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Abstract 

Mathematical models can be very useful for understanding complicated systems 

and for testing algorithms through simulation that would be difficult or expensive to 

implement.  This dissertation presents a model that attempts to simulate the sound 

localization performance of persons using bilateral cochlear implants.  The expectation is 

that this model could prove to be a useful tool in developing new signal processing 

algorithms for neural encoding strategies. 

The head related transfer function (HRTF) is a critical component of this model, 

and in the ideal case, provides the base characteristics of head shadow, torso and pinna 

effects.  This defines the temporal, intensity and spectral cues that are important to sound 

localization.  By building on the HRTF, a sound source localization model can be 

constructed. 

This model was first developed to simulate normal hearing persons and validated 

against published literature on HRTFs and localization.  The model was then further 

developed to account for the differences in the signal pathway of the cochlear implant  

(CI) user due to sound processing effects, and the microphone location versus pinna and 

ear canal acoustics.  Finally, the localization error calculated from the model for cochlear 
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implant users was compared to published localization data obtained from these hearing 

impaired patients in order to validate the modified model. 

Results of the normal hearing model correlated closely with localization 

performance data published in the literature, with localization error of the model only 

slightly greater than that of normal hearing subjects.  The cochlear implant population has 

a more broadly distributed range of localization error than that of the normal hearing 

population, and in addition, the mean error is significantly poorer.  The performance of 

the cochlear implant model fell within the range of error reported in the research 

literature for cochlear implant users.  This close correspondence with the published 

performance data suggests that the model developed in this dissertation provides a 

reasonably good approximation of sound source localization for normal hearing subject 

and persons with bilateral cochlear implants. 
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CHAPTER 1 

Introduction 

 

1. Overview 

This work builds upon the author‟s previous master‟s degree work in that it 

continues to model the differences between the performance of cochlear implant (CI) 

users and that of normal hearing listeners.  It is believed that this will help better 

understand the limitations of cochlear implants and will provide tools that may eventually 

prove useful in helping to develop better signal processing algorithms for neural encoding 

strategies in cochlear implants.  In this dissertation, a brief introduction to the topic of 

this study is first presented. Then a statement of the problem and the purpose of this study 

are described. A literature review is provided for background of the research problem, 

and the public data and methods that were used in this study are described. 

A mathematical representation of the auditory system‟s localization mechanism 

was developed and then realized using MatLab to create a model that could be used to 

process acoustic signals in order to extract localization information.  Finally, this model 

was adapted from a normal hearing implementation to one representing typical cochlear 

implant signal processing algorithms.  Both the simulated normal hearing and cochlear 

implant model were validated against published data from the research literature. 
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The core of the model developed in this dissertation is the human head related 

transfer function (HRTF).  A number of techniques have been used by researchers to 

model the human HRTF and its impact on localization of sound.  These models typically 

take into account head shadow and pinna (outer ear) effects, and their impact on 

interaural (between ear) spectral, timing, and intensity cues.  A person with two normal 

hearing ears and an intact auditory nervous system uses these cues in order to localize the 

direction from which a sound is coming. 

In contrast, users of bilateral cochlear implants have differing, more limited and 

degraded cues available to them for sound localization.  This is due to several factors 

including, in current cochlear implant sound processors, that only some of the interaural 

intensity and time cues are maintained, the microphone is placed above and behind the 

ear such that cues from pinna and ear canal acoustics are lost, and the damaged nervous 

system may not be able to utilize all cues that are provided.  The relative impact of 

differences in the physical cues received by the auditory system of the implant user 

versus differences in the ability of the damaged auditory nervous system to process the 

bilateral inputs is not yet clear and could benefit from further study.   

2. Statement of the problem and purpose of the study 

Problem: 

To model the differences in localization ability between bilateral cochlear implant 

users and normal hearing listeners, some factors related to cochlear implant sound 

processing need to be considered.  These include the fact that cochlear implant users have 
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differing head to microphone geometry and do not have the same pinna and ear canal 

effects as normal listeners, and that the signal processing of cochlear implants results in a 

decrease in bandwidth, a loss of frequency resolution, and degradation in some interaural 

cues.  It is uncertain how much of the performance deficit of bilateral cochlear implant 

users is due to these factors versus that of central auditory processing deficits. 

Hypothesis: 

The poorer performance of bilateral cochlear implant users on auditory 

localization compared to normal listeners is primarily due to a combination of differences 

in the HRTF and degradation of the cues by the signal processing of the implants. 

Purposes of the study: 

To better understand the effect of the loss of physical cues due to cochlear implant 

signal processing on the auditory localization abilities of bilateral cochlear implant users 

compared to normal hearing subjects. 

To help determine what effect the location of the cochlear implant sound 

processor microphone above the pinna has on the pole and zero trajectory of the HRTF as 

a function of source location, relative to the normal ear situation. 

Study Approach: 

This study was conducted in two parts, after the mathematical basis of the model 

was defined.  First, a MatLab model was developed using the HTRF for the normal 

hearing listener, and this element was incorporated into a simulation of auditory 
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localization.  The model was validated using published HRTF data from a KEMAR 

manikin
1
, and against published localization data collected from normal hearing subjects.  

Second, the model was modified to test the hypothesis that the relatively poor localization 

performance of bilateral cochlear implant users is primarily due to a combination of 

factors including degradation of interaural intensity, and especially timing and spectral 

cues due to sound processor signal processing, and loss the of pinna and ear canal cues 

because of placement of the microphone.  The resulting model was used to simulate the 

performance of bilateral cochlear implant users, and published data on sound localization 

by this population were compared to the simulated results of the model to test the 

hypothesis of this dissertation.   

3. Background and literature review 

Predicate modeling work 

In previous modeling research conducted within the master's thesis of this author, 

simulated electrically-evoked auditory brainstem response (EABR) waveforms were 

generated for cochlear implant users through the use of an algorithm coded in MatLab.  

This model used as an input a unitary response derived through deconvolution of auditory 

brainstem responses in order to produce an EABR, as would be elicited in the brainstem 

of a person using a cochlear implant.  In this previous work, a function vector was used to 

create a model of the combined firing of the neurons of the auditory nervous system. This 

                                                 
1
 KEMAR (Knowles Electronic Manikin for Acoustic Research) simulates average human torso, head, and 

pinna effects.  It is often used as the standard in acoustic research. 
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combined firing is what is detected when conducting an EABR measurement, if a 

sufficient number of neurons are activated to elicit a measurable response.  Additional 

equations were derived representing the latency and stimulus amplitude scaling functions 

present within the auditory nervous system.  Other neural activity that can contaminate an 

ABR recording were also modeled, and combined with the simulated auditory brainstem 

response. 

The responses generated by the MatLab model were often of better morphology 

and clarity than measured waveforms, but they had similar amplitudes and intensities 

compared with both published data and those empirically collected on the two subjects 

evaluated in that study.  Even the threshold of response in the intensity functions was a 

reasonably good match to measured data (Miller and Matin, 2009), showing that MatLab 

modeling  can be an effective method for understanding performance of cochlear implant 

users. 

This earlier MatLab modeling work led to the author's interest in the localization 

model that is the subject of this dissertation.  As with the earlier work, it is hoped that the 

localization model could prove to be a potentially useful tool for future cochlear implant 

research. 

Normal binaural listening benefits 

There are three primary effects ascribed to binaural listening in normal ears: the 

head shadow effect, the binaural summation and redundancy effect, and the binaural 

squelch effect (e.g. Durlach and Colburn, 1978).  The latter two effects result in better 
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speech understanding due to the ability of the normal brainstem nuclei to fuse or integrate 

information arriving at each ear.  Binaural summation refers to the fact that sounds 

presented to both ears rather than just one are actually perceived as louder, and binaural 

redundancy refers to improved sensitivity to fine differences in the intensity and 

frequency domains when listening with both ears rather than just one (e.g. Bronkhorst 

and Plomp, 1988).  The binaural squelch effect (also called binaural unmasking) refers to 

the fact that the normal auditory nervous system is “wired” to help extract a desired 

signal out of loud background noise by combining timing, amplitude and spectral 

difference information from both ears so that there is a better central representation than 

would be had with only information from only one ear (e.g. Zurek, 1993).   

In contrast to the binaural effects that require the central nervous system to use the 

information supplied, the head shadow effect is purely a physical phenomenon that is one 

component of the head related transfer function.  It refers to the situation where speech 

and noise signals are coming from different directions (i.e. are spatially separated), so 

that there is always a more favorable signal-to-noise ratio (SNR) at one ear than at the 

other because the head attenuates sound.  The amount of attenuation of sounds from the 

opposite side of the head is dependent upon frequency, impacting primarily frequencies 

higher than about 1500 Hz (Shaw, 1974) and ranging from about 7 dB through the speech 

range, to as much as 20 dB or more at the highest frequencies.    

Both central nervous system integration and effects of the head shadow are 

involved in what is perhaps the most well-known practical binaural benefit, and the factor 



 

7 

 

studied in this dissertation, which is the ability to lateralize (left-right distinction) or 

localize (more fine gradients in the sound field).  This function is dependent on auditory 

system perception of interaural differences in time, intensity, and phase (e.g. Yost and 

Dye, 1997).  Interaural time differences (ITDs) provide the information necessary to 

locate the direction of low frequency sounds below about 1500 Hz (Shaw, 1974), while 

for sounds that are higher in frequency, the main cue for horizontal plane localization is 

intensity, called the interaural level difference (ILD) that occurs because of the head 

shadow effect (Yost and Dye, 1997). 

The normal head-related transfer function (HRTF) 

The HRTF refers to the characterization of the different time, spectral, and 

intensity cues for sounds arriving at each ear from different directions, due to a 

combination of effects on sound from the head, torso, and pinna.  These provide 

interaural difference cues used for localization. 

Figure 1 illustrates schematically how time of arrival and intensity differ at the 

two ears to allow a normal hearing listener to determine the direction from which the 

sound is coming.  Duplex theory, first described by Lord Rayleigh in 1907, describes 

interaural time and level differences (ITDs and ILDs) for sound reaching the two ears as 

a function of that sound.  As Figure 1 shows, the path from the source to each ear is 

different and in this example, the distance from the source to the left ear is greater than 

the distance from the source to the right ear.  The difference in time that it takes the 

sound  to travel to each ear is defined as the ITD.  ITD is considered to be the most 
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prominent characteristic in determining where the sound source is located.  It is however, 

usually not the only characteristic available for making that determination.  As 

mentioned, there is the ILD, and there are also other factors that can be used.  This is 

fortunate, as there are ambiguities that cannot be resolved through the analysis of ITD 

alone, and thus the necessity of analyzing these other cues. 

 
 

 

Figure 1.  Diagram illustrating the time and intensity of sound arrival from a single 

source.  It can be seen that the sound waves arrive later at one ear compared to the other, 

depending on the location of the sound source.  Intensity is a function of distance from 

the sound source and therefore it is obvious that the intensity level will also be different. 

(from Miller and Matin, 2011) 

If the sound source is permitted to vary in elevation and distance, as well as 

azimuth, then ITD and ILD cues do not necessarily allow the determination of a unique 
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location.  This was first noted by Hornbostel and Wertheimer in 1920, when they 

described the locus of all points sharing similar ITD characteristics as resembling the 

surface of a cone (Figure 2).  This set of points in space is often referred to as the "cone 

of confusion", since a sound source located at any of the points on this cone appears to be 

indistinguishable from the other points, as described by the duplex theory. 

 
 

Figure 2.  Illustration of the cone of confusion, the set of sound source coordinates that 

have the same ITD characteristics. 

 

For a sound that has broad spectral content, pinna effects help to resolve the 

ambiguities of the cone of confusion.  Sound resonating within the convolutions of the 

pinna is transformed and thus takes on differing spectral characteristics that vary 
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depending on the azimuth and elevation of the sound source.  Certain frequencies are 

attenuated, creating spectral notches that provide additional auditory cues allowing 

improved localization of the sound source.  

In order to extract these various auditory cues, the HRTF must be understood so 

that ITD, ILD, and other acoustic characteristics can be identified and analyzed.  Figure 3 

shows how the signal magnitude is affected over a range of frequencies as the signal 

source azimuth is varied (rotated about the subject). 

 

Figure 3.  Magnitude response of the measured HRTFs on the horizontal plane.  This 

depicts how the frequency response is shaped by head shadow, pinna and torso as the 

sound source is rotated about the body.  (from Chanda and Park, 2005) 
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 In this plot a characteristic notch in the frequency response is seen which has a 

linear relationship to azimuth.  This relationship, which provides an important spectral 

cue and is often used in localization models, has come to be referred to as the first notch 

(FN) (Rice et al., 1992).  Indeed, when examining the full spectral characteristics of the 

HRTF, it is found that there are multiple notches in the response.  The first notch is a 

commonly studied feature, but one can see in the plot that there are others as well. 

The literature on modeling of HRTF 

There has been a great deal of modeling work of the HRTF conducted by various 

researchers, using a number of different techniques.  Sometimes the simpler, directional 

transfer function (DTF) is used.  The DTF is the direction specific component of the 

HRTF; that is, components of the HRTF that are the same for all directions are subtracted 

and what remains is the DTF.  Some of the methods that have been developed for 

modeling the HRTF include: 

 State space model (Adams and Wakefield, 2009) 

 Geometric model (Algazi et al., 2002) 

 Boundary source representation model (Bai and Tsao, 2006) 

 Pole-zero approximation model (Blommer and Wakefield, 1997; Liu and Hsieh, 

2001) 

 Brown/Duda pole-zero model (Brown and Duda, 1997, 1998) 

 Genetic algorithm model (Cheung and Trautmann, 1998) 
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 Fast multipole boundary element model (Gumerov et al., 2010; Kreuzer et al., 

2009; Otani and Ise, 2006) 

 Modeling by principal components analysis and minimum phase reconstruction 

(Kistler and Wightman, 1992; Scarpaci and Colburn, 2005) 

 Infinite Impulse Response model (Kulkarni and Colburn, 2004) 

 Interaural transfer function model (Lorho et al., 2000) 

 

As an example, Faller et al. (2009) reported an initial stage in the development of 

customizable Head Related Impulse Responses
2
 (HRIRs).  Their goal was to develop a 

compact functional model that would be equivalent to empirically measured HRIRs, but 

that would require a smaller number of parameters obtainable from the anatomical 

characteristics of the test subject.  To create this model, the HRIRs must be decomposed 

into multiple-scaled and delayed-damped sinusoids that would provide the parameters 

that the compact model requires in order to have an impulse response similar to the 

measured HRIR.  Previously this type of HRIR decomposition has been accomplished 

through an extensive search of the model parameters.  The proposed method approaches 

the decomposition simultaneously in the frequency (Z) and time domains.  Although 

earlier methods had achieved a better fit than the method they proposed, several severe 

drawbacks with the earlier methods were observed.  First, when the delay is small, the 

                                                 
2
 The Head Related Impulse Response (HRIR) is essentially the same as the HRTF.  It is the output 

obtained when an impulse signal is applied to the HRTF. 
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second order STMCB
3
 modeling method may inaccurately approximate the signal.  

Second, the average calculation time for previous methods was about 100 times longer 

than for the new method. 

The authors suggested that it would be reasonable to recommend their inverse 

processing method for the creation of a large database, based on the separation of damped 

sinusoids according to the pole pair signature in the Z-domain. A large-scale study would 

be required, however, to establish the relationship between model parameters and the 

anatomical characteristics of individual subjects. 

Applying HRTF models to studies of sound localization 

One of the common purposes of HRTF models is to generate a virtual auditory 

environment through headphones, which can simulate sound source location for use in 

research.  The models can also be used to predict performance in localizing various sound 

sources, as will be done with this dissertation.  Research has been done using HRTF 

models as a component in simulation of the processes of localization cue encoding and 

extraction.  These models include simulating one or more of ITD, ILD, HRTF, and DTF.  

ITD and ILD simply account for the difference in distance from the sound source to each 

ear, while HRTF and DTF also include the characteristic frequency shaping that occurs 

due the head shadow, pinna and torso reflections, and ear canal acoustics. 

                                                 
3
 The Steiglitz-McBride iteration (STMCB) is an algorithm for finding an IIR filter with a prescribed time 

domain impulse response. 
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Most of the work in the literature on auditory localization, both in normal hearing 

ears and in persons with hearing loss, has focused on performance for sounds in the 

horizontal plane rather than in the vertical plane (elevation), or in sound source distance 

discrimination.  This is because the horizontal plane is most relevant to “real world” 

experiences of listeners such as determining which direction a car is coming from, or the 

location from which a person is calling to you.  Thus, this dissertation will also focus on 

horizontal plane localization except for examining pinna effects, which also impact 

elevation perception.   

Several researchers (e.g. Rao and Ben-Arie, 1996; Chung et al., 2000; 

MacDonald, 2008; Sen and Nehorai, 2009) have developed models based on HRTFs to 

simulate localization.  For example, Chung et al. (2000) developed a computational 

model of auditory localization that resulted in performance similar to human subjects.  

The model incorporated cues available for sound localization using measured HRTFs, 

minimum audible field
4
, and the Patterson-Holdsworth cochlear model to simulate the 

processes of auditory cue generation and encoding by the nervous system.  A two-layer 

feed-forward back-propagation artificial neural network was trained to transform the 

localization cues into a two-dimensional map that indicates the direction of the sound 

source.  The model results were compared with the localization performance of the 

subject who provided the HRTFs for the model and the mean localization performance of 

                                                 
4
Minimal audible field is determined with the subject sitting in a sound field while the minimum audible 

stimulus is presented via a loudspeaker.  The sound level is then measured at the position of the subject‟s 

head with the subject removed from the sound field. (Gelfand, 2009) 
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a group of 19 other subjects.  The localization accuracy and front-back confusion error 

rates resulting from the model were similar to both the single listener and the group 

results.  This suggests that the simulation of the cue generation and extraction processes 

as well as the model parameters were acceptable approximations of the biological system. 

Birchfield and Gangishetty (2005) studied the possibility of using the ILD for 

acoustic localization by deriving constraints on the location of a sound source from the 

relative energy level of the signals received by two microphones.  An algorithm was 

developed for computing the sound source location by combining likelihood functions for 

each microphone pair.  They concluded that accurate acoustic localization can be 

achieved by normal listeners using ILD alone. 

Kistler and Wightman (1992) measured HRTFs from both ears of 10 normal 

hearing subjects with sound sources at 265 different positions.  They performed a 

principal components analysis of the resulting 5300 HRTF magnitude functions and 

demonstrated that the HRTFs can be modeled as a linear combination of five basic 

spectral shapes called basis functions.  By assuming that HRTFs are minimum-phase 

functions and that interaural phase differences can be approximated by a simple time 

delay, they were able to model the HRTF phase.  Subjects' judgments of the directionality 

of sounds that had been synthesized from modeled HRTFs and presented through 

headphones were nearly identical to their localization judgments of sounds synthesized 

from measured HRTFs.  The authors concluded that their psychophysical results indicate 
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that the only cues needed for accurate localization in the horizontal plane are ITD and the 

ILD that are provided by the first basis function. 

Each of the techniques developed has certain benefits and constraints, but the 

pole-zero model was chosen for this dissertation for several reasons.  First, it is a 

continuation of previous work by another University of Denver engineering student who 

developed a model of the HRTF based on the movement of poles and zeros due to the 

source source's location.
5
  In addition, pole-zero models have fewer parameters, which 

reduces the computational complexity. 

If further reduction in computational complexity is required, a Common Acoustic 

Poles and Zeros (CAPZ) may be employed.  This method utilizes a set of common poles, 

and only varies the zeros, simplifying the computations (Lui and Hsieh, 2001).  In their 

work, Lui and Hsieh suggested that a set of HRTFs can be considered as a group of long-

duration FIR  filters, and this in turn can be approximated by using an IIR filter in place 

of each FIR filter.  However, the CAPZ approach was deemed unnecessary due to the 

high degree of computational capacity in modern personal computers.  

Bilateral Cochlear Implant Users 

Present-day multichannel cochlear implants have proven to be a very successful 

treatment approach for patients who have severe to profound hearing loss, commonly 

                                                 
5
 Parametric Model of Head Related Transfer Functions Based on Systematic Movements of Poles and 

Zeros with Sound Location for Pole/Zero Models.  A dissertation by Bahaa W. Al-Sheikh Hussein, 2009. 
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called “deafness”, in both ears (Parkinson et al., 2002).   Over the last 30 years, the 

technology of cochlear implants has improved substantially and this is now considered 

the treatment of choice for patients meeting the criteria. 

In audiology, bilaterally hearing-impaired patients have long been provided with 

hearing aids on both ears rather than just one ear because they perform better with sound 

input from both sides.  In contrast, for many years cochlear implant candidates, despite 

deafness in both ears, were provided with only an implant on one ear.  This was partly 

due to the cost of implantation surgery, insurers not covering more than one implant, and 

partly because early cochlear implants only provided minimal benefit to patients in the 

form of an adjunct to lip-reading skills.  As the benefits of cochlear implants vastly 

improved over time, so that many cochlear implant patients had excellent speech 

understanding even without lip-reading, with most now even able to communicate 

comfortably over the telephone, it seemed reasonable to conclude that cochlear implant 

patients would also benefit from an implant on each ear.  Balkany et al. published the 

earliest report of bilateral cochlear implants in  an adult patient in 1988.  The number of 

research reports in the literature on bilateral implant patient studies subsequently 

exploded over time (e.g. see reviews by Brown and Balkany, 2007, Papsin and Gordon, 

2008, and Sammeth et al., 2011).  The provision of bilateral implants today is becoming 

more commonplace, and there has also been a trend toward simultaneous implantation of 

both ears rather than sequential implantation (one at a time, with a varying period of time 

between surgeries).  With the provision of bilateral cochlear implants, patients are now 
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realizing the benefits of binaural stimulation including the ability to localize sound source 

direction. 

Potential benefits of bilateral cochlear implants versus unilateral 

When hearing loss disrupts the ability of the brain to process binaural inputs, the 

benefits of two-eared listening are often severely degraded or even completely lost.  A 

primary benefit of bilateral cochlear implants is that the ear with the more favorable 

signal to noise ratio (SNR) is always available, and overcoming of the head shadow 

effect for better speech perception in either quiet or background noise is considered to be 

a primary benefit of having an implant in each ear (e.g. Litovsky et al., 2006, 2009; Buss 

et al., 2008; Lovett et al., 2010).   Binaural summation is known to occur in cochlear 

implant users with an implant on each ear because the amplitude has to be turned down to 

match the loudness perceived with only one implant activated.  However, at this time the 

research literature indicates that only some bilateral cochlear implant users show 

evidence for true binaural redundancy effects on speech perception and even in those 

subjects, the benefit is smaller than that for the head shadow effect (e.g. Litovsky et al., 

2006, 2009).  This effect is probably not stronger in bilateral implant users either because 

such subtle cues are not able to be utilized by ears that have severe to profound hearing 

loss, or simply because the signal processing available in current-day cochlear implants 

(with two implants processing independently) does not adequately maintain the necessary 

interaural cues.  Like binaural redundancy, there is also less robust evidence of improved 

speech understanding in noise in bilateral cochlear implant patients due to binaural 

squelch effects (e.g. Litovsky et al., 2006, 2009; Buss et al., 2008; Lovett et al., 2010).   
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Of significance to this dissertation topic, bilateral cochlear implant users are 

generally able to regain at least some ability to localize the direction from which a sound 

is coming relative to when they are listening with only a unilateral cochlear implant.   

This can be an important safety consideration, for example when they are crossing a busy 

street and need to know the direction that a car is coming from.  Persons with only one 

cochlear implant also often complain of frustration when their name is called but they 

can‟t determine where the speaker is located.    

Review of the cochlear implant literature on localization abilities 

Bilateral cochlear implant localization research tasks have included either a 

simple left-right lateralization task (i.e., ± 90° azimuth) or use of a more complex set-up 

with numbered loudspeakers placed in a frontal arc, such as shown in Figure 4.  The 

subject‟s head is kept stationary and faced forward, stimuli are presented from one 

loudspeaker location, and the subject identifies the loudspeaker he/she believes the sound 

came from (or in the case of infants or very young children, an observer identifies 

direction of head movement for right/left side discrimination).  Multiple presentations 

and an adaptive procedure are used to determine the degree of accuracy in localization 

(e.g. Minimum Audible Angle [MAA] for a certain percent correct, or root-mean-squared 

[RMS] error).  In some studies, presentation level is roved a few dB around a central 

value in an attempt to reduce monaural level cue comparisons at the two ears. 
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Figure 4.  Schematic diagram showing a loudspeaker array used for horizontal frontal 

plane localization testing. (from van Hoesel and Tyler, 2003) 

It is well known that interaural timing differences (ITDs) are of major importance 

in providing the information necessary to locate the direction of low frequency sounds 

less than about 1500 Hz (Shaw, 1974).  For sounds that are higher in frequency, the main 

cue for horizontal plane localization is the interaural intensity level differences (ILDs) 

that occur due to the head shadow effect (Yost and Dye, 1997).  For a listener with only 

one functional ear, there are very few cues to assist in sound localization.  Tyler et al. 

(2007) reported on one unilateral cochlear implant user who was able to perform on a 

localization task as well as a typical bilateral user.  They commented that the reason for 

this „star‟ patient‟s good performance might have been that he was using spectral changes 

from head movements, or his knowledge that louder sounds were more likely from the 

implant side and sounds with less high frequency energy were more likely from the non-

implant side.  However, this kind of rudimentary localization ability is quite rare in a 
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unilateral cochlear implant user, and the vast majority of unilaterally implanted patients, 

or bilateral patients listening with only one of their implants, do not perform above 

chance level on localization tasks.  When patients using bilateral cochlear implants are 

examined, however, the literature provides substantial evidence that localization ability is 

restored, albeit certainly not to the level of performance of normal hearing persons. 

The earliest evidence was in the 1990s, when van Hoesel and colleagues (1993, 

1995) showed that two adults with bilateral cochlear implants could effectively fuse the 

information from each ear for localization.  Since then, other researchers have examined 

localization in larger numbers of subjects (e.g. Litovsky et al., 2004, 2006, 2009; Beijin 

et al., 2007; Grantham et al, 2007; Buss et al., 2008; Dunn et al., 2008; Steffens et al., 

2008; Mosnier et al., 2009; Tyler et al., 2002, 2003; Lovett et al., 2010; van Deun et al., 

2010).  Across these studies, test set-ups varied in terms of the number of loudspeakers 

(and thus the minimal audible angle), and there were also differences in subject factors 

and experimental designs.  Despite this, however, across all the studies there appears to 

be a fairly striking result that, even though patients with bilateral cochlear implants 

perform below normal on localization tasks (e.g. Laske et al., 2009), they perform much 

better bilaterally than when listening with only one implant.  The following provides a 

sampling of some of these studies. 

In one early study, Tyler et al. (2002) collected data using a simple right-left 

lateralization task in seven patients who had been simultaneously implanted bilaterally.  

Loudspeakers were placed at 45° angles to the right and left of frontal midline and the 
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patient was asked to identify which loudspeaker produced a series of 3 pulses of speech-

weighted noise (200 msec on, 200 msec off; 100 presentations per listening condition).  

Results revealed that most subjects had significantly better left-right discrimination using 

bilateral implants compared to using just one, as shown in Figure 5. 

 
Figure 5.  Left-right localization ability measured in the horizontal plane with two 

loudspeakers at ± 45° azimuth.  Scores better than chance performance (50%) are 

indicated by an asterisk, and binaural performance significantly better than monaural 

(using binomial tests) is indicated by a plus (from Tyler et al., 2002). 

Horizontal plane localization measurements were taken on 16 bilateral implant 

subjects by Laszig et al. (2004).   Using a 12-loudspeaker setup, 30° apart, short 

sentences were presented at conversational level.  For 15 of the 16 subjects, and the 

group mean, performance was significantly better when listening bilaterally than when 

using either implant alone, with a reduction in the RMS degrees of error by 38°. 
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In 2005, Verschuur et al. examined localization ability in the horizontal plane of 

20 adult bilateral CI users who had been sequentially implanted after < 15 years duration 

of deafness.  Five stimulus types presented at between 60 and 70 dB SPL were used 

(speech, tones, noise, transients, and reverberant speech), with an 11-loudspeaker array.  

Results indicated a significantly lower mean localization error with bilateral listening 

(24°) than with unilateral (67°, with chance performance at 65°) .   It was noted that this 

performance was still poorer than that of normal controls tested in a previous study (who 

averaged 2° to 3° localization error) or of typical bilateral hearing aid users (10° error).  

The authors hypothesized that the poorer performance of cochlear implant users was 

possibly due to the absence of temporal fine-structure cues in the processed stimuli, 

limitations associated with absolute level judgments due to amplitude quantization in the 

cochlear implants, or a poor ability to compare the amplitude spectrum between the ears 

limiting ILD perception.  No large differences were found in performance across stimulus 

types or locations. 

In 2003, van Hoesel and Tyler reported that the research literature showed that 

cochlear implant subjects typically have poorer performance than normal hearing subjects 

with an RMS Error for the cochlear implant subjects generally in the range of 10° to 30°.  

These researchers did report considerable variability, however, such that in exceptional 

cases 2° to 5° error was reported for a bilateral cochlear implant subject, while on the 

other hand, a very rare bilateral cochlear implant subject cannot localize acoustic signals 

at all.   
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 In summary, the results across all these adult studies of localization in bilateral 

cochlear implant users provide strong evidence that localization is significantly enhanced 

with two implants compared to using only one, although the performances are still below 

those of listeners with normal hearing.   

Direct examination of ILDs and ITDs in bilateral CI users 

To directly examine the contributions of ILDs and ITDs, some researchers have 

examined performance of bilateral cochlear implant users with psychoacoustic studies of 

sensitivity (just noticeable differences, or “jnds”) to ILDs and ITDs.  In their 1990s series 

of studies, van Hoesel and colleagues (van Hoesel et al., 1993, 1995) conducted 

lateralization experiments to determine perception of right/left shifts with changes in 

stimulation to electrode pairs, one in each ear.  Results showed that the subjects had good 

sensitivity to ILDs, but very large jnds in ITDs (about 0.5 to 1 msec) relative to normal 

ears.  It was also noted that there were effects on ITDs of varying the electrical 

stimulation level between a patient‟s two implants.  In 1997, van Hoesel and Clark found 

that jnds in ITDs were still large compared to normal ears even when place of stimulation 

on each side was carefully matched.  Values were similar for stimulation rates from 50 to 

200 pulses per second (pps), but increased at 300 pps. 

In 2002, van Hoesel et al. looked at sensitivity to ITDs, and lateralization, in 

another adult bilateral cochlear implants user, using both two independent commercial 

sound processors, and custom laboratory software that allowed bilateral processing.  

Results with the clinical processors indicated substantial improvement in mean errors for 
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bilateral versus unilateral listening at 70 dB SPL (mean absolute errors of 80° and 73° for 

left and right ears versus only 16° for bilateral), and the custom bilateral processor 

produced comparable results.  For measurement of jnds in ITDs using a 3-alternative 

forced choice task targeting 70% correct performance, the stimuli included simple low-

rate electrical pulse trains and high-rate pulse trains modulated at 100 Hz.  The jnds were 

about 400 µsec for rates between 50 and 200 pps for simple stimuli, which is 

substantially better than previous bilateral implant subjects they had tested, albeit still 

poorer than normal ears.   

Later, van Hoesel and Tyler (2003) reported on five simultaneously implanted 

bilateral users.  Lateralization studies indicated good sensitivity to ILDs down to 0.17 dB 

for some subjects, and sensitivity to ITDs on the order of 100 µsec.  ITD sensitivity 

deteriorated when stimulation rates for unmodulated pulse trains increased above a few 

hundred Hertz, but at 800 pps showed sensitivity comparable to 50 pps when a 50Hz 

modulation was applied.   

Laback et al. (2004) assessed the sensitivity of two bilateral cochlear implant 

users to ILDs and ITDs for signals presented through the auxiliary inputs of clinical 

sound processors that used a CIS sound processing strategy
6
 (which preserves envelope 

cues but not fine timing information), and were configured to achieve equal loudness 

                                                 
6
 CIS is the acronym for Continuous Interleaved Sampling.  This signal processing approach was developed 

by Blake Wilson and his colleagues at the Research Triangle Institute.  This is the only coding algorithm 

that has been implemented by all three major CI manufacturers. 
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sensations at the two ears for diotic
7
 input signals.  In a lateralization experiment, jnds 

measured using a 2-alternative forced-choice method for ILDs indicated high sensitivity 

for the subjects for the broadband stimuli used, with values approaching those of normal 

hearing controls listening through headphones.  Pitch-matched single electrode pairs 

showed lower jnds in ILDs than those for pairs of electrodes mismatched in pitch.  The 

jnds in envelope ITDs were higher than those of the normal subjects and more variable 

on test-retest.  The envelope ITD jnds for these two patients for click trains were lower 

than for a speech token or noise burst stimulus.  The best envelope ITD jnd found was 

259 µsec for the click train at 100 Hz for one of the subjects.  Sound source lateralization 

results for the two hearing impaired subjects and two normal-hearing controls are shown 

in Figure 6. 

In a Senn et al. (2005) study on horizontal plane localization, five sequentially 

implanted bilateral implant users were also evaluated for jnds in interaural intensity and 

time, using white noise bursts, click trains, and noise bursts in which either only the 

envelope or only the fine structure was shifted in time.  The subjects showed near-normal 

interaural intensity jnds, but substantially poorer interaural time jnds than the normal 

controls.  Envelope onset/offset cues could be perceived by these cochlear implant users 

but not interaural fine structure time differences. 

                                                 
7
 The term "diotic" refers to simultaneous presentation of the same sound to each ear. 
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Figure 6.  Lateralization judgments on ILDs (left column) and envelope ITDs within ± 

1042 µsec (middle column) and within ± 3125 µsec (right column) for two bilateral 

cochlear implant users (S1, S2) and two normal-hearing controls (N1, N2).  Bottom row 

summarizes the mean judgments for each listener.  (from Laback et al., 2004) 
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In summary, studies on bilateral cochlear implant users reveal overall a fairly 

consistent finding that they have much better sensitivity to differences in level between 

the ears than to differences in timing.  This is consistent with the results of speech testing, 

which show a greater effect of head shadow (which is more dependent on ILDs) than of 

binaural squelch (which is also dependent on ITDs).  There are also differences across 

stimulation rates, with sensitivity to fine-timing ITDs very poor in cochlear implant users 

for rates beyond a few hundred hertz. 

Limitations of bilateral cochlear implants 

The largest and most significant benefits in terms of speech intelligibility 

improvements with bilateral cochlear implants have been due to head shadow effects, and 

specifically to ILDs, while the effects of binaural squelch which are related to ILDs, but 

also to ITDs, are smaller when present.  As noted by van Hoesel (2004), in order for 

bilateral CI users to obtain the same binaural advantages as normal listeners, sound-

processing strategies of cochlear implants may need to preserve the appropriate ILD and 

ITD cues.  In fact, according to van Hoesel, most current cochlear implants preserve only 

envelope timing cues (envelope ITDs) but not fine timing cues.   

As noted by Tyler et al. (2003), there are several problems with trying to give 

more normal binaural hearing with cochlear implants.  The first problem is that precise 

timing of interaural electrical stimulation is not yet possible with two independently 

functioning cochlear implants.  This does not mean that bilateral coordination of pulsed 

signals is impossible, but it does mean that delay cues on a pulse-by-pulse basis may need 
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to be retained with some form of new signal processing if patients are to receive full 

benefit.  A second problem is that, because binaural advantages depend on relative level 

information between ears, any cochlear implant processing system that modifies 

intensities and timing, such as with automatic gain control systems, might distort those 

cues.  A third problem is that since cochlear implant patients have substantial numbers of 

missing cochlear hair cells and nerve fibers bilaterally, they may have developed 

abnormal binaural brain maps. 

In his 2004 review, van Hoesel notes that even if signal processing schemes were 

developed to improve the contribution of timing information at the two ears, cochlear 

implant patients might not be able to hear or utilize these cues well due to poor sensitivity 

to small ITDs.  Further, Wilson et al. (2003) in their review of the literature noted that 

results to date suggest that strict coordination of the carrier pulses across the two sides 

may not be necessary; i.e. lateralization is not impaired by different carrier rates on the 

two sides.  What these researchers believe may be important is preservation of the 

relative timing and amplitudes of the envelopes across the two sides, as long as carrier 

rates are relatively high. 

There has been a great deal of discussion in the literature regarding whether 

benefits from bilateral cochlear implants relate to some form of integration by the brain in 

the form of binaural squelch or binaural redundancy effects, or are merely due to the 

physical advantage of overcoming the head shadow.  Although there is some evidence 

that true binaural signal processing can be seen in some bilateral cochlear implant users, 
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albeit sometimes only as a small effect, the most common benefit shown in the research 

literature is due to the head shadow effect.  Clearly, however, the relative contribution of 

physical aspects versus neural processing to sound localization abilities of bilateral 

cochlear implant users is not yet well understood, and it is hoped that the results of this 

dissertation will help contribute to determining an answer to this question. 

Model to examine localization in bilateral implant users 

The MatLab model development for this dissertation simulated auditory 

localization ability in normal hearing listeners.  It was further developed to simulate the 

impact on the auditory localization performance of bilateral cochlear implant users by 

imposing limitations of implant sound processing and supra-aural (above the pinna) 

placement of the sound processor microphone.  In this way, it was possible to examine 

how much of the deficit in performance of bilateral cochlear implant users in localization 

compared to normal listeners is due to the physical characteristic changes in the cues 

provided to the central nervous system, versus problems in the central use and 

integration/fusing of those cues.  The modified model was used to simulate the expected 

performance of bilateral cochlear implant users and then compared to results published in 

the research literature.  This modeling work may also help to better understand how 

future cochlear implant sound processing should be modified to result in better sound 

source localization performance. 
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CHAPTER 2 

Description of the Model 

 

In order to describe the model, it is first necessary to lay some groundwork, 

including conventions and nomenclature.  The angles of azimuth and elevation referred to 

throughout this dissertation are defined as shown in Figure 7. 

 

Figure 7.  The coordinate planes as typically referred to in the study of sound source 

localization are the horizontal, median and frontal. The horizontal plane is most important 

in this model, as that is the plane in which azimuth angle, θ, is defined.  Azimuth angle 

ranges from 0° to 360° (from Algazi et al., 2002). 
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The angle of elevation, φ, is often the only other angle used since azimuth and 

elevation can describe the vector to the sound source for any location.  The angle 

depicted in the frontal plane, δ, is often not used since it is similar to φ  in its usage.  

Azimuth is defined as the angle of rotation from the median plane in the horizontal plane, 

with median plane in front of the head being 0° and the median plane in back of the head 

being 180°.  Elevation is defined as the angle above or below the horizontal plane.  The 

median plane bisects the head left to right, and the horizontal plane is at the level of the 

ear.  The frontal plane was not deemed to be needed for defining any elements of the 

model, and was therefore not used in this study. 

Other nomenclature used within this work includes "ipsilateral" and 

"contralateral".  For the purposes of this study, the ipsilateral ear is the side of the head 

on which the sound source is located, while the contralateral ear is the opposite side of 

the head. 

1. Mathematical basis 

The foundation of the model is based on the head related transfer function 

(HRTF) algorithm.  The MatLab model includes the most significant aspects of the 

HRTF that represent the pinna and head shadow effects.  A block diagram of the general 

HRTF is illustrated in Figure 8.  This is a simplified representation of Brown and Duda's 

work that also includes room effects.  The room effects element was not implemented in 

this work, as the environment was assumed to be anechoic. 
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Figure 8.  Block diagram of the head related transfer function algorithm (based on 

Brown and Duda, 1998). 

This block diagram can alternatively be expressed in the form of brief 

descriptions of each step in the process.  In a simplified form the basic algorithm for 

sound source location estimation is as follows: 

 Filter the signal as appropriate in order to account for head shadow and pinna 

effects or a cochlear implant processor 

 Compute FFT of the resultant signal in order to extract the magnitude and 

phase components 

 Identify dominant components regarding localization cues 

 Compute phase difference to extract the ITD 

 Using a vector model, determine the azimuth 

 Following determination of the detected azimuth, compare this to the actual 

source azimuth 
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Head Shadow Effect:  

This component is responsible for generating the ITDs and ILDs caused by the 

shadowing effects of the head, which primarily impact high frequencies due to their small 

wavelength relative to the size of the head.  ITD for a particular frequency is determined 

as follows: 

f

cT
ITD D

     (1)

 

 

where c is the speed of sound, TD is the time difference of the signal‟s arrival, and f  is the 

frequency of interest.  This part of the model is very similar for both normal ears and 

cochlear implant users. 

The first element of the algorithm is a simple pole-zero filter which is meant to 

approximate the Rayleigh spherical head model.  It is parameterized by the angle 

difference between the location of the ear and the azimuth of the sound source.  

The gain of low frequency signals (below about 1500 Hz) is not drastically 

affected by head shadowing due to their larger wavelengths. To achieve this effect, the 

head shadow model has a fixed pole and a zero that moves to produce the desired amount 

of roll-off, depending on the azimuth of the sound source.  
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As part of the head shadow component there is a linear delay element. This 

accounts for the ITD produced by the waves propagating around a rigid sphere to reach 

the ear.  

The pole-zero filter suggested by Brown and Duda (1997; 1998) in their model is 

given by:  

H(ω) = [1 + j(dω)/(2m)] / [1 + jω /(2m)]    (2) 

where:  

m = 
speed of sound 

radius of the head 

 

and dω is derived from: 

  d(θ) = 1.05 + (.95 * cos(1.2*θ))    (3) 

where θ is the angular difference between the location of the ear and the azimuth 

of the sound source.  

The linear delay element for each ear (in seconds) is given by:  

𝑇 𝜃 =   
   −

cos 𝜃 

𝑚
∶      0° <  𝜃 < 90°

 𝜃 − 90

𝑚
∶    90° <  𝜃 < 180°
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Figure 9 is a graphical depiction of how results are generated by the model in this 

implementation.  This is the basic algorithm that derives the ITD aspects of the HRTF 

that will significantly affect the accuracy of the localization prediction. 

 

Figure 9.  The solid lines represent the vectors corresponding to the signal paths from the 

target to the two ears.  The dashed line represents the angle computed from the phase 

difference of the signal acquired at each ear. (from Miller and Matin, 2011) 
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Pinna Effects: 

Brown and Duda's approach (Brown and Duda, 1998) to developing a pinna 

model was to work only in the time domain.  Their primary reason for working in the 

time domain is that many of the characteristics of HRTFs are a consequence of sound 

waves reaching the ears by multiple paths.  Sound that arrives over paths of different 

lengths interact in a manner that is obscure in the frequency domain, but is easily 

understood in the time domain.  This greatly simplifies the structure of the model and 

reduces the computational requirements in implementing it. 

Pinna effects dependent on the sound source's azimuth are essentially caused by a 

series of echoes reflecting off of the surfaces of the pinna and into the ear canal.  Like 

azimuth, the elevation of the sound source also affects how the sound waves reflect off of 

the pinna, and thus compound the effect.  If a relationship can be found between the 

azimuth and elevation of the sound source and the characteristics (time delay and 

amplitude) of the most important echoes resulting from the pinna geometries, a transfer 

function that represents this part of the system can be determined and incorporated into 

the model.  

As can be seen in Figure 10, there are various folds and ridges of the pinna which 

create differing reflections of the sound waves.  Indeed, these are different for each 

person, but for the purposes of this research, an idealized pinna as represented by the 

KEMAR manikin is used. 
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As a side-note, torso effects, also referred to as shoulder echo, were examined 

during this course of study and were found to have little significance in localization 

performance.  In fact, performance with and without the shoulder echo was compared in 

the normal hearing model and mean error remained unchanged.  This element was 

therefore dropped from the model in order to decrease computational time and to reduce 

complexity of the model. 

 

Figure 10.  Cross-section of the ear showing the features of the pinna which are 

responsible for the echoes and delays that affect the sound waves as they enter the ear 

canal (obtained from http://tekupengahauora.org.nz/services/ear-health.html). 
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Cochlear Implant Processor Effects: 

Because the microphone of the ear-level sound processor for a cochlear implant 

user is placed above the pinna, the same pinna effects are not present as for a normal 

listener wherein the pinna acts as a funnel to send the sound down the ear canal to the 

tympanic membrane.  Thus the pinna effects must be modeled differently.  Figure 11 

describes the block diagram of the HRTF of the cochlear implant model.  The pinna 

effects are eliminated or much simplified for the cochlear implant case, as a minimal 

number of reflections introducing only very short time differences are required for the 

model.  Since the pinna effects on the microphone response are relatively small compared 

to the signal transformations produced by the cochlear implant processing, these were 

neglected for this iteration of the model. 

 

Figure 11.  Block diagram of the head related transfer function for the cochlear implant 

model.  It can be seen how the pinna effects are replaced by the cochlear implant 

processing functions, as compared to the normal hearing model. 
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Another aspect of cochlear implant signal processing that must be represented in 

the model is spectral and intensity quantization that occurs.  The bandpass filter bank 

covers the entire spectral range of speech, but the processing algorithm only selects those 

filter bands that have the greatest energy.  There is further reduction in accuracy of the 

signal as the energy levels of the bandpass filters are quantized by the processor during 

analog-to-digital conversion.  

In conclusion, the model that is the topic of this dissertation includes assessment 

of the impact of the head and pinna effects in normal hearing persons, and the differences 

in the physical configuration for bilateral cochlear implant users because of placement of 

the sound processor microphone.  Also considered are the degradations in spectral and 

intensity cues due to the signal processing performed by the cochlear implant.  A 

comparison of these differences was an important aspect of the model development. 
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CHAPTER 3 

Methodology 

 

1. Overview 

The measurement of individual head related transfer functions (HRTFs) can be 

quite expensive and time-consuming.  Typical requirements include an anechoic chamber 

and high quality audio equipment, including an array of high fidelity speakers arranged 

such that the signal can be delivered from any direction.  In order to make acoustic 

spatialization  technology more widely available, generic HRTFs have been developed 

and used (although they do not work as well as individualized HRTFs). Once determined, 

HRTFs are convolved with the sound signal in order to give it a directional characteristic. 

For this work it is desirable to develop a signal processing model for HRTFs that 

is able to be efficiently implemented on modern microprocessors.  An ideal model would 

contain all of the important spectral features of an HRTF that are used for localization.  

However, in the interest of developing this model with more moderate resources, average 

human head data as simulated by a KEMAR manikin was used, and these are expected to 

provide reasonably accurate parameters for the model.  A KEMAR manikin like the one 

used for collecting the HRTF data by the Media Laboratory of the Massachusetts Institute 

of Technology is shown in Figure 12. 
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The HRTFs for each ear were recorded through the two microphones placed in 

the head of the manikin.  These microphones are situated so that they pick up the acoustic 

signal at the location of the acoustic membrane (commonly referred to as the ear drum). 

 

Figure 12.  The KEMAR manikin showing how the recording microphones are placed 

within the head so that they can pick up the acoustic signals entering through each pinna. 

(from Duda, 2000) 

The plots depicted in the following figure (Figure 13) shows the HRTF from the 

KEMAR manikin that were used in this model development.  This family of curves 

represents the signal at the ear for all azimuths as the sound source is rotated around the 

head at a fixed distance.  The raw data from both ears for a signal located in the 

horizontal plane were obtained from the MIT lab's publicly available archives. 
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Figure 13.  The right ear HRTF from a KEMAR manikin obtained in the horizontal 

plane. The same recordings were also collected for the left ear.  (from Duda, 2000) 
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2. Computer modeling of the normal HTRF using MatLab 

To begin, the model was built based on a spherical-head model (the most basic 

model) and then other influences were added to the model and finally a pole-zero 

approximation was applied to increase the overall accuracy.  HRTFs can be convolved 

with a monaural sound in MatLab to produce the signals supplied to each ear.  This 

represents the basic normal listener model.  The HRTFs can then be modified to make 

them more effectively represent a particular condition, i.e. performance of a person with 

cochlear implants.  Published data on individual HRTFs reveals how they change with 

the shape of the head, torso and pinna.  By extrapolating this information,  it is possible to 

alter the transfer functions to represent the cochlear implant case.  

This model contains three main components.  Because this is a linear system, the 

order of the components does not matter in the actual implementation.  The first element 

representing the head shadow effects will produce the ITDs.  The second element 

represents the filtering effects of the pinna and also incorporates the gain representing the 

ILDs.  The azimuth of the sound source can be accurately determined with ITDs and 

ILDs.  The third element represents echoes from the pinna that cause spectral filtering.  

This element also incorporates the information related to the reflections caused by 

varying azimuth and elevation that alter the spectral filtering parameters. 

3. Analysis of the model 

There is a large repository of HRTF data acquired from a KEMAR manikin that 

was collected by Gardner and Martin at the Massachusetts Institute of Technology 
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(Gardner and Martin, 1995).  These data are freely available for research purposes and 

validation of the HRTF component of the normal model was conducted using this 

information.   

The simulated results from the model were also compared against available 

published performance data on localization for a group of normal hearing subjects.  The 

data set used for this latter purpose was combined from several published data sets in the 

sound localization research literature. 

4. Computer modeling of the cochlear implant HTRF using MatLab 

The base model developed for normal hearing was created in a modular fashion in 

order to simplify incorporating cochlear implant emulation.  The pinna effects were 

incorporated into the normal hearing model by creating it as a separate function in 

MatLab. This made it a simple matter to remove the pinna effects and replace that 

MatLab function  with one that represented a cochlear implant processing algorithm. 

Cochlear implants place a signal processor in an externally worn unit that fits 

behind the ear.  The signal processor also contains the power source, and microphone, as 

illustrated in Figure 14.  The component labeled (1) is the external processor where the 

signal is transformed prior to being sent on to the implant, labeled (2).  The algorithm that 

processes the acoustic signal is stored in memory in the external processor, and is 

therefore easily updated with another algorithm, if so desired. 
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Figure 14.  Illustration of how the cochlear implant restores the sensation of hearing for 

the severely to profoundly impaired ear.  (courtesy of Cochlear Limited, Sydney, 

Australia). 

In a typical cochlear implant sound processing algorithm, the acoustic signal is 

obtained from the microphone of the external processor and bandpass filtered with a filter 

bank such that the signal is spectrally segregated into a number of filter bins (there are 22 

filter bins in the ACE implementation), as described in Figure 15.  The filter bins are then 

analyzed, and the bins containing the most energy are selected (four in the ACE 

algorithm).  The electrodes corresponding to these selected bins are then sent electrical 
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impulses, each scaled to represent the amount of energy in the associated bin.  This is the 

basic structure of the Advanced Combination Encoder (ACE) and Spectral Peak 

(SPEAK) (which uses only 20 filter bins) algorithms that are in common use with the 

Nucleus 24 cochlear implant (Vondrasek et al., 2008).  The model that is the subject of 

this dissertation is based on the sound processing algorithm that is most commonly used 

in cochlear implants today, namely the ACE approach. 

 

 

Figure 15.  Frequency Allocation Table for typical programming of a Nucleus 24 

cochlear implant.  (Source: Custom Sound programming software, Cochlear Limited, 

Sydney, Australia) 
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The cochlear implant model developed herein mimics this by filtering the signal 

in a similar manner before applying the localization algorithm.  As developed in this 

model, the signal is segmented into 22 frequency bands, as illustrated in Figure 15 

following the algorithm used by the cochlear implant processor, and the four bands 

containing the greatest amount of energy are selected.  The transformed signal is then 

returned to the sound source localization function for determination of the azimuth. 

5. Statistical methods 

A statistical method commonly used in the evaluation of human localization 

performance is that of root mean square (RMS) error analysis of the difference between 

the actual azimuth of the signal source and the detection angle obtained from the test 

subject's response. 

RMS Error is determined by: 

𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟 =   
  𝑦 𝑖 − 𝑦𝑖 2𝑛

𝑖=1

𝑛
 

where ŷ is the predicted value and y is the observed value. 

 

RMS Error values for normal hearing and cochlear implant subjects‟ localization 

abilities were obtained from the literature for comparison to the model's localization 

performance.  The signal data from azimuths ranging from 0° to 180° in 5° steps were 

input into the model for both normal hearing conditions and cochlear implant conditions 
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and the error at each azimuth was calculated.  An RMS Error was then computed for each 

data set for comparison to published mean error values.  A comparison of each data set 

by azimuth angle would also be desirable; however, the published studies did not include 

the data required to make this comparison.  
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CHAPTER 4 

Normal Hearing Model 

 

1. Results for the normal hearing model 

Following construction of the basic model elements in MatLab, acoustic signals 

were fed into it to assess their performance.  Some results from the modeling work 

representing the head shadow effect are presented in Figure 16 and Figure 17.  These are 

the magnitude and phase plots representing the HRTF for KEMAR.  They were derived 

by Fourier transforming the acoustic data obtained from KEMAR by the Massachusetts 

Institute of Technology laboratory of Gardner and Martin (1995). 

The acoustic source data consisted of Maximum Length Sequences
8
 of 16384 bit 

length played through a loudspeaker and recorded through the KEMAR ears.  These plots 

represent the HRTF derived from these data.  The surface plots depict the magnitude of 

the transfer function over azimuths of 0° to 180°.  Note that 180° to 360° are a mirror 

image, and thus are merely a transposition of the left and right responses.  This is evident 

if one joins the 0° edges and 180° edges of the left and right magnitude plots. 

                                                 
8
 Maximum Length Sequences are pseudorandom binary sequences commonly used for measuring acoustic 

characteristics due to their spectrally flat nature and because they provide recordings that are highly 

immune to external noise. 
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The notches in the response that were characterized by Rice et al. (1992), and 

which were discussed in Chapter 1, can be clearly seen in the magnitude surface plots of 

Figure 16.  The first notch is plainly visible at around 8000 Hz to 10,000 Hz, and a 

prominent second notch is seen at about 15,000 Hz.  These are representative of the pinna 

effects and are key characteristics in sound source localization.  Clearly there are 

additional, less prominent characteristics in the response that are also available for more 

finely resolving sound source direction. 

The Fourier transformation of the HRTF also provides the phase angle of the 

signal, key to determining the interaural timing difference (ITD).  The phase plots in 

Figure 17 depict the phase calculated from the transfer function for each ear.  The phase 

values extracted from the HRTF are used in the model for the first order approximation 

of the azimuth angle to the sound source.
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Right 

Left

 
Figure 16.  Signal magnitude obtained at each ear as azimuth is varied between 0° and 

180° (right is the ipsilateral ear and left is the contralateral).  The color represents 

intensity, with black corresponding to low signal strength and white corresponding to 

high signal strength. 
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In Figure 17 the phase angles for the ipsilateral ear and contralateral ear are 

presented with 0° azimuth indicated with the heavy red line.  It can be seen that there is 

an orderly progression of the phase angles towards lesser values as azimuth is changed 

from 0° to 90° in the ipsilateral ear.  Conversely, the phase angle increases, but also in an 

orderly manner, in the contralateral ear. 

These phase angle progressions with change in azimuth result in a phase 

differential that is 0° for 0° azimuth, and increases as azimuth approaches 90°.  The phase 

angle differential reaches its maximum at 90° azimuth, and then decreases back to a 

phase differential of 0° at 180° azimuth. 

Therefore, as can be seen, the ITD will be the same for any azimuth angle and its 

compliment, that is 180° minus the angle of the azimuth.  This is as predicted from the 

previous discussion regarding the "cone of confusion".  ILD analysis coupled with pinna 

effects modeling is required to resolve whether the azimuth is an anterior or posterior 

angle. 
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Figure 17. Phase at each ear as azimuth is varied between 0° and 90° (top is the 

ipsilateral ear and bottom is the contralateral), for normal hearing.  In the ipsilateral ear 

the slope of the phase curve decreases as the azimuth in rotated from 0° to 90°.  In the 

contralateral ear the slope of the phase curve increases as the azimuth in rotated from 0° 

to 90°.  In both cases the heavy red line is the phase of the 0° azimuth signal.  One can 

see then from these plots that the phase differential increases as the azimuth is rotated 

from 0° to 90°. 

Ipsilateral 

Contralateral 
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The results in Figure 16 compare favorably to those obtained from a research 

subject in a study by Gardner (2004), which are shown here for comparison in Figure 18.  

One can observe that the patterns exhibited in the signal at an intermediate point in the 

current model algorithm appear very similar to those published by Gardner.  Note that the 

frequencies at which the first and second notches (N1 and N2) occur match precisely with 

those obtained from the normal hearing model.  These closely matching plots are taken as 

validation that the base component of the localization model, the HRTF, is appropriately 

implemented.  These first and second notches are also important cues which aid in sound 

source localization. 
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Figure 18.  Comparison of HRTFs (magnitude of the response) of the ipsilateral and 

contralateral ears from the model and Gardner (2004).  Note the first and second notches, 

labeled N1 and N2 in the lower left pane, are closely matched by the model in the upper 

left pane. 

Phase difference of the transfer function for each ear is used to calculate the 

direction of the sound source in the MatLab model.  In Figure 19 the red curve is the 

calculated phase difference, and the gray curve indicates theoretical values for a spherical 

head model.  Note that the spherical model does not include pinna effects.  Any 
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difference significantly greater than the peak theoretical value results in a calculation 

error of sin(θ) > 1. 

 
Figure 19.  Phase plot showing correlation between azimuth angle and phase angle 

differential.  The red curve is the calculated phase difference, and the gray curve depicts 

the theoretical values of a spherical head model for phase differential, which are tracked 

closely at most azimuths. 

Early in the development of the model, the magnitude and phase difference 

elements of the peak spectral component showed a correlation between magnitude 

trajectory and phase values that resulted in an inability to calculate azimuth.  There were 

two points of discontinuity in the magnitude curve between 65° and 70° and between 

110° and 115° that were due to ITD values that were out of bounds, i.e. that resulted in a 

value greater than unity for the sin of the angle.  This was due to sharp transitions in the 

HRTF caused by pinna effects.  Further development of the pinna effects analysis better 

accounted for the signal characteristics at these azimuths, and thereby eliminated these 
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errors.  Specifically, the pinna model was further refined to more closely approximate the 

geometry of the structure, so that it more accurately compensated for the excursions in 

the phase. Thus, the ITD calculation no longer had azimuths which could not be 

computed.  By performing this additional analysis of the phase response, it was found 

that the curve could be made to better approximate the theoretical curve as shown in 

Figure 19.   

In order to be able to differentiate between signals originating from an anterior 

location or a posterior location, it was necessary to analyze the relationship between the 

magnitude and phase component of the source signal.  Figure 20 illustrates an example of 

the magnitude and phase of the signal received at the ipsilateral ear as the signal is varied 

from 0° to 180°.  It can be seen that there are characteristic similarities in the curve for 

the posterior signal that are not observed in the anterior signals.  This is due to "blocking" 

effects of the pinna on posterior signals.  When an analysis was conducted that was based 

on a filter modeling the pinna, pinna effects were able to be extracted and it was possible 

to differentiate between anterior and posterior signal sources.  Essentially, in this analysis 

it was found that there exists a relationship between the ratio of the magnitudes of the 

response at each ear and the phase response of the ipsilateral ear.  This characteristic 

analysis was incorporated into the model in order to differentiate cone of confusion 

ambiguities.  
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Figure 20.  The magnitude of the transfer function (red) is plotted on the left axis.  The 

phase of the transfer function (blue) is plotted on the right axis. 

2. Localization performance and discussion 

The error of the estimated azimuth compared to the actual azimuth is shown in 

Figure 21.  It can be seen from the plot that due to the angle at which the acoustic wave 

strikes the pinna, there is still increased error for certain azimuths, but it is much closer to 

the performance of the normal hearing ear. 

Although remaining inadequacies in the pinna effects modeling result in increased 

error, values between 70° and 95° can now be calculated with an acceptable error.  The 

larger error remaining between 95° and 120° is due to the sharp variations in the transfer 

function as the azimuth angle passes the point where the pinna is “edge on”; however, 

adequate results were able to be obtained. 
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Early results obtained from the normal hearing model did not take into account 

the finer details of the pinna effects.  These earlier results, which were reported by Miller 

and Matin (2011) had an RMS Error of 4.4°.  Refinements in the pinna model reduced 

this to 4.1°.  The implementation of a smoothing filter in order to reduce the granularity 

of the model output reduced the RMS Error to about 3°, which is within the range of the 

published data for normal hearing subjects.  The error response of the final iteration of 

the normal hearing model is presented in Figure 21. 

 
Figure 21.  Error plot for the normal hearing model.  This error was calculated by 

subtracting the estimated azimuth from actual azimuth. 

The RMS Error of normal hearing subjects is generally accepted to be about 1° 

for broadband stimuli (Perrott and Saberi, 1990).  However, Verschuur et al. (2005) 
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found that normal hearing subjects in their study exhibited localization error in the range 

of 2° to 3°.   

The RMS Error of the completed normal hearing model that is the topic of this 

dissertation was determined to be 4.1° before a Butterworth filter was applied in order to 

smooth the results; however, this error is elevated due to the azimuth angles for which 

there is significant phase excursion related to remaining uncompensated pinna effects.  If 

the two points related to azimuth angles for which pinna effects are not adequately 

modeled are considered to be outliers and are therefore neglected, the recalculated 

RMS Error result is 1.7°, which matches well with the published data obtained from 

normal hearing subjects.  Since this model was not intended to exactly match 

experimental results (which show some variability across studies anyway), but only to 

provide an acceptable model that could then be used for cochlear implant analysis, this 

error value seems quite acceptable.  It is also expected that further work on the pinna 

effects analysis and with the ITD analysis to obtain improved ITD coefficient equations 

might result in an improved error result.  It should be noted, however, that since pinna 

effects do not come into play in the cochlear implant model, improvements in this area 

would provide no benefit in the cochlear implant localization model performance; thus, 

these refinements were not pursued in the current work. 

Figure 22 illustrates the model localization error in a polar plot superimposed over 

a top view silhouette of the head.  It can be seen in this illustration how the pinna affects 

the localization ability of a normal hearing person.  The model (represented by the red 
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line) tracks very closely to perfect localization ability (represented by the black line), 

except for azimuths where the pinna effects are most pronounced.  

 
 

Figure 22.  Polar error plot demonstrating the normal hearing model.  This plot describes 

the error magnitude for the normal hearing model superimposed over the silhouette of the 

head viewed from above.  The black circle is the zero-error curve, while the red line 

corresponds to the magnitude of the model error for normal hearing. 
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CHAPTER 5 

Cochlear Implant Model 

 

1. Results for the cochlear implant model 

The same broadband signal, shown in Figure 16, that was used for analysis of the 

normal hearing model was also applied to the cochlear implant model.  The signal 

analysis performed by the cochlear implant localization algorithm selected the filter bins 

with the greatest magnitudes, which were bands 7 through 10 for this signal, as defined  

by the filter structure previously described in Figure 15.  When the signal components 

outside of these four bands are removed, the remaining components that the localization 

model is left to work with result in the signal shown as a magnitude plot in Figure 23. 

It is evident from the comparison of these two signals that the localization 

algorithm for the cochlear implant condition has a much reduced set of information with 

which perform the sound source localization task compared to that of the normal ear.  In 

addition, due to filtering of the signal, spectral characteristics are modified at the spectral 

boundaries of the filter.  These changes in the signal will result in a greater difficulty in 

localizing the sound source, and hence produce increased error results. 
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Right 

Left

 
Figure 23.  Signal magnitude obtained at each ear as azimuth is varied between 0° and 

180° (right is the ipsilateral ear and left is the contralateral).  This is the same signal that 

was used in the normal hearing plots in Figure 16, but following processing by the 

cochlear implant. 
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Pinna and head shadow effects can be observed by examining the magnitude of the 

Fourier transformed signals.  Figure 24 shows a comparison of the normal hearing 

response magnitude versus that of the cochlear implant model.  In the ipsilateral ear of 

the normal model, pinna effects can clearly be seen represented by sharp dips in the 

response as the signal azimuth moves to the anterior of the pinna.  In contrast, the 

cochlear implant model shows no effect of the pinna because the signal is picked up by a 

microphone located above the pinna. 

The head shadow effect, on the other hand, is present with both models.  It can be seen in 

the plot that the contralateral ear has nearly identical responses for the normal and 

cochlear implant models.  This is intuitively obvious since the head blocks the signal 

pathway to the contralateral ear in a similar fashion for either condition. 

 

Figure 24.  Comparison of normal and cochlear implant signal amplitudes as azimuth is 

varied from 0° to 180° for the ipsilateral and contralateral ears.  One can clearly see the 

pinna and head shadow effects. 
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Figure 25 shows the phase response for the ipsilateral and contralateral ears of a 

cochlear implant user as generated by the model.  In the same plot for the normal hearing 

model, which was shown in Figure 19, there was a natural progression of the response as 

azimuth was incremented, but that is not seen here.  In the normal hearing ear, the change 

in azimuth causes an ordered progression of the phase angle with increasing azimuth 

angle.  Specifically, the slope of the phase angle curve decreases with increasing azimuth 

in the ipsilateral ear, while the slope of the phase angle curve increases with increasing 

azimuth for the contralateral ear. 

In contrast, it can be seen in the phase plots in Figure 25 that the cochlear implant 

model does not have a constant rate of change in phase angle in the ipsilateral ear, and the 

contralateral ear does not even always show an increase in the slope of the phase angle 

curve.  Some of the azimuths have steeper slopes in the phase angles than that for 

0° azimuth.  These much less orderly characteristics of the set of phase angle curves 

would lead to the much poorer localization performance as experienced by cochlear 

implant users. 
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Figure 25.  Phase responses for the ipsilateral ear (top) and the contralateral ear (bottom), 

as modeled for a cochlear implant. 
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This leads to greater variability in the phase differential curve.  The difference in 

the phase differential compared to normal hearing can be seen in the plot below (Figure 

26).  It is evident from this plot that the cochlear implant phase differential varies much 

more from the expected value, the gray curve, than does that of the normal hearing 

subjects. 

 

Figure 26.  Phase differential for CI (yellow) as compared to the normal hearing model 

(red) and the ideal curve (gray). 

2. Localization performance and discussion 

As would be expected from the phase differential plot, Figure 27 illustrates that 

localization error is considerably greater for cochlear implant users than for normal 

hearing subjects (which was shown in Figure 21).  Much of this error appears to be a 

result of the missing pinna effects that aid in the determination of whether the signal is 

originating from an anterior location or a posterior one.  However, it appears that other 
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factors come into play as well, since the error is pronounced in azimuths that are less 

affected by pinna effects in normal hearing subjects.  This can be explained by spectral 

and quantization distortions related to the cochlear implant signal processing. 

 
 

Figure 27.  Error plot for the cochlear implant model.  This error was calculated by 

subtracting the estimated azimuth, as detected by the model, from the actual azimuth. 

Figure 28 attempts to provide a more visual representation of the localization 

error by overlaying the error plots for normal hearing and cochlear implants on a polar 

plot with a top view of a silhouette of the head.  In this figure the dark black line 

represents "zero error" and the red line is the normal hearing localization error as 

determined through the model.  The yellow line represents the cochlear implant 

localization error as determined through the model.  In this polar plot a moving average 

filter was applied to the data in order to better represent a continuous error curve.  
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Figure 28.  Polar error plot comparing the normal hearing model to the cochlear implant 

hearing model.  These error curves describe the error magnitude for each model super-

imposed over the silhouette of the head viewed from above.  The black circle is the zero-

error curve, the red line corresponds to the model error for normal hearing, and the 

yellow line corresponds to cochlear implant localization error as projected by the model. 

 

Error data was obtained from published localization studies in order to evaluate 

whether the cochlear implant model‟s performance was representative of the typical 

performance of cochlear implant subjects.  Verschuur et al. (2005) studied localization 

ability in the horizontal plane of 20 adult bilateral cochlear implant users.  The subjects' 
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cochlear implants were all Nucleus 24 devices.  Testing was performed at between 3 and 

9 months after initial activation of the second implant so that the subjects had time to 

learn to use the new binaural cues.
9
  There were five different stimuli used (speech, tones, 

noise, transients, and reverberant speech), presented through an 11-loudspeaker array in 

±5 dB steps around 60 dB SPL.  Analysis of variance with post-hoc t-tests determined 

there was a mean localization error with bilateral listening of 24°, which was significantly 

better than with unilateral listening conditions, as shown in Figure 29.   

 
Figure 29.  Mean angular error on a localization task as a function of listening condition: 

unilateral use of each cochlear implant, bilateral cochlear implants, and unilateral 

condition with a “dual” (port) microphone.  A smaller bar indicates better performance. 

(Recreated from Vershuur et al., 2005) 

In this study, it was noted that the performance of normal controls, as assessed 

previously by the authors, averaged 2° to 3° localization error.  The authors hypothesized 

                                                 
9
 Cochlear implant users typically show improved performance over a period of 3 to 12 months following 

implantation, a process generally referred to as "acclimatization". 
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that the cochlear implant users‟ poorer performance was due to the absence of temporal 

fine-structure cues, limitations associated with absolute level judgments due to amplitude 

quantization in the CIs, or inability to compare the amplitude spectrum between the ears 

limiting ILD perception.  The type of auditory stimulus had no significant effect on 

performance. 

Other published studies showed similar values for localization error in cochlear 

implant users.  Litovsky et al. (2006) tested 13 bilateral cochlear implant subjects for 

localization performance by presenting an audio signal through one of two speakers 

placed equidistant from the median plane and determined the minimum angle offset from 

0° azimuth that the subject could correctly identify the source.  The mean minimum angle 

for the group was 20°. 

Grantham et al. (2007) examined 22 adult bilateral cochlear implant users' 

localization ability for 200 msec noise bursts or speech samples presented at 70 dB SPL 

(roved ± 10 dB) from a 43-loudspeaker horizontal array ranging from 90° to 270° 

azimuth, with 17 speakers active, in an anechoic chamber.  Results indicated that bilateral 

listening performances were better than the best of the two unilateral ear performances.  

The mean adjusted constant error for bilateral listening was 22.8°, while for unilateral 

listening it was 47.9° (or just above chance). 

Neuman et al.(2007) tested 8 bilateral cochlear implant subjects using an array of 

nine loudspeakers placed in an arc evenly spaced from -90° to 90°.  The signal was 

randomly roved among all loudspeakers while the subject reported which loudspeaker 
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they believed was the source.  RMS Error was calculated for a total of 36 tests for each of 

8 subjects.  The RMS Error from this study are shown in Figure 30.  This localization 

error assessment technique very closely approximated the error determination methods 

used for evaluating the model developed in this dissertation. The RMS Error result 

reported in the Neuman et al. study was 29°.  

 

Figure 30.  Localization error results for the bilateral testing conducted by Neuman et al. 

(2007).  

Combining the outcomes reported in these published studies on bilateral cochlear 

implant users results in a range of mean localization errors of 20° to 29°.  By comparison 

the RMS Error of 27° obtained with the cochlear implant MatLab model developed in 

this study fits well within the range found in the published literature.  
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CHAPTER 6 

Summary and Future Work 

 

1. Summary 

In this work models were developed for simulating the localization ability of 

normal hearing subjects and bilateral cochlear implant users.  These models were 

validated against published data for both groups and found to give similar localization 

error for each group to that shown in the literature. 

Much refinement of the models were done in order to approximate the 

performance of the biological system in both the normal hearing and cochlear implant 

conditions.  It was found that by determining the sign of the phase differential, the model 

could determine the side of the head that the sound source signal was located on.  Pinna 

effects analysis and head shadow coefficient equations were developed that resulted in 

the model‟s ability to more accurately resolve the angle to the sound source.  

Implementation of these additional features in the model not only improved the accuracy, 

but also removed the inability to resolve ITD values for certain azimuths near 90° and 

270°.  Thus it provided a model capable of localization of sound sources for the full 0° to 

360° range. 
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Only the ACE cochlear implant signal processing algorithm was approximated in 

the model devised for this dissertation, although there are other signal processing 

algorithms used in cochlear implants.  The ACE algorithm was selected because this is 

the most prevalent method currently employed in devices in use today.  However, since it 

was built into the model as a function, this algorithm could be easily replaced or modified 

to reflect other signal processing algorithms that are now in use.  In addition, using the 

model developed here, newly proposed algorithms could be easily tested for an estimate 

of signal source localization performance without first spending considerable time and 

resources developing hardware and software.  Also, all new processing sysetms would 

need to be put through the exhaustive testing regimens that are required before being 

placed in a human subject for testing. 

While the pinna effects and head shadow coefficient  used in this model could 

undoubtedly be further improved, the focus of this research was to develop a model that 

reasonably matched real world performance, so that it could be used to evaluate cochlear 

implant sound processor algorithms.  It is also certain that the cochlear implant signal 

processing algorithm could more exactly follow the performance of commercially 

marketed devices.  However, since the RMS Error results achieved with the models 

developed in this work were similar for normal hearing subjects and for bilateral cochlear 

implant subjects to those published in the literature for each group, the goal of this 

research was successfully met. 

As Blommer and Wakefield (1997) noted, a pole-zero model for HRTF will not 

give an exact representation of the HRTF.  However, looking at the RMS Error results 
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presented in Table 1, it appears that the pole-zero HRTF can still provide an adequate 

basis for the localization model.  Also, although the normal hearing model error was 

slightly greater than the published figures, it is believed that this was primarily due to an 

imperfect pinna effects model function.  Since pinna effects play an insignificant role 

when evaluating cochlear implants, it is thought that the source of this elevated error was 

not carried over into the cochlear implant localization model. 

  

Table 1.  RMS Error of model compared to published data. 

 Model Published test subject data 

Normal Hearing 4° 2° to 3° 
a
 

Bilateral cochlear implants 27° 20° to 29° 
b
 

a
 from Verschuur et al. (2005). 

b 
combined from Verschuur et al. (2005), Litovsky et al. (2006), Grantham et al. 

(2007) and Neuman et al. (2007). 
 

2. Future work 

There is, of course, still much work that could be conducted in this area.  The 

following is a list of some of the most obvious and interesting subjects where this 

research could continue: 

 The MatLab modeling work could be continued to include improvement of the 

model through refinement of the pinna effects transfer function.  This could lead 

to more accurately matching the performance of the model to that of a normal 

hearing person.  This could also be better validated to experimental results 
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through comparison of the model to measured results by azimuth, rather than the 

aggregate error as was found in the published data by Perrott and Saberi, (1990) 

and Verschuur et al. (2005). 

 An area that was not given consideration in the model presented in this 

dissertation is refinement of the signal processing algorithm representing echoes 

and delays associated with the microphone placement in cochlear implant external 

processors.  Since an assumption was made that this would not have nearly as 

significant an impact on performance as the signal processing of the implant 

itself, no effort was exerted in this area.  While this assumption is still considered 

to be valid, addressing this aspect of the modeling of the cochlear implant would 

be expected to provide a slightly closer match to the signal that eventually is 

processed for sound source localization.  Incorporation of this feature would also 

provide the ability to assess new microphone placement schemes, and whether 

they have any impact on localization performance. 

 While sound source localization performance of the model did reasonably match 

that of cochlear implant subjects as reported in the literature, additional work 

could be conducted in order to include more detailed modeling of the cochlear 

implant signal processing.  Through more exactly following the commercial 

algorithm, which would require obtaining proprietary information from the 

manufacturer, it is assumed that the performance could be more closely matched.  

In order to assess whether there is a better match of the performance than that 

shown in this work, it would also be necessary to obtain a deeper analysis of the 

subject performance data, so that a comparison by azimuth could be conducted. 
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 Finally, an area that would be of significant interest would be to develop 

additional models for other commonly used cochlear implant processors and 

compare the models' performance to published data on these types of sound 

processors.  It would be of great interest to see if the close correlation in 

localization error seen in the current model continues with other cochlear implant 

signal processing algorithms. 

This would necessarily be a larger research project than this dissertation because 

proprietary information regarding the signal processing algorithms would be 

required, since only the CIS algorithm has specifics published in any detail.  It 

would also be necessary to conduct cochlear implant sound source localization 

studies where the population was controlled for signal processing type, in order to 

obtain the required data for comparison. 

3. Conclusion 

The close correlation between published data on localization abilities of cochlear 

implant users and the modeled localization performance results from the current study 

suggest that their poor performance is primarily due to the combination of differences in 

the HRTF and degradation of the cues by the signal processing of the implant.  The 

HRTF differences are essentially reduced pinna effects and thus the loss of the additional 

auditory cues that are created when presented with other than a monotonic acoustic 

signal.  However, the loss of the full set of auditory cues caused by the signal processing 

algorithm employed by the cochlear implant is likely to play a larger role with most 

signals presented.  
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In conclusion, this sound source localization model is deemed suitable as a tool 

for evaluating cochlear implant signal processing algorithms for localization 

performance.  It is believed that this model could become an important element in the 

development of new cochlear implant signal processing algorithms, if provided to 

researchers and engineers working in this area.  
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Appendices 

 

1. MATLAB Code:  Main Module 

%                  Spatial Localization Algorithm 
% 
% Determines the direction a signal is emanating from using binaural 
% hearing.  The signal is picked up at two locations spaced at the 
% width of the head centered at the origin.  Signal source data was 
% obtained from a KEMAR manikin.  A basic and common cochlear implant 
% algorithm is used when hearing is set to ci. 

  
clc                                      % clear command window 
clear                                    % clear variables 
hearing = 'normal';                      % select 'normal' or 'ci' 

  
azimuth = 030;                           % select signal source azimuth 
phi     = 000;                           % select signal source 

elevation 
at      = 6.6;                           % anterior threshold constant 

  
if azimuth > 95  i = 9;                  % set source data index value 
elseif azimuth > 5  i = 10; 
else  i = 11; 
end 

  
filename = 'Data\L0e000a.wav';           % create source data file name 
filename(i:11) = num2str(azimuth); 

  
% read signal data 
[x1,fs] = wavread(filename);             % extract signal 1 
if azimuth > 0 azimuth2 = 360 - azimuth; % select signal 2 
else azimuth2 = 0; 
end 
filename(9:11) = num2str(azimuth2); 
[x2,fs] = wavread(filename);             % extract signal 2 
[samples,row] = size(x1);                % number of samples read 

  
% normal hearing pinna effects 
if strcmp(hearing, 'nornal')             % normal hearing selected 
    x1 = pinna(x1, azimuth, phi); 
    x2 = pinna(x2, azimuth, phi); 
end 
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% ci signal processing 
if strcmp(hearing, 'ci')                 % cochlear implant selected 
    x1 = cidsp(x1,13,17); 
    x2 = cidsp(x2,13,17); 
    at = at * hearing(2)/100; 
end 

  
% plot signals 
figure; 
subplot(2,1,1), plot(x1,'b');            % plot signal 1 
axis([0 samples -1 1]) 
title('Signal [Left Ear]'); 
subplot(2,1,2), plot(x2,'r');            % plot signal 2 
axis([0 samples -1 1]) 
title('Signal [Right Ear]'); 

  
% perform Fourier transform 
n = 2048;                                % set FFT size 
y1 = fft(x1,n);                          % compute the FFT of signal 1 
y1 = y1(1:n/2);                          % take the first 

half                                  
m1 = abs(y1);                            % magnitude of signal 1 
p1 = unwrap(angle(y1));                  % phase of signal 1 

  
y2 = fft(x2,n);                          % compute the FFT of signal 2 
y2 = y2(1:n/2);                          % take the first 

half                                  
m2 = abs(y2);                            % magnitude of signal 2 
p2 = unwrap(angle(y2));                  % phase of signal 2 

  
if max(m1) > max(m2)                     % get index of maximum 

magnitude 
    [C,i] = max(m1);                      
else 
    [C,i] = max(m2); 
end 

  
Magnitude1 = m1(i); 
Phase1 = 360*p1(i)/6.2832;               % convert phase to degrees 
Magnitude2 = m2(i); 
Phase2 = 360*p2(i)/6.2832;               % convert phase to degrees 
dPhase = Phase2 - Phase1;                % compute phase delay 

  
% plot spectrum 
f = (0:0.5*n-1)*fs/n;                    % calculate values in Hertz  

  
figure; 
subplot(2,1,1); 
plot(f,m1,'b',f,m2,'r');                 % plot magnitudes 
v = axis;                                % get axis limits 
axis([0 10000 -5 1.5*v(4)]) 
title('Spectrum Magnitude'); 
ylabel('Abs. Magnitude'), grid on; 
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xlabel('Frequency [Hz]'); 

  
subplot(2,1,2); 
plot(f,p1*180/pi,'b',f,p2*180/pi,'r');   % plot phase in degrees 
v = axis;                                % get axis limits 
axis([0 10000 v(3) v(4)]) 
title('Spectrum Phase'); 
ylabel('Phase [Degrees]'), grid on; 
xlabel('Frequency [Hz]'); 

  
% determine direction to target 
c = 343; %meters/second                    speed of sound 
d = 0.2; %meters                           distance between ears 
itd = abs(dPhase/(360*f(i))); %seconds     interaural time delay 
Cf = -1205475*itd^2 + 590*itd + 1;       % head shadow coefficient 
temp = Cf*c*itd/d; 
theta_d = 180*asin(Cf*c*itd/d)/pi; %deg    calculate angle to target 

[deg] 
theta_r = asin(Cf*c*itd/d); %rad           calculate angle to target 

[rad] 

  
if (Magnitude1 + Magnitude2 < at)        % check for signal from behind 
    AP = 180; %°/rad                       anterior position in degrees 
    APr = AP/360 * 2 * pi;               % anterior position in radians 
    theta_d = AP-180*asin(Cf*c*itd/d)/pi;% angle to target if anterior 
    theta_r = APr-asin(Cf*c*itd/d); 
end 

  
% plot direction to target 
figure; 
polar([0 theta_r],[0 1],'-r'); 
title('Angle to Target'); 
% display detected azimuth angle 
theta_d 

  
% push data into arrays for analysis 
FFT_array( 1+azimuth/5 , 1 ) = y1(i); 
FFT_array( 1+azimuth/5 , 2 ) = y2(i); 

  
azimuth_data(1+azimuth/5, 1) = azimuth; 
azimuth_data(1+azimuth/5, 2) = theta_d; 
azimuth_data(1+azimuth/5, 3) = itd; 
azimuth_data(1+azimuth/5, 4) = dPhase; 
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2. MATLAB Code:  Iteration Module 

%        Spatial Localization Algorithm - Rotating Azimuth 
% 
% Determines the direction a signal is emanating from using binaural 
% hearing.  Iterative algorithm that computes the localization values 
% as the signal is rotated about the head.  The RMS Error is also 
% calculated for the detected location.  A basic and common cochlear  
% implant algorithm is used when hearing is set to ci. 

  
clc                                      % clear command window 
clear                                    % clear variables 
hearing = 'ci';                          % select 'normal' or 'ci' 

  
for a = 0:36; 

  
azimuth = a*5;                           % select source data set 
phi     = 000;                           % select signal source 

elevation 
at      = 6.6;                           % anterior threshold constant 

  
if azimuth > 95  i = 9;                  % set source data index value 
elseif azimuth > 5  i = 10; 
else  i = 11; 
end 

  
filename = 'Data\L0e000a.wav';           % create source data file name 
filename(i:11) = num2str(azimuth); 

  
% read signal data 
[x1,fs] = wavread(filename);             % extract signal 1 
if azimuth > 0 azimuth2 = 360 - azimuth; % select signal 2 
else azimuth2 = 0; 
end 
filename(9:11) = num2str(azimuth2); 
[x2,fs] = wavread(filename);             % extract signal 2 
[samples,row] = size(x1);                % number of samples read 

  
% normal hearing pinna effects 
if strcmp(hearing, 'nornal')             % normal hearing selected 
    x1 = pinna(x1, azimuth, phi); 
    x2 = pinna(x2, azimuth, phi); 
end 

  
% ci signal processing 
if strcmp(hearing, 'ci')                 % cochlear implant selected 
    x1 = cidsp(x1,13,17); 
    x2 = cidsp(x2,13,17); 
    at = at * hearing(2)/100; 
end 

  
% perform Fourier transform 
n = 2048;                                % set FFT size 
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y1 = fft(x1,n);                          % compute the FFT of signal 1 
y1 = y1(1:n/2);                          % take the first 

half                                  
m1 = abs(y1);                            % magnitude of signal 1 

  
y2 = fft(x2,n);                          % compute the FFT of signal 2 
y2 = y2(1:n/2);                          % take the first 

half                                  
m2 = abs(y2);                            % magnitude of signal 2 

  
if max(m1) > max(m2)                     % get index of maximum 

magnitude 
    [C,i] = max(m1);                      
else 
    [C,i] = max(m2); 
end 

  
p1 = unwrap(angle(y1));                  % phase of signal 1 
Magnitude1 = m1(i); 
Phase1 = 360*p1(i)/6.2832;               % convert phase to degrees 
p2 = unwrap(angle(y2));                  % phase of signal 2 
Magnitude2 = m2(i); 
Phase2 = 360*p2(i)/6.2832;               % convert phase to degrees 
dPhase = Phase2 - Phase1;                % compute phase delay 

  
% plot spectrum 
f = (0:0.5*n-1)*fs/n;                    % calculate values in Hertz  

  
% determine direction to target 
c = 343; %meters/second                  % speed of sound 
d = 0.2; %meters                         % distance between ears 
itd = abs(dPhase/(360*f(i))); %seconds   % interaural time delay 
if itd>0.001 itd = itd/2; end 
Cf = -1205475*itd^2 + 590*itd + 1;       % head shadow coefficient 
temp = Cf*c*itd/d; 
theta_d = 180*asin(Cf*c*itd/d)/pi; %deg    calculate angle to target 

[deg] 
theta_r = asin(Cf*c*itd/d); %rad         % calculate angle to target 

[rad] 

  
if (Magnitude1 + Magnitude2 < at)        % check for signal from behind 
    AP = 180; %°/rad                       anterior position in degrees 
    APr = AP/360 * 2 * pi;               % anterior position in radians 
    theta_d = AP-180*asin(Cf*c*itd/d)/pi;% angle to target if anterior 
    theta_r = APr-asin(Cf*c*itd/d); 
    flag = 1; 
end 

  
progressbar(a/36); 

  
% push data into arrays for analysis 
azimuth_data(1+azimuth/5, 1) = azimuth; 
azimuth_data(1+azimuth/5, 2) = theta_d; 
azimuth_data(1+azimuth/5, 3) = itd; 
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azimuth_data(1+azimuth/5, 4) = dPhase; 

  
FFT_data(1+azimuth/5, 1) = Magnitude1; 
FFT_data(1+azimuth/5, 2) = Phase1; 
FFT_data(1+azimuth/5, 3) = Magnitude2; 
FFT_data(1+azimuth/5, 4) = Phase2; 

  
FFT_Phase(:, 1+azimuth/5) = p2; 
FFT_Mag(1+azimuth/5, :) = m1; 
end 

  
% plot error and calculate the RMS Error value for all azimuths 
figure; 
rmsE = sqrt(mse(azimuth_data(:,1)-azimuth_data(:,2))); 
plot(azimuth_data(:,1),azimuth_data(:,1),'k',... 
     azimuth_data(:,1),azimuth_data(:,2),'r'); 
text(40,160,['RMS Error: 

',num2str(rmsE)],'HorizontalAlignment','center'); 

 
 

 

3. MATLAB Code:  Cochlear Implant Processing Module 

%              Cochlear Implant Processing Algorithm 
% 
% This function is used to apply a basic,but typical cochlear implant 
% signal processing algorithm to the incoming signal.  This function 
% replaces the pinna effect function, as the signal is received by the 
% cochlear implant microphone rather than the ear. 

  
function [x_out] = cidsp(x_in,lb,ub) 

  
% filter boundaries used in a commonly used cochlear implant 
filterbank = [188 313 438 563 688 813 938 1063 1188 1313 1563 1813 ... 
              2063 2313 2688 3063 3563 4063 4688 5313 6063 6938 7938]; 

     
% set filter parameters 
m = 22000; %Hz                             signal bandwidth 
sk = 990; %Hz                              filter skirt width 
pl = filterbank(lb); %Hz                   passband lower limit 
pu = filterbank(ub); %Hz                   passband upper limit 
lb = pl - sk; 
ub = pu + sk; 

     
% generate the filter 
ftype = 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'; 
d = fdesign.bandpass(ftype,lb/m,pl/m,pu/m,ub/m,60,1,60); 
Hd = design(d,'equiripple'); 

     
% apply ci processing to the signal 
x_out = filter(Hd,x_in); 
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4. MATLAB Code:  Pinna Module 

%                     Pinna Effects 
% 
% This function is used to process pinna effects  
% on the incoming signal and thus account for the  

% filtering component introduced by the idealized  
% human pinna. 

  
function [x_out] = pinna(x_in, azimuth, elevation) 

  
% convert azimuth and elevation to radians 
theta = (azimuth/360) * 2 * pi; 
phi = (elevation/360) * 2 * pi; 

  
% set delay constant values 
A = [0 1 5 5 5 5];  
B = [0 2 4 7 11 13]; 
C = 0.5; 
D = [0 1 0.5 0.5 0.5 0.5]; 

  
tau = zeros(6,1); 
theta = asin(abs(sin(theta))); 

  
% calculate the delay for each pinna echo 
for n = 2:6 
    tau(n) = A(n) * cos(C*theta)*sin(D(n)*(pi/2 - phi)) + B(n); 
end 

  
% magnitude of each pinna echo 
rho = [1 0.5 -1 0.5 -0.25 0.25]; 
h = zeros(32,1)'; 
h(1) = 1; 

  
% generate a 32-tap impulse response filter to represent the pinna 

echos 

for n = 2:6 
    t2 = ceil(tau(n)); 
    t1 = t2-1; 

  
    if(t2 < 32) 
        h(t2) = h(t2) + rho(n) * (tau(n) - t1); 
        h(t1) = h(t1) + rho(n) * (tau(n) - t2); 
    end 
end 

  
% apply the pinna echo effects 
echos = conv(x_in, h); 

  
% apply a smoothing filter 
[b,a] = butter(1, 3000/22050); 
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% return the filtered signal back to the main routine 
x_out = filter(b,a,echos); 
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