
University of Denver University of Denver 

Digital Commons @ DU Digital Commons @ DU 

Electronic Theses and Dissertations Graduate Studies 

1-1-2011 

Minimax and Maximin Fitting of Geometric Objects to Sets of Minimax and Maximin Fitting of Geometric Objects to Sets of 

Points Points 

Yan B. Mayster 
University of Denver 

Follow this and additional works at: https://digitalcommons.du.edu/etd 

 Part of the Algebraic Geometry Commons, and the Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Mayster, Yan B., "Minimax and Maximin Fitting of Geometric Objects to Sets of Points" (2011). Electronic 
Theses and Dissertations. 412. 
https://digitalcommons.du.edu/etd/412 

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It 
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital 
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Denver

https://core.ac.uk/display/217244066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/176?utm_source=digitalcommons.du.edu%2Fetd%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.du.edu%2Fetd%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/412?utm_source=digitalcommons.du.edu%2Fetd%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu


Minimax and Maximin Fitting of

Geometric Objects to

Sets of Points

A Dissertation

Presented to

the Faculty of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Yan Mayster

June 2011

Advisor:
Dr. Mario A. Lopez



Author: Yan Mayster
Title: Minimax and Maximin Fitting of Geometric Objects to Sets of Points
Advisor: Dr. Mario A. Lopez
Degree Date: June 2011

Abstract

This thesis addresses several problems in the facility location sub-area of computational

geometry. Let S be a set of n points in the plane. We derive algorithms for approximating

S by a step function curve of size k < n, i.e., by an x-monotone orthogonal polyline R

with k < n horizontal segments. We use the vertical distance to measure the quality of

the approximation, i.e., the maximum distance from a point in S to the horizontal segment

directly above or below it. We consider two types of problems: min -ε, where the goal is

to minimize the error for a given number of horizontal segments k and min -#, where the

goal is to minimize the number of segments for a given allowed error ε. AfterO(n) prepro-

cessing time, we solve instances of the latter in O(min{k log n, n}) time per instance. We

can then solve the former problem in O(min{n2, nk log n}) time. Both algorithms require

O(n) space. The second contribution is a heuristic for the min -ε problem that computes a

solution within a factor of 3 of the optimal error for k segments, or with at most the same

error as the k-optimal but using 2k − 1 segments. Furthermore, experiments on real data

show even better results than what is guaranteed by the theoretical bounds. Both approx-

imations run in O(n log n) time and O(n) space. Then, we present an exact algorithm for

the weighted version of this problem that runs in O(n2) time and generalize the heuristic

to handle weights at the expense of an additional log n factor. At this point, a randomized

ii



algorithm that runs inO(n log2 n) expected time for the unweighted version is presented. It

easily generalizes to the weighted case, though at the expense of an additional log n factor.

Finally, we treat the maximin problem and present an O(n3 log n) solution to the problem

of finding the furthest separating line through a set of weighted points. We conclude with

solutions to the “obnoxious” wedge problem: anO(n2 log n) algorithm for the general case

of a wedge with its apex on the boundary of the convex hull of S and an O(n2) algorithm

for the case of the apex of a wedge coming from the input set S.

iii



Acknowledgements

I thank my advisor Mario Lopez for his many years of close friendship and mentoring.

His patience, advice, and consistent encouragement were absolutely invaluable to me in

completing this dissertation and degree. I also thank my committee members, Alvaro Arias,

Chris GauthierDickey, Scott Leutenegger, and Ronald DeLyser, for their time, advice, and

comments. In addition, I would like to thank Drs. GauthierDickey and DeLyser for the

many grammatical and presentation suggestions to my thesis.

I thank again my advisor Mario Lopez for inviting me to continue my graduate school

experience with doctoral work. I also want to thank the faculty at the departments of

Computer Science and Mathematics whose courses I have taken at the University of Denver

throughout all my degrees. I am grateful to all of you.

Last, but not least, I wholeheartedly thank my graduate student colleagues and co-

authors, Mohammed Al-Bow and Riquelmi Cardona, for their friendship, collaboration,

conversations, and all the time we have spent together. I also thank Jeff Edgington for

leading the way and showing me the path to graduation and freedom. All of you friends

and colleagues, whose names are too many to mention here, have imparted your knowledge

and wisdom to me, and I thank you all.

Most importantly, I thank my parents, Boris and Rita Mayster,

and my brother, Dmitriy Mayster, for their love and attention.

iv



Contents

1 Introduction and Definitions 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Minimax Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Other Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The Facility and The Input Objects . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Min-# vs. Min-ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 Weighted vs. Unweighted . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Other Variants and Generalizations . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9 Contributions and Structure of this Thesis . . . . . . . . . . . . . . . . . . 15

2 Background and Previous Work 17
2.1 History of Facility Location/Routing Problems . . . . . . . . . . . . . . . 17
2.2 Previous Work in Minimax Step Function Curve Approximation . . . . . . 19
2.3 Previous Work in Maximin Approximation with a Line . . . . . . . . . . . 21

3 Unweighted Minimax Approximation with Step Function Curves 26
3.1 Background and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 An Optimal min -ε Algorithm Based on Binary Search . . . . . . . . . . . 29
3.3 An O(n log n) Approximation Algorithm . . . . . . . . . . . . . . . . . . 33

3.3.1 Worst-case Bound on the Cardinality of a GCSA Curve with Ec-
centricity ε∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Worst-case Bound on the Eccentricity of a GCSA Curve with Car-
dinality k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



4 Weighted Minimax Approximation with Step Function Curves 49
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 An Exact Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 A Heuristic with Provable Bounds . . . . . . . . . . . . . . . . . . . . . . 55
4.4 A Randomized Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Weighted Maximin Approximation with a Single Line 65
5.1 An O(n3 log n) General Algorithm . . . . . . . . . . . . . . . . . . . . . . 65
5.2 An O(kn log n) Restricted Orientation Algorithm . . . . . . . . . . . . . . 69

6 Maximin Cone Facility Location 74
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Finding the Widest Wedge with an Apex on the Boundary or Outside of

CH(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Finding the Widest Wedge with an Apex at an Extreme Point of S . . . . . 81

7 Conclusion 84

Bibliography 85

vi



List of Tables

2.1 Coordinates of points in Figure 2.1. . . . . . . . . . . . . . . . . . . . . . 25
2.2 Optimal (†) and Procedure 2 (‡) solutions. . . . . . . . . . . . . . . . . . . 25

3.1 Point data used in Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Vertical distances used in Figure 3.4. . . . . . . . . . . . . . . . . . . . . . 46
3.3 Results of GCSA test runs (unweighted case). . . . . . . . . . . . . . . . . 48

vii



List of Figures

1.1 A step function curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Illustration of (unweighted) minimax approximation and error. . . . . . . . 11
1.3 Illustration of weighted minimax approximation and error. . . . . . . . . . 13

2.1 Counterexample to algorithm by Drezner and Wesolowsky in [23]. . . . . . 24

3.1 A tree structure used by the exact minimax unweighted algorithm. . . . . . 31
3.2 GCSA pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Illustration of the tightness of bounds of Theorem 3.4. . . . . . . . . . . . . 40
3.4 Illustration of the tightness of bounds of Theorem 3.9. . . . . . . . . . . . . 45

4.1 The “dual” mapping of weighted points to the cost-location plane. . . . . . 51
4.2 The four cases of merging two envelopes in the cost-location plane. . . . . 57

5.1 Finding the orientation of a maximal separator. . . . . . . . . . . . . . . . 68
5.2 Finding a fixed-orientation maximin separating line in the cost-location plane. 71

6.1 The widest empty cone problem. . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 An illustration of the problem of Apollonius. . . . . . . . . . . . . . . . . 77

viii



Chapter 1

Introduction and Definitions

1.1 Introduction

Facility location and routing are important areas of computational geometry, a branch of

computer science devoted to finding solutions for problems that can be formulated in terms

of relationships between spatial objects. Generally, the solution takes the form of an al-

gorithm, a finite sequence of steps that can be performed on any valid input, perhaps with

some stated limitations (this is called an instance of the problem), to produce a correct an-

swer using finite resources. In the case of computer execution, the most crucial resources

are time (number of small elementary steps) and memory.

The need for the correct and most efficient algorithms has led to the creation of a field

immensely rich in both theory and applications. An integral part of this study of algorithms

is the subject of data structures - different ways of organizing and storing data to facilitate

and reduce the cost of its processing. These fundamental subjects of computer science are

1



elucidated in many textbooks, including a true classic by Cormen et al. [13] and a detailed

compendium of data structures in [40]. Computational geometry is naturally a part of this

vast area of study and is treated in depth in [14, 42].

Measuring the resource costs of an algorithm requires consistent and mathematically

grounded methods and notation. Fortunately, a general method with more or less uni-

form terminology and notation has been developed to address this need - the asymptotic

complexity analysis. Employing the so-called asymptotic notation, commonly used O(·)

(big-Oh) and Θ(·), it is used to find out and express the time and memory costs of an al-

gorithm as non-decreasing functions of the size of input and, sometimes, also output. As

the term “asymptotic” suggests, it is generally oblivious to any constant factors and all but

the dominating term. The results expressed in this notation are also extremely useful for

comparing the performance of different algorithms as well as, for any specific problem,

demonstrating the lower theoretical bounds for the amount of resources required to solve

it. That is, asymptotic complexity analysis can be used to investigate and express the least

cost of an optimal algorithm, even if as yet undiscovered. In our area of study, the input is

generally a set of points, which may originate from the vertices of a polygon or a collection

of polygons. Hence, resource costs are expressed in terms of their number as in almost all

cases the amount of memory and the number of elementary steps taken by an algorithm are

proportional to that quantity.

Facility location and routing studies the placement of geometric objects, called “facil-

ities”, among another set of objects of the same or different kind under certain criteria of

cost. A real-world example of such a problem would be that of finding the best path for a

pipeline which has to connect to a set of wells. Due to the mathematical nature of the prob-

2



lems studied by this area of computational geometry as well as the diversity and complexity

of potential applications, there are a great many problems that have received considerable

attention from researchers but still hold many unanswered questions and more than a few

that are open and awaiting any reasonable solution. Every type of geometric object may

create a different subproblem and require a different approach to processing the input data

and computing the final solution. Further, the very notion of “optimal” placement of an

object among other objects of the same or different type opens up a wealth of variants for

the researcher. Any one of the following, and many other, criteria generally yields its own

setup and may vastly change the nature of the problem – the main strategy of placement

(e.g., staying as close to or as far away as possible to the given objects), the definition of

the approximation cost used, the complexity of the approximating object (e.g., number of

segments in a polyline, or facets on a polytope, etc.), the restrictions on angles inside an ob-

ject or the overall orientation of an object. The dimension and the underlying geometry of

the space, including the definition of distance, produce yet more problems. Still of a more

theoretical nature are the questions of computability and lower bounds on performance. We

shall give a more formal treatment of many of these aspects when defining the problem and

surveying the previous work as well as during the presentation of the contributions of this

thesis.

1.2 Minimax Approximation

Minimax approximation derives the name from its goal of MINImizing the distance to the

furthest removed, i.e., MAXimally distant, object. This mainly agrees with the straightfor-

3



ward notion of approximation, yet is quite different from the mathematical least-squares

regression approach in that the points are ultimately not being approximated as a set in the

aggregate sense. Specifically, the outliers are being targeted the most. It does not matter

how close the other points are to the approximating object - the sole representation of cost

is the distance to the furthest one. From another point of view, there is a certain degree of

equality and balance accorded to all points in the sense that clusters play no significant role

here. Therefore, the example with the pipeline is perhaps not the one illustrating this partic-

ular type of approximation. There, the real cost is the total pipe length, which is the main

influence on the maintenance and operation costs of the pipeline not to mention other yet

more complicated cost ingredients that may or may not be present, such as the difficulties

presented by the terrain, etc. Thus, a good application for this strategy would be when the

subject points indeed present a case that merits a more equitable distribution of facilities,

such as, perhaps, the placement of hospitals, post offices, and cell phone towers, or the

routing of state highways. In the purely abstract setting, it is of course easy to claim that

the best solution is to place the approximating object on or through every input point, thus

achieving the total error of 0 no matter what the metric is. This may in fact be feasible but

additional restrictions on the complexity (or number) of the approximating object(s) most

often prevent such situations. In the presence of a limit on the size of the approximating

object, say, number of segments in a polyline, it is the trade-offs due to the interplay of this

limit with the distribution of the approximated points as well as the notion of “high” cost

in the application setting that ultimately determine the quality of the fit.

4



1.3 Other Approximation Methods

Having reviewed the motivation and application of the minimax approximation, it is then

natural to ask how to formulate an alternative method for the placement and routing of

facilities that are, conversely, less than desirable for the surrounding environment. Such

facilities are often termed “obnoxious” in the literature. Thus, the goal of the approxima-

tion becomes to MAXimize the distance to the closest, i.e. MINimally distant, input point.

Deciding exactly which of the two sets of objects - the placed ones or the input points -

are “obnoxious” is, of course, a matter of perspective. Alternatively, the input points could

be the undesirable locations, e.g., toxic dumps, and the placed route could be a highway

used by people who do not want to be exposed to the health hazards. Such situations give

rise to the maximin method, full opposite of the minimax, used to address these “obnox-

ious” facility location problems. Still other approximation methods exist and are quite well

covered in the literature. One of them is the minsum approximation, where the objective

is to minimize the total of all distances from the input objects to the placed facility. For

an in-depth treatment of such problems the reader is referred to the work by Aronov et al.

[3], as well as the papers referenced therein. We note here that this method fits the pipeline

example mentioned in the previous section. Finally, we note that our thesis is restricted to

the minimax and maximin methods.

1.4 The Facility and The Input Objects

In the most general sense, facility location refers to the fitting of objects of one kind to

a set of objects of another (possibly, same) kind. In this work, and in the previous work

5



surveyed in this thesis, the facility is usually a straight line or polyline, a curve made up

of multiple straight-line segments. Sometimes, we may represent the facility with a more

complex object, such as a wedge, the 2D equivalent of the familiar cone shape - the interior

of an angle formed by two half-rays with a common endpoint. A look at Figure 6.1 would

help visualize this type of facility location problem. For the work on one less common

facility type, the reader may consult the paper [17] by Dı́az-Báñezet al. that studies the

largest empty annulus problem.

The input objects, though possibly representing vertices of polygons or other geometric

entities, are generally treated as a set of n two dimensional points without concern as to

their origin. Thus, the problem of facility location and/or routing in this context becomes

abstract “curve fitting.” While there is a lot of attention in the literature devoted to the fit-

ting of general polylines, the primary focus of this thesis is on the so-called x-monotone

orthogonal curves or step functions. A curve R is orthogonal (or rectilinear as referred

to in some publications) if it consists only of alternating horizontal and vertical segments.

This, of course, implies a fixed frame of reference although not necessarily the canonical

coordinate axes since a linear transformation suffices to convert between any pair of bases.

R is said to be x-monotone if the x-domains of any two consecutive horizontal segments

meet in a single value, namely the x-coordinate of the vertical segment joining them. Fig-

ure 1.1 provides an illustration of this type of facility.

It is important to note here that there is a general lack of agreement among the re-

searchers as to the preferred name for such polylines. Some, as do the authors of [21] and

[49], whose work was extended and improved upon by the author of the present thesis,

chose the above-mentioned term of x-monotone rectilinear curve. However, even some of

6



Figure 1.1: A step function curve approximating a set of points.

these same authors in another paper may replace the term rectilinear with orthogonal and

curve with chain (e.g., in [18]), and at times add the word polygonal to the description.

Still other authors may refer to these curves (polylines/chains) as step functions [26]. This

term, if applied mathematically to the same entity, clearly contradicts the existence of the

vertical segments as well as the overlap in the x-domains of the horizontal segments that

touch at their endpoints. While this strict mathematical view may be at odds with the pic-

ture of the polyline in Figure 1.1 and, hence, be construed as a slight abuse of the concept,

it only serves to underscore the abstract nature of this type of approximation. The nature

or even presence of the vertical segments is overall immaterial to the problem as they are

added in simply to produce a connected path representing the route or facility. Similarly,

the locations of where one horizontal segment ends and another begins are not fixed but

are free to be designated anywhere between a pair of input points adjacent along the x-

axis. These locations may be fixed to be half-way between a pair of such points defining

the beginning of a new horizontal segment or “step”, but only as a matter of convention.

The curve could be specified simply as a collection of k constituent horizontal segments,

7



since vertical ones are implied, s1, ..., sk, with their respective x-ranges. However, due to

its evolving nature during the execution of the algorithm it is almost always more conve-

nient to think of each segment in terms of the input objects it approximates and thus of a

curve as a partition of the input set into a collection of subsets with contiguous and non-

overlapping x-domains (we shall formalize this later in the definition of the allocation set).

Finally, going back to the subject of the confusion over the use of various terms for the

facility in Figure 1.1, we note that in this thesis we shall attempt to use one term - step

function curve/polyline. Notwithstanding the mentioned contradictions to the mathemat-

ical definition of a step function, this term introduces the least ambiguity as to the shape

and orientation of the approximating entity, while adding in the word “curve” or “polyline”

clarifies the continuity of the entity and alludes to the presence of vertical (or some other

non-approximating and non-essential) links. Any occurrence of another term mentioned in

this paragraph is to be interpreted synonymously.

1.5 Min-# vs. Min-ε

In the case of facilities represented by polylines or any type of geometric objects with a

quantifiable complexity, such as number of segments, sides, etc., two natural optimization

criteria are used. The first is to minimize the complexity of the polyline while aiming

to achieve the target error, which is measured according to any of the above mentioned

approximation methods. This is the min -# optimization. In some cases, when the solution

can be constructed in an incremental or online “greedy” mode, it is the easier variant. The

min -ε optimization requires the minimization of the error while keeping the complexity

8



of the facility below a certain pre-specified threshold. More specifically, in the case of

step function curves, min -# calls for a solution with the least number of horizontal line

segments given a target error ε. Similarly, min -ε specifies a number k and asks for a

curve with no more than k segments that achieves least possible error bounded by ε. It

is worthwhile to note that if the space of possible errors is discrete and can be searched

efficiently, the solution to the min -ε problem may be obtained by repeated applications of

the solution to the min -# problem in the same setting. This will be shown in an example

in a later section describing an algorithm by Dı́az-Báñez et al.

1.6 Distance Metrics

We have already discussed several common ways to measure the error of the approxima-

tion: minimax, maximin, and minsum. Each of these approximation methods depends on

the definition of the distance function, which determines the structure of the underlying

space. It needs to be noted that words “distance” and “cost” are used interchangeably here

and no reference to a specific or “natural” distance is made. In fact, we shall mention these

methods later in a pure optimization context, replacing the word “distance” with “cost” and

calling “furthest” objects “most expensive”, etc. However, in an abstract sense almost all

such “cost” metrics are proper distance metrics and so such use of terms is justified. Many

facility location problems have been studied in the context of what may appear as unusual

yet well motivated metrics, such as the Fréchet distance (for a look at one such work, re-

fer to [1] by P.K. Agarwal). Throughout most of this thesis, unless otherwise noted, the

9



distance metric used, i.e., the approximation cost from a single object to the facility, is the

Euclidean distance with two important reservations.

In the case of step function curves, the distance from a point to the functionR is always

measured to the closest horizontal segment - the approximating segment. This is the reason

it is often referred to as the vertical distance. We now define this vertical distance formally

since this is the error function used throughout most of our results. For any two points

p = (x, y) and p′ = (x′, y′), the vertical distance between p and p′ is

dv(p, p
′) =

 |y − y
′| if x = x′,

∞ otherwise.

Then, the vertical distance between a point p and a curveR is defined as

dv(p,R) = min
q∈R

dv(p, q).

Thus, using the minimax method, and following the notation of [21], the overall error,

called eccentricity, of R with respect to a set of points S is the maximum vertical error

between the points of S andR,

e(S,R) = max
1≤i≤n

dv(pi,R).

This is illustrated in the Figure 1.2 below. Here, the step function curveR approximates the

set of points S = p1, . . . , p15. R has complexity k = 5. Each segment of R is subscripted

both in order of increasing x domain as well as with the indices of points it approximates

(recall the discussion of Section 1.4 on the nature of the curve and its segments). The

10



Figure 1.2: Illustration of vertical distance, segments of R/subsets of S, and mini-
max eccentricity of a curve.

error induced by s1 is dv(p1,R) = 5 (counting the dashes from p1 to s1), that of s2 is

dv(p4,R) = 5 and s3 is dv(p6,R) = 3.5. Looking ahead to the discussion in Chapters 2

and 3, note that each segment has at least two points at maximum distance to it. This is due

to the fact that a segment must be centered in order to minimize its error - a requirement

that in theory has to be enforced only for the segment contributing the maximum error, the

eccentricity e(S,R). In this case, it is s5, which has distance 9 to both p12 and p13. Also

note that some points can be arbitrarily close to R, such as dv(p8,R) = 0, but this has no

effect on the overall error. The second reservation mentioned previously concerns the use

of weighted distance metrics.

1.6.1 Weighted vs. Unweighted

Input objects may be endowed with additional characteristics that influence their relative

priority or “desirability.” Such characteristics influence and augment the approximation

11



costs to the objects, while not completely ignoring the costs stemming from the distances

in the underlying space. These are often specified in the form of distance-modifying mul-

tiplicative weights, which may come from any nonnegative subset of real numbers. Each

point is assigned a single weight value which does not have to be unique. We now re-define

the vertical distance above in this new weighted setting. If a horizontal segment s has y-

coordinate ys and x-range [xs, x
′
s], then the weighted vertical distance from s to a point pi

with associated weight wi is

dWv (pi, s) =

 wi|yi − ys| if xi ∈ [xs, x
′
s],

∞ otherwise.

The weighted vertical distance between a point pi and a curveR is, therefore, defined as

dWv (pi,R) = min
s∈R

dWv (pi, s),

and similarly dW takes the place of dv in the definition of the eccentricity. Let’s re-consider

the example of Figure 1.2 after having assigned to some points of S weights that are dif-

ferent from 1. The weights are shown in Figure 1.3 along with the entailed changes to

R. The points that do not have a new weight value next to them in the figure kept the old

implied weight equal to 1. Now, we have s1 with error dWv (p1,R) = dWv (p2,R) = 10,

s2 unchanged, s3 having merged with s4 due to the much greater contributions of p9 and

p10 and relative insignificance of p6 and p7, and a different position for s5 which has been

re-labeled to s4. The curve still passes through p8, which is all the more important now

that its weight is 10 times greater than it used to be. Further, both the new s3 and the new

12



Figure 1.3: The curve R from Figure 1.2 with distances altered by weights.

s4 give the eccentricity of the curve, error that is equal to 12. To see this, count the dashes

emanating from either p9 or p10 and multiply by the weights of those points (3 in each case,

yielding total error 12) and similarly check p12 and p14, remembering that the weight for p12

is 1 while that of p14 is 2 (counting the dashes from p12 may be a visual challenge but the

author asserts that they number 12). Note that each segment is still centered with respect to

the points it approximates, except now centering takes the weights into account.

1.7 Other Variants and Generalizations

The framework of the facility location problem described above already admits a large

body of variants. Changing the approximation method, the distance metric, and the facil-

ity and input object types according to the possibilities mentioned or those beyond yields

many interesting problems. Many different restrictions and generalizations are possible

13



and oftentimes require unique and clever approaches. Some are directions for future work

to extend the results in this thesis. For example, in each approximation method described

there is an implicit notion of a “corridor,” although in the presence of weights not neces-

sarily conforming to our intuition. This corridor is centered around the facility and in the

maximin case is empty with its “width” maximized while in the minimax case it encloses

all points while its width is minimized. We may relax this requirement on emptiness or

complete containment and admit up to k points whose distance to the facility has no ef-

fect on the overall approximation cost. This is called the k-dense variant and it may be a

trivial extension of an existing 0-dense result or may require a unique approach for a more

efficient answer. As a matter of clarification, we note that the use of k here is in no way

related to the complexity of the approximating curve, also denoted k, and is preserved here

to conform to the widespread notation in the literature.

Similarly, a further generalization for any approximation problem that restricts angles

between constituent segments of the curve is to allow for its arbitrary orientation relative to

the axes. Likewise, one could allow for arbitrary but fixed angles between the segments of

the curve. For example, one could extend the step function curve approximation problem

to include the 45◦ angle or any finite (usually, rather small) subset of angles. This appears

to make the problem considerably harder and an efficient solution is known in the presence

of an additional restriction. The minimax min -ε and maximin problems have been studied

in the presence of a fixed and known limit on the number of segments in the curve, say 1, 2,

or 3. Several interesting results specific to these restrictions are in [15, 20, 12]. A result that

combines this restriction (to 2 segments) with the generalization to arbitrary orientation has

been recently published [18].

14



Finally, many of these problems carry over to higher dimensions albeit usually requiring

some redefinitions due to greater degrees of freedom available for angles and orientation.

These 3- and higher dimensional cases have been studied in [47, 18].

1.8 Applications

Just like the example with pipeline placement, many similar but perhaps more likely sce-

narios can be conceived in more or less familiar settings, including VLSI design and query

optimization in DBMS based on predictions with histograms. Step function polylines are

just one kind of histogram and have been applied in this field. However, the solutions to

these problems are important from the point of view of the theoretical completeness of the

field of computational geometry and have been studied and presented in various papers and

in this thesis primarily for this reason.

1.9 Contributions and Structure of this Thesis

This thesis continues in Section 2 with a brief survey of the previous work in the facility

location domain with particular focus on the pre-existing solutions to the specific prob-

lems solved in this thesis. The contributions presented in this text are new solutions to

several problems in the facility location domain. The primary focus is on the minimax step

function polyline approximation of point sets in the plane. First, in Section 3 we solve

the unweighted version exactly in O(min{n2, nk log n}) time. Then, we present a heuris-

tic that yields solutions within a factor of 2 from the exact one but performs significantly

faster - the time bound achieved is O(n log n). The focus subsequently shifts in Section

15



4 to the weighted approximation in the otherwise similar setting and adapted versions of

these algorithms are presented. The running times have additional logarithmic factors but

the memory requirements remain linear. At this point, we also present a randomized algo-

rithm that takes O(n log2 n) expected time for the unweighted case and O(n log3 n) for the

weighted one. Further, in Section 5 a treatment of the weighted maximin line problem fol-

lows with the description of a new algorithm and the issues encountered in a pre-existing

one. Finally, Section 6 is on the maximin approximation with a wedge and concluding

remarks in Section 7 complete the thesis.

16



Chapter 2

Background and Previous Work

2.1 History of Facility Location/Routing Problems

The problem of approximating a piecewise-linear curve C by another piecewise-linear

curve R of smaller complexity whose vertices are a subset of the vertices of C was among

the first to be studied in the field of facility location. Using the usual Euclidean measure

of error, Imai and Iri [34] produced a polynomial time algorithm for the min -# variant

of this problem. This result was improved by Melkman and O’Rourke [41], Hakimi and

Schmeichel [29], and Varadarajan [47]. In [36] Imai and Iri solved the min -ε variant (faster

algorithms were later developed in [11, 25, 29]) and in [35] they described an optimal al-

gorithm to solve the min -# variant of the same problem under the vertical distance metric

but without requiring that the vertices of R also be vertices of C. The min -# and min -ε

variants of this unrestricted version of the problem under the vertical distance metric were

tackled in [28, 29, 48]. A special case of the unrestricted min -ε variant, where the approx-

17



imating curve has exactly 2 segments (called 1-corner chains), is treated by Dı́az-Báñez et

al in [15]. Eu and Toussaint [25] considered other possible metrics in the context of the

restricted version, including L1 and the so-called “parallel-strip” error criterion, where the

distance is measured from the approximated vertices to the line collinear with the approx-

imating line segment. They also devised algorithms to approximate polygonal curves in

3D under L1 and L∞ metrics, with the restriction that the curves must be monotone with

respect to one of the three axes. This restriction is removed by Barequet et al [4], who

also consider both min -ε and min -# optimization variants in dimensions higher than 3.

Finally, some polyline approximation problems have been studied in the general weighted

case in [31, 51]. The weighted case for a single approximating line under the minsum

method has received particular attention as the problem of the location of the median line

(see [50]).

The problem of step function approximation has been previously studied in [21, 49].

Dı́az-Báñez and Mesa derive a simple O(n) time algorithm to solve the step function

min -# problem and use it as a subroutine to solve the min -ε problem in O(n2 log n)

time. This result was improved by Wang, who proposed an algorithm that runs in O(n2)

time. His algorithm also makes use of the min -# algorithm of [21] but achieves better

performance by reducing the number of subroutine calls.

The obnoxious location problem has been tackled in several papers [38, 9], with variants

involving various error metrics [6] and constraints on the location of the obnoxious facility

([33, 5]), such as restricting it to lie in a given polygonal region [7]. In [10], Cappanera

et al. tackle the problem of simultaneous facility location and routing. Different types of

obnoxious facilities such as planes [19] or annuli [17] have also been considered. The first

18



paper to solve the widest empty corridor problem (when the obnoxious facility is a line)

was [32]. Using duality, Houle and Maciel solved the problem in O(n2) time. Subsequent

papers addressed other variants, such as allowing the corridor to contain up to some fixed

number of input points [37, 46], weighted distances [23, 22], L-shaped [12] and 1-corner

corridors [16, 20].

To the best of our knowledge, step function curve approximation in the weighted min-

imax setting had not been previously studied, and hence, our solution was the first in that

area. However, subsequent to the publication of our results, new work has appeared ([26])

that has tackled both the unweighted case (in O(n log n) time) and the weighted one (in

O(n log4 n)) using the sorted matrix searching technique ([27]). The O(n log n) running

time for the unweighted case on unsorted input is clearly an optimal result.

2.2 Previous Work in Minimax Step Function Curve Ap-

proximation

The min -# step function curve approximation problem can be solved in O(n) time [21]

by sweeping the points from left to right and extending the current segment (by including

the new point and re-centering) provided that its range is no more than twice the allowed

eccentricity. When that amount is exceeded, a new segment is started. This approach also

carries over to the weighted case as will be explained in Section 4. We now need the

following definition.

19



Definition 2.1. Let S be an input set of points indexed by x-coordinate. For any 1 ≤ i ≤

j ≤ n, let si,j be the optimal minimax segment approximating the set of points {pk|i ≤

k ≤ j} (as in Figure 1.2). We define εij as the approximation error introduced by si,j .

The authors of [21] noticed that the eccentricity of any optimal minimax step function

approximation curve generated for S must be some εij . Then, the min -ε problem can be

reduced to a binary search on the sorted list of candidate eccentricities E = {epsilonij|1 ≤

i ≤ j ≤ n}, comparing target complexity k with the complexity of the current candidate

curve as a guide. What allows this technique to be applied is the simple observation that

curves with higher complexity yield lower eccentricity, and vice versa. Using this fact

and their linear time min -# algorithm just explained, the authors develop an O(n2 log n)

algorithm for the min -ε problem.

Wang [49] keeps the min -# algorithm intact but improves the running time for min -ε

by avoiding the generation and sorting of all possible eccentricities. Instead he uses a dou-

ble sweepline scan to determine which instances of the min -# problem to solve. Initially,

the left and right sweeplines start at p1 and p2, and ε12 as well as an approximation curveR′

with this eccentricity are computed. Then, every subsequent step of the algorithm depends

on how the number of segments k′ in the curve computed in the previous step compares to

k. The author makes the following important observation.

Observation 2.2. For 1 ≤ i < j ≤ n− 1, εij ≤ εi(j+1) and for 2 ≤ i < j ≤ n it holds that

ε(i−1)j ≥ εij , since Sij ⊆ Si(j+1) and S(i−1)j ⊇ Sij .

Then, if k′ > k, the candidate curve had eccentricity smaller than that of the k-optimal

curve and the right sweepline is advanced to the next point (to increase eccentricity, by the

20



above observation). Similarly, if k′ ≤ k, the candidate curve is pushed into an answer array

and the left sweep line is moved one point to the right to look for R′ with a potentially

greater number of links and eccentricity no bigger than that at the last step. As a result,

[49] tries no more than 2n values of ε and, thus, solves the min -ε problem in O(n2) time.

See [49] for details.

2.3 Previous Work in Maximin Approximation with a Line

The problem of finding a farthest separating line, also known as an obnoxious straight line

route, through a set S = {p1, . . . , pn} of points in the plane has resulted in algorithms for

both the unweighted [32] and the weighted cases [22, 23]. Given S and a set of associated

positive weights wi, we search for a line `, with at least one point from S on each side, that

maximizes the distance to S, minpi∈S wid(pi, `). In this subsection we shall refer to the

weighted distance simply as distance and the optimal ` as the obnoxious line.

Houle and Maciel [32] describe a beautiful solution to the unweighted variant by taking

the problem into the dual space. There, this problem, which can be thought of as that of

searching for the widest empty corridor, can be solved by sweeping an arrangement of lines

that came from the input points. Two types of candidate best corridors are identified - those

bordered by lines that rest each on a single point and are perpendicular to the segment

joining these two points and those where one of the lines rests on at least two points. In the

dual arrangement, the corridor in the second case becomes a segment joining a vertex of a

face with an opposing edge while the first case results in a segment abutted by two edges

of the same face. What is important here is that in each case only segments within faces

21



of the arrangement need be inspected and there is only O(n2) of them. Each candidate

combination can be evaluated by going back into the primal space and performing the

necessary calculations as per the case that this combination corresponds to. This takes

constant processing per combination of input points. Thus, a topological search ([24]) is

employed and yields a solution that runs in O(n2) time and O(n) space.

Other work on this subject includes a paper by Janardan and Preparata ([37]) that intro-

duces algorithms for k-dense widest corridors for any k, including the case of n − 1, and

an algorithm to maintain the widest empty corridor under online insertions and deletions

as well as an algorithm that generalizes the input objects to polygonal obstacles. A recent

paper [22] also considers this more general version of the problem (separating polygonal

regions) and the algorithms proposed work for the case of points, too. The ideas in the

paper also use duality and require O(n2) space. Furthermore, in order to complete the al-

gorithm for the weighted case parametric search (refer to [44]) is utilized. Meanwhile, in

an earlier paper by Drezner and Wesolowsky [23], the authors provide an O(n3)-time and

O(n)-space algorithm for computing the obnoxious line through a set of weighted points.

However, upon careful examination of the proposed algorithm, we found a subtle error

that renders the algorithm incorrect. Additionally, the problem cannot be easily corrected,

without radically changing the algorithm.

In [23] the authors introduce formulas to compute various quantities, such as the dis-

tance to the weighted midpoint of the segment joining two points (fij(Θ)) and the distance

from a point to the lineRL equidistant either from one point on each side or from two points

on one side and one on the other (fk(Θ)). For the actual formulas as well as the specifics of

their derivations, the reader is referred to the original paper. Here, 0 ≤ Θ < π is the angle

22



made by T , the vector perpendicular to RL, with the positive x-axis. Other interpretations

of Θ lead to inconsistencies in the distance formulas given in the paper.

The authors outline an algorithm consisting of two parts, Procedure 1 and Procedure 2.

The first computes for any two points i, j the perpendicular route ` through the weighted

midpoint and checks that no other point is closer to `. It remembers the pair i, j that yields

the best such “empty corridor”. Procedure 2 then computes the distance fk(Θ) from any

other point k to the line RL equidistant from i, j on one side of it and k on the other. For

every pair i, j, it then classifies all such points k as “below” or “above” (our terminology)

depending on whether the quantity Sk(Θ), the signed Euclidean distance from RL to k, is

positive or negative, respectively, and picks the one closest to its corresponding line for

each set (see [23] for details). For each i, j, the algorithm then picks as its candidate for

Procedure 2 the point k which yields the larger of these two minimum distances. The intent

is to choose the wider of the two weighted “corridors” on each side of RL. The algorithm

terminates by returning the overall maximum among all candidates picked by both proce-

dures. In doing so, it appears that the authors are using, for the weighted case, properties

that only hold for the unweighted case. Their assumption seems to be that in Procedure 2

they do not need to check for “emptiness” of the candidate regions, as they are supposedly

ensuring that by picking the k that gives the smaller of the weighted distances on each side.

While perfectly reasonable for unweighted corridors, this fails in the weighted case. Here,

for the same pair i, j, we have routes that have different slopes for different points k (unlike

the unweighted case!). This means that for different k the weighted corridors may intersect

even if they belong to two different sets (i.e., one “above” and one “below”) and, as a result,

a point k1 may be inside of another point k2’s “corridor”.

23



Figure 2.1: Counterexample to algorithm in [23].

This situation is illustrated in Figure 2.1 and Table 2.2. We start with points p1 =

(5.92, 4.92), p2 = (5.92,−0.44), p3 = (2.25, 11.03), p4 = (12.64, 7.96), and weights

0.598802, 0.241546, 0.3709, 0.176678, respectively. Procedure 1 investigates 6 pairs and

finds that none of their weighted perpendicular bisectors yield proper corridors. Procedure

2 then considers each of the 6 pairs in turn on the same side of ` and each of the remaining

two points on the other side. This gives a total of 12 candidate separating lines, which are

then placed for each pair into either the “above” or the “below” group. These results are

tabulated in Table 2.2 which exposes the flaw in the algorithm: the last column shows the

weighted distance fh from a point h to the line determined by the other three. One can

observe that sometimes ph gets closer to the candidate separator than any of the other three

points. This violates the “emptiness” of the candidate, yet if fk is large enough, it may be

picked by the algorithm while the true best separator is skipped as inferior. In our example,

24



Point Location Weight
p1 (5.92,4.92) 0.598802
p2 (5.92, -0.44 0.241546
p3 (2.25, 11.03) 0.3709
p4 (12.64, 7.96) 0.176678

Table 2.1: Points p1, . . . , p4 in our counterexample to [23].

the line determined by p1, p4 and p3 is reported as the final answer, yet p2 is closer to it than

the other three points. At the same time, p2, p4 and p3 determine the line, whose fk is only

slightly smaller, but turns out to actually be empty (since p1 is further away from it than

any of these three points) and thus is the true best separator.

Pair k sign of Sk(θ) fk(θ) fh(θ)

(1, 2) 3 negative 1.59954 0.878394
4 negative 1.00462 0.779681

(1, 3) 2 positive 0.534473 1.43659
4 negative 1.00579 0.904625

(1, 4) 2 positive 0.918379 2.69556
3 negative 1.29187 ‡ 0.991894

(2, 3) 1 negative 0.314024 1.39185
4 negative 0.979299 1.09746

(2, 4) 1 negative 0.521644 2.72721
3 negative 1.26881 † 1.62224

(3, 4) 1 positive 0.809943 1.45618
2 positive 1.09385 0.0468722

Table 2.2: Optimal (†) and Procedure 2 (‡) solutions.

As already mentioned in the introduction, we present a correct algorithm for this prob-

lem in Section 5 that avoids the pitfall of [23] albeit at a cost of a somewhat higher time

cost - O(n3 log n).

25



Chapter 3

Unweighted Minimax Approximation

with Step Function Curves

3.1 Background and Definitions

In this chapter, we first develop a new min -# algorithm for minimax step function curve

approximation which, after a preprocessing cost of O(n), can solve multiple instances of

the problem (with different target errors) at a cost of O(min{k log n, n}) time per instance.

When coupled with the approach proposed by Wang, this results in an algorithm for the

min -ε problem than runs in O(min{n2, nk log n}) time. This is asymptotically faster than

the result in [49] when k = o(n/ log n). We then propose an algorithm that has O(n log n)

running time and yields an approximation curve with error within a factor of 3 of the

optimal and with the same number of segments. Furthermore, a curve of size 2k − 1

26



generated by our algorithm achieves an error which does not exceed that of an optimal

curve of size k.

In the rest of this section, we define the problem formally as well as introduce notation

that will be used throughout the paper. Let S = {pi = (xi, yi), i = 1, . . . , n}, x1 <

x2 < · · · < xn, be a set of n points in the plane. For 1 ≤ i ≤ j ≤ n, define Sij :=

{pi, pi+1, . . . , pj}. In the remainder of this and the next chapter, all approximation curves

are step function and x-monotone as defined in Section 1.4.

Because of our definition of distance, it suffices to restrict our attention to those curves

whose domain in x includes the interval [x1, xn] and all of whose vertical segments fall

strictly within it. We also assume that the first and the last segments of an approximation

curve are horizontal and, if needed, can be extended arbitrarily far in the negative or positive

x-directions. Given a horizontal segment s of a curve R with x-domain [a, b], we say that

a point pi of S is “covered” by s if xi ∈ [a, b]. Obviously, every point of S falls in the x-

domain of some horizontal segment ofR and the set of all points covered by s is some Sij

(which, as in [21], we call the allocation set of s). Furthermore, since we are not interested

in increasing the complexity of R without changing its eccentricity, all allocation sets are

nonempty, i.e. there is no horizontal segment that does not cover at least one point of S. We

note that the quality of the approximation is not affected by moving the vertical segment in

the space between the allocation sets of two consecutive horizontal segments ofR.

Let us call the y-span of points in the allocation set of s, the range of s. Then, it is clear

(and shown in [21]) that in the search for an optimal solution to the min -ε problem we

may restrict our attention to curves whose horizontal segments are centered with respect to

their range. Therefore, we may think of an approximation curve R with k segments as a

27



partition of S into k subsets such that if i < j and both pi and pj belong to the same subset

s, then {pi+1, . . . , pj−1} ⊂ s. Hence, R is completely specified by k − 1 integers in [2, n],

which are the indices of the leftmost points of k−1 subsets (the first subset always starts at

p1). Moreover, denoting εij = 1
2

maxpr,ps∈Sij
|yr − ys|, i.e., the error of a segment covering

Sij , and E = {ε12, ε13, . . . , ε1n, ε23, . . . , εn−1n}, the errors of all segments in a candidate

curveR are members of E and, hence, so is the eccentricity ofR.

It is important to point out that the solutions to the problem of fitting a step function

curve to a set of points are also applicable to the problem of fitting a curve to a set of vertical

segments in the plane, which may come from measurements with associated error bounds.

Each vertical segment is an interval along the y axis and has three values associated with

it, x, ylow, and yhigh. It is trivial to see that the only definition given earlier that needs to

be changed under this new setting is that of the approximation error of a segment. We may

assume that when the segment goes through a vertical data interval in its allocation set no

error is introduced. If a horizontal segment s does not pass through a data interval p in its

allocation set, the error with respect to p is the vertical distance from ylow[p] to s or the

vertical distance from yhigh[p] to s, whichever is smaller. Then, the best approximation

range for s is obtained by subtracting the lowest yhigh value from the highest ylow value

of the data intervals in its allocation set if that quantity is positive, or otherwise is defined

to be 0 (in which case, s can pierce all the intervals it approximates). The approximation

error of s is 1
2

of this range as it still makes sense for s to be centered with respect to it

(obviously when range is 0 it is irrelevant where s is placed so long as it goes through

all the data intervals it approximates). With this new definition of error, all step function

approximation algorithms can also solve this more general problem.

28



3.2 An Optimal min -ε Algorithm Based on Binary Search

In our solution to the min -ε problem, we use Wang’s sweep line algorithm to generate in-

stances of the min -# problem but solve each of these instances using a different approach.

Let k = dlog2 ne, where n = |S|, and let A be an array of size 2k+1 − 1. The last 2k ele-

ments of A contain the points of S sorted by x-coordinate, padded on the right with 2k − n

copies of (xn, yn) whenever n < 2k. The entries ofA can be interpreted as a full binary tree

whose leaves are the (padded) elements of S and whose internal nodes occupy locations

A[1..2k−1]. We adopt the convention that the parent ofA[i] is stored at location bi/2c, as it

is normally done for binary heaps (see [13], for example). Each of the first 2k− 1 elements

of A stores the range of the y values for all points in its subtree. This information can be

generated in O(1) time per node by proceeding bottom-up, one level at a time. Thus, the

tree can be built in linear time.

The algorithm creates an optimal k-curve with eccentricity ≤ ε one segment at a time

but does not necessarily investigate each point individually. Rather, it tries to build a seg-

ment by expanding it to cover progressively larger groups of points that are adjacent in

the sorted array followed by a phase of contraction when (and if) the error of the segment

exceeds ε. The segment is contracted by eliminating fewer and fewer points from it until

the final correct breaking point is found. The expansion and contraction phases correspond

to following upward and downward node sequences through the tree, which we shall now

describe. The construction of the first segment starts at the first leaf node (i.e., A[1] = p1)

and proceeds upward as long as the union of y-ranges of the nodes examined (i.e., the error

of the segment being built) is no more than ε. Each new node in the upward sequence is the

parent of the previous node’s right neighbor, i.e. the parent of the node whose array index

29



in A is one greater than that of the previous node. Note that this relationship means that

the new node may not necessarily be linked to the previous one by an edge, i.e. generally

we do not traverse a connected path. If the previous node had no right neighbor, then the

upward sequence must terminate since it means that the last leaf node is already covered

and so the segment extends to include the nth point.

Consider the figure below that shows the structure built on the points in Table 3.1 and

suppose that ε = 2. In our example, nodes in the upward and downward sequences are

designated with letters U andD, respectively, which are subscripted to indicate the segment

being built. We start with p1 and set the range of the first segment to p1’s y-coordinate,

[low1 = 5, high1 = 5]. From the first node p1 we move up to q8, the ancestor of p2 (which

also happens to be the ancestor of p1 as well). The y-range at q8 is [3, 5] and, therefore, its

union with the current range [5, 5] is less than the total y-range allowed (2ε = 4). Therefore,

it becomes the new range of the segment under construction and we move to the ancestor

of q9, which is q4. The range at q4 is [1, 6] and since its union with [3, 5] exceeds 4 units, the

upward sequence terminates and we need to descend to the leftmost child of q4 whose range

unioned with [3, 5] exceeds 2ε. In our example, the left child of q4 is q8 which had already

been examined (but this need not always be the case as we shall see later). Therefore,

we proceed downwards to q9. Following the same logic as before, we first investigate the

left child of q9, p3, whose y-coordinate is 6 and, therefore, the point can be added to our

segment whose y-range now becomes [3, 6]. The right child’s y-coordinate is 1 and so we

cannot include it in this segment. Since we have reached the leaf level no further descent is

possible and the first segment is finished.

30



p1 p2 p3 p4 p5 p6 p7

q8 q9 q10 q11

q4 q5

q2

q12 q13 q14 q15

p8 p9 p10 p11 p12 p13 p13 p13 p13

q6 q7

q3

q1

U1

U1

U1

D1

D1 U2

U2

U2

U2

D2

D2 D2

D2
U3

U3

U3

Figure 3.1: A tree structure constructed by the algorithm with 16 leaf nodes (stor-
ing 13 points) and 15 non-leaf “range” nodes. Upward and downward sequences
are designated with letters U and D, respectively, and subscripted to indicate the
number of the segment built.

The second segment is constructed starting at the leftmost point not included in the first

segment, p4. We then ascend to q10 (the ancestor of p5) and q5, increasing the range first

to [1, 3] and then to [1, 4]. At q3 (whose range is [2, 13]) we descend to q6. Then, we find

that the left subtree of q6 can be included in this segment since the range of q12 unioned

with [1, 4] is [1, 5]. This subtree does not need to be examined further and we descend to

the right child of q13, where we find that we may include p11 into this segment but not p12.

The third segment is constructed in a single upward sequence since at q7 we find that there

are no more nodes on that level.

Note that in each upward sequence no more than 1 node and in each downward se-

quence no more than 2 nodes from the same tree level are examined. Therefore, the total

cost of creating a segment is proportional to 3 log n. Since in order to advance either of the

sweeplines in Wang’s min -ε algorithm all we need to know is how the number of segments

31



Point id x y

p1 1 5
p2 2 3
p3 3 6
p4 5 1
p5 6 2
p6 9 3
p7 11 3
p8 12 4
p9 13 5
p10 14 2
p11 15 4
p12 19 9
p13 22 13

Node id low high
q1 1 13
q2 1 6
q3 2 13
q4 1 6
q5 2 4
q6 2 9
q7 13 13
q8 3 5
q9 1 6
q10 2 3
q11 3 4
q12 2 5
q13 4 9
q14 13 13
q15 13 13

Table 3.1: Point set used to build the tree in Figure 3.1 (left) and y-range information
stored in its “range” nodes, q1 - q15 (right).

k′ in the candidate curve compares to the target number k, our min -# algorithm may finish

and simply return that k′ > k whenever any points are not covered after k segments have

been finalized. This ensures that we spend no more than O(k log n) time building a single

candidate curve.

The other upper bound for this min -# algorithm can be shown by observing that for

each segment the length of upward and downward node sequences depends on the number

of points it would be extended to cover. Letting ni, 1 ≤ i ≤ k, be the number of points

in the final allocation set of the ith segment, we know that no more than 3 log 4ni nodes

were in both sequences for segment i since the highest node in the upward sequence could

have at most 4ni nodes in its subtree (since the subtree sizes in the upward sequence double

every time we move up a level and the last node in this sequence may contribute no points

32



to the allocation set, it may have 2ni leaves in its subtree and therefore have height log 4ni).

Hence, the total number of nodes visited by the algorithm is
∑k

i=1 3 log 4ni ≤ 3(2k+n) =

O(n) since n1 + · · ·+nk ≤ n. This implies that no matter what k is, our min -# algorithm

takes no more than linear time and so our solution to the min -ε problem, which uses

Wang’s method of solving 2nmin -# problems, takes total time O(min{n2, nk log n}) and

is asymptotically faster than Wang’s algorithm when k < n/ log n.

We also note that the above algorithm can be implemented without padding the leaf

point data to bring its size to a power of 2. Then, the number of the non-leaf elements

preceding S in A is n − 1 if n is even and n otherwise. Now, the point with the leftmost

x-coordinate may not necessarily be the leftmost leaf due to the fact that leaves may reside

at two different levels of the tree. Therefore, we may have to allow some upward sequence

that reached the rightmost node of some level to cross over to the leftmost node on that same

level. This situation may occur exactly once during the execution of the algorithm and to

detect it it is enough to keep track of the largest leaf index reachable from the currently

inspected node.

3.3 An O(n log n) Approximation Algorithm

Let k > 0 and consider a set S of n points in the plane. The min -ε problem calls for a

curve that consists of no more than k horizontal segments (we shall call this a k-curve) and

achieves the minimum possible vertical error (eccentricity). Let us denote an optimal k-

curve for S by C∗ and its eccentricity by ε∗. The algorithm in [49] finds C∗ and ε∗ in Θ(n2)

time. We sought a faster approximation algorithm to generate curves with eccentricity no

33



more than ε∗ and at most αk horizontal segments, where α > 1 is a small constant. In this

section we first describe our simple greedy algorithm and then in Subsection 3.3.1 show

that α = 2 always suffices. Furthermore, in Subsection 3.3.2 we prove that the eccentricity

of a k-curve generated by our algorithm is within a factor of 3 from optimal.

We start with a set of n points stored in an array A. The Greedy Combine Segment

Approximation (GCSA) Algorithm, described in Figure 3.2, is called on A with a single

additional parameter m that specifies the number of segments in the output curve C. The

first step of the GCSA algorithm is to sort the points in A by x-coordinate. Then, GCSA

creates a doubly-linked list L of n segments (line 2), each going through a different point

and linked in the order of appearance in A of the corresponding points. Thus, with a call to

BUILDSEGMENTLIST, we begin with an n-curve of eccentricity 0 that consists of singleton

segments ordered from left to right. In order to produce an m-curve, adjacent allocation

sets will be merged and new longer segments created. GCSA follows a greedy approach

minimizing the eccentricity of the resulting curve at every merge step.

The following list describes the fields found in each segment.

start Index in A of the first point covered by the segment

low Lowest y-coordinate of the points covered by the segment

high Highest y-coordinate of the points covered by the segment

cost Error of the segment merged with its left neighbor,∞ for leftmost segment

left Pointer to the left neighbor of the segment

right Pointer to the right neighbor of the segment

34



GCSA(A,m)
1 Sort A in ascending order by x-coordinate
2 L← BUILDSEGMENTLIST(A)
3 if size[A] ≤ m
4 then return L
5 H ← BUILDCOSTHEAP(L)
6 while size[H] > m
7 do s← EXTRACTMIN(H)
8 low[left[s]]← MIN(low[left[s]], low[s])
9 high[left[s]]← MAX(high[left[s]], high[s])

10 right[left[s]]← right[s]
11 if cost[left[s]] 6=∞
12 then h← MAX(high[left[s]], high[left[left[s]]])
13 l← MIN(low[left[s]], low[left[left[s]]])
14 cost[left[s]]← h− l
15 HEAPIFY(H, left[s])
16 if right[s] 6= NIL

17 then h← MAX(high[left[s]], high[right[s]])
18 l← MIN(low[left[s]], low[right[s]])
19 cost[right[s]]← h− l
20 left[right[s]]← left[s]
21 HEAPIFY(H, right[s])
22 delete s
23 return L

Figure 3.2: Pseudocode for the GCSA Algorithm.

35



Initialization of these fields is done inside of the function BUILDSEGMENTLIST. The

fields low and high are set to the y-coordinate of the only point covered by the segment.

The only field whose initialization requires a computation is cost, which is set to the length

of the y-range of the points covered by the segment and its left neighbor. Since the leftmost

segment has no left neighbor, its cost is ∞. Note that if n ≤ m, the algorithm simply

returns the curve obtained in this first step.

The next step is to prepare the list of segments for processing (merging) by prioritizing

them according to cost, which we define as the eccentricity of the curve resulting from

merging a segment with its left neighbor. This step may be done as in line 5 by building a

min-heap on the segments using cost as key.

GCSA repeatedly extracts the segment with the minimum cost from the heap (line 7)

and merges it with its left neighbor. Merging is carried out by updating the neighbor’s fields

(lines 8-14), re-heapifying (line 15), and then updating the fields of and re-heapifying on

its right neighbor (lines 16-20). As part of this operation, the algorithm also maintains the

adjacency pointers between segments (lines 10, 20). At every point in the execution of this

loop, the eccentricity of the curve is dominated by the cost of the segment at the top of the

heap and equals the error of the last generated segment. Another important observation is

that the costs of the neighbors of an extracted segment can only increase, which justifies

the calls to HEAPIFY in lines 15 and 21. Note that the leftmost segment is never extracted

from the heap and as a result the splicing of nodes never changes the head node of L. The

GCSA algorithm stops after n−m iterations and L stores the segments of the curve sorted

by x-range.

The following theorem proves the efficiency of GCSA.

36



Theorem 3.1. The GCSA Algorithm produces the curve C in O(n log n) time.

Proof. The sorting of the points in A takes O(n log n) time. The construction of the seg-

ment list takes linear time, since it involves creating a linked list of n segments. Building

the cost heap H also takesO(n) time. Finally, each iteration of GCSA takesO(log n) time,

since in addition to the constant time spent on merging segments and updating adjacent

costs, one Extract-Min and two Heapify operations are called on H . Because the algorithm

terminates after n−m steps, the total cost is therefore O(n log n + n + (n−m) log n) =

O(n log n).

Let us now introduce some terminology which will facilitate our discussion of the prop-

erties of curves constructed with GCSA. First, we shall define the cardinality of a step

function curve.

Definition 3.2. The cardinality of a step function curve C, denoted |C|, is taken to be

the number of horizontal segments contained in C (including the possibly semi-infinite

beginning and ending segments).

We shall call a curve constructed by the GCSA algorithm (after any number of itera-

tions) a GCSA curve and classify its segments through their relationship with the segments

of some (fixed) optimal k-curve.

Definition 3.3. Let S be a set of points and C∗ an optimal k-curve for S. A horizontal

segment s of a GCSA curveC is called an inside segment with respect toC∗ if its allocation

set is a contiguous subset of the allocation set of a horizontal segment s∗ ofC∗. In that case,

we say that s∗ contains s and denote it s ⊆ s∗. Also, if s ⊆ s∗ and s∗ covers a point not

37



covered by s, we say that s∗ properly contains s. Any segment of C which is not an inside

segment with respect to C∗ is a straddling segment (or a straddler) with respect to C∗.

Since we shall always keep the choice of C∗ fixed throughout every argument, we shall

drop the reference to C∗ when qualifying the segments of C and simply speak of them

as inside or straddling segments. When the allocation sets of a segment s of C and a

segment s∗ of C∗ intersect, we shall simply say that s intersects s∗. Clearly, any segment

of C can only intersect a subset of the segments of C∗ that are adjacent. We shall also

expand the last definition and differentiate between the straddlers that intersect exactly two

segments of C∗ and call these simple straddlers and all other straddling segments and name

those compound straddlers. Obviously, no GCSA curve C may contain more than k − 1

straddlers with respect to an optimal k-curve C∗ (and only have that many when they are

all simple) because there are exactly k − 1 pairs of adjacent segments in C∗.

3.3.1 Worst-case Bound on the Cardinality of a GCSA Curve with

Eccentricity ε∗

We now prove one of the two main properties of the GCSA algorithm.

Theorem 3.4. If n ≥ 2k, the GCSA Algorithm with m = 2k − 1 produces a curve C with

eccentricity ε ≤ ε∗.

Proof. Let S be a set of n points and k > 0. Let C∗ be an optimal k-curve with eccentricity

ε∗. Suppose to the contrary that the curve C returned by GCSA and consisting of 2k − 1

segments has eccentricity ε > ε∗. Then, C contains at least one segment s, whose error is

equal to ε. Consider the situation just before s was created (i.e., before its cost is extracted

38



from the heap) and call the curve constructed up to that point C ′. Then, clearly, |C ′| >

2k − 1, since s resulted from merging two segments. Now, let s∗ be a segment of C∗ and

consider how many inside segments of C ′ may be contained by s∗. Assume there are two

or more such segments of C ′. Then, there must be at least one adjacent pair of these inside

segments and the cost of merging any such pair is ≤ error(s∗) ≤ ε∗ and so is < ε by

hypothesis. Therefore, merging these pairs of segments has smaller cost than creating s

contradicting the fact that the cost of s is at the top of the heap. Thus, we infer that all

such pairs have been merged before and there can be at most one segment of C ′ completely

inside of s∗. Since s∗ was arbitrary, it follows each segment of C∗ may contain at most

one segment of C ′. Then, since there can be no more than k − 1 straddling segments, C ′

has no more than k + k − 1 = 2k − 1 segments. However, earlier we established that

|C ′| > 2k − 1, and so we have arrived at a contradiction. We conclude that the curve C

consisting of 2k − 1 segments has eccentricity ε ≤ ε∗. Since GCSA starts with n segments

and with each iteration decreases their number by one, C is obtained after n − 2k + 1

iterations.

Construction 3.5. We now show that the bound on m in Theorem 3.4 is tight. To this

end, we construct an arbitrarily large set S of points whose GCSA (2k − 2)-curve has

eccentricity bigger than ε∗. For k = 2, Figure 3.3a shows a set of n = 4 points along with

an optimal 2-curve (dotted lines) and the GCSA curve with 2k − 2 = 2 segments (solid

lines). The middle pair of points in this figure is separated by vertical distance 1− δ, while

the points in the two other adjacent pairs are exactly 1 vertical unit apart from each other. If

δ is very small, this shows that the GCSA 2-curve is almost twice as bad as an optimal one.

Using two copies of this point set (with pointD shared) in a V -shaped arrangement, we can

39



A

B C

D

...........................................

(a)

................................................................
...
...
...
...
...............................................................

(b)

Figure 3.3: (a) A set of 4 points with the optimal 2-curve (dotted) and the GCSA
curve approximating it (solid). The distance between the points A and B as well
as between C and D is 1 unit, while the distance between B and C is 1 − δ, (b)
3 copies of the set in (a) adjoined in a V -shaped arrangement with the optimal
4-curve (dotted) and the GCSA 6-curve (solid) whose eccentricity is almost twice
as bad.

show that an optimal 3-curve has eccentricity up to nearly 2 times better than the 4-curve

obtained with GCSA. Figure 3.3b shows how we can build a bigger example with three

copies of the same point set and this construction carries over to arbitrarily large numbers

of points and segments. In general, an optimal k-curve may have eccentricity almost twice

as small as that of the GCSA (2k−2)-curve. To see this, let k = h+1 and so 2k−2 = 2h.

With h copies of the point set in Figure 3.3a we have 3h + 1 points and after merging

in each copy the middle pair of points we obtain h 2-point segments and h + 1 singleton

segments. This necessitates the creation of one more segment with error strictly bigger than

the eccentricity of an optimal (h+ 1)-curve.

40



3.3.2 Worst-case Bound on the Eccentricity of a GCSA Curve with

Cardinality k

Before we proceed with our next result, we need to make one more definition.

Definition 3.6. For any 0 < i < n and the same set of points S, the GCSA curves produced

after 0, . . . , i−1 merge steps are called the ancestor curves of the GCSA curve C obtained

after the ith step. Furthermore, any segment in an ancestor curve of C contained by a

segment s of C is an ancestor segment of s (i.e., the ancestor segments of s are all those

segments whose merging eventually produced s).

In the next two theorems, we shall make use of the following easy to prove lemma.

Lemma 3.7. Let s and t be neighboring segments in a GCSA curve C. Suppose that with

respect to some optimal curve C∗, s is an inside segment and t is a straddler with error

error(t). Then, error(s ∪ t) ≤ ε∗ + error(t).

In the next theorem, we shall prove an intermediate result that determines the minimum

number of segments in a GCSA curve C for it to have eccentricity within a factor of 2 of

optimal.

Theorem 3.8. The GCSA curve C with at least k + bk
3
c segments has eccentricity at most

2ε∗.

Proof. Consider the curve C generated by GCSA just prior to creating a segment with

error ε > 2ε∗. Clearly, |C| ≤ 2k − 1 (Theorem 3.4). First, suppose that C has no segment

properly contained by a segment of C∗. Then, the conclusion of the theorem follows since

41



in that case C is made up only of straddling segments or segments that also belong to C∗,

and thus |C| ≤ k.

Therefore, we assume that C has at least one segment properly contained by a segment

of C∗. Then, let s be the leftmost such segment of C, inside of some segment s∗ of C∗, that

does not extend all the way to the right end of s∗. We observe that, if s exists, the number

of segments in C to the left of s is no more than the number of segments in C∗ to the left

of s∗. If s does not exist, then |C| ≤ |C∗| = k and the theorem follows. We shall compute

the greatest possible number of segments in C between s and the next inside segment r to

the right of s and compare it to the number of segments in C∗ between s∗ and the segment

containing r (note that r may or may not extend to the right end of that segment). Let C ′ be

the last ancestor curve of C with eccentricity ε′ ≤ ε∗ (soon we shall see that because of the

existence of s, C ′ must be different from C). Then, since error(s) ≤ ε∗, s ∈ C ′ and from

the proof of Theorem 3.4 we know that s has no neighbors in C ′ and, consequently, in C

that are properly inside of s∗. Therefore, the right neighbor of s in C, call it t, “straddles”

s∗ and its right neighbor t∗.

Now, can t ∈ C ′? Clearly not, as otherwise error(t) ≤ ε∗, and, therefore, merging

s with t results in a segment whose error is less than ε (by Lemma 3.7, error(s ∪ t) ≤

error(t) + ε∗ ≤ 2ε∗), but by hypothesis ε resides at the top of the heap after C was created.

Therefore, t /∈ C ′ and so t has an ancestor segment t′ ∈ C ′ that also straddles s∗ and t∗

(since t covers points of s∗ that s does not, C ′ cannot contain an ancestor of t that covers

only these points, otherwise merging s with that ancestor creates a segment of eccentricity

≤ ε∗). Now, t′ covers all points of s∗ that are covered by t and error(t′) ≤ ε∗. Since both

t and t′ cover points of t∗ and t′ ⊆ t, it follows that t was obtained from t′ by merging it

42



on the right with another segment of C ′ and so C cannot have any segment contained in t∗

(since at most one existed in C ′).

If the rightmost point covered by t is the same as the rightmost point covered by t∗, then

C has no more segments up to that point than C∗ (at most the same number of segments

prior to s∗ and then {s, t} in C and {s∗, t∗} in C∗). Now, suppose that t does not cover

at least one point of t∗. Then, the right neighbor of t∗, u∗, cannot contain a segment of

C. Assume otherwise and consider the segment u of C that straddles t∗ and u∗. It must

exist since we have already shown that t∗ contains no segments of C and, since the one

segment of C ′ that could be contained by t∗ had to be used up to produce t, u must have

an ancestor in C ′ that also straddles t∗ and u∗ and whose left endpoint is the same as u’s.

Moreover, u must be identical to its ancestor in C ′, which could not be merged on the right

side either since, by assumption, the inside neighbor on the right survives. Therefore, we

have a contradiction - u and the segment inside of u∗ have to be merged before we get to

C (again by Lemma 3.7)! Thus, there are at most two segments of C that cover points of

u∗, u and another segment (call it v) that straddles u∗ and its right neighbor r∗. Therefore,

the next inside segment r of C to the right of s must be beyond u∗ (the first segment of C∗

that can contain it is r∗). Consequently, since every segment of C from s to r is straddling

except s itself, there is at most one more segment in C up to r than there are segments in

C∗ up to the segment containing r. Since there are at least 3 such segments in C∗ (namely,

{s∗, t∗, u∗} versus {s, t, u, v} in C), it follows that C has at most bk
3
c more segments than

C∗. It remains to consider the case when t ends in u∗ or beyond. However, then t is a

compound straddler, and so in that case C has no more segments spanning the range from

43



s to the left endpoint of r than C∗ (again, since all segments other than s are straddling and

t is a compound straddler). Thus, it is always true that |C| ≤ k + bk
3
c.

We are now ready to state and prove that not only does GCSA produce a good ap-

proximation curve with 2k − 1 segments but that a curve with as few as k segments has

eccentricity that is at most 3 times greater than optimal.

Theorem 3.9. A GCSA curve C with k segments achieves eccentricity at most 3ε∗.

Proof. Let C be the GCSA curve prior to creating a segment with error > 3ε∗. Previously,

we have shown that no two segments of C can be inside of the same segment of C∗ (Theo-

rem 3.4). Then, we have shown in the proof of Theorem 3.8 that no two inside segments of

C can be adjacent to the same simple straddler. Now, we show that in our case no simple

straddler can be a neighbor of an inside segment in C. This is easy. Suppose that s is such

a simple straddler next to an inside segment t of C. Let C ′ be the last ancestor curve of C

whose eccentricity is no more than ε∗. Since t ∈ C ′, the proof of Theorem 3.4 implies that

there is an ancestor of s in C ′, call it s′, which is also a straddler. Moreover, s′ is a neighbor

of t in C ′ and, therefore, s was obtained from s′ by merging on (at most) one side. There-

fore, error(s) ≤ 2ε∗. It follows by Lemma 3.7 that error(s ∪ t) ≤ error(s) + ε∗ = 3ε∗.

Hence, s and t cannot both be present in C and we have a contradiction. Thus, we have

shown that for every inside segment C must contain a compound straddler. Otherwise, if

C has no inside segments, it consists only of straddlers and segments that are also in C∗.

Therefore, we are done and |C| ≤ k.

Construction 3.10. We shall illustrate with this example that situations when the GCSA

algorithm produces k-curves with eccentricity arbitrarily close to 3ε∗ do arise. Figure 3.4

44



p1
p2
p3
p4
p5
p6

p7
p8
p9
p10

p11
p12

(a) (b) (c)

(d) (e)

Figure 3.4: (a) A set of 12 points, (b) An optimal approximation, (c) Stage 1 of
GCSA (ε = 1), (d) Stage 2 of GCSA (ε = 2 + δ), (e) Stage 3 of GCSA (ε = 3 + 3δ).

shows one such situation with 12 points, numbered in the order of increasing x-coordinate,

and Table 3.2 displays the y-coordinates as well as the vertical distance between consecu-

tive points (δ is taken to be an arbitrarily small positive number). We let k = 4 and display

the optimal 4-curve in Figure 3.4b. A quick look at the figure and Table 3.2 suffices to

verify that the eccentricity ε∗ is 1 + 3δ. In Figures 3.4c, d, e we show the construction of

an approximating 4-curve with our algorithm, divided into 3 stages. The first stage (3.4c)

results in a curve of eccentricity 1 and consists of merging 5 pairs of singleton segments

(note that 12 − 5 = 7 = 2 · 4 − 1 and 1 < 1 + 3δ, so Theorem 3.4 holds). In the second

stage, whose result is shown in Figure 3.4d, we merge two pairs of neighboring segments

created in the first stage and separated by 1 + δ and leave the middle segment intact as it is

separated from each of its neighbors in 3.4c by 1 + 2δ. The eccentricity of the new curve

45



Point yi |yi − yi−1| Point yi |yi − yi−1|
p1 0 −− p7 4 + 5δ 1
p2 1 + 2δ 1 + 2δ p8 5 + 7δ 1 + 2δ
p3 2 + 2δ 1 p9 4 + 7δ 1
p4 3 + 3δ 1 + δ p10 5 + 8δ 1 + δ
p5 2 + 3δ 1 p11 6 + 8δ 1
p6 3 + 5δ 1 + 2δ p12 7 + 10δ 1 + 2δ

Table 3.2: Vertical distances between neighboring points in Figure 3.4

is 1 + 1 + δ = 2 + δ. Finally, we need to make the final merge and as we see from 3.4d

there is no choice but to increase the eccentricity by 1 + 2δ. The final curve, therefore, has

eccentricity 3 + 3δ and one possibility for it is Figure 3.4e.

This example carries over to arbitrarily large n and k. Imagine putting together h copies

of the 12 points in Figure 3.4a, with p1 of the (i+1)st copy having x-coordinate greater and

y-coordinate 1 less than those of p12 of the ith copy. Then, the optimal curve that extends

the one in Figure 3.4b will have 4h−(h−1) = 3h+1 segments (since the first and last two

points of each copy of 3.4a will form one segment instead of two as in 3.4b; therefore, these

h− 1 segments at the junctures will have error 1 + 4δ). The GCSA curve with eccentricity

2 + δ (similar to the one in 3.4d) will have 5h− (h− 1) = 4h+ 1 segments, and the reader

is invited to verify. Finally, as is clear from Figure 3.4d, with target eccentricity 3 + 3δ we

can make at least one merge in each of the h copies of the original point set, thus producing

a curve with 3h+ 1 segments. Therefore, for arbitrarily large n and k, we have the ratio

ε

ε∗
=

3 + 3δ

1 + 4δ
→ 3,

as δ → 0.

46



3.3.3 Experimental Results

We would like to emphasize that the curves shown in the worst-case examples of Sub-

sections 3.3.1 and 3.3.2 are artificial constructions and are unlikely to occur in practice.

The GCSA algorithm performs very well on both synthetic (correlated and uncorrelated)

and real data and achieves approximation factors well below the upper bounds proven in

Theorems 3.4 and 3.9. In fact, the experiments we have conducted on real datasets taken

from websites such as the Time Series Data Library1 and The Financial Data Finder2 have

produced near-optimal or optimal k-curves. The specific results are displayed in Table 3.3

for four data files and for several representative values of k.

The contents of the files used in our experiments are described below.

arosa.dat1 Ozone concentration measurements in Arosa, Switzerland, 1932-1972

daily.asc2 Daily Dow Jones Industrial Average stock price index data, 1915-1989

pphil.dat1 Monthly precipitation in mm in Philadelphia, 1820-1950

tpmon.dat1 Monthly temperature in England (F), 1723-1970

Inspecting the results in Table 3.3 reveals that GCSA produced highly accurate curves

with k segments and always significantly outperformed k-optimal curves with 2k − 1 seg-

ments. We note that for meteorological data, which has a limited range and is highly cyclic,

GCSA produced optimal curves for most reasonable values of k. It is not surprising that

for monthly weather data, such as temperature in England, the difference in eccentricity

between a GCSA curve and an optimal one emerges at k = n/5 as this reflects how an op-

1http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL/
2http://fisher.osu.edu/fin/osudown.htm

47



File n k = log n k =
√

n k = n/20 k = n/10 k = n/5
Ozone Data 481 1.00 (1.07) 1.00 (1.16) 1.00 (1.16) 1.00 (1.67) 1.10 (1.94)
Precipitation 1572 1.00 (1.15) 1.00 (1.18) 1.00 (1.24) 1.00 (1.33) 1.00 (1.62)
Temperature 2976 1.00 (1.07) 1.00 (1.09) 1.00 (1.14) 1.00 (1.69) 1.14 (1.89)
Dow Jones 18840 1.13 (1.38) 1.11 (1.39) 1.07 (1.82) 1.05 (1.96) 1.04 (2.56)

Table 3.3: Results of GCSA test runs on financial and meteorological data shown
as ratios of GCSA k-curve eccentricities ε to those (ε∗) of optimal k-curves and
ratios of optimal k-curve eccentricities ε∗ to those (ε′) of GCSA (2k − 1)-curves (in
parentheses).

timal curve takes somewhat better advantage of global correlation in the data caused in this

case by distinct seasons. This situation is to be contrasted with the experiments on the Dow

Jones historic index data, which exhibits a steady upward trend except for the period of

decline and stagnation in 1929-1945. The GCSA approximation of this data becomes pro-

gressively better with larger k and is within 11% of optimal with just
√
n = 137 segments.

Furthermore, we note that on this dataset GCSA computed its approximation
√
n-curve

1000 times faster than Wang’s algorithm took to find an optimal curve of the same com-

plexity. Overall, we conclude that with real data the GCSA algorithm quickly produces

remarkably good k-curve approximations with eccentricity within 15% of optimal while

the eccentricity of (2k − 1)-curves always remains significantly below k-optimal.

48



Chapter 4

Weighted Minimax Approximation with

Step Function Curves

4.1 Preliminaries

Recall from Section 1.6.1 that weighted metrics introduce for each point an additional

coefficient that is used to multiply the distance from that point to the facility. To begin our

discussion of the weighted case, we consider the optimal placement of a horizontal segment

with respect to its (fixed) allocation set. In the unweighted case the error is minimized

when the segment is centered with respect to the y-range of the points. Thus, the optimal

location of the horizontal segment is unique and can be determined from two points in the

allocation set. This is still true in the weighted scenario, but the optimal location may not

correspond to the midpoint of the y-range. However, it must still be equidistant (under

49



weighted distance) from the furthest points above and below it, as otherwise a small shift

in its position would decrease the error.

There cannot be two different locations for the optimal segment because of the semi-

monotonicity of the distance function. If two distinct segments s and s′ were both optimal,

then the distance from s′ to one of the two points that define s would be greater than the

distance from s to that point, in violation of the optimality of s′. If the two points that define

the y-coordinate ys of the best approximating segment s have coordinates (xi, yi), (xj, yj)

and corresponding weights wi, wj , then ys is given by

(yi − ys)wi = (ys − yj)wj ⇒ ys =
yiwi + yjwj
wi + wj

.

Therefore, the solution to the problem is the intersection of two lines c = −wiy + yiwi

and c = wjy − yjwj , where c stands for the cost of approximating the point by a segment

located at y. This leads us to consider a “cost-location” space composed of such lines,

each point in S giving rise to one upward and one downward sloping line with the absolute

values of the slopes equal to the weight of the point. Let us suppose that all points in S are

located in the first quadrant, i.e. xi, yi > 0 ∀1 ≤ i ≤ n. We map each point pi with the

corresponding weight wi to the pair of lines in the “cost-location” plane `i0 = wiyi − wiy

and `i1 = −wiyi + wiy and restrict their domain to the first quadrant. Thus, for each

point we have a linear transformation `i of the absolute value metric function restricted

to the nonnegative domain. Each such wedge shaped function `i computes the distance

from pi to the approximating segment as we hypothetically sweep it upward starting from

y = 0 and consists of a finite down-sloping segment (recording the cost for y < yi) and an

infinite up-sloping ray (for the cost when y > yi). Which portion of this arrangement of 2n

50



x

y

yo

y1

c4

p1

c5

c1

yyo y5

p5

p3
p2

4

3

5

c

c2

c3

co

2

1

p4

Figure 4.1: (a) A set of points pi = (xi, yi), numbered by increasing y-coordinate,
having respective weights wi such that w2 > w4 > w1 > w3 > w2, and the best
fit segment. (b) The corresponding lines in the cost-location plane with the slopes
wi and the vertical axis intercepts ci. The lowest point of the envelope is identified
with the cost and y-coordinate of the best fit segment.

cost lines keeps track of the greatest distance (i.e., the furthest point) to the approximating

segment for any segment position y? The answer is quite obvious - the upper envelope of

the arrangement is made up of the segments of the cost lines of those points that at some y

are furthest from the approximating segment. The optimal location is given by the lowest

point, which is also the lowest vertex, of the upper envelope.

We observe that in the case when S is known and fixed the above-mentioned problem

of finding the lowest vertex of the upper envelope has been tackled successfully before, as

it is nothing other than finding the optimal solution to a linear program in 2D. The best

known deterministic algorithm for this has been developed by [39] and runs in O(n) time.

In addition, a very simple randomized algorithm [45] exists that hasO(n) expected running

time. In our optimal algorithm we shall need to solve this problem repeatedly for each new

subset of S, which differs in a single point from the previous subset, in order to compute the

51



eccentricities of candidate curves and, therefore, using the O(n) algorithm as a subroutine

is an overkill.

However, there are more efficient algorithms to dynamically maintain common inter-

sections of half-planes. In particular, a clever dynamization technique by Overmars and van

Leeuwen [43] can be exploited to maintain the upper envelope inO(log2 n) time per update

(insertion or deletion of a line) and enables us to query for the lowest point on the boundary

in just O(log n) time. The essence of their approach is to store the “left” half-planes (i.e.,

those that contain the left ray of any horizontal line) and the “right” half-planes in two sep-

arate augmented binary search trees. The lines bounding the half-planes are stored at the

leaves and ordered by slope. In our case, since each point contributes an entire wedge with

both bounding lines having the same (in absolute value) slope, it makes sense to have just

one tree and store the points themselves at the leaves sorted by weight. Then, the bounding

lines of the left half-planes are sorted in descending order and the bounding lines of the

right half-planes are sorted in ascending order (without explicitly storing these lines). As

per [43], each internal node is augmented with a pointer to the parent and the largest slope

value (largest point weight) of the lines in its left subtree (needed for concatenation). Most

importantly, the portion of the upper envelope of the left half-plane lines in its subtree that

does not contribute to the upper envelope of the left half-planes of its parent is stored in a

concatenable queue along with the number of lines on its envelope that belong to the up-

per “left” envelope of the parent. The “right” upper envelope is handled similarly, so each

internal node has two concatenated queues associated with it.

Then, the overall “left” upper envelope is stored at the root of the “left” tree (and,

similarly, the “right” upper envelope is stored at the root of the “right” tree). Using the

52



procedures DOWN and UP described in [43] one can insert and delete lines and maintain

the queue structures as well as the balance of the tree. Then, the intersection of the left and

right envelopes can be found efficiently in O(log n) time as is also proven in the original

paper.

Finally, we note that there are other dynamic half-plane intersection algorithms that out-

perform the above-mentioned algorithm by Overmars and Leeuwen and run in O(n log n)

amortized time, such as [30] and [8].

4.2 An Exact Algorithm

As observed in the previous section, the error of each approximating segment in its best

position is determined by two points and, therefore, so is the eccentricity of the curve. It is

still valid to use Wang’s choice of candidate eccentricities and then it remains to describe

how to compute these and the candidate curves that they give rise to. In Wang’s algorithm,

when one of the two pointers (called sweep lines in the original paper) is advanced, the

error of the best approximating segment for the set of points between the two pointers is

computed. This error computation in the weighted distance case corresponds to finding the

lowest point on the upper envelope of the wedge lines in the cost-location plane as these

lines are added or deleted one at a time. As mentioned in the previous section, computing

the candidate eccentricities can be done using the O(log2 n) dynamic half-plane intersec-

tion algorithm of [43].

We now turn to the question of how to compute a candidate curve itself once the target

eccentricity ε has been found. This can be done with a slightly modified min -# algorithm

53



of [21]. In this new version, each point (xi, yi) with the weight wi is represented by a

vertical line segment vi = (xi, yi − ε
wi

)(xi, yi + ε
wi

). Then, the algorithm proceeds in

essentially the same way as described in [21]. We build horizontal segments of the curve

by piercing consecutive vertical segments vi. At first, we initialize the allocation set of the

first horizontal segment to the single point (x1, y1) and define its corridor to be (ymin =

y1− ε
w1
, ymax = y1 + ε

w1
). Then, adding each additional point pi to the allocation set causes

the segment’s corridor to be updated to y′min = max{ymin, yi− ε
wi
}, y′max = min{ymax, yi+

ε
wi
}. We keep extending the current horizontal segment of the curve for as long as adding

new points does not cause the corridor to become empty, i.e. until further expansion of

the allocation set would make y′min > y′max. Therefore, computing both the candidate

eccentricity and curve takes O(n) time leading to the following result.

Theorem 4.1. The weighted step function approximation problem can be solved in O(n2)

time.

This time bound becomes considerably reduced if the number of distance weights as-

sociated with the points of S is equal to a constant. In this case, the line wedges in the

cost-location plane only have a constant number of distinct slopes. It is easy to see that for

any given slope only one line wedge with that slope may contribute to the downward (and,

similarly, upward) portion of the upper envelope. Furthermore, in our case, it is obvious

that only the line wedge that contributes the first segment to the downward portion may

also contribute a segment to the upward portion (due to the fact that all other line wedges

that are part of the downward portion have smaller slope and a further x-intercept than the

first one). All other line wedges may contribute only to one of the two portions. This means

that the upper envelope consists of no more than n+ 1 segments. In the case of a constant

54



number of slopes c, we have no more than c + 1 segments on the envelope and, therefore,

the above algorithm runs in linear time. This is summarized in the next theorem.

Theorem 4.2. The weighted step function approximation problem with a constant number

c of distance-modifying weights can be solved in O(cn) time.

4.3 A Heuristic with Provable Bounds

In the previous chapter, the author has described the GCSA approximation algorithm for the

problem of step function curve fitting. Recall that the algorithm begins by building a curve

consisting of n singleton segments and computes the costs that would result from merging

the allocation sets of each adjacent pair of such segments. These costs are prioritized

by storing them in a min-heap and, subsequently, at each iteration the minimum cost is

extracted and the pair of associated segments is merged. The algorithm then updates the

structure and the costs that involve the newly created enlarged segment and its neighbors.

We now modify this algorithm to be able to solve the weighted version of the same

problem. While the overall structure of the algorithm shall remain unchanged, we have

to supply new details for the merge step and analyze how these affect the overall running

time. Merging two allocation sets can no longer be accomplished in constant time since the

points responsible for the error of the new larger segment are not necessarily a subset of

the points defining the placement of the old segments. Recall that the y-coordinate of the

new longer segment s is determined by a pair of points whose so-called cost lines in the

cost-location plane define the lowermost point of the upper envelope of all such cost lines

coming from the points in the allocation set of s. Clearly, the cost lines that define this

55



point come from the upper envelopes of the old segments’ cost lines. Hence, the placement

of the new longer segment can be determined by any two points whose cost lines were on

the upper envelopes of their respective segments. We, therefore, have to keep track of the

points defining these upper envelopes for each allocation set (upper envelope points).

Each of these points contributes at most two edges to the upper envelope and no two

edges on the same envelope have overlapping x-ranges except at the boundaries. We can,

therefore, store these in a binary tree ordered by x-range with pointers going to the original

points. We also note that ordering the edges by x-range also has the effect of sorting them

by slope as well as inducing a semi-sorted order on their y-ranges, since these decrease

until the lowest point on the envelope and then monotonically increase. Furthermore, all

upper envelopes are necessarily concave down, an important property that will be of use

later.

When “merging” the allocation sets of two curve segments, their upper envelopes S

(for small) and B (for big) need to be “merged” to produce the upper envelope of the new

segment. Suppose that |B| = n, |S| = m and n > m (where the cardinality of an envelope

is equal to the number of lines contributing segments to it). When we merge S and B,

we always traverse S sequentially and B sometimes sequentially (when B is below S)

and sometimes logarithmically (when B is above S). Clearly, the segments that survive

(either partially or in their entirety) are on the upper envelope of S ∪ B. Therefore, we

need to find all points of intersection between S and B (for this is where they switch roles,

one going below the other) and stitch together those portions that contribute to the overall

upper envelope. Hence, when B is below S, we remove segments from B one by one (in

O(log n) time per segment) and replace them by segments from S. Once removed, these

56



pl

pl

bl
pl

br s

s
pr

br
pr

bl

s

pr

pl s

bl

br

bl

br

pr

Figure 4.2: (a) Case I: both endpoints of s are above the bigger envelope B. (b)
Case II: pl is below a segment bl of B while pr is above B (same as pl above B and
pr below). (c) Case III: both endpoints of s are below B and an intersection exists.
(d) Case IV: endpoints of s are as in Case III but there is no intersection.

lines (i.e., points in the allocation set) will never contribute to the upper envelope. When B

is above S, that portion of B needs to be preserved and traversing it sequentially in order to

find the next intersection between S and B would lead to a linear amortized time per merge

and, thus, to the total quadratic time for the entire algorithm (consisting of O(n) merges).

We begin with the leftmost segments of S and B. As we move along S, for each

of its segments s with endpoints pl, pr we locate (via a binary search) the segments bl,

br (potentially, bl = br) in B whose x-ranges contain the x-coordinates xl, xr of those

endpoints. In the case of ties, when the endpoints of two segments of B have x-coordinate

xl or xr, we always pick the segment ofB that begins at xl and ends at xr. We then test if pl

is above or below bl and, similarly, whether pr is above or below br. If pl or pr coincide with

the endpoints of bl or br, we test whether s itself is below or above bl or br. If both pl and pr

(or s itself in the case of coinciding endpoints) are above the segments of B, then because

of the concavity of upper envelopes we know that s is completely above B (Figure 4.2a)

and, therefore, it must be added to the upper envelope of S ∪B and all segments of B from

bl to br (except, perhaps, br itself if its x-range is not completely covered by the x-range of

57



s) can be removed from consideration. As a way to simplify and speed up the process, we

create the upper envelope of S∪B completely inside of the data structure forB. Therefore,

all deletions of segments of B and insertions of the segments of S are carried out straight

on the binary tree containing B with the result that after the merge is complete B contains

the final “merged” envelope.

If one of the endpoints of s (again, in the case of endpoints coinciding, s itself) is above

B and the other is below B, then an intersection exists (Figure 4.2b) and can be found in

logarithmic time by simply doing a binary search on the segments of B and testing them

as being above or below s, or simply walking along B starting from the segment which is

below s and deleting segments from B until we arrive at the intersection at which point we

link up with s. Thus, all segments of B below s are removed (again, except perhaps for br

even if it is below s) and a portion of s is added to B (starting or ending at the intersection

point, depending on which part of s is above B).

Finally, we come to the case when both endpoints of s are below B, which leads to the

two possibilities illustrated in Figures 4.2c and 4.2d. In this case, there may or may not

be an intersection and some extra work needs to be done to determine this. Namely, we

certainly do not have an intersection when s belongs to the downsloping part of S and pl is

below the upsloping part of B or vice versa, when s has an upward slope and pr is below

the downsloping part of B. However, this is not sufficient to decide whether there is an

intersection between s and B. These cases, then, are subsumed by the following simple

check. First, we determine whether the slope of s is between the slope of bl and that of

br (remember, that slopes uniformly increase from bl to br). Only if it is, there may be an

intersection. We then find, via a binary search on the slopes of lines between bl and br, the

58



line b of B that has slope closest to that of s. If this line is not above s (Figure 4.2c), then

we have two intersections which can be found by walking from b in opposite directions,

while deleting segments from B. Otherwise, there is still no intersection (Figure 4.2d). To

see that this is indeed a correct strategy, we remember that if s were to pierce B it must

either intersect or “obscure” the line with the closest slope since in the resulting envelope

lines must appear in the order from smallest to largest slope.

To complete the description of the modified GCSA heuristic, we need to address one

more problem and that is the computation of the merge cost, i.e. the eccentricity of the

resulting curve if the two allocation sets were merged. This, however, can be achieved

with the same algorithm as above except that no changes should be made to B (i.e., we

“simulate” a merge) and we can stop once the lowest point on the envelope has been found

(note that this technique cannot be used for the exact algorithm in the previous section for it

only handles envelopes obtained by merges and does not handle those obtained by deleting

lines).

Let’s analyze now the running time of this new GCSA algorithm. We first look at the

operation of a single merge step involving the smaller allocation set S with |S| = nS and

the bigger allocation set B with |B| = nB. How many times can a segment of S’s envelope

intersect B’s envelope? The answer is at most twice, since envelopes have parabolic shape.

Therefore, only one part of a segment of S or that segment in its entirety can be inserted

into B’s envelope and since the number of segments in the envelope is at most one more

than the size of the allocation set, no more than nS + 1 insertions take place. Therefore, the

total cost of insertions per merge step is O(nS log nB). It remains to sum the cardinalities

of all such smaller allocation sets S participating in merge steps. This question can be

59



approached from the point of view of how many times, at the most, the same point can

belong to the smaller set over the course of all merge steps. This is very similar to the

analysis of the disjoint data set union operation and we know that the same point can be

merged from a smaller set at most log n times, for the sizes of the smaller sets it is part of

will in the worst case increase as the sequence 1, 2, 4, 8, . . . So, the number of insertions

over all merge steps is at most O(n log n) and with each insertion taking O(log n) time,

the total time is O(n log2 n). We still need to remember to account for the deletions taking

place during merging, but this is easy for once a line has been removed from an envelope,

the point responsible for it will no longer be considered. Hence, the total cost of deletions

is only O(n log n). Also, “simulating” a merge to compute the prospective eccentricity has

the same cost as an ordinary merge and we know that only at most two such simulations

are needed for every real merge step. Thus, we can perform allO(n) merges inO(n log2 n)

time. This gives us the following result.

Theorem 4.3. The modified GCSA algorithm runs in O(n log2 n) time and guarantees the

error bounds proven for the original GCSA. Namely that for n ≥ 2k, the GCSA algorithm

with m = 2k − 1 produces a curve C with eccentricity ε ≤ ε∗ and with m = k segments

achieves eccentricity at most 3ε∗.

The above claims regarding the error bounds follow directly from the proofs given in

Section 3, as they carry over verbatim to this modified version of GCSA.

60



4.4 A Randomized Algorithm

In this chapter, we discuss a new algorithm with good expected performance for step func-

tion approximation in both unweighted and weighted settings. The main idea of this al-

gorithm is to perform an efficient search on the set of O(n2) possible eccentricities but,

unlike [21], the entire set of eccentricities is not generated explicitly. Instead, only those

for which a candidate curve is constructed are computed. This results in O(log n) can-

didates on average and O(n log2 n) expected running time. We begin by describing the

unweighted version of the algorithm and then show how to extend it to handle weights.

The algorithm starts by picking a random pair of points pi and pj and computing the

eccentricity of the allocation set Sij . This can be done in O(n) time (e.g., using the linear

programming algorithm in [39]). Then, using the min -# algorithm of [21], the first candi-

date curveRij of size kij is constructed and compared against the target k. The result of this

comparison is to be used to decide about the bounds on the achievable eccentricity. The

algorithm, therefore, keeps track of the feasible eccentricity window Ef = [εmin, εmax],

which is updated after investigating each candidate curve. This window is initialized to

[0,∞). Now, if kij ≤ k, we update the window to [0, εij]. While, in the opposite case

of kij > k, we know that the eccentricity has to be increased, and so the feasible window

becomes [εij,∞).

Now, to discard all allocation sets whose errors are outside of the feasible eccentricity

window, we create a data structure that records for each point pi of S the number of alloca-

tion sets that start at pi and end at some pj with errors still in the current feasible window

as well as the smallest index li and the largest index ri such that i ≤ li ≤ j ≤ ri. For each

pi and a given feasible eccentricity window Ef , we thus have the set SEfi of possible values

61



of j. In this set, j = li specifies the index of the closest (in x-direction) point to pi such that

the error of the allocation set {pi, . . . , pli} is at least εmin and, similarly, j = ri gives the

furthest point from pi with the error of the allocation set {pi, . . . , pri} at most εmax. To see

that pj runs across a contiguous subset of S, we note that the eccentricity of an allocation

set Sij is monotonically non-decreasing as i is kept fixed and j is advanced.

Let us now explain how to compute for each pi the cardinality and bounds li, ri of SEfi

as well as how to maintain this information as Ef changes. After the first candidate curve

is generated and Ef is initialized, we compute |SEf1 | and l1, r1 by scanning S. We then note

that li ≤ lk, ri ≤ rk whenever i ≤ k. This holds because the y-range of the set {pk, . . . , pli}

(possibly empty if k > li) is subsumed by the y-range of the set {pi, . . . , pli} forcing lk to

be no less than li and, similarly, for rk and ri. Therefore, it seems that l2 and r2 can be found

by simply moving ahead the pointers from l1 and r1, respectively, if needed. Unfortunately,

in order to know when to stop for l2 and r2 we need to know the error of the allocation

sets that begin at p2 rather than p1 for it could be that p1, which is now removed from

consideration, was one of the two points determining the error of L1 = {p1, . . . , pl1} or the

two points determining the error of R1 = {p1, . . . , pr1}. This necessitates the creation of

two priority queues, such as min-max heaps, to keep track of the lowest and highest points

in the two allocation sets Li, Ri as they are being determined for each pi. Then, in the case

of p2, we set L2 = L1, R2 = R1 and then remove p1 from the heaps for each of the sets.

Then, we start adding points to L2 beginning with pl1+1 and stop after having added the first

point that had caused the error of L2 to exceed or become equal to εmin. Similarly, we add

points to R2 until adding the next point would make the error of R2 become greater than

εmax. We remember the index of the last point added to L2 as l2 and that of the last point

62



added to R2 as r2. All subsequent bounds for SEfi , 2 ≤ i ≤ n, can be found by advancing

these two pointers, each making at most one full pass through S. Finally, computing the

size of SEfi is trivial as it is just |ri − li + 1|. We note that every point is added to each of

the two queues exactly once and is removed at most once as we compute all values of il, ir

for a given eccentricity window Ef .

Thus, every time Ef changes, recomputing the bounds and cardinality information takes

only O(n log n) time since it only involves O(n) heap operations. Hence, the key to good

performance becomes reducing the (expected) number of changes to the feasible eccentric-

ity window that are necessary to process before the optimal eccentricity is found. This goal

we achieve through randomization as we shall describe next.

After the initial step has determined Ef and the bounds and cardinalities of each of the

sets SEfi have been computed, we pick a pair of points that enclose an allocation set with

error in the feasible eccentricity window at random from the set of all such possible pairs.

In order to do this, and have a uniform distribution of probabilities, for each 2 ≤ i ≤ n we

sum up the cardinalities of the sets SEfk for all k ≤ i and store this number for pi, i.e. we

have

Ki =
i∑

k=1

∣∣∣SEfk ∣∣∣ .
Clearly, these can be computed in one scan of the array since Ki is just the sum of Ki−1

and the cardinality of SEfi . Then, we can generate a pseudo-random number x between 1

and Kn and identify the unique pair (pi, pj) corresponding to this index (we just search for

x in the array of Ki’s, find the smallest i0 such that Ki0 ≥ x, and then find the unique j

from S
Ef
i0

.

63



Using this method, we ensure that each pair is selected with the same probability, but

only from the set of those pairs that already fulfill the criteria for the error of its alloca-

tion set. Thus, we can expect that on average picking a new pair will reduce the number

of pairs in the feasible eccentricity window roughly in half and so, our search has an ex-

pected logarithmic number of steps in the size of the set of possible eccentricities, that is,

O(log(n2)) = O(log n). Since after each pair is picked, an O(n log n) time is spent up-

dating the auxiliary arrays described above and constructing a candidate curve, the total

expected running time of this randomized algorithm is O(n log2 n).

Notice that even though the discussion has so far focused on the unweighted case only,

our algorithm can be easily adapted to the weighted case. First, we observe that it is still

true in the presence of weights that li ≤ lk, ri ≤ rk for any two points pi, pk such that

i ≤ k. Clearly, not just the y-range, but the weighted error range of the set {pk, . . . , pli}

is subsumed by the weighted error range of {pi, . . . , pli} because the lowest point on the

upper envelope of a set of cost lines can be no lower than the lowest point on the upper

envelope of its subset. Consequently, instead of min-max heaps to keep track of the errors

of Li and Ri we would have to maintain upper envelopes and we can do so again using the

algorithm from [43]. Each individual update of that structure takes O(log2 n) and so one

full pass through the array to update the pointers li, ri for all i takes O(n log2 n). Hence,

the total time is O(n log3 n) as there are still O(log n) candidate curves to construct.

64



Chapter 5

Weighted Maximin Approximation with

a Single Line

5.1 An O(n3 log n) General Algorithm

In this section we describe an algorithm for locating the “obnoxious” line. Recall from our

introductory discussion that a facility is obnoxious if the goal is to place it as far as possible

from the closest input point. Given the nature of the problem, it is simple to show that a

maximal separating line (in the sense that any sufficiently small perturbation, rotation or

translation, leads to worse solution) must be equidistant from at least two points, one in

each half-plane. We call these the “witness” points of the separating line. It is perhaps

less obvious that the best line, regardless of its orientation, must pass through the weighted

midpoint of its witnesses. This property, described in [23], is exploited differently here to

synthesize a different algorithm.

65



For each pair of candidate witnesses pi, pj , we find the maximal separating line `ij as

the line that passes through the weighted midpoint of pi and pj making the least angle with

the weighted perpendicular bisector of the segment pipj (which, without loss of generality,

we assume to coincide with the x-axis) and such that there is no other point pk closer to `ij

than pi or pj . Effectively, this combines the work done by the two procedures of [23] into a

single algorithm, except that every candidate line is tested to be a proper separator (i.e., the

condition of emptiness is ensured). Therefore, we look for a solution to the problem below.

Problem 5.1. MSTWP: Maximal Separator of Two Weighted Points. Given a set of weighted

points P = {p1 = (x1, y1, w1), . . . , pn = (xn, yn, wn)} and two witness points pi, pj

aligned on a vertical line, find the separator line `ij that maximizes the least distance to

P and passes through the weighted midpoint of pi and pj .

Let φ be the counterclockwise angle measured from the positive x-axis to a given can-

didate orientation `ij(φ) of `ij . Clearly, unless emptiness is violated, we would like to keep

`ij as the weighted perpendicular bisector itself. Otherwise, we have to exclude all ori-

entations from [0, π
2
) ∪ (π

2
, π) that would result in non-empty “corridors” (i.e., some point

of P being closer to `ij(φ) than the witnesses). We then have to find the smallest angle

0 < φ1 < π
2

and the largest angle π
2
< φ2 < π from those orientations that remained

available. The best separator line has the orientation φ1 if φ1 < π − φ2 and φ2 otherwise.

We solve this problem by converting each point pk ∈ P, k 6= i, j to at most two intervals

of angles φk that result in pk being closer to `ij(φk) than the two witnesses. In many cases,

there is only one interval (φsk, φ
e
k) of values of φ that correspond to such “bad” separators

`ij(φ). However, in the case when `ij(0) is closer to pk than to the witness points, we get

two intervals [0, φek), (φ
s
k, π) to be excluded from further consideration. In either case, and

66



for a fixed k, all of these angle intervals lie entirely either in [0, π
2
) or in (π

2
, π), since `ij(π2 )

passes through both pi and pj and is not a separator line at all. The figure above illustrates

the process of investigating various candidate orientations φ.

Naturally, we have reduced MSTWP to the problem below (since it is the same as

finding the best φ = min{φ1, π − φ2}).

Problem 5.2. LRE: Least Right Endpoint. Given intervals (a1, b1), . . . , (an, bn) in [0,M),

find the leftmost right endpoint bi such that bi /∈ (aj, bj)∀j.

We now argue that MSWTP can be solved optimally in O(n log n) time. (This does not

necessarily mean that the original problem has a lower bound of Ω(n3 log n) even though

we can solve it with O(n2) instances of MSWTP.)

Claim 5.3. MSWTP can be solved in Θ(n log n) time. This is optimal.

Proof. (By reduction from Connected Union (CU) [2]). Let (c1, . . . , cn, ε) be an instance

of CU. We assume that all ci’s and ε have already been shifted and scaled to fit inside [0, π
2
),

i.e. that mini(ci − ε
2

= 0) and maxi(ci + ε
2
) < π

2
. Let p1 = (0, 1) and p2 = (0,−1) be

the two “witness” points for the separator line. We set the weights of p1 and p2 to be 1 (we

shall see that an unweighted version of this problem has the same complexity). Then, any

separator line `12 passes through the origin. Now, construct the points p3, . . . , pn+2 one by

one based on c1, . . . , cn and ε as follows. Let φsi+2 = ci − ε
2

and φei+2 = ci + ε
2

be two

angles in [0, π
2
). Then, since both φsi+2 <

π
2

and φei+2 <
π
2
, pi+2 is in the first quadrant of

Figure 5.1 and above the separator line with slope tan(φsi+2) and below the separator line

with slope tan(φei+2). So, we can compute the coordinates xi+2, yi+2 of pi+2 by solving the

67



III

III IV

Figure 5.1: Finding the orientation of the maximal separator. For a pair of witness
points pi, pj, the angle range [0, π

2
) ∪ (π

2
, π) of possible orientations φ is considered

and all angles resulting in `ij(φ) closer to some pk are excluded. Each pk results in
at most two subintervals of angle values removed from further inspection. For pk
in quadrants I and III, we have 0 < φsk < φek <

π
2

or 0 < φek <
π
2
< φsk < π, and for pk

in quadrants II and IV, we have π
2
< φsk < φek < π or 0 < φek <

π
2
< φsk < π.

two equations given by the latter equalities in each of the following

tan(φsi+2) =
wi+2yi+2 − w1y1

wi+2xi+2 − w1x1

=
yi+2 − 1

xi+2

,

tan(φei+2) =
w1y1 + wi+2yi+2

wi+2xi+2 + w1x1

=
yi+2 + 1

xi+2

.

Since the choice of wi’s is immaterial, we fix wi = 1 for all 1 ≤ i ≤ n + 2. Then, we

end up with two equations in two unknowns (xi+2, yi+2) and can find the coordinates of

each pi, 3 ≤ i ≤ n + 2. We can then find the best separator line `12 and if one exists with

non-horizontal orientation we know that its slope is not properly inside of the slope ranges

for any of the points pi and, therefore, the union of the intervals from which these points

came must be disconnected. Otherwise, we conclude that all angle ranges overlap and,

therefore, the union of the open intervals is connected. Hence, since the transformation of

68



the intervals into points takes linear time, we have shown that the lower bound of Ω(n log n)

carries over from CU to MSWTP.

MSWTP can be solved inO(n log n) time using a simple counting algorithm. First, sort

the set of all angle range endpoints {φsk, φek|1 ≤ k ≤ n}. If φ = 0 is a proper solution (i.e.,

if no interval has the form [0, φek)) this is the answer. Otherwise, we process the endpoints,

one at a time. Whenever we process a starting (resp. ending) endpoint, we increment (resp.

decrement) a counter. Note that because of the way we have created our intervals, we never

encounter an ending endpoint before the corresponding starting endpoint. Now, the first

time after processing some φek <
π
2

that the counter became 0 we remember that angle as

φ1 and the last time that the counter became 0 after processing some π
2
< φek < π, we

remember the solution as φ2. Afterwards, we pick the smaller of φ1 and π − φ2 as the

overall best solution.

5.2 An O(kn log n) Restricted Orientation Algorithm

We now turn to the problem of finding the furthest separating line with a prespecified

orientation, which we assume to be horizontal without any loss of generality. We begin

by looking at where in the vertical range of the point set S the best separating line should

be placed. Just as in the general case, the goal of maximizing the width of the “corridor”

dictates that the line must be centered with respect to the closest points on each side. This

means that only two input points (xi, yi), (xj, yj) with weights wi, wj (the witnesses of the

previous section) are responsible for determining the location y = ys of the best separating

69



line s, which must satisfy

(yi − ys)wi = (ys − yj)wj ⇒ ys =
yiwi + yjwj
wi + wj

.

Therefore, the solution to the problem is the intersection of the two lines dw = −wiys+yiwi

and dw = wjys − yjwj , where dw stands for the weighted distance to the horizontal line at

ys. This leads us to consider a “distance-location” space composed of such lines (refer to

Figure 5.2), each point in S giving rise to one upward and one downward sloping line with

the absolute values of the slopes equal to the weight of the point.

Let us suppose that all points in S are located in the first quadrant, i.e., xi, yi > 0,∀1 ≤

i ≤ n (we can, in linear time, find the right translation to move the origin of the coordinate

system). We map each point pi with the weight wi to the pair of lines in the “distance-

location” plane `i0 = wiyi − wiy and `i1 = −wiyi + wiy and restrict the domain to the

first quadrant. Thus, for each point we have a linear transformation `i of the absolute value

metric function on the nonnegative domain. Each such wedge `i computes the distance

from pi to the separating line as we hypothetically sweep it upward from y = 0, and

consists of a finite down-sloping segment (recording the distance for y < yi) and an infinite

up-sloping ray (for y > yi). In this arrangement of 2n lines we are interested in the greatest

achievable minimum distance, i.e., in the point with the highest vertical coordinate on the

lower envelope of the wedge lines in the distance-location plane. This is illustrated in

Figure 5.2 on the right. The lower boundary keeps track of the point or points (at a vertex)

that are closest to the separating line at any position ys. Since our goal is to find ys that

maximizes the distance from the line to the closest point, the optimal location is given by

70



y

3

c

c2

c3

y5

p5

p3

x

y

yo

c4

c5

c1

co

y1 yo

p1

p4

p2

4

5

2

1

Figure 5.2: (a) A set of points pi = (xi, yi), sorted by y-coordinate, having weights
wi such that w2 > w4 > w1 > w3 > w5, and the best fit segment. (b) The cor-
responding lines in the distance-location plane with the slopes wi and the vertical
axis intercepts ci. The highest point on the lower boundary (envelope) gives the
y-coordinate of the furthest separating line.

the highest vertex of the lower boundary. Note that the optimal vertex cannot be found by

solving a linear program. Next, we need the following result.

Claim 5.4. The lower envelope of a set of n wedges in the distance-location plane has

complexity O(n).

Proof. If we relabel the wedges and consider them sorted by slope, w1, . . . , wn, then the

wedge with slope wi, when added to the set of wedges with slopes w1, . . . , wi−1, only

modifies the envelope locally, between the two immediate neighbors of its vertex on the

x-axis. Thus, its branches contribute two new edges and three new vertices to the envelope.

When the newly added wedge intersects a single edge of the old envelope, it may split the

old edge in two, creating one more edge. Therefore, there can be at most 3n− 1 edges (the

first wedge adds only two) and 3n− 2 vertices on the lower envelope of n wedges. This is

somewhat more tight than what could be obtained from the theory of Davenport-Schinzel

sequences.

71



Another way to think of this problem is to classify the vertices on the lower boundary

according to the slopes of the lines responsible for them. There are two basic types of

vertices that we distinguish. The first type is when the slopes of the two lines are either

both positive or both negative. There can be no more than n − 1 vertices in each of these

two cases, since for example in the case of both lines having positive slopes, the line with

the bigger slope will no longer contribute any vertices to the boundary to the right of the

intersection. How many vertices can there be on the lower boundary resulting from a line

of positive and a line of negative slope? For each such vertex, there must either be an

intersection of the first type, since each line enters the “inside” of the other’s wedge and

must either exit it in order to intersect again or that line is “consumed” and reaches the

end of the domain while inside that wedge. Hence, there can be no more than 2n such

vertices. This gives a more loose bound of 5n− 2 vertices (including n wedge vertices on

the horizontal axis).

Finding the optimal vertex requires Ω(n log n) time. This is true because any solution

to the problem of finding the best horizontal separating line takes Ω(n log n) time, as can

be easily seen by reduction from Max-Gap (see [2]). The argument, of course, carries over

to arbitrary fixed orientations of the separating line.

In order to find the highest vertex on the lower envelope of the wedges we employ a

simple divide-and-conquer “skyline” merge algorithm. Alternately, we can build the lower

boundary incrementally by adding wedges, one by one, in the order of lightest to steepest

slope. Then, each new wedge would intersect the lower boundary in just two places which

can be found by binary search. The wedges already added and with apices to the left of

the apex of the new wedge have their left segments entirely below the left segment of the

72



new wedge (similarly, for the right rays of the wedges to the right of the new wedge). The

wedges already added and with apices to the right of the apex of the new wedge have their

right rays dominated by the right ray of the new wedge. Therefore, after a binary search

on the apices of the wedges we just have to intersect the new wedge with the region of the

lower boundary between its two immediate neighbors resulting in exactly two new inter-

sections (regardless of whether the downward line of the new wedge intersects a downward

or an upward line of some old wedge, etc.). The edges that need to be removed from the

boundary form a contiguous set and number O(n) altogether over the entire execution of

the algorithm. Both the divide-and-conquer and the incremental algorithms are optimal as

they take O(n log n) time. Consequently, given k possible orientations α1, . . . , αk of the

separating line, we can find the best separator in O(kn log n) time.

73



Chapter 6

Maximin Cone Facility Location

6.1 Background

We take up the problem of finding the widest (obnoxious) empty cone (wedge) through a

set S of points. Let S be a set of points and CH(S) its convex hull. We shall describe an

algorithm to compute the widest empty wedge anchored anywhere on the boundary of or

outside CH(S) and analyze its running time. The wedge (or cone) W is a convex open

polygon, formed by the intersection of two-halfplanes. Therefore, the boundary of the

wedge is formed by two rays that meet in a point q, the apex of W . In our problem, it

always makes sense to widen the wedge until each of its boundary rays comes to rest on

one or more input points. Hence, we shall refer to the boundary rays ofW by the identities

of the “supporting” points, the “supports” of the wedge. Further, since the apex ofW , for

the reasons explained below, is to be fixed on the boundary of CH(S), we shall distinguish

between the two supports of W based on the order in which the two supported edges ap-

74



Figure 6.1: An illustration of the widest empty cone problem.

pear when the wedge is encountered in the counterclockwise traversal of the boundary of

CH(S), ∂CH(S).

6.2 Finding the Widest Wedge with an Apex on the Bound-

ary or Outside of CH(S)

In this chapter we describe the algorithm to solve the general problem with the location for

the apex unrestricted. Before we proceed, observe that it suffices to consider cones with

apices on ∂CH(S). If one assumes that the best wedgeW rests on an apex outside CH(S),

then a quick argument shows that there is a wedge W ′ that has a superior width and an

apex on ∂CH(S), namely rests on the point q where an edge e of ∂CH(S) intersects the

bisector ofW . This is shown in Figure 6.1. Even though attempting to fix the supports of

W ′ on the same pair of points that supportW may not produce an empty wedge, any wedge

with an apex at q that is maximally empty is wider than W (we can always find support

points radially closest from q to the supports for W). Alternatively, keeping the supports

75



ofW ′ parallel to the supports ofW preserves both the angular width and the emptiness of

the wedge. Finally, the case for the apex of W situated inside of CH(S) does not merit

consideration either, because it makes the problem ill-defined. W can be made arbitrarily

wide by moving the apex closer and closer to an edge of CH(S). Hence, we can restrict

our attention exclusively to the wedges that have apices on ∂CH(S).

First, we tackle the purely geometric problem of finding the widest wedge with supports

on any two points pi, pj of S with the anchor q allowed to slide anywhere on a line `. This

has the flavor of a classic problem and indeed it can be solved through recourse to an

argument by an ancient Greek mathematician Apollonius. We divide the analysis into two

cases.

Case 1: The line ` and the line that passes through the segment pipj are parallel. In this

case we claim that the widest wedge is achieved at the intersection Wij of the line ` and

the perpendicular bisector of the segment pipj . To show that this point produces the widest

wedge, let’s consider the circle Γ that passes through pi, pj,Wij . The line ` is tangent to

Γ because the perpendicular bisector of pipj passes through its center and is perpendicular

to `. Now consider any point q on ` different from Wij . Let q′ be the intersection of the

segment qpj and the circle Γ. Then we have that ∠piqpj + ∠qpiq′ = ∠piq′pj = ∠piWijpj .

The last equation and the fact that ∠qpiq′ ≥ 0 imply that ∠piWijpj ≥ ∠piqpj for any q on

`.

Case 2: The line that passes through pi and pj intersects ` in the point mij . We claim

that the points on ` such that the circle defined by pi, pj and one of these points is tangent

to ` produce the widest possible wedges. The problem of finding these points is known as

one of the special cases of the problem of Apollonius. The solution to this problem (refer to

76



mij WR
ijWL

ij

ΓR

ΓL
pj

pi

q

q′
α

α
`

Figure 6.2: An illustration of the problem of Apollonius.

Figure 6.2) is well known and shows that there exist two points that fulfill the conditions.

One of the points will be lexicographically to the left of mij and we will refer to it as

WL
ij (`), while the point lying to the right of mij we shall call WR

ij (`) (we shall often drop `

from these names for brevity when it is implied or irrelevant). Now we prove that for every

q on ` that is to the left of mij , WL
ij (`) produces the widest wedge.

Consider q to the left ofmij . Let ΓL be the circle that passes through pi, pj andWL
ij . Let

q′ be the intersection of the segment qpj and the circle ΓL. Then, we have that ∠piqpj +

∠qpiq′ = ∠piq′pj = ∠piWL
ijpj . Again the result is that ∠piWL

ijpj ≥ ∠piqpj for any q

on ` to the left of mij . The argument for WR
ij and q being to the right of mij is similar.

Therefore, we conclude that for points to the right of mij , WR
ij produces the widest wedge.

To determine the position of points WL
ij and WR

ij we use the notion of the power of a

point. Let’s consider ΓL as defined previously. The power of mij with respect to ΓL can be

calculated using points pi, pj or using the point of tangency WL
ij . In this case the relation

obtained is mijpi ·mijpj = (mijW
L
ij )

2 which results in mijW
L
ij =

√
mijpi ·mijpj . Since

77



the coordinates of mij and the product mijpi ·mijpj are easy to calculate, so is the distance

between mij and WL
ij . The distance from mij to WR

ij has the same magnitude but opposite

sign. Therefore the value√mijpi ·mijpj needs to be computed only once.

Now, let’s define the function Wij(q) = ∠piqpj,∀q ∈ `. We will consider the point q

as it is moved from left to right. For the interval q ∈ [−∞,WL
ij ] the function is increasing.

Consider the points q1, q2 both of them to the left of WL
ij with q2 being the closer to it. Let

ΓL1 be the circle that passes through pi, pj and q2. ΓL1 intersects the line ` in two points:

q2 and another point to the right of WL
ij . So, the point q1 is outside of ΓL1. Repeating

this geometrical argument, we conclude that Wij(q1) = ∠piq1pj ≤ ∠piq2pj = Wij(q2).

Therefore, the function increases as we approach WL
ij from the left. Similar analysis show

that Wij(q) decreases on [WL
ij ,mij] ∪ [WR

ij ,∞] and increases on [−∞,WL
ij ] ∪ [mij,W

R
ij ],

with WR
ij and WL

ij being the local maxima and mij being the absolute minimum.

Now, that we have seen how the problem of finding the widest wedge can be solved

for a single pair of points and a single line, we are ready to put forth a description of an

algorithm for S and restrict the anchors to lie anywhere on ∂CH(S). First, we can see that

since ∂CH(S) can have O(n) edges in the worst case, the number of points WL
ij (`),W

R
ij (`)

can be O(n3) (or more precisely, O(kn2), if ∂CH(S) has k edges). In this setting, we now

define WL
ij (`) as the local maximum of Wij(q), q ∈ ∂CH(S) that is encountered first along

the supporting line ` of an edge e of ∂CH(S) in the counterclockwise traversal of ∂CH(S)

(thus, WR
ij (`) is the relative maximum that occurs later in such a traversal, and if any of the

two points WL
ij ,W

R
ij are outside of e, it is not considered, yet the naming is still consistent

since the direction of traversal along ` is well defined).

78



We shall now see that we do not need to analyze more than O(n2) of these points. We

are interested only in those wedges that are empty and thus it makes sense to start with

a valid configuration of O(n) empty wedges that can be produced with a radial sort on

S at some vertex v1 of ∂CH(S). For pi, pj non-parallel to `, we then compute the points

WM
ij (`) = WL

ij (`) (or WM
ij (`) = WR

ij (`) when WL
ij (`) is outside of e, or null if both values

are outside) for all pairs of points pi, pj adjacent in the radial sort, which provide supports

to this initial set of wedges, for the line ` through the edge e = (v1, v2). Hence, we retain

only those WM
ij (`)’s that lie on the edge e itself, giving initial priority to WL

ij since it is

the first to be encountered. For pi, pj that are parallel to `, we simply set WM
ij (`) to be the

point where the perpendicular bisector of pipj intersects e or if it falls on either side of e,

the vertex of e closest to that point. We further compute the points mij(`) on e where the

changes to the radial order for currently adjacent pairs pi, pj take place (for all pi, pj such

that pipj is not parallel to `). Below we shall describe where this information will be stored

for every adjacent pair pi, pj .

We observe that the radial order changes when the moving apex q becomes collinear

with K ≥ 2 input points, thereby changing the identities of the supports of the neighboring

two wedges (the wedge supported by pi, pj does not really change except that the order of

the supports is flipped). We make another observation that for each pair pi, pj , their relative

order in the radial sort as computed from points q along ∂CH(S) can change exactly twice

- when q becomes collinear with pi, pj at q = mij(`), which happens for exactly two edges

er, es of ∂CH(S), with their supporting lines `r, `s (q may become collinear with K > 2

points simultaneously with the outcome being the reversal of the order in which the wedges

appeared prior to this event, which can be viewed as a sequence of pairwise wedge order

79



reversals). Hence, in total, there are no more than O(n2) such points mij(`r),mij(`s). We,

therefore, for each adjacent pair of points in the radial order compute when, if at all, they

are “scheduled” to flip along e and put that flip priority (we can represent mij(`) as a single

parameter value along (v1, v2) if it falls inside, ∞ for those wedges not scheduled to flip

along e) in a heap organized in counterclockwise order from v1. The locations and values

for WM
ij can be stored in these nodes as additional data.

The crucial observation here is that the only points where this structure needs to be

updated are the points where the radial order changes and the only information that needs to

be updated at those points is the information for the flipped wedge and the two neighboring

wedges. Since their identities have changed, we need to recompute their WM ’s, as well

as determine mij(`) for these newly adjacent pairs (or put ∞ as their flip priority if it is

to the left of q) and re-heapify on each of these two nodes (we also need to set the flip

priority of the wedge causing the change to∞ and compute WM
ij = WR

ij , if WR
ij is inside

of e). Finally, the way we keep track of the maximum width W is by investigating WM
ij

(which we precomputed and stored with each wedge as it comes into existence) only those

wedges that have been involved in an update at a particular mi′j′(`) where the radial order

has changed. Since the wedge width functionWij(q) is semi-monotone between any pair

of points on the same side of mij(`) (it contains the single extremum WL or WR on such

an interval), the wedges that did not participate in the update need not be accounted for at

the point of update. Their widths are getting either uniformly wider or narrower anywhere

in the vicinity of that point, or they could have achieved a single relative maximum, which

has been recorded for these wedges and will be investigated either at some point of update

when such an edge is affected or at v2 if it survives till the end of e. Hence, at the point

80



of update we need to consider WM
ij ’s for the three wedges in question, if these have been

recorded for them, or evaluate them at the point of update itself and maintain the best width

so far and the identity of that wedge. We then proceed to move along the edge until v2, at

which point we recompute WM
ij (`′) for each wedge with respect to the new line `′ through

the edge (v2, v3) and produce a new structure. The cost of this algorithm is O(kn log n)

for the initial constructions at each of the k vertices of ∂CH(S) and O(n2 log n) amortized

time for the O(n2) points of update that occur along the entire boundary.

This algorithm always finds the optimal wedge. This is a straightforward consequence

of the fact that every wedge that can exist with an apex on ∂CH(S) (and we have already

shown that only these wedges need be examined) is, in fact, processed when it comes

into existence and no wedge is ever destroyed without the algorithm performing the cor-

rect procedure for determining the absolute maximum of Wij(q) by investigating its local

maximum WM
ij and evaluting Wij(q) at the endpoints of the interval of existence (which

are exactly the points of update to the structure). Hence, the optimal wedge cannot evade

detection.

6.3 Finding the Widest Wedge with an Apex at an Ex-

treme Point of S

We now consider the case where the apex of the widest empty cone is constrained to coin-

cide with a vertex of CH(S). For clarity, we assume that S is in general position (no two

input points share the same x coordinate). We solve this case through recourse to duality,

where a point (a, b) becomes the line ax−b. Of particular importance is the fact that duality

81



preserves incidence and topological relationships: point P is below line ` in primal space

iff the dual of `, the point D(`), is below the line D(P ) in dual space.

We therefore convert S to its dual representation and look at the resulting arrangement

of lines A(S). The key to the solution is to describe what an arbitrary empty cone in the

primal space that is anchored at a vertex v of CH(S) and with supports at pi and pj looks

like in the dual. The apex of the cone, v, as well as pi and pj , become lines D(v), D(pi),

and D(pj), respectively. The two boundary rays (or really lines through them) become two

points on D(v), call them D(`i) and D(`j). Hence, since the cone contains all rays through

v with slopes between those of the rays through pi and pj , it becomes a segment on D(v)

in the dual, except in the case when it contains a vertical ray (in that case, actually, it’s

the complement of the interval of slopes between the supports). In fact, since we assumed

general position for S, the dual of every point of S intersects D(v). Therefore, what does

it mean for the cone at v to be empty? If there is a point p inside of the cone apexed at v,

then in the case of that cone not containing a vertical ray (we shall look at that case later),

p ends up being above the ray through pi and below the one through pj , or vice versa. That

means that in the dual space the points D(`i) and D(`j) lie on opposite sides of the line

D(p). Therefore, D(p) must intersect the segment connecting D(`i) with D(`j), which we

know lies on D(v). Hence, an empty cone in primal space becomes an edge of A(S) in the

dual.

For the remaining case, when the empty cone contains a vertical ray, a point inside of

the cone is either below or above both rays. Furthermore, because the apex is on CH(S)

there can only be either points that are below both rays, or above both rays, but never points

of each kind simultaneously. Otherwise, it is a trivial contradiction to the fact that v is on

82



the boundary of a convex shape (in fact, angle at v must be less than 180◦) and pi and pj

are on the boundary of or inside that shape, since it would imply that there is an internal

angle at v greater than 180◦. Therefore, if such a cone is empty, then all other points of

S not lying on the rays of that cone must be above D(pi) and below D(pj) or vice versa.

This means that the supports of this cone correspond in the dual to the lines that produce

the intersections on D(v) that are furthest apart, i.e. the “extreme pair” of points on D(v).

In order to compute all such empty cones, we build A(S) in O(n2) time with a topo-

logical sweep (in order to use O(n) memory). For every edge encountered, we can go back

to the primal space and in constant time compare its angular width with the best found so

far. The time to examine the candidate cones is O(n2), i.e., proportional to the size of the

arrangement. Finding the extreme pairs also takes at most O(n2), since we can in linear

time find the extreme pair for each candidate apex. As a concluding remark, we note here

that this approach actually allows us to compute the widest empty cone with an apex in S,

which may or may not be extreme.

83



Chapter 7

Conclusion

The work presented in this thesis can be continued with many interesting and as yet un-

addressed variants. The lower bounds for the problems investigated in Sections 5 and 6

have not yet been resolved, thus leaving open the possibility of finding more efficient al-

gorithms. The “obnoxious” wedge problem can be extended to three dimensions and to

handle weights. Finally, all of the problems mentioned in the previous sections can be

treated under the sum definition of error (i.e., minimizing or maximing the sum total of er-

ror contributions from all points). Many of the problems the author has worked on remain

open in this context (e.g., the case of a fixed and known number k of segments, for k > 3,

of the approximating step function curve).

The further appeal of these subjects stems from their applicability in spatial and tempo-

ral databases, GIS, and computer graphics. In particular, the author is interested in pursuing

further the following subjects: map simplification, mesh refinement, and surface recon-

struction. Pattern recognition has many applications when it comes to analyzing maps that

84



are at the elementary level just collections of segments or polygonal subdivisions of the

plane. Similar problems can be explored in three-dimensional space, where potential ap-

plications deal with the analysis and generation and simplification/refinement of polygonal

meshes used to represent objects to be rendered in the graphics pipeline. A recent trend

in the field is to explore various techniques for implementing spatial algorithms using par-

allel processing architectures, such as CUDA. This area is extremely relevant in today’s

computing and the author would like to investigate the usefulness of such methods for the

topics presented in this work.

85



Bibliography

[1] P. K. Agarwal. Near-linear time approximation algorithms for curve simplification.
In Proceedings of the 10th European Symposium on Algorithms, pages 29–41, 2002.

[2] E. Arkin, F. Hurtado, J.S.B. Mitchell, C. Seara, and S. Skiena. Some lower bounds on
geometric separability problems. International Journal of Computational Geometry
and Applications, 16(1):1–26, 2006.

[3] B. Aronov, T. Asano, N. Katoh, K. Mehlhorn, and T. Tokuyama. Polyline fitting of
planar points under min-sum criteria. International Journal of Computational Geom-
etry and Applications, 16(1):97–116, 2006.

[4] G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink. Effi-
ciently approximating polygonal paths in three and higher dimensions. Algorithmica,
33(2):150–167, 2002.

[5] B. Ben-Moshe, M. Katz, and M. Segal. Obnoxious facility location: complete service
with minimal harm. International Journal of Computational Geometry and Applica-
tions, 10(6):581–592, 1999.

[6] S. Bespamyatnikh, K. Kedem, and M. Segal. Optimal facility location under various
distance functions. In Proceedings of the 6th International Workshop on Algorithms
and Data Structures (WADS’99), pages 318–329, 1999.

[7] P. Bose and Q. Wang. Facility location constrained to a polygonal domain. In Pro-
ceedings of the 5th Latin American Symposium on Theoretical Informatics. Lecture
Notes in Computer Science, volume 2286, pages 153–164, 2002.

[8] G. Brodal and R. Jacob. Dynamic planar convex hull. In Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science, pages 617–626, 2002.

[9] P. Cappanera. A survey on obnoxious facility location problems. Technical Report.
University of Pisa, 1999.

86



[10] P. Cappanera, G. Gallo, and F. Maffioli. Discrete facility location and routing of
obnoxious activities. Discrete Applied Mathematics, 133(1-3):3–28, 2003.

[11] S. Chan and F. Chin. Approximation of polygonal curves with minimum number of
line segments or minimum error. International Journal of Computational Geometry
and Applications, 6:59–77, 1996.

[12] S.-W. Cheng. Widest empty l-shaped corridor. Information Processing Letters,
58(6):277–283, 1996.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, MA, 2001.

[14] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry - Algorithms and Applications. Springer, 2000.

[15] J.M. Dı́az-Bánez, F. Gomez, and F. Hurtado. Approximation of point sets by 1-corner
polygonal chains. INFORMS Journal on Computing, 12:317–323, 2000.

[16] J.M. Dı́az-Bánez and F. Hurtado. Computing obnoxious 1-corner polygonal chains.
Computers and Operations Research, 33(4):1117–1128, 2006.

[17] J.M. Dı́az-Bánez, F. Hurtado, H. Meijer, D. Rappaport, and J. Sellares. The largest
empty annulus problem. In Proceedings of the International Conference on Compu-
tational Science, Part III. Lecture Notes in Computer Science, volume 2331, pages
46–54, 2002.

[18] J.M. Dı́az-Bánez, M.A. Lopez, M. Mora, C. Seara, and I. Ventura. Fitting a two-joint
orthogonal chain to a point set. Computational Geometry, 44(3):135–147, 2011.

[19] J.M. Dı́az-Bánez, M.A. Lopez, and J. Sellares. Locating an obnoxious plane. Euro-
pean Journal of Operational Research, 173(2):556–564, 2006.

[20] J.M. Dı́az-Bánez, M.A. Lopez, and J. Sellares. On finding a widest empty 1-corner
corridor. Information Processing Letters, 98(5):199–205, 2006.

[21] J.M. Dı́az-Bánez and J.A. Mesa. Fitting rectilinear polygonal curves to a set of points
in the plane. European Journal of Operations Research, 130:214–222, 2001.

[22] J.M. Dı́az-Bánez, P.A. Ramos, and P. Sabariego. The maximin line problem with
regional demand. European Journal of Operations Research, 181:20–29, 2007.

87



[23] Z. Drezner and G.O. Wesolowsky. Location of an obnoxious route. Journal of the
Operational Research Society, 40(11):1011–1018, 1989.

[24] H. Edelsbrunner and L.J. Guibas. Topologically sweeping an arrangement. In Pro-
ceedings of the 18th annual ACM symposium on theory of computing, pages 389–403,
1986.

[25] D. Eu and G. T. Toussaint. On approximating polygonal curves in two and three
dimensions. CVGIP: Graphical Models and Image Processing, 56(3):231–246, 1994.

[26] H. Fournier and A. Vigneron. Fitting a step function to a point set. Algorithmica,
pages 1–15, 2009.

[27] G.N. Frederickson and D.B. Johnson. Generalized selection and ranking: Sorted
matrices. SIAM Journal on Computing, 13(1):14–30, 1984.

[28] M.T. Goodrich. Efficient piecewise-linear function approximation using the uniform
metric. Discrete and Computational Geometry, 14:445–462, 1995.

[29] S. L. Hakimi and E. F. Schmeichel. Fitting polygonal functions to a set of points in
the plane. CVGIP: Graphical Models and Image Processing, 53(2):132–136, 1991.

[30] J. Hershberger and S. Suri. Off-line maintenance of planar configurations. Journal of
Algorithms, 21:453–475, 1996.

[31] M. Houle, H. Imai, K. Imai, J.-M. Robert, and P. Yamamoto. Orthogonal weighted
linear l1 and l∞ approximation and applications. Discrete Applied Mathematics,
43(3):217–232, 1993.

[32] M. Houle and A. Maciel. Finding the widest empty corridor through a set of points.
Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., pages 201–
213, 1988.

[33] F. Hurtado, V. Sacristan, and G. Toussaint. Some constrained minimax and maximin
location problems. Studies in Locational Analysis: Special Issue on Computational
Geometry in Locational Analysis, pages 17–35, 2000.

[34] H. Imai and M. Iri. Computational-geometric methods for polygonal approximations
of a curve. Computer Vision, Graphics and Image Processing, 36(1):31–41, 1986.

[35] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear func-
tion. Journal of Information Processing, 9(3):159–162, 1986.

88



[36] H. Imai and M. Iri. Polygonal approximations of a curve - formulations and algo-
rithms. Computational Morphology, G. T. Toussaint, ed., pages 71–86, 1988.

[37] R. Janardan and F. Preparata. Widest corridor problems. Nordic Journal of Comput-
ing, pages 231–245, 1994.

[38] M. Katz, K. Kedem, and M. Segal. Improved algorithms for placing undesirable
facilities. Computers and Operations Research, 29(13):1859–1872, 2002.

[39] N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal
of ACM, 31(1):114–127, 1984.

[40] D. P. Mehta and ed. S. Sahni. Handbook of data structures and applications. Chapman
and Hall/CRC, 2004.

[41] A. Melkman and J. O’Rourke. On polygonal chain approximation. Computational
Morphology, G. T. Toussaint, ed., pages 87–95, 1988.

[42] J. O’Rourke. Computational Geometry in C. Cambridge University Press, 2000.

[43] M.H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.
Journal of Computer and System Sciences, 23(2):166–204, 1981.

[44] J.S. Salowe. Chapter 43: Parametric search. Handbook of data structures and appli-
cations, D. P. Mehta and S. Sahni, ed., pages 683–695, 2004.

[45] R. Seidel. Linear programming and convex hulls made easy. In SCG ’90: Proceedings
of the Sixth Annual Symposium on Computational Geometry, pages 211–215, 1990.

[46] C.S. Shin, S.Y. Shin, and K.-Y. Chwa. The widest k-dense corridor problems. Infor-
mation Processing Letters, 68(1):25–31, 1998.

[47] K. R. Varadarajan. Approximating monotone polygonal curves using the uniform
metric. In SCG ’94: Proceedings of the 12th annual symposium on Computational
geometry, pages 311–318, 1996.

[48] D. P. Wang, N. F. Huang, H. S. Chao, and R. C. T. Lee. Plane sweep algorithms for
the polygonal approximation problems with applications. In ISAAC ’93: Proceedings
of the 4th International Symposium on Algorithms and Computation, pages 515–522.
Springer-Verlag, 1993.

[49] D.P. Wang. A new algorithm for fitting a rectilinear x-monotone curve to a set of
points in the plane. Pattern Recognition Letters, 23:329–334, 2002.

89



[50] G.O. Wesolowsky. Location of the median line for weighted points. Environment and
Planning A, 7(2):163–170, 1975.

[51] P. Yamamoto, K. Kato, K. Imai, and H. Imai. Algorithms for vertical and orthogonal
l1 linear approximation of points. In Proceedings of the 4th Annual Symposium on
Computational Geometry, pages 352–361, 1988.

90


	Minimax and Maximin Fitting of Geometric Objects to Sets of Points
	Recommended Citation

	tmp.1443202925.pdf.PFcDd

