that they all identify successfully projects to answer the

questions. They might also have a lot of thoughts on those unsuccessful projects that they

want to report and base their answers on. In this case, we believe that there is some

balance in terms of the project successfulness.

However, it is likely that those who are not satisfied with the projects have

already left the projects and hardly have access to this survey, or simply do not take the

81

survey. Therefore, it could be the potential reason of some unbalances in our data. The

variance of opinions of the public benefit level of the project, satisfaction ratings or

willingness to continue is relatively small. For example, few people report the project to

be not beneficial to the public at all. And the distribution of respondents’ satisfaction

level is skewed to the higher levels. Some categories of some predictors have small or

zero cells in the cross tabulations of the data. There could also be desires among

respondents to provide socially desirable answers, which lead to this kind of skewed data

distribution. This type of response bias introduces some issues with the logistic

regression.

In short, the respondents of this study are those who have seen and are willing to

take this survey, and the limited number of respondents who are inactive in the projects at

the time of taking this survey indicates possible limited number of unsuccessful projects

in our data. Therefore, the sample might not represent the CFA community as a whole

and limits the generalizability of the results of this study.

5.2 Accountability

The respondents’ understanding of the survey questions might differ from what

we attempt to ask. For example, in one question, we ask respondents about their primary

role in the project. Then in the next question, we ask them to choose all their roles in the

project if they take multiple roles. The number of choices they are able to choose is not

limited. However, we have seen some observations that choose “Brigade captain/co-

captain” as their primary role but do not include this role in their answers to the question

82

asking all the roles they take. It might be due to the gap of understanding of the questions

between respondents and the survey designer. Respondents might think that they are not

supposed to include their primary role again since they have just answered that question,

or they think the number of items they can select is limited. So they just choose the other

roles that they also take. Therefore, the accountability of these results might not reflect

the reality.

5.3 Logistic regression model

In regression analysis for volunteer’s satisfaction level, for variables like “Will be

used” and “Interest of tech”, we get a problem of over-fitting (complete separation of

data points) when running the regression. Thus we drop them from the regression.

However, there are still possibilities for the variable “Will be used” to predict the

satisfaction level of a team member. It is proved that “Will be used” is correlated with

“Satisfaction” (H9) in section 4.5.2. As we discussed in section 5.1, the problem is

probably due to the limited amount and limited variation of the data used for this

analyses. Although the sample is like this, from the previous analyses, literature review,

and our observations in the brigades, we still consider that “Will be used” is a potential

candidate as a predictor of team member’s satisfaction level. More data needs to be

obtained to test it.

It is observed that although “Self efficacy” is correlated with “Willingness to

continue” (H5) as we analyzed in section 4.5.2, it is not a significant predictor in the

regression for “willingness to continue”. This is perhaps because of the “confounding

83

bias”. A certain other variable influences both the “Self efficacy” and “Willingness to

continue”. In other words, a certain other variable confounds the relation between “Self

efficacy” and “Willingness to continue”. In this case when we have both that variable and

“Self efficacy” in the regression, coefficients of “Self efficacy” might not be significant.

5.4 Success measures

There can be many success measures to assess civic OSS development. But we

only choose three that are suitable in our case. We exclude some success measures for the

following reasons. First, although we gather a lot of data about the application

development practices, which are important explanatory variables for software quality,

we do not use software quality to measure success of civic OSS in our study because the

CFA projects are mostly ongoing, and it is hard to measure the software quality such as

code quality or defect density under this circumstance. Therefore, we do not explore the

relationship between development practices and software success in terms of quality.

What’s more, we cannot use the number of team size as a success measure. Different than

“conventional OSS”, which are normally pure online projects in which developers rarely

meet, civic OSS focuses on solving local issues by local volunteers. Therefore, the size of

community and the number of local technologists affects the size of the project team.

Finally, since most projects are not released, users are hard to identify. So we cannot use

user interest, user satisfaction, or number of downloads as success measures.

84

Chapter Six: Conclusion and Future Work

6.1 Conclusion

 This study reveals that the top motivation of volunteers to participate in the civic

software development is to help the community. The motives of voluntary action for

social movements and community work, and motives of working in teams both apply to

the participants of civic open source software development.

 A majority of respondents joined the projects during initial planning phase.

Nearly half of the developers report that they do not have a systematic architecture or

component design. The core team size is mostly 1-6 people and most of the projects do

not have a significant larger number of non-core contributors who help find problems or

fix bugs. Project teams generally have more male than female members. The primary

team communication means are chatting application and face-to-face. And most team

members consider their communications moderately or very effective.

Most projects have a government/community partner. Team members tend to

meet partners every month or more frequently. As for requirement elicitation methods,

66.2% of the respondents report that they use their general knowledge to come up with

the software requirements, while “interview with stakeholders” and “meetings with the

target users” are slightly less used.

85

Similar to conventional OSS, in civic OSS, developers choose tasks instead of

being assigned tasks in their projects. And development work is significantly attributed to

a small number of core contributors.

A conceptual model that captures the groups of variables is presented. The model

includes clusters of explanatory variables such as volunteer input, project features, team

dynamics and volunteers’ perception of the project, and a group of success measures in

terms of system creation, each of which contains multiple variables.

Our study shows that there is a dependency between team member’s identification

as an end user of the software and the team member’s participation frequency in the

project. Both of the team member’s satisfaction level and his/her willingness to continue

in the project are dependent of his/her identification as a core team member. We also find

that the team member’s perception that the software will be used by target users is

dependent of the existence of a government/community partner for the project. The more

likely that team members feel the project will be used, the more likely they will have

higher satisfaction levels.

In addition, volunteer’s interest in the technology used in the software

development and his/her high self-efficacy level are correlated with his/her willingness to

continue in the project as well. It is also proved that the better the team is led by a team

leader, the more effectively the team members communicate. And the more effectively

team members communicate, the more efficient that project makes progress and the more

satisfied that team members feel.

86

 Finally, our logistic regression shows that, leadership, team member’s

identification as a core team member, and the public benefit level of the projects are

predictors for the satisfaction level of team members. Comparing to a project that is not

well led, a well-led project or a project without a clear leadership has higher odds of

having a higher satisfaction level. Compared to not being a core team member, being a

core team member makes him/her have higher odds of being more satisfied with the

project. Compared to volunteers who strongly disagree that a project is public beneficial,

those who are undecided on the project’s public benefit level or who agree that the

project is public beneficial have lower odds of being more satisfied with the project. Our

results also show that, compared to volunteers who are very uninterested in the

technologies used in the project, those who are interested or very interested in the

technologies experience an increase in the odds of being more willing to continue in the

project.

6.2 Future work

Firstly, we would like to collect more data to make the results of this study more

generalizable. The number and variance of observations is limited, which needs to be

addressed by collecting more representative data to make the logistic regression fit better.

Additionally, collecting more data from those who are not currently active in the projects

can help get more insights into why people leave the projects and provide lessons for

better management.

87

Secondly, we would like to study the development process in a qualitative way.

Interviews will help provide a concrete and accurate description of the software

development process currently adopted in the brigades. Some researchers, who have been

core team members of the Apache server project, draft a good description of the

development process and have it checked by other team members. As participants of

CFA projects, we would like to interview brigade members or have them draft a

description to provide a clear overview of the development process and find more

insights.

Finally, a longitudinal study on the project level would help track the

development trends, such as the change of team sizes, development practices,

advancements of project, and team member’s satisfaction levels. It may suggest other

determinants of project success.

88

References

[1] Stol, Klaas-Jan, Muhammad Ali Babar, Barbara Russo, and Brian Fitzgerald. "The
use of empirical methods in open source software research: Facts, trends and
future directions." In Proceedings of the 2009 ICSE Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development, pp. 19-
24. IEEE Computer Society, 2009.

[2] Ghosh, Rishab A., Ruediger Glott, Bernhard Krieger, and Gregorio Robles.
"Free/libre and open source software: Survey and study." (2002).

[3] Hertel, Guido, Sven Niedner, and Stefanie Herrmann. "Motivation of software
developers in Open Source projects: an Internet-based survey of contributors to
the Linux kernel." Research policy 32, no. 7 (2003): 1159-1177.

[4] Steinmacher, Igor, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and David
F. Redmiles. "A systematic literature review on the barriers faced by newcomers
to open source software projects." Information and Software Technology 59
(2015): 67-85.

[5] Crowston, Kevin, and James Howison. "The social structure of free and open source
software development." First Monday10, no. 2 (2005).

[6] Gasser, Les, and Walt Scacchi. "Towards a global research infrastructure for
multidisciplinary study of free/open source software development." In IFIP
International Conference on Open Source Systems, pp. 143-158. Springer,
Boston, MA, 2008.

[7] Stewart, Katherine, and Tony Ammeter. "An exploratory study of factors influencing
the level of vitality and popularity of open source projects." ICIS 2002
Proceedings (2002): 88.

[8] Mockus, Audris, Roy T. Fielding, and James Herbsleb. "A case study of open source
software development: the Apache server." In Proceedings of the 22nd
international conference on Software engineering, pp. 263-272. Acm, 2000.

[9] Klug, Michael, and James P. Bagrow. "Understanding the group dynamics and
success of teams." Royal Society open science 3, no. 4 (2016): 160007.

[10] Aberdour, Mark. "Achieving quality in open-source software." IEEE software 24,
no. 1 (2007).

[11] Zhao, Luyin, and Sebastian Elbaum. "A survey on quality related activities in open
source." ACM SIGSOFT Software Engineering Notes 25, no. 3 (2000): 54-57.

89

[12] Subramaniam, Chandrasekar, Ravi Sen, and Matthew L. Nelson. "Determinants of
open source software project success: A longitudinal study." Decision Support
Systems 46, no. 2 (2009): 576-585.

[13] Lee, Sang-Yong Tom, Hee-Woong Kim, and Sumeet Gupta. "Measuring open
source software success." Omega 37, no. 2 (2009): 426-438.

[14] Crowston, Kevin, Kangning Wei, James Howison, and Andrea Wiggins. "Free/Libre
open-source software development: What we know and what we do not
know." ACM Computing Surveys (CSUR) 44, no. 2 (2012): 7.

[15] Sommerville, Ian. Software engineering. Pearson, 2016.

[16] Crowston, Kevin, Hala Annabi, James Howison, and Chengetai Masango. "Effective
work practices for software engineering: free/libre open source software
development." In Proceedings of the 2004 ACM workshop on Interdisciplinary
software engineering research, pp. 18-26. ACM, 2004.

[17] Raymond, Eric S. "The cathedral and the bazaar-musings on Linux and open source
by an accidental revoltionary (rev. ed.)." (2001): I-XIV.

[18] Laurent, Andrew M. St. Understanding open source and free software licensing:
guide to navigating licensing issues in existing & new software. " O'Reilly Media,
Inc.", 2004.

[19] Bezroukov, Nikolai. "Open source software development as a special type of
academic research: Critique of vulgar Raymondism." First Monday 4, no. 10
(1999).

[20] Lee, Melissa, Esteve Almirall, and Jonathan Wareham. "Open data and civic apps:
first-generation failures, second-generation improvements." Communications of
the ACM 59, no. 1 (2015): 82-89.

[21] Stephens,John, “Civic Technology – Open data and Citizen Volunteers as a
Resource for North Carolina Local Governments” 2017

[22] Mccann, Laurenellen. “But what is ‘civic’”? https://civichall.org/civicist/what-is-
civic/ Accessed: 09/10/2018.

[23] Schrock, Andrew. Civic Tech: Making Technology Work for People. Rogue
Academic Press, 2018

[24] Stallman,Richard. “Free Software is even more important now.”
http://www.gnu.org/philosophy/free-software-even-more-important.html
Accessed: 03/20/2018

90

[25] Ermoshina, Ksenia. "Democracy as pothole repair: Civic applications and cyber-
empowerment in Russia." Cyberpsychology: Journal of Psychosocial Research on
Cyberspace 8, no. 3 (2014).

[26] Code for All network’s mission. https://codeforall.org Accessed: 03/20/2018

[27] https://www.getcalfresh.org/en/about Accessed: 03/20/2018

[28] https://www.detroitwaterproject.org Accessed: 09/18/2018

[29] Lakhani, Karim R., and Robert G. Wolf. "Why hackers do what they do:
Understanding motivation and effort in free/open source software projects."
(2003).

[30] Zeitlyn, David. "Gift economies in the development of open source software:
anthropological reflections." Research policy32, no. 7 (2003): 1287-1291.

[31] Roberts, Jeffrey A., Il-Horn Hann, and Sandra A. Slaughter. "Understanding the
motivations, participation, and performance of open source software developers:
A longitudinal study of the Apache projects." Management science 52, no. 7
(2006): 984-999.

[32] Rising, Linda, and Norman S. Janoff. "The Scrum software development process for
small teams." IEEE software 17, no. 4 (2000): 26-32.

[33] Pentland, Alex. "The new science of building great teams." Harvard Business
Review 90, no. 4 (2012): 60-69.

[34] Faraj, Samer, and Lee Sproull. "Coordinating expertise in software development
teams." Management science 46, no. 12 (2000): 1554-1568.

[35] Yamauchi, Yutaka, Makoto Yokozawa, Takeshi Shinohara, and Toru Ishida.
"Collaboration with Lean Media: how open-source software succeeds."
In Proceedings of the 2000 ACM conference on Computer supported cooperative
work, pp. 329-338. ACM, 2000.

[36] Herbsleb, James D., and Rebecca E. Grinter. "Splitting the organization and
integrating the code: Conway's law revisited." In Proceedings of the 21st
international conference on Software engineering, pp. 85-95. ACM, 1999.

[37] Crowston, Kevin, Qing Li, Kangning Wei, U. Yeliz Eseryel, and James Howison.
"Self-organization of teams for free/libre open source software
development." Information and software technology 49, no. 6 (2007): 564-575.

91

[38] German, Daniel M. "The GNOME project: a case study of open source, global
software development." Software Process: Improvement and Practice 8, no. 4
(2003): 201-215.

[39] Brigade Organizer’s Playbook, https://brigade.codeforamerica.org/resources
Accessed: 03/21/2018

[40] Noll, John. "Requirements acquisition in open source development: Firefox 2.0."
In IFIP International Conference on Open Source Systems, pp. 69-79. Springer,
Boston, MA, 2008.

[41] Scacchi, Walt. "Understanding the requirements for developing open source
software systems." IEE Proceedings-Software 149, no. 1 (2002): 24-39.

[42] Reis, Christian Robottom, and Renata Pontin de Mattos Fortes. "An overview of the
software engineering process and tools in the Mozilla project." In Proceedings of
the Open Source Software Development Workshop, pp. 155-175. 2002.

[43] DiBona, Chris, and Sam Ockman. Open sources: Voices from the open source
revolution. " O'Reilly Media, Inc.", 1999.

[44] Nichols, David M., and Michael B. Twidale. "Usability and open source software."
(2002).

[45] Henderson, Lisa GR. "Requirements elicitation in open-source
programs." CrossTalk-The Journal of Defense Software Engineering 13, no. 7
(2000): 28-30.

[46] Mockus, Audris, Roy T. Fielding, and James D. Herbsleb. "Two case studies of open
source software development: Apache and Mozilla." ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, no. 3 (2002): 309-346.

[47] Crowston, Kevin, James Howison, and Hala Annabi. "Information systems success
in free and open source software development: Theory and measures." Software
Process: Improvement and Practice 11, no. 2 (2006): 123-148.

[48] Wynn, Donald E. "Organizational structure of open source projects: A life cycle
approach." In Abstract for 7th Annual Conference of the Southern Association for
Information Systems, Georgia. 2003.

[49] Bonaccorsi, Andrea, and Cristina Rossi. "Why open source software can
succeed." Research policy 32, no. 7 (2003): 1243-1258.

[50] Krishnamurthy, Sandeep. "Cave or community?: An empirical examination of 100
mature open source projects." (2002).

92

[51] Code for America Blog, https://medium.com/code-for-america/about Accessed:
03/10/2018

[52] Code for America project repositories, https://brigade.codeforamerica.org/projects
Accessed: 03/10/2018

[53] Netcraft Web Server Survey, https://news.netcraft.com/archives/category/web-
server-survey/ Accessed: 09/25/2018

[54] History of the Mozilla Project, https://www.mozilla.org/en-US/about/history/details/
Accessed on 09/25/2018

[55] Raymond, Eric S. The Cathedral and the Bazaar,
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s02.html
Accessed on 09/25/2018

[56] Code for America Wiki, https://en.wikipedia.org/wiki/Code_for_America Accessed:
03/10/2018

93

Appendix: Survey questionnaire

1. Which brigade do you volunteer in? Code for _______

2. What’s your gender identity?

Female
Male
Other

3. Are you currently active in the brigade?

Yes
No

4. How long were you or have you been involved in the brigade?
Less than 3 months
3-6 months
6 months - 1 year
1 – 2 years
3-5 years
More than 5 years

5. How often do you come to the meetups to contribute when you’re active in the
brigade?
Less than once a month
Once a month
Every other week
Once a week
Twice a week
More than twice a week

 (If you are currently involved in multiple projects, please identify for your self a
representative project and base your responses on that to answer the questions; If you
are not currently participating in the projects, please base your responses on the last
project to which you contributed to answer the questions)

6. What do you identify as your primary role in the project? (select one)
Front-end developer
Back-end developer
UX designer
Product manager
Testing

94

Documenting
Application partner
Brigade captain/co-captain
Brigade organization helper
Other, please specify ________

7. What are your roles in the project (if you have more than one role)? (select all that
apply)
Front-end developer
Back-end developer
UX designer
Product manager
Testing
Documenting
Application partner
Brigade captain/co-captain
Brigade organization helper
Other, please specify ________

8. Are you also an end user of the project for which you’re responding?

Yes
No
Maybe

9. I think this project will significantly benefit the public:

Strongly disagree
Disagree
Undecided
Agree
Strongly agree

10. What was the project status when you first joined the project?(choose all that

apply)
Initial planning
Application User Interface Designing / Architecture designing
Implementation
Testing
Release
Maintenance

11. To what extent are you interested in the programming languages, frameworks or

other technologies used by the project? (1 is very uninterested, 5 is very
interested)
1

95

2
3
4
5

12. Are the projects well led by the project leader(s)?

Yes
No
There’s not a clear leader in this project

13. Are there partners (government/NGO/individuals who are the target users)

involved in the project?
Yes
No
I don’t know

14. Do you think the project will be completed?
Definitely yes
Probably yes
Might or might not
Probably not
Definitely not
It is already completed

15. Do you think the project will be used by target users?

Definitely yes
Probably yes
Might or might not
Probably not
Definitely not
It is already completed

16. How many team members were in the project when you first joined it?

<3
3-6
7-10
11-20
<20

17. In an average month, how many members make substantial contribution to the
code or design (i.e., core team)?
<3
3-6
7-10

96

11-20
<20

18. How many people help contribute to the project but are not the members of core

team (for example, those who help discover defects, analyze requirements,
publicize the application or communicate with end users)?
0
1-3
4-10
11-30
>30

19. In an average month, how many females are in your whole project team(core plus
non-core team)?
0
1-3
4-10
11-30
>30

20. In an average month, how many males are in your whole project team (core and

non-core team)?
0
1-3
4-10
11-30
>30

21. How often do you communicate the requirements, implementation issues or

progress with other team members?
More than weekly
Weekly
Every Two weeks
Monthly
Every two to three months
Less than every three months
Never

22. What is your primary way of communicating the project with the team members?

Face to face
Email
Slack/Flowdock or other team chatting application
Other, please specify ________

97

23. How effective is your communication with other team members?
Extremely effective
Very effective
Moderately effective
Slightly effective
Not effective at all

24. How effective is the communication between your team and the partner? (This
question is only displayed to the respondent who select “Yes” to question number
13)
Extremely effective
Very effective
Moderately effective
Slightly effective
Not effective at all

25. How does your team capture the requirements of the software application?

(Choose all that apply)
Interviews with stakeholders
Surveys of target users
Meetings with the target users
Background reading
Use our general knowledge to come up with or supplement the requirements
Other, please specify ________

26. How often do you communicate with the users to confirm the requirements?
Almost every meetup we talk with users about the requirements
Whenever the users come to the meetup
Email users whenever we have questions regarding the requirements
Only communicated with users when they initially pitched the project idea
Never. We use our general knowledge to come up with the requirements
I don’t know
Other, please specify ________

27. How are the requirements recorded? (choose all that apply)
Requirements are not recorded.
User stories/ use cases statements in natural language
Use case diagrams
We use prototypes to illustrate the requirements
We use waffle board or other tools to record the feature requirements of the
application
State transition diagrams
Other, please specify ________

98

28. Is there a systematic software architecture or component design?
Yes
No
I don’t know

29. Is there a documented user interface design (prototype/wireframe) in the project?

Yes
No
I don’t know

30. When did the external partner first get involved in the project? (This question is

only displayed to the respondent who select “Yes” to question number 13)
Requirement elicitation phase
Design phase
Implementation phase
Testing phase
Release phase
Maintenance phase

31. How is the partner involved in the project? (select all that apply)(This question is
only displayed to the respondent who select “Yes” to question number 13)
Communicate requirements and solutions face to face
Test the features of the application
Email
Slack/Flowdock or other team chatting application
Other, please specify ________

32. How often does the partner of the project get involved in the project? (This
question is only displayed to the respondent who select “Yes” to question number
13)
Less than once a month
Once a month
Once in two weeks
Once a week
Twice a week
More than twice a week

33. How are tasks assigned to different developers?

Developers choose tasks
Project leader assign tasks after communicating with developers
Other, please specify ________

34. What’s the time interval to release a new feature or have a substantial styling

improvement?

99

Less than a week
One week
Two weeks
One month
One to three months
More than three months
Nothing is developed in the project

35. Are the functionalities of the application developed equally by all developers, or

does a core team develop most of the functionalities?
Every team member equally develop same amount of features (including UI
design or project coordination)
A core team develops most of the features while others help with smaller features
or detect bugs or fix bugs
Other, please specify ________

36. Was the MVP (minimum viable product) of your project completed?

Yes
No
Will soon be completed
I don’t know

37. Are you a core team member (make substantial contribution to the code or

design)?
Yes
No
Maybe

38. What motivated you to participate? (choose up to 3)
Improve programming/UI design/project management skills
Solve your own problem
Want to help the community
Social activities (hang out with people)
Make career advancement
Gain reputation among the community
Share knowledge and skills
Help publicize my app and increase its usage
To get help in realizing a software application idea
Solve a problem that can’t be solved by commercial product
Other, please specify ________

39. I feel that my level of skills to contribute to the project is:

Inadequate to contribute substantially
Adequate for small contribution

100

Adequate for substantial contribution

40. What are the reasons that you decided to stop contributing? (choose up to 3) (This
question is only displayed to the respondent who select “No” to question number
3)
I no longer have time to participate.
I don’t feel I have the right skills to contribute to the projects.
The project became inactive.
The projects were not of interest to me.
I feel that the project goals might not be achieved.
The projects do not have much civic benefits.
The projects are already almost completed so I don’t feel a need in participation.
The atmosphere there is not inclusive enough.
I can’t get enough help when I encountered problems.
It does not help with improving my skills/experience/career.
I moved to another city.
Other, please specify ________

41. If you have time, are you willing to continue (if you are active now) or return (if

you are not active now) to contribute to the projects?
Yes
No
Maybe

42. How do you rate your overall satisfaction of the project (1 is very unsatisfied, 5 is

very satisfied)?
1
2
3
4
5

43. Is there anything else you want to say about participating in the projects or the

survey? _____________

	Motivations, Team Dynamics, Development Practices and How They Impact the Success of Open Source Software: A Study of Projects of Code for America Brigades
	Recommended Citation

	Microsoft Word - Le Chang-Thesis-final.docx

