
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

6-1-2010

RecoNode: Towards an Autonomous Multi-Robot Team Agent for RecoNode: Towards an Autonomous Multi-Robot Team Agent for

USAR USAR

Kang Li
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Robotics Commons

Recommended Citation Recommended Citation
Li, Kang, "RecoNode: Towards an Autonomous Multi-Robot Team Agent for USAR" (2010). Electronic
Theses and Dissertations. 374.
https://digitalcommons.du.edu/etd/374

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.du.edu%2Fetd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/374?utm_source=digitalcommons.du.edu%2Fetd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

RecoNode: Towards an Autonomous Multi-Robot Team Agent for USAR

A Thesis

Presented to

The Faculty of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Kang Li

June, 2010

Advisor: Dr. Richard M. Voyles

 ii

Author: Kang Li

Title: RecoNode: Towards Autonomous Multi-Robot Team Agent for USAR

Advisor: Richard Voyles, Ph.D.

Degree Date: June, 2010

Abstract

Urban search and rescue (USAR) robots can benefit from small size as it facilitates

movement in cramped quarters. Yet, small size limits actuator power, sensor

payloads, computational capacity and battery life. We are alleviating these issues by

developing the hardware and software infrastructure for high performance,

heterogeneous, dynamically-reconfigurable miniature USAR robots, as well as a host

of other relevant applications. In this thesis, a generic modular embedded system

architecture based on the RecoNode multiprocessor is proposed, which consists of a

set of hardware and software modules that can be configured to construct various

types of robot systems for dynamic and unforeseen changes in the USAR

environment. The benefit of this Reconfigurable Node is that, at run-time, the system

can react to unexpected changes in configuration, such as nodes exhausting their

batteries or the failure of sensors. These modules include a high performance

microprocessor supporting complete on board processing for autonomous control, a

reconfigurable hardware component, and diverse sensor and actuator interfaces. The

design of all the modules in the electrical subsystem allows for the replacement of the

motion control and serial communication capabilities within a dedicated FPGA logic

module, which helps gain system performance by releasing the CPU from these tasks.

The selection of module components and real-time scheduler and operating system

(OS) are described. The portable power supply solution is also designed and tested.

 iii

ACKNOWLEDGEMENTS

First of all, I would like to express my appreciation to my adviser Professor Richard

Voyles for providing me with such an interesting project work on and his valuable

guidance to an interesting direction. Also, I would like to thank Steve Elzinga for his

help in setting up the design system and for his expert advice on FPGA. I would like

to thank current and former members of our research group, particularly, Xiaoting,

Robert, Mustafa, Salah and Sam for our numerous discussions on various research

topics.

I am also grateful to Professor Matt Rutherford and Professor Mohammad Mahoor for

serving as the committee members in my final oral examination. Their comments and

suggestions helped me to improve the quality of my thesis. Finally, I would like to

give special thanks to my family, my friends and my host family for their love,

encouragement, and constant support to continue my studies.

Partial support for my work was provided by the NSF Safety, Security and Rescue

Research Center and by the NSF through grants 0923518, 0841483 and 0719306. Any

opinions, findings, and conclusions or recommendations expressed in this material are

those of the author and do not necessarily reflect the views of the National Science

Foundation.

 iv

Table of Contents

Chapter 1 Introduction ..1

1.1 Background and Motivation ...1

1.2 Problem statement ..2

1.2.1 Resource Constraints ...2

1.2.2 Time Constraints…………………………………………………………4

1.3 Heterogeneous Multi-Robot Team..6

1.4 Innovations and Contributions ...8

1.5 Thesis Outline ..8

Chapter 2 Literature Review ...9

2.1 Mobile WSN node: Cotsbots/ MAS-net/ Robomote ...9

2.2 Kephera and Tyndall Mote ..10

2.3 TerminatorBot ..11

Chapter 3 Reconfigurable computing system ...13

3.1 Reconfigurable computing ...13

3.2 Self-adaptive ..14

3.3 Dynamic Partial Reconfiguration ..15

3.4 PowerPC 405 Core and Bus Architecture ..16

3.5 Morphing Bus ..18

Chapter 4 RecoNode Architecture ..21

4.1 Architecture Overview ...21

4.2 Hardware infrastructure ...24

4.2.1 External Morphing Bus ..25

4.2.2 Base Board DU100 ..27

4.2.3 Motion control board ...28

4.2.4 Power solution ...31

4.3 Software infrastructure...35

4.3.1 Porting Scheduler and OS ..36

4.3.2 Driver ...39

4.3.3 PWM Generator IP ..40

4.3.4 Quadrature decoder IP ...45

4.3.5 UART IP ..50

https://www.millennium.berkeley.edu/cgi-bin/mailman/admin/cotsbots-help

 v

Chapter 5 Test and Verification ..54

5.1 Base Board verification ..54

5.2 PROM verification ...55

5.2.1 PROM and FPGA Connections ...55

5.2.2 Programming PROM ...58

5.3 Battery board verification ..61

5.3.1 Battery and charger ..61

5.3.2 Load Test ...62

5.4 Motion control validation ..63

Chapter 6 Conclusion and Future Work ...67

6.1. Conclusion ...67

6.2. Future work ..67

6.2.1 Vision module ..67

6.2.2 Wireless communications ..68

Bibliography ...70

APPENDIX A: DU100 and DU120 Schematics ..73

APPENDIX B: DU105 Schematics ..75

 vi

List of Figures

Figure1: TerminatorBot 12

Figure 2: Xilinx PowerPC CoreConnect bus system 17

Figure 3: Morphing bus signal routing [14] 18

Figure 4: Block diagram of FPGA-based RecoNode architecture 21

Figure5: A proposed version of the DU100 installed in the TerminatorBot enclosure

22

Figure 6: Circuit Board design for the RecoNode with Spiraling diagram [14] 23

Figure7: Morphing bus spiraling structure. 25

Figure8: Base board PCB and Schematics 26

Figure9: Four layer motion control schematics &PCB layout 28

Figure10: Prototype of motion control board 29

Figure11: Highly Integrated TPS75003 Triple Supply Powering Virtex-4 31

Figure12: 5V DC/DC convertors TPS61032 and LTC3426 32

Figure13: power board PCB layout and prototype 34

Figure14: Nano-RK architecture figure showing user applications and RT-Link

37

Figure15: Behavior simulation 41

http://www.nanork.org/wiki/RT-Link

 vii

Figure16: screen shot of a simulation and RTL view 41

Figure17: the truth table of the L6205 42

Figure18: software accessible registers schematic 43

Figure19: Quadrature decoder /counter logic inside Virtex-4 FPGAs 45

Figure20: A Simplified Logic block diagram of the HCTL 2000[27] 45

Figure21: Digital noise filters architecture [28] 46

Figure22: two 90 degree phase different encoder signals 47

Figure23: TRC040 decoder logic 48

Figure24: Simulation waveform for driving-signals of DC Motors 50

Figure25: UART IP core connecting to PPC 51

Figure26: UARTLite configuration 51

Figure27: Internal free-running clock generator made from ring oscillator 53

Figure28: Base board test setup 54

Figure29: PROM and FPGA Connections with Control Signal 56

Figure30: PROM connections with improvement on DU100 baseboard 57

Figure31: PROM Programming Options [30] 58

Figure32: PROM File Formatter 59

Figure33: DU105 with MAX1908 evaluation kit 60

Figure34: Battery board with FPGAs load 61

Figure35: Motion control HW/ SW co-test 63

Figure36: The step response of the motor control block 64

 1

CHAPTER 1 Introduction

In the past, catastrophic disasters such as earthquakes, mine disasters such as

Chinese miners, the explosion in a mine in West Virginia and the terrorist attacks on

the World Trade Centers have frequently appeared on the news. These events clearly

demonstrate the need for special-purpose resources to respond to incidents of partial

or complete structural collapse caused by these types of major disasters. Urban search

and rescue (USAR) is defined to be the emergency response function which deals

with the collapse of man-made structures, has a different emphasis than traditional

wilderness rescue or underwater recovery efforts, and can be even more demanding

on robot hardware and software design than military applications. [1]

1.1 Background and Motivation: urban search and rescue robot

The USAR robot‘s main role is a source of collecting and feeding back

information to help responders identify victim in an ambient environment that

generally implies collapsed structures. USAR robots need to be mobile to achieve a

higher degree of coverage and connectivity. In the presence of obstacles at the USAR

site, mobile robots can plan ahead to avoid debris and move appropriately to

obstructed regions to increase rescue target exposure. During the above process, there

are mainly two challenges that the USAR environment presents for a USAR robot:

limited time and limited space. From the time perspective, the search and rescue task

is most effective in the 48-72 hours ―Golden Window‖ immediately after the disaster.

 2

If survivors are not found within this window, profound difficulties for survival

worsen as time passes. From the space perspective, survivors are usually entombed in

voids with minimal access and entry ways are often blocked or tortuous. Therefore,

intended solutions for USAR require a small-scale, rugged, and lightweight robot to

access small spaces /voids and cross over tough terrain to inspect victims. Currently,

no robot system design serves the above search and rescue needs, and these

challenges motivate us to create and design a next generation USAR robot system.

1.2 Problem statement

1.2.1 Resource constraints

Miniature robots for USAR are decided to meet the need to access small spaces

in a collapsed structure. Small size inherently benefits USAR robots as it facilitates

movement in cramped quarters and permits easy navigation through small, tight

spaces and voids deep in a rubble pile that humans and dogs cannot safely enter (as

well as larger robots). Yet meanwhile, small size consequently brings a new problem:

limiting capability such as sensing, actuation (torque), computation capacity

(precision) and power (battery life), etc. Therefore, creating a suitable actuation

mechanism, making maximum use of sensors, finding balance between computation

and power are all our concern.

a. Actuation

Most popular mobile robotics platform consist of wheels or tracks. Wheeled

robots are simple to construct but they require continuously traversable terrain. Big

wheeled robots can surmount large obstacles while smaller robots will get stuck if

 3

they encounter obstacles larger than the robot‘s wheels themselves. Tracked robots

are much more common in the arena of search and rescue because their design is only

slightly more complex than wheeled robots, yet remain simple to control. Most of

tracked vehicles are typically heavy and big with similar problem as wheeled robots.

Thus, we need to come up with a small, light and highly mobile robot may be able to

more easily and rapidly explore voids deep in a rubble pile unreachable by humans,

dogs, or currently available commercial robots.

b. Sensors

Sensors are needed for collecting vision features, heat, and sound information for

two main tasks: survivor identification, and navigation of the robot. Most robots‘

relationship to their environments is limited by sensors; normally, we use cameras for

detecting survivors Sensory System for USAR environment may also include

CO2/CO/O2 /pulse detectors, GPS locators, infrared thermal camera FIR, audio

transmitters, and laser beam scanner .etc. Apparently, we cannot expect the USAR

robot carry all the sensors due to size or power limit. However, we would like robots

to prepare for unexpected situation with as much sensors as possible. For example, if

survivor detecting is being done with the camera, but it suddenly becomes very foggy

so the camera cannot be used. Then we hope the hardware previously set aside for

the camera can be reconfigured for thermal sensor to compensate for the loss of sight.

So we need come up a sensors configuration scheme to adapt complex, changing and

unknown environment.

 4

c. Power

For a multi-robot team working in large scale USAR area, using tether to provide

unlimited power is not applicable anymore, because cables are easy to tangle with

each other or obstacle commonly in USAR condition. Then battery package is

naturally considered as power source for mobile robotics systems. But for miniature

robot, the addition battery to the robot is greatly limited by robot confined spaces.

Therefore, the power consumption issue has become a fundamental concern.

Especially we need to find a balance between limited robots power supply and dense

computing demand applications like processing and communication. Our approach is

to rededicate limited resources to current task and provide low-power consumption

and power aware design.

1.2.2 Time constraints

To meet the golden window time frame requirement, responders need to quickly

deploy a team of robots to maintain adequate sensing coverage and network

connectivity. In this way, USAR might help responders reduce search time to identify

victims; besides, autonomous and flexible robotics system architecture proposed

might help responder reduce operation time of robots.

a. Reconfiguration and modular design

A USAR robot designed for a single purpose can perform that specific task well

however poorly on some other tasks, especially in a different environment.

Specifically, a fixed-architecture robot is acceptable if the environment is structured,

but for tasks in a complex urban search and rescue (USAR) environment, which

 5

normally contains unstructured components, tough terrain and uncertain/ unknown

factors; a robot with highly adaptive capabilities is more suitable. Because it‘s

impossible for a robot to carry all kinds of sensors and operate them at the same time

which will kill battery fast, we want to assign and configure potential usable sensors

before the robots deployment and then decide specific ones we need to use after

deployment. Modular reconfigurable robots show the promise of great versatility in

this scenario: it allows off-line swapping the sensor and actuator peripheral hardware

and then reprogramming the new added hardware on- the-fly to serve a specific task.

In contrast most robots today are built monolithically; the characteristic of modular

design allows robots to be constructed in a fast and easy manner at large quantity and

could be used and deployed for various complex applications. Moreover, a modular

design allows a wide range of heterogeneous robots to be assembled from a basic set

of modules like CPU and peripheral board etc. Besides maintains, modular unit

change within system structure, and specifically focuses on the reconfiguration of

internally developed. We could remove devices if their functions are not in use or if

modules break they can easily be replaced by spare modules. Finally, the

reconfiguration/repair time and cost of the entire system can be reduced because we

do not have to repair or replace the whole robot system and individual modules can be

mass-produced. Our goal is to introduce of modular robotics concepts into our design

and thereby take the advantages of it.

 6

b. Autonomous multi-robot team

Urban search and rescue robots working together based on the cooperation in a

team could dramatically reduce rescue time. There are several reasons: first of all, if

the given targets will be assigned separately, we could send out multi-robot team and

every agent communicate with the others and perform distributed activities. Secondly,

for victim identification and environmental monitoring in disaster areas, manual

deployment of multi-Robot team might not be possible. Mobile multi-robot team can

move to areas of events after deployment to provide the required coverage. Finally,

we also want to increase multi-robot team agent‘s autonomy with lower demands on

humans after deployment so they can do collaborative computation, sensing, action

and make decisions to perform higher level task on target. For each agent, we would

like it to have high and fast computation capability to support for autonomous

mobility for complete real-time on-board processing for autonomous control

including motion control application such as hardware timers, PWM outputs for

controlling motors and other actuators, vision application such image data acquisition

and processing and wireless communication. In summary, our vision for ultimate

robotic design and functionality is to create more versatile robots by combining basic

modules with general reconfiguration capabilities to achieve greater system efficiency

and flexibility for complex tasks.

1.3 Heterogeneous multi-robot team

In collapsed areas where intervention by humans or dogs may not be possible, a

large team of miniature robots that are densely deployed has distinct advantages over

 7

single robots with respect to sensing various information either inside or close to the

observation objective. Team members may share sensor information and help each

other to scale obstacles and detect victims. Multi-robots can move to areas of events

after deployment to provide the required coverage and interact with their environment

by sensing or controlling objectives and collaborate to fulfill their tasks since a single

robot is incapable of doing so on its own. As for sensing, a team of robots can

perceive its environment from multiple disparate viewpoints. Besides sensing,

Multi-robot team has actuation advantage as well: For example, when multi-robot

team manipulate or carry large objects, a given load can be distributed over several

robots so that each robot can be built much smaller, lighter, and less expensive[2],

which meet our criteria of miniature scale USAR robots. A multi-robot team system is

usually classified as heterogeneous if one or more agents are different from the others

based upon physical attributes such as sensors and actuators [3]. And heterogeneous

multi-robot team could refer to multiple robots with different HW/SW configuration,

sensor/actuator components and other external entities communicating and

cooperating such as motion coordination to achieve a common goal. Heterogeneous

multi-robots could provide powerful situation awareness capability due to different

locomotion capabilities and sensor information. However, it would be expensive and

time consuming to develop specific embedded system for different type of robots. So

we need come up with a new node platform, where the node itself could be

reconfigurable to a different HW/SW system for various USAR applications with

multiple sensors and actuators. This feature for USAR robots is also called adaptive

 8

capability. So each agent is a multi-purpose robot and should be reconfigurable

adaptive to deal with complex USAR environment. As a result, it will avoid

unnecessary redistribution of multi-robot to save much energy and rescue time. More

over, the robotics platform will take completely modular architecture that allows

individual components to easily be added, replaced, or modified and many different

miniature mobile robot systems could be constructed.

1.4. Innovations and contributions

A summary of the primary innovations and contributions includes:

1. Test out FPGA baseboard and PROM.

2. Finish the schematics and PCB design, assembly, and test process of motor board

and power board.

3. Physical external Morphing Bus realization.

4. Build embedded processor system platform for DU100 under Xilinx EDK XPS.

5. New IP Development: Come up with PWM and encoder, UART VHDL IP core for

motion control and communication purpose.

6. Port software infrastructure Scheduler, UART and PID software.

1.5. Thesis Outline

Chapter 1 offers a brief outline of the project, its motivations and its background.

Chapter 2 goes through existing networked mobile robotics hardware architecture.

Chapter 3 presents some concepts and technologies in the areas of high performance

reconfigurable computing systems where we could bring to my design.

Chapter 4 describes the RecoNode architecture including HW and SW infrastructure

 9

Chapter 5 evaluates the success of the design and its fulfillment of the design criteria,

details the performance obtained from the system

Chapter 6 summarizes the project and discusses future work on the RecoNode

 10

CHAPTER 2 Literature Review

We are interest in reconfigurable hardware infrastructure architectures for an

agent of a group of distributed robots systems working cooperatively on a common

task for urban search and rescue. In this application, if robots operate in a

well-coordinated manner, the overall mission can be accomplished much more

effectively in shorter time. Let us go through current existing hardware platforms to

see whether they support our applications.

2.1 Mobile WSN node: Cotsbots/ MAS-net/ Robomote

Several research groups have developed different kinds of mobile node platforms

for wireless sensor networks. MAS-net [4], Robomote [5] and CotsBots [6] are

examples of such systems, based on MICA boards that, together with sensing and

motor control stacks, constitute a wireless sensing node. Cotsbots is a combination of

Mica Mote, Motor Board on a RC Car Platform; Cotsbots use commercial

off-the-shelf (COTS) components to build distributed robotics, so it is inexpensive

and modular. Open-source hardware and software platform for distributed robotics.

USU MAS-net is very similar to CotsBots, especially the mobility platform is also

based on MICA serial mote. Employing Atmel ATmega128L 7.3827 MHz 8-bit CPU

and Chipcon CC1000 radio the difference is the mobility mechanism. Unlike

CotsBots, which implements an Ackerman steered wheel robot, MASmote is a

two-wheel differentially steered mobile robot. It is structurally much simpler, yet still

https://www.millennium.berkeley.edu/cgi-bin/mailman/admin/cotsbots-help

 11

manipulation flexible. MASmote has digital IR reflector as its wheel encoders which

can be used for odometry measurement and localization. The USC Robomote is a

single board with dimensions 3.81cm x 2.23cm based on an Atmel AT9OS8535L 8

bit micro controller. This board connects to a Renemote, the "Mote" component,

making the complete Robomote.

2.2 Kephera and Tyndall Mote

Compared with most of these WSN nodes focus on low-power, simple

microprocessor and sensors based platform hardware infrastructure all duplicated

across the network, we are more interested in distributed robotics system utilizes

high-end FPGA devices to achieve more powerful onboard computing capability as

well as hard/soft reconfigurability and implements the DSRP mechanism for

providing more flexible and reliable applications such as video and communication.

Some research groups use FPGAs as coprocessor in MCU- FPGA embedded systems

module architecture such as Kephera [7] and Tyndall Mote [8]. The FPGA module act

as a coprocessor dedicated for running real-time or parallel tasks such as the image

processing (image data acquisition and computation) and Bluetooth communication

task due to advantages in the parallelism performance and the flexibilities. The

Kephera‘s base module possesses the processing platform from a Motorola 68331

microcontroller, running with 25MHz clock frequency, 512 KB RAM and 512 KB

Flash. The FPGA is reconfigured to change its tasks during run-time and also supports

partial reconfiguration. Tyndall Institute developed a WSN platform for environment

monitoring application, it‘s stackable and modular. The platform runs an adapted

 12

version of TinyOS. On the other hand, the platform includes an FPGA module, for

fast DSP processing. They have some sensor layers for different applications and the

power supply layer can include batteries or energy harvesting elements. The system

incorporates a 2.4 GHz transceiver with a special protocol to minimize power

consumption.

2.3 TerminatorBot

Besides the computing platform, we also need to consider the actuation

mechanism which is adaptable to explore rough, uneven and unknown terrains

especially common in collapsed structures in USAR environment. Apparently, we

need to keep current TerminatorBot‘s [9] actuation mechanism and fit improved

reconfigurable computing platform into the enclosure. TerminatorBot is a small size,

resource-constrained, search-and-rescue robot and it has a small form factor for

core-bored search and rescue operation and its dual use mechanism for both

locomotion and manipulation with its two 3 DOF articulated limbs for surveillance,

search and rescue purpose [10]. Limbs are not used only for locomotion but also for

dexterous manipulation (e.g. Terminator lifts a small wheeled robot like the Scout into

a place that the Scout cannot otherwise access). Thus, T-bot is a good research

platform for robotics mobile manipulation. The applications for mobile manipulators

have been growing because of the increased ability of robots to interact dynamically

with their environment in a precise manner. It combines a wide variety of research

areas, ranging from force control to mechanism design and sensor design.

 13

Figure1: TerminatorBot

 14

CHAPTER 3 Reconfigurable computing system

Robotics platform usually take general-purpose microprocessor such as MCUs

and DSPs as CPU. These devices are designed with fixed hardware, leaving software

as the only method for designers to update designs; also limiting the development of

application-specific functions. In previous design, FPGAs logic is mostly used as

hardware acceleration, which means we need separate FPGAs and microprocessor

boards. In comparison, current fully reconfiguration computing platform with FPGAs

logic driven by an embedded hard/soft core processor could be completed in one chip

instead of separate boards. Specifically, FPGAs based SoC solution can integrate

processor, bus standards, custom modular logic, peripheral interfaces, and DSP

functions in one consolidated device. SoC give us freedom to create custom functions

completely adapted to specific USAR application requirements by enabling both

hardware and software customization. The following concepts show how we can

design the next generation of USAR robot with the required functions fully integrated

on a single SoC chip.

3.1 Reconfigurable computing

Reconfigurable computing is a computer architecture combining some of the

flexibility of software with the flexible and high performance of hardware fabric like

FPGAs. Reconfigurable computing is intended to fill the gap between hardware and

software, achieving potentially much higher performance than software alone, while

http://en.wikipedia.org/wiki/Computer_architecture

 15

maintaining a higher level of flexibility than hardware alone. [11] Mostly,

reconfigurable computing systems use FPGAs or other programmable hardware, and

what we specially use here is not only FPGAs logic but also refer to a

System-on-a-chip (SoC) architecture containing hard core microprocessor. Here is a

scenario to demonstrate how it could benefit USAR robot application: During the

USAR Robot real-time operation, it may also become necessary to perform an update

to take advantage of new hardware and algorithms. How to switch hardware and

software resources is a challenge for these applications. For example, when a USAR

robot is deployed, some application may need a module to perform in a mode that

demands high power consumption for only 25% of the time. After the high power task

finished, we do not need to keep it on in the rest of time. In this situation, if the

system is developed using FPGAs with the capability to perform partial

reconfiguration and morphing bus, the system can take advantage of operating in a

low power consumption mode at other 75% time, reducing the whole power supply

needs of the system.

3.2. Self-adaptive

The RecoNode system should have the self-adaptive ability to adapt to system/

component failure or complex USAR environment changes; self-adaptive allows

RecoNode to change its configuration and functionality in order to improve the

operation of the system in a changing environment. The adaptation of a system can

occur from hardware to software. Here, we study self-adaptive at the hardware level

and especially with reconfigurable architectures. Reconfigurable architectures such as

 16

FPGAs are a key technology for implementing self-adaptive and flexible systems,

since the possibility for dynamic and partial hardware reconfiguration described later

offers a higher degree of freedom in the resource allocation. Reconfiguration here not

only means reprogramming but also means the change of all the hardware and

software system. FPGAs provide the capability to implement functions in hardware,

accelerating performance through accelerate algorithm execution by mapping

compute-intensive calculations to the reconfigurable substrate and simplifying the

software porting effort. This freedom will enhance overall system performance and

flexibility.

3.3. Dynamic Partial Reconfiguration (DPR)

The RecoNode robot supports dynamic reconfiguration of its hardware during

runtime. At startup of the RecoNode, the FPGA is programmed by the processor with

the contents of the on-board memory. Specifically, processor loads partial bit streams

from a bit stream repository via wireless communication, and stores them on PROM

memory; this allows loading different hardware configurations for the FPGA at

power-on of the robot. The FPGA is capable of dynamical reconfiguration, so that

parts of the hardware design on the FPGA can be exchanged on demand by new

modules, kept in PROM or received wirelessly by Bluetooth or WiFi via a network

link. RecoNode could realize various hardware configurations or algorithm depending

on the task.

Dynamic partial reconfiguration [12] is considered as a way to make RecoNode

accomplish reconfiguration as fast as possible. The whole process is controlled either

 17

by the user or by the system itself. DPR sets up a communication between the source

of configuration and the configurable unit and permits change to parts of the device

while the rest of an FPGA is still running; In other words, the dynamic

reconfiguration can swap the logic contents of a FPGA during system operation

without affecting the remaining parts operation. It will always be much faster to

change a small piece of the logic than the entire FPGA contents. Not only does DPR

give RecoNode system flexibility, but the use of DPR is one efficient way to reduce

static power consumption by reduction of chip area for the adaptive system.

Partial reconfiguration is supported by Xilinx Virtex II, Virtex II Pro, and Virtex

4 FPGA. A special software flow in ISE with emphasis on modular design is used

dring configuration; typically the design modules are built along well defined

boundaries inside the FPGA that require the design to be specially mapped to the

internal hardware. However, to our point of view, the dynamic reconfiguration is an

important specificity of FPGAs and is still largely underexploited. This would

probably change in the future. The most feasible way to implement DPR is using

HWICAP interface and open the routed design with FPGA editor, modify any LUT

function or memory content and generate a partial bit stream with bitgen.

3.4. PowerPC 405 Core and Bus Architecture

RecoNode use Virtex-4 FPGAs as computing platform. as the IBM PowerPC is

widely used in embedded system design, The PowerPC405 is also available in

Virtex-4 family of devices. Here we present a brief overview of the PowerPCs general

capabilities and internal organization. The PowerPC 405 CPU Core is a 32-bit

http://en.wikipedia.org/wiki/Xilinx
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_platform_fpgas/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_pro_fpgas/
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm

 18

Reduced Instruction Set Computer (RISC) PowerPC Embedded Processor, which

possesses all of the qualities necessary to make system-on-a-chip designs a reality.

This core consumes minimal power, and provides a high performance 100% PowerPC

architecture compatible platform capable of taming the most demanding embedded

applications. The PowerPC 405 is a low-power consumption processor with operating

frequency at approximately 450 MHz in the Vitex-4 FX, which will resolve our low

power but high computation requirement. The PowerPC uses two different buses to

connect memory and peripherals, namely the Processor Local Bus (Processor Local

Bus (PLB) and the On-Chip Memory (OCM) bus. The PowerPC also supports the

IBM CoreConnect bus system [13]. The core connect system introduces two new

main buses, the On-chip Peripheral Bus (OPB) and the Device Control Register (DCR)

bus. The OPB is used to connect relatively slow peripherals and typically runs on a

frequency lower than the PLB. The DCR bus is mainly used to transfer device

configuration data and settings, the DCR is not used to transfer data or instructions.

Figure 2 depicts the IBM CoreConnect bus system as used in the Xilinx

implementation of the PowerPC core. The OCM buses are not part of the IBM

CoreConnect system, but are depicted to give a complete overview. The OCM bus

and the PLB will be discussed in more detail.

 19

UART GPIO
On-Chip

Peripheral
Hi-Speed

Peripheral
GB

E-Net

e.g.
Memory

Controller

A
rb

ite
r

On-Chip Peripheral Bus

A
rb

it
e
r

Processor Local Bus

PowerPC
405 Core

DSOCM
BRAM

ISOCM
BRAM

Bus
Bridge

UART GPIO
On-Chip

Peripheral
UARTUART GPIOGPIO

On-Chip
Peripheral
On-Chip

Peripheral
Hi-Speed

Peripheral
GB

E-Net

e.g.
Memory

Controller

Hi-Speed
Peripheral
Hi-Speed

Peripheral
GB

E-Net
GB

E-Net

e.g.
Memory

Controller

e.g.
Memory

Controller

A
rb

ite
r

On-Chip Peripheral Bus

A
rb

it
e
r

Processor Local Bus

PowerPC
405 Core

DSOCM
BRAM

ISOCM
BRAM

DSOCM
BRAM

DSOCM
BRAM

DSOCM
BRAM

ISOCM
BRAM
ISOCM
BRAM
ISOCM
BRAM

Bus
Bridge

Bus
Bridge

IBAIBA

MicroBlaze
32-Bit RISC Core
MicroBlaze

32-Bit RISC Core
MDM

UART GPIO
On-Chip

Peripheral
Hi-Speed

Peripheral
GB

E-Net

e.g.
Memory

Controller

A
rb

ite
r

On-Chip Peripheral Bus

A
rb

it
e
r

Processor Local Bus

PowerPC
405 Core

DSOCM
BRAM

ISOCM
BRAM

Bus
Bridge

UART GPIO
On-Chip

Peripheral
UARTUART GPIOGPIO

On-Chip
Peripheral
On-Chip

Peripheral
Hi-Speed

Peripheral
GB

E-Net

e.g.
Memory

Controller

Hi-Speed
Peripheral
Hi-Speed

Peripheral
GB

E-Net
GB

E-Net

e.g.
Memory

Controller

e.g.
Memory

Controller

A
rb

ite
r

On-Chip Peripheral Bus

A
rb

it
e
r

Processor Local Bus

PowerPC
405 Core

DSOCM
BRAM

ISOCM
BRAM

DSOCM
BRAM

DSOCM
BRAM

DSOCM
BRAM

ISOCM
BRAM
ISOCM
BRAM
ISOCM
BRAM

Bus
Bridge

Bus
Bridge

IBAIBAIBAIBA

MicroBlaze
32-Bit RISC Core
MicroBlaze

32-Bit RISC Core
MDM

Figure 2: Xilinx PowerPC CoreConnect bus system

3.5. Morphing bus

The morphing bus [14] is a feature that allows for different peripherals to be

attached to the main CPU base board without having custom hardware interfaces for

each peripheral device. This is valuable because small robots like the TerminatorBot

don‘t often have space for large motherboards. The morphing bus design allows for

stacked peripheral boards that can be attached only when they are needed. Due to the

applications of small search and rescue robots, many times their operators are not

trained robot technicians. This means that any software changes needed when

attaching a new peripheral module must be as transparent to the operator as possible.

The way the morphing bus works is to send the signals directly to the sensor. The

conversion logic is incorporated into the bus interface when it is statically

reconfigured for the sensor. This combination of reconfigurable hardware and easy-to

-use software make for a robot that is easy and fast to customize and deploy. The

morphing bus uses a small section of the FPGA already used by other features of the

DU100 to statically reconfigure the inputs and outputs of the main computational

system. This means that any peripherals can be attached to any physical ports on the

 20

FPGA. The physical connector takes advantage of this arbitrary pin-out, by allowing

each peripheral to take the signals it needs and allowing the rest to pass through to the

next connector. For example, if one wanted to connect a three wire video capture

peripheral and two wire motor controllers, all one would have to do is plug the video

capture board into the DU100 and the motor controllers into it. The video capture

board would take its three wires and shift the rest of the bus over by three wires as

seen in figure 3. This architecture assures that all wires are usable while allowing any

peripherals to be connected in any order.

Motor
Driver

circuitry

Camera

Wedge 2

Wedge 1

Baseboard

FPGA

PWMPower
Lines

Video
Capture

Figure 3: Morphing bus signal routing [14]

The morphing bus is made up of circuit boards each of which is dedicated to

only one or more sensors or actuators. The main emphasis is that the boards should be

of low complexity and thus small size. Each board has electrical connectors at both

ends. All the boards provide the same interface to the preceding and succeeding stages.

Thus their position in the bus can be swapped. Each board uses as many bits of the

bus as required to support the logic on that wedge and the remaining are fed to the

 21

next connector of the next stage, which in turn does the same and so on. The input

lines to a wedge are used as follows: few initial lines are dedicated to power and

ground. These are common to all circuit boards and run through all of them. Starting

from the next connection the wedge circuitry uses as many I/O pins as it requires. The

remaining lines are shifted to the output connector such that the unused lines are now

immediately after the power lines.

 22

CHAPTER 4 RecoNode architecture

We develop a novel small computational platform named RecoNode based on

reconfiguration technology for urban search and rescue application features only,

instead of a comprehensive one. We adopt reconfigurable hardware architectures for

increasing demand of complex computationally intensive applications due to the

possibility for parallel processing but also to the high flexibility of such architectures.

4.1 Architecture Overview

Currently the RecoNode hardware is composed of four main components: the

base board DU100 with Xilinx Virtex 4 chip [15], the image sensor processing board,

the motion control board and wireless communication board, Block diagram (Figure 4)

of FPGA-based RecoNode architecture shows the basic hardware architecture of

RecoNode. All of parts mentioned above are connected via an innovative Bus

System-- Morphing Bus and we will present the detail later. Besides designing the

various peripheral boards, all kinds of user IP (Intellectual Property) to realize

full-fledged robotic functions (e.g., motion control, wireless communication, and

on-board real time vision processing) were designed to take advantage of the

hardware/software re-configurable nature of the Virtex 4 FPGA. The RecoNode is

based around Virtex-4 FX20 FPGA device which combines dual 32-bit RISC

embedded microprocessor hard cores (on-chip 400 MHz IBM PowerPC 405 (PPC405)

processor cores [16]) and FPGA logic in one silicon chip, design is greatly simplified.

 23

The guiding principle of this SoC approach is to combine large amounts of

reconfigurable logic with embedded RISC processors, in order to enable highly

flexible and tailorable combinations of hardware and software processing to be

applied to a design problem. In addition the Virtex-4 on the baseboard there is CMOS

SDRAM (128 Mb x8 bits format MT48LC16M8A2 from Micron) for memory

intensive applications, like image processing. Benefiting from the powerful

computation ability of dual core mechanism, the processors could run Real Time

Operating System (RTOS) / TinyOS (specifically for Wireless Sensor Network

application) for some time sensitive applications and also run many application

programs at the same time such as various vision algorithms. The FPGA fabric is used

for custom computational logic and interfaces. Examples of the computational logic

include PWM and Quadrature Encoder Module, as well as an image capture module.

Besides these user IP cores, Xilinx provides us IP Cores which enable us to use

pre-verified, pre-optimized design blocks to implement commonly used functions

such as memory management and UART interfaces. To let the peripherals get

communication with PowerPC, we use one of the PPC internal bus structures like

PLB (Processor Local Bus), a general-purpose OPB (On-chip Peripheral Bus), a bus

bridge, and two arbiters [13]. We used the Xilinx Embedded Development Kit (EDK)

in conjunction with the Xilinx ISE tools to develop our embedded hardware and

software system co-design, thus facilitate our whole design procedure. The whole

design methodology is HW/SW co-design flow using Xilinx XPS (part of Xilinx

EDK) includes hardware configuration and embedded software developments

 24

software on the hardware side, the order is generate libraries and BSPs (broad support

package), create custom peripherals, populate and connect design, build hardware and

generate HW bit stream. On the software side, the basic system library is generated

and system will configure and generate SW Platform, then we could develop & debug

SW apps in SDK like normal software development environment.

 Figure 4: Block diagram of FPGA-based RecoNode architecture

Terminatorbot‘s unique dual locomotion and actuation mechanism is a big

advantage for Core-Bored SAR application, so RecoNode will adapt its mechanical

design and fit in DU100 into previous can shaped enclosure. So DU100 will still drive

6 DC motors without losing degree of freedom. Also we could see the figure below:

we still have a lot room for adding extra sensors and actuators peripheral.

Power

PC405

On Board

SDRAM

UART (user logic IP)

PWM and Encoder

Module (user logic IP)

Image capture Module

(user logic IP)

Image

Sensors

Host PC

Motors

OS and

Program

RF Stack (user logic IP)
RF

Transceiver

PLB/OPB BUS

BRAM

Virtex 4 FX20

 25

Figure5: A proposed version of the DU100 installed in the TerminatorBot enclosure

4.2 Hardware infrastructure

The hardware is following a modular design paradigm and basic modules are to be as

small and simple as possible in terms of physical size, because the smaller the module,

the greater the range of shapes that can be built from it. The modules should also be

able to function independently of one another. The circuit board design (Figure 6) for

the wedges required a hole in the middle of the RecoNode for wires to pass through,

so part of the ―tip‖ of the wedge needed to be cut off to allow for this space. It was

also required to leave a small gap between the circuit boards and the exterior wall of

the RecoNode for extra airflow. For hardware part, I finished all the PCB design

including schematic entry design and PCB layout by following OrCAD design flow

with detail as following.

(a) Spiral structure without wrapping around (b) Spiral structure with wrapping around

 26

(c) front view (d) basic cheese wedge

(e) double cheese wedge (f) FPGA mainboard

4.2.1. External Morphing Bus implementation

The morphing bus is designed for use in the RecoNode and its structure is shown

in Figure7. Because of the shapes of the wedges, when they are stacked up they take

the form of spiraling staircase. To provide support to this structure mechanical

reinforcements are provided. Air is blown from the base upward, which follows the

path along the spiral, cooling the ICs on every wedge. The number of devices that can

be connected in the morphing bus architecture is limited by the number of available

pins routed from the FPGA through the wedges, since each board has a dedicated

connection to an FPGA pin. This is ultimately determined by size of the connector

that can fit on each circuit board which in our case is limited by the size of the robot

this system is being used in. Also a large portion of the wedge is taken up by the pass

through routing of the unused lines, which again restricts us. However this is

acceptable, since although this places an upper limit on the number of devices, it has

Figure 6: Circuit Board design for the RecoNode with Spiraling diagram [14]

 27

the great advantage of being able to swap peripherals without interface and arbitration

hardware on the devices plugged in. Thus they can be very small, ideal for deployed

field robots.

The connectors chosen for the morphing bus have a 0.3A per pin current rating.

This is another important factor that needs to be considered when creating the

individual wedges. They need to be designed such that the current draw is not enough

that it will exceed the limit of the connectors. For typical wedges, this current limit

should not be an issue as the current draw for each wedge should not exceed about

50mA. Assuming each wedge takes about 7 or 8 signals, there would be enough room

to add 6 wedges onto the morphing bus. At 50mA each, that would just reach the

current limit of the connector, but typically it is not expected that the wedges will

require 50mA each (the camera, for instance, uses a significant amount of power, but

the maximum current under normal operation is 30mA). If more current is needed

for an individual wedge, the wedge will need to have its own power supplies; the

control circuitry for the motors are one such wedge where part of it will need to be

driven by an external power source due to the current requirements.

 a b.

 28

 c. d.

Figure7: Morphing bus spiraling structure. (a) One wedge is connected to the base board, starting off a

chain where every wedge is connected to the previous. (b) Double wedge (c) FPGA base board. (d) A

single cheese wedge.

4.2.2 Base Board

The base board DU100 is composed of four main components; the base board

DU100 with Xilinx Virtex 4 FPGA, Platform ROM, JTAG download as well as

external memory device SDRAM (as shown in Fig 8). The Xilinx Virtex-4 strongly

supports reconfigurable computing, because it contains two 32-bit RISC PowerPC405

embedded processor cores which provide high computation performance: 450

DMIPS@ 300MHz, compared with Atmege128 CPU (16 MIPS at 16MHz) in

Terminatorbot. Additionally, multi-core with soft-core is a possible option beside the

PPC405 hardcore processor, inherent parallel I/O interfacing manner and dedicated

DSP slices are extremely helpful for processing signal from various sensors in USAR.

Moreover, a large amount of FPGA logic gates and cells (CLB) are useable for

hardware acceleration to help us build our digital circuit at we need. In summary, this

System-on-Chip hardware solution will give RecoNode system powerful on-board

real-time processing ability for computing intense multitask applications and enable

robot system with hardware reconfigurability.

 29

 Figure8: Base board PCB and Schematics

4.2.3 Motion control board

We need to get the baseboard DU100 with Motor board DU120 so the PowerPC

can control the motors, thus motor control board was developed first. The

TermionatorBot has 6 Maxon DC motors [17]. So does RecoNode. The nominal

voltage of the motors is 6 volts and the output power is 1.41 Watts. The efficiency of

the motors is 71% with a no-load speed of 16,300 rpm and a no-load current of 30 mA.

The motors are controlled using an L6205 H-bridge, made from discrete IC

components, and utilizes Pulse Width Modulation (PWM) for its operation. The four

signals which control the motors are PWM1, PWM2, Direction1 and Direction2. By

changing the direction bits, the direction of the motors can be reversed. Motion

control is triggered by velocity and distance commands from the upper layer. These

commands are converted to the corresponding PWM and tick values. The gear ratio is

25:1. The RecoNode relies on precise odometry for movement from one location to

 30

another. The feedback uses built in optical encoder mechanism for sensing the number

of ticks on the motors. This is then fed back to the counters of the RecoNode‘s

decoder logic via 50 pins morphing bus connector and the two 6 pins motor

connectors.

Figure9: Four layer motion control schematics &PCB layout

Prototype of motion control board is shown as figure 10; during the design

process we have PCB Layout considerations as following: many PCB layout

techniques have been taken into consideration while designing the PCB layout.

Special Emphasis has been laid on reducing EMI; signal routing, trace width,

footprint designs and board-size constraints.

 31

Figure 10: Prototype of motion control board

Standard PCB layout procedures such as grounding unused general purpose I/O

pins and routing wires at 45 degree turns to reduce transmission reflection have also

been implemented. Board-size was one of the major constraints for us while designing

the layout. Since we have 50 pins morphing bus connecting rout will occupy most of

the square and double wedge shape reduce even more usable space, space constrain is

the biggest concern in design. Regarding trace widths and signal routing, we used an

online PCB trace width calculator [18] to find appropriate trace widths for our layout.

Standard copper thickness on PCBs is 1oz.; 12A traces in 1 oz copper should be 150 –

200 mils wide. At 3 Amps, a 100 mil wide trace will heat up 10 deg C; a 70 mil trace

will heat up 20 deg C. The 3-A motor traces should be at least 70 mil wide and short

as possible or preferably 100 mils wide. The power coming in to the L6502 chip is up

to 6 A. These traces should be 200 mils wide and also short. For all the other signals,

we used a width of 12 mils. It was impossible for us to route all the signals on two

layers. Therefore, we used four layers for routing all the signals. We used Vias to

 32

switch between the top layer and the bottom layer.

4.2.4 Power solution

The power supply section is to supply electrical power to the whole RecoNode

system including FPGAs base board, sensor/actuator board such as plug-in camera

and wireless communication peripherals; we name the power supply board as DU120.

Given the FPGAs and other components on-board, numerous voltages are required.

The main power supply must provide different voltage levels for the FPGA. There are

3 required voltage levels VCCINT (1.2V), VCCAUX (2.5V), VCCO (3.3V) for

Xilinx Virtex4 FPGAs need. Besides the power supply input is from 3.7V Lithium

battery. TI provides highly integrated TPS75003 [19] three supplies in one package to

power Virtex-4 chips and input voltage range from 1.2V-6.5V which meet our

specification. Each supply has soft-start circuits to eliminate inrush current spikes and

slow down the ramp time. TPS75003 has two high current buck controllers with about

95% efficiency and a lower power LDO for the 2.5V auxiliary supply. Two integrated

buck controllers allow efficient voltage conversion 1.2V to 6.5V for both low and

high current supplies such as core and I/O. so that operation is guaranteed even with

deeply discharged batteries. A 300mA with Vout range from 1.0v to 6.5V LDO is

integrated to provide an auxiliary rail such as VCCAUX on the FPGA. All three

supply voltages are offered in user-programmable options for maximum flexibility.

 33

Figure 11: Highly Integrated TPS75003 Triple Supply Powering Virtex-4

Power-on current is not an issue for Virtex-4 because current requirement is

equivalent to the quiescent current for unconfigured FPGA, the recommended

sequencing for Virtex-4 is VCCINT--VCCAUX—VCCO. The load current and the

voltage difference between the input supply and Morphing Bus power determine

which dc/dc converter to use. Specifically, Morphing Bus need 5V input to drive

sensors and actuators with 3.7 V lithium batteries input, so DC/DC boost up converter

is needed. There are two high current output step-up converters we could choose:

Linear LTC3426 [20] and TI TPS61032 [21]. TPS61032 is used at the beginning,

because TI TPS61032 will probably meet our 1.2A load current at 5V output voltage

need. Specifically, after I went through all typical characteristics, TPS61032 is the

better to fit our requirement. Like EFFICIENCY vs OUTPUT CURRENT/INPUT

VOLTAGE, MAXIMUM OUTPUT CURRENT vs INPUT VOLTAGE [21].

 34

Figure12: 5V DC/DC convertors TPS61032 and LTC3426

The LTC3426 step-up switching regulator generates an output voltage of up to

5.5V from an input voltage as low as 1.6V. Ideal for applications where space is

limited, it switches at 1.2MHz, allowing the use of tiny, low cost and low profile

external components. And the output 5v at efficiency is estimated 89% when input is

3.7 V, LTC 3426 takes SOT-23 Package where there is a possibility to adopt to old

PCB layout. The LTC3426 demands less careful attention to board layout. So we

finalize it as out solution.

Another concern is to provide sufficient current to 6 motors; there are 2 Motor

power configurations now, serial and parallel. We just use some pads for hard wiring

the different configurations. There is little need to change this and changing the

 35

configuration will require a change in the maincon3 and maincon4 and J4 connectors.

For serial, parallel, and separate, we only need 5 pads to meet our requirement.

Parallel & Serial Mode switch: 2 batteries in parallel, 3.7 V, 3.6-6 A and 2 batteries in

series, 7.4 V, 1.8-3 A

PCB Design Considerations follows: As for power supply design, the layout is an

important step in the design, especially at high peak currents and high switching

frequencies. If the layout is not carefully done, the regulator could show stability

problems as well as EMI problems. Therefore, wide and short traces for the main

current path and for the power ground tracks are chosen, also large area of copper

pour for ground is used in the design. Copper pour is isolated from all tracks, even if

they belong to the same net as the copper pour. We want to use the copper pour to

create an EMI shield. Normally, copper pour flows over tracks and vias belonging to

the same net as the copper pour. I placed the input capacitor, output capacitor, and the

inductor as close as possible to the IC. The trace width depends on three design

considerations. The first consideration is the capabilities of board manufacturer. The

traces need to be wider than their minimum fabrication capability. The second

consideration is the required current handling capability, and the third is the

impedance. Use a common ground node for power ground and a different one for

control ground to minimize the effects of ground noise. Connect these ground nodes

at any place close to one of the ground pins of the IC. The feedback divider should be

placed as close as possible to the control ground pin of the IC and trace area for FB

and VC pins are kept small. Lead length to battery should be kept short and use short

 36

traces to lay out the control ground as well, separated from the power ground traces.

This avoids ground shift problems. Plus, Traces carrying high current are direct. The

PCB with TPS75003 uses PowerPAD packages which features have included in the

design to create an efficient thermal path to remove the heat from the package. As a

minimum, there must be an area of solderable copper underneath the PowerPAD

package. This area is called the thermal land. In addition, this thermal land may or

may not contain thermal vias depending on PCB construction.

Figure13: power board PCB layout and prototype

4.3 Software infrastructure

RecoNode Robotics system‘s real-time embedded processor and

high-performance FPGA enable us not only to create an application with normal

 37

software implementation of various system functions (e.g. motion control) on the 32

-bit hardcore PowerPC405 microprocessor, but also allow us to write VHDL IP Cores

to realize Hardware acceleration to significantly increase the performance of the

embedded system built on programmable logic. We would like Real-Time scheduler

and driver are reusable which means we want to keep the previous function names.

4.3.1 Porting Scheduler or OS

Since the hardware design is finalized and fabricated, we will mainly focus on

developing the software on the RecoNode systems. Portability/Reusability of current

software infrastructure is another key concern for the RecoNode system; because we

would like to reuse T-bot‘s basic module function (such as HMI menu, two 3 DOF

motion control, and UART communication) across different microprocessors (from

Atmega128 to PowerPC 405) and toolsets with minimized development effort.

First all, we need have a real time operating system or scheduler to have multiple

applications running on it. In RecoNode, a real time operation system (RTOS) is

needed to support for CPU, memory, network, as well as, sensor and actuator. For this

work, we have first modified scheduler (Sched2) for PowerPc 405 in Xilinx Virtex-4,

and then aim to run wireless sensor networks concentrated RTOS Nano-RK [22] onto

PowerPC architecture. Sched2 is a library of routines that provide task scheduling and

task dispatch functions on the ATmega128, ARM7, PSX embedded platforms. The

sched2 library is modeled after the Chimera Port-Based Object interface [23] for

subsystems servers (SBS). It is a coarse object-oriented model of a task in which each

task consists of several standard "methods" that govern its real-time operation.

http://www.engr.du.edu/richard/Classes/ENMT3210/help/dstewart.icse91.pdf
http://www.engr.du.edu/richard/Classes/ENMT3210/help/dstewart.iros92.pdf

 38

Different from the task scheduling micro-kernel scheduler (Sched2), Nano-RK is

thread or task control Nano-kernel scheduler and it is a fully preemptive

reservation-based real-time operating system, it includes a light-weight embedded

resource kernel (RK) with rich functionality and timing support(shown in the Fig 14)

and supports fixed-priority preemptive multitasking for ensuring that task deadlines

are met. Another Nano-RK‘s advantage over other RTOS is network management:

Nano-RK has an architecture that supports easy installation of various wireless

networking link layer protocols including RT-Link [24] for collision free Real-Time

communication and b-mac for low-power contention based communication. Besides

Nano-RK takes the approach of socket-like abstraction, which is convenient for

software developers. Currently, Nano-RK runs on the FireFly [25] Sensor Networking

Platform as well as the MicaZ motes, both of them are ATmega128 based.

Sensing Task
Localization

Task

Audio Task

K
e
en

e
l

Real-time scheduler

U
se

r
A

p
p

s

Task

scheduling

Reservation

Network

Management

Link layer

protocols

Peripheral

Drivers

Reserves Reserves

H
a

rd
w

a
re

Power

Control

802.15.4

Radio

PowerPC405 Time Sync

http://www.embedded.com/encyclopedia/defineterm.jhtml?term=architecture&x=&y=
http://www.nano-rk.org/wiki/RT-Link
http://www.nano-rk.org/wiki/b-mac

 39

Figure14: Nano-RK architecture figure showing user applications and RT-Link.

For a scheduler, we need using timer to provide periodic tick interrupts. There

are three timer-event interrupts options that I could use: XPS TIMER IP, Fixed

Interval timer (FIT) or Programmable-interval timer (PIT) to do that [26]. PIT timer is

suitable for our case. The programmable interval timer (PIT) is a 32-bit register that is

decremented at the time-base increment frequency. The PIT register is loaded with a

delay value. When the PIT count reaches 0, a PIT interrupt occurs. Optionally, the PIT

can be programmed to automatically reload the last delay value and begin

decrementing again. In order to configure the PIT, two special registers are going to

be used. The first one is the Timer Control Register (TCR) and the second one is the

Timer Status Register (TSR). The following code shows the functions we used.

 /* Initialize exception handling */

 XExc_Init();

 /* Register PIT interrupt handler */

 XExc_RegisterHandler(XEXC_ID_PIT_INT, (XExceptionHandler)pit_timer_int_handler, (void

*)0);

 /* Initialise and enable the PIT timer */

 XTime_PITSetInterval(0xffffff00);

 XTime_PITEnableAutoReload();

 /* Enable pit interrupt */

 XTime_PITEnableInterrupt() ;

4.3.2 Drivers

Besides porting the scheduler, I also duplicated T-bot application codes including

UART and PID control from the Atmega128 to PowerPC 405, considering they are all

hardware depend code, For software compatibility, it is important to keep the API

functions names and calling conventions, but change the hardware-specific I/O access

http://www.nanork.org/wiki/RT-Link

 40

code to work with the PowerPC platform. The library generator--Libgen in Xilinx

EDK-- automatically generates Xilinx libraries such as xparameters.h, which contains

important system parameters used by the application drivers and the Board Support

Package (BSP). The input file of Libgen is MSS which defines the drivers associated

with peripherals, standard input/output devices; interrupt handler routines, and other

related software features. The Xilinx ISE employs the GNU GCC (powerpc-eabi-gcc)

compiler for the PowerPC processor.

a. UART Software Module

To implement serial communications, I designed some compatible function

codes for the UARTLite hardware IP core. I use UARTLite function library directly

under EDK XPS. One big difference between the UARTLite and the UART for the

Atmega128 is the UARTLite has a fixed baud rate that is set in the HDL code. The

baud rate is set through the UARTLite PCORE under the XPS project interface to the

FPGA.

b. Menu Software Module

Menu acts as an interface between PC and RecoNode via the UART serial port

and print results out on HyperTerminal. So we could get updates information like

motor speed or trajectory needed to predict the unknowns in each stage. Currently, we

successfully transfer initialization function menu_init(uint8_t index), toggle display of

measured position (Q_MezG), toggle display of measured velocity (Qd_MezG)

c. PD controller Software Module

By customizing FPGA logic, we can accurately control torque, velocity and

 41

position with feedback showing on HIM, and implement classic control algorithm

such as PD/PID. We can implement functions such as supervisory control and

trajectory generation for multi-axis coordination like RecoNode six degree of freedom

(DOF) and accurate velocity/acceleration profiles for smooth movements. Sample of

PD control module is shown as below:

char pd_cycle(uint8_t index)

{

 int32_t torque[6], tmp;

 read6Encs(); /* get current robot pos and vel */

 /* computer joint torques */

 torque[0] = KPosG[0]*(Q_RefG[0] - Q_MezG[0]) - KVelG[0]*(Qd_MezG[0]);

 /* re-compute coupled motor torques */

 tmp = (torque[0] + torque[1])/2;

 torque[1] = (torque[1] - torque[0])/2;

torque[0] = tmp;

 /* Write the PWM values */

 /* Channel 1 on first wedge */

 if (torque[0] < 0){

 if (torque[0] < -PWM_MAX)

 torque[0] = -PWM_MAX;

 MOTOR1_PWM_VALUE = -torque[0];

 /* set direction for reverse */

 } else {

 if (torque[0] > PWM_MAX)

 torque[0] = PWM_MAX;

 MOTOR1_PWM_VALUE = torque[0];

 /* set direction for forward */

 }

4.3.3 PWM Generator IP

We implemented Pulse Width Modulation (PWM) generation module in

hardware by VHDL. And have it working with the software – brake, forward and

 42

backward .The two key parameters of PWM are the duty cycle and period of each

pulse can be set in software. Fully digital accumulator based pulse-width modulation

(PWM) permit to autonomously control frequency parameters independently without

the need for additional processor resource.

a. PWM generator

The PWM code is imported as a pcore to be used in an EDK project for the

DU100. I created a PWM module (attached) that has two parameters:

1. pwm_period : A 16 bit number that is based off of the system clock. This value

determines how frequently the pulse happens

2. pwm_duty_cycle: A number that will subtract from pwm_period above.

Pwm_duty_cycle‘s resolution increases as the pwm_period number gets larger.

For example, if the pwm_period is the same as the system clock (a value of 1), then

the duty cycle is either 0% or 100%. There will be two separate commands to write

the PWM period and duty cycle in software. In the user_logic.vhd, we define PWM

pulse duration register 0x<BASE_ADDRESS> + offset for PWM with read and write

ability and the register is indexed as [0:31], all data is MSB: LSB. Correspondently, in

the application code PDCTRL.C we define MOTOR1_PWM_VALUE with the same

location, so we could set PWM pulse duration in hardware by software. DC motors

controlled by PWM will have a PWM period that is much longer (1 ms) than the

clock of the embedded system (10 ns) so the above two values should work out for

now. Clk is the system clock. Clk_period is the testbench clock and pwm1 is the

PWM output.

 43

Figure15: Behavior simulation

 Figure16: screen shot of a simulation and RTL view

It should be real easy to add in as many PWM channels as necessary. The

important parts of my project are:

1. Add the PWM core (drag and drop the core into project, connect the core to the

PLB bus) - Generate addresses so that the core has its own address (addresses tab in

XPS, then push the Generate Addresses button)

2. Select the Ports tab, expand the PWM core and notice the only port that is not

connected. Make this port external

3. Open the MHS file to notice the newly added port. Grab the port name from the

MHS and add it to the UCF placing a LOC constraint on F14, then rerun the design

through implementation and download the BIT file

 44

a. Interfacing the FPGA with the L6205 drive IC for Motor Control

The FPGA will process the PWM program and the output will be given to enable

pin of H-bridge chip L6205 which activate the L6205 chip (L6205 Datasheet) and

controls the speed of the motor. Fig17 shows the truth table we use to get the L6205

to perform the different movement operations such as ―Forward‖, backward‖ and

Brake etc.

Figure17: the truth table of the L6205

We notice that when the outputs are in a high impedance state that the motor will

freely run. And when the outputs are both tied to Vs or are both tied to GND, and then

the motors will brake. So we modify the motor_wedge pcore to handle this extra

functionality.

Our method to accomplish this is to set the direction of the bridge with IN1, IN2 and

to generate PWM by pulsing the ENABLE line. Because EN Signal enables the

L6205 out1 and out2 signals on motor 1, a value of 1 for the setting register turns on

the brake. Here is a portion of the PWM VHDL code added brake function:

 INA1 <= pulse_duration_msb_1 AND (NOT brake1);

 INB1 <= pulse_duration_msb_1 NOR brake1;

 45

b. Interface IP core with software on PowerPC405

We can do a memory write command to PWM‘s address will modify the full 32

bits under XMD shell tool or SDK environment.

Figure18: software accessible registers schematic

Where Reg0, Reg1 and Reg2 are 32 bits software register which are accessible by

Power PC405, Reg2 is the register will show the motors' current values of the

encoders and this is actually another register for presetting the motors' encoder values.

Reg0 register containing the "frequency" (pwm_period) of the PWM pulses. The

number represents an absolute upper value before starting the count over again. Reg1

"pwm_duty_cycle" value cannot be greater than the value in Reg0. The PWM pulse

happens at every pwm_period - pwm_duty_cycle.

c. Generating custom IP and Adding OWN IP to PLB/OPB bus

Different from using Uartlite IP core directly from existing library, we need to

customize our own IP core for PWM generator and encoder. There is a Create/Import

IP wizard helps us create our own peripheral, set bus system interface and then import

PPC405
PWM

Reg0

Encoder

Reg1

Reg2

 46

custom IP into XPS design, the next screen is the IP Interface Services screen. The IP

Interface (IPIF) provides a variety of services for easily connecting custom peripheral

to a processor bus. A detailed description of each service can be found in the IPIF

Features document2. For our application, we will use the User logic software register

services. The peripheral will appear under the Peripheral or Project Repository folder

in the IP Catalog after all the steps finished. After completing this module, we will be

able to have functional IP attached to PLB bus which enables PowerPc talk to custom

peripheral logic interface for sensors and actuators. This is the essence of RecoNode

hardware structure.

4.3.4 Quadrature decoder IP

a. Encoder logic

In this part we have designed a quadrature decoder/counter interface IC like logic

that performs the decoding, counting, and latching in digital motor control systems,

employing a Virtex 4 FPGAs device.

Figure19: Quadrature decoder /counter logic inside Virtex-4 FPGAs

When DC motor shaft is moving, build in encode will convert rotary mechanical

motion into a digital output .Then we have two channels from a rotary encoder: CHA

optical

shaft

encoder

Quadrature decoder

/counter

FPGAs

 47

and CHB the direction of rotation is indicated by a +/-90º phase (quadrature phase)

difference between the two channels. For Terminatorbot, HCTL 2000 [27]Quadrature

decoder /counter are used to interface an optical shaft encoder to a microprocessor‘s

system, it contains 16 bit counter, 16 bit Latch & Multiplexer.

Figure20: A Simplified Logic block diagram of the HCTL 2000[27]

When it comes to Quadrature Decider for RecoNode, we adopt similar features of

Htcl2000 in VHDL: Input noise filter, 4X decoder, 32bits counter, and counter

register to store the encoder count value.

b. Shift Registered Digital noise Filter

Clearly the objective of the filter is to eliminate input signal‘s short duration

noise spike and switch chatter completely. This is a achieved by detecting only the

first change of the signal and ignoring all subsequent activity on the same signal until

the other switch also changes state[28]. In other words, the filter‘s output can change

only after its input had the same value at three consecutive triggering clock edges.

The filtered signals are then passed to a four-bit delay filter (Fig.21). Therefore, the

filtered output waveform is four-bit shift registered and can change only if the input

 48

has the same value for three consecutive rising clock edges

Figure21: Digital noise filters architecture [28]

Each input channel(A and B) is filtered by a separate copy of the digital noise filter, a

VHDL code description of the functionality of the shift register and J-K flip-flop with

gated inputs in Figure 21 is as following: the filtered output is computed from the

right most 3 bits of the shift register:

 if enca_q_1(2 downto 0) = "111" then

 enca_filtered_1 <= '1';

 elsif enca_q_1(2 downto 0) = "000" then

 enca_filtered_1 <= '0';

 else

 null;

 end if;

 if encb_q_1(2 downto 0) = "111" then ---filter

 encb_filtered_1 <= '1';

 elsif encb_q_1(2 downto 0) = "000" then

 encb_filtered_1 <= '0';

 else

 null;

 end if;

 enca_q_1 := ENCA1 & enca_q_1(3 downto 1); ---right shift

 encb_q_1 := ENCB1 & encb_q_1(3 downto 1);

 enca_q_2 := ENCA2 & enca_q_2(3 downto 1);

 encb_q_2 := ENCB2 & encb_q_2(3 downto 1);

c. Decoders

Examination of the CHA, CHB waveforms as in Fig 22 shows: CHB lagging

CHA: CHB = ‗1‘ at CHA rising edge and CHB leading CHA: CHB = ‗0‘ at CHA

 49

rising edge.So CHB can be used to indicate direction, if we can hold the value on

CHB at CHA rising edge

Figure22: two 90 degree phase different encoder signals

But the problem with the simple detector is that the direction indication is

synchronized to the rising edge of CHA. We adopt decoder logic of TRC 040 for

PUMA560 as following, where we double the pulse rate from the XOR function by 2

to give 4 times the pulse rate

U/P

EN

Figure23: TRC040 decoder logic

-- Process to generate the clock enable (ce) and the up / down (ud)

-- signals for the encoder counter.

enca_d1_1 <= enca_filtered_1;

enca_d2_1 <= enca_d1_1;

encb_d1_1 <= encb_filtered_1;

encb_d2_1 <= encb_d1_1;

enca_d3_1 <= enca_d1_1 xor encb_d1_1;

encb_d2_1 <= encb_d1_1;

 50

ce_1 <= enca_d3_1 xor (enca_d1_1 xor encb_d1_1);

ud_1 <= enca_d3_1 xor (encb_d1_1 xor encb_d2_1);

Also, we can double the pulse rate with Four times decoder which will increases

the effective resolution of the encoder by a factor of four, compared to simply

counting positive edges of A (or B) directly. To accomplish this we need to build an

edge-detect circuit that detects both positive-going and negative-going edges – a

double-edged detector. Specifically, the 4X decoder logic uses the system clock to

decode the incoming filtered signals into count information. The decoder samples the

combination of outputs change of the Channel A & B samples. Based on the past

binary state of the two signals and the present state, it asserts a count enable signal

(CE) and direction signal (UD) to the position counter until the next triggering clock

edge. Channel A leading Channel B results in counting up. Channel B leading channel

a results in counting down.

d. 32 bits Counter

The counter module requires a simple 32bits up/down counter with an enable

input. Such a counter was described in the following VHDL code segment.

-- The counting of the encoder values happens here

 when others =>

 cnt_value_1 := slv_reg1;

 cnt_value_2 := slv_reg3;

 if (((encb_d1_1 xor encb_d2_1) = '1') or ((enca_d1_1 xor enca_d2_1) = '1')) then

 cnt_digit_1 := '1';

 else

 cnt_digit_1 := '0';

 end if;

 if ce_1 = '1' then

 if ud_1 = '1' then

 cnt_value_1 := cnt_value_1 + cnt_digit_1;

 else

 cnt_value_1 := cnt_value_1 - cnt_digit_1;

 51

 end if;

 end if;

Notice that the HCTL2000 includes an output multiplexer and double buffer inhibit

logic. The multiplexer is for the 12 bits output of the double buffer register to the 8-bit

data bus output, while the double buffer inhibit logic is designed for reading a

counter‘s output while it is counting (read on the fly). If the counter‗s output were

read directly and the read occurred while the counter was in the process of changing

value, the value read might be incorrect. For our case, there is no need to consider this

issue because we use 32 bits register and counter. The simulation is done as following

in ISE‘s simulator called Isim. The testbench was created using ISE‘s automatic

testbench creator.

Figure24: Simulation waveform for driving-signals of DC Motors

4.3.5. UART IP

We use RS232 serial cable and serial communication utility (HyperTerminal) to

debug our motion control design and wireless communication setting. For UART

 52

serial communication part, RS232 signal is actually connected to the FPGA. Our

approach is to add existing peripherals IP called UARTLite into building PLB/OPB

bus of RecoNode system. UARTLite is written in VHDL at building XPS library; this

will be attached to the OPB bus as follow and we can find the view of IP cores

connection with PPC405 under XPS

Figure25: UART IP core connecting to PPC

The process is to select and add the opb_uartlite from project menu. UARTLite has a

fixed Baud rate that is set in the HDL code, thus, Baud rate will be set through

UARTLite PCORE under XPS project interface.

PPC405

PLB

UARTLite

UART SW Apps

HW in VHDL

RS232

 53

Figure26: UARTLite configuration

The instant UARTLite address is defined in Xparameters to variable in code

UARTLITE_BASEADDR = XPAR_RS232_BASEADDR; and there are UARTLite

function library we use directly like XUartLite_RecvByte (UARTLITE_BASEADDR)

and XUartLite_initial function. For hardware interface, I just set up the Brainstem

interface with DU100, so UART hardware configuration for DU100 is ready. Later I

have UART Lite to DU100 XPS project embedded design on the board with

UCF setting with respect to DU100. After running a simple print command should

verify that everything is working: it prints out on screen of HyperTerminal.

#include "xparameters.h"

#include "stdio.h"

//==

 int main (void) {

 print("-- Entering main() --\r\n");

 54

 /*

 * Peripheral SelfTest will not be run for RS232_Uart

 * because it has been selected as the STDOUT device

 */

 print("-- Exiting main() --\r\n");

 return 0;

}

 55

Chapter 5 Test and Verification

5.1 Board verification

My main task is to test out FPGAs baseboard functionality by download Ring

Oscillator VHDL logic and probed waveform signal on assigned morphing bus pin on

DU100. And specifically we use JTAG on the board to download bit stream by IPACT

(static configuration) after all are verified as having correct signal, power, and

continuity connectivity and we could read device code if connection and chip are all

right.

Figure27: Internal free-running clock generator made from ring oscillator

entity ERINGOSC is

 generic(len:integer:=1600; --len even

 invdel:time:=5ps);

 port(

 RUN : in std_logic;

 CLK : out std_logic);

end ERINGOSC;

architecture STRUCTURAL of ERINGOSC is

component EINVS

 generic(len:integer;

 invdel:time);

 port(

 A : in std_logic_vector(len downto 1);

 Q : out std_logic_vector(len downto 1)

 56

);

end component;

signal Atemp,Qtemp : std_logic_vector(len downto 1);

attribute KEEP : string;

attribute KEEP of Atemp,Qtemp : signal is "true";

begin

 Atemp(1)<=not(RUN) nand Qtemp(len) after 2*invdel;

 Atemp(len downto 2)<=Qtemp(len-1 downto 1);

 DELAY : EINVS

 generic map (len, invdel)

 port map(Atemp,Qtemp);

 CLK <= Atemp(1);

end STRUCTURAL;

Also PROM test is our main task will be described as following. Specifically, the

oscillator is implemented as a ring oscillator with one inverter replaced by a

NAND-gate as shown in Fig. 27. The NAND gate is used to enable power down by

shutting down the oscillator. A frequency divider is inserted to give the ability to

select between 4 clock rates f, f=2, f=4 and f=8, where f is the output frequency from

the ring oscillator.

Figure28: Base board test setup

5.2 PROM verification

Another key feature is the RecoNode ability to boot a new system configuration

 57

file at reset. Xilinx FPGAs are volatile because they are based on SRAM technology.

That is, the device loses its configuration if the power to the device is turned off. After

RecoNode‘s FPGA logic has been configured, it is often necessary to retrieve new

user-defined configuration data that issued by the FPGA during operation. The data

needs to be retrieved from an external storage device like PROM without a control

circuit is required to interface to the storage device.

Xilinx configuration PROM is generally used to store an FPGA design, which is

downloaded to the FPGA upon system power-up. In most cases, this is the PROM‘s

only function, and its capacity is usually not fully used by the FPGA design. Besides

PROM is also the component to store bit stream for Dynamic Partial Reconfiguration.

The design here describes how bit stream- Dynamic partial reconfiguration data can

be stored and retrieved from Xilinx configuration PROMs using existing connections

and only one user I/O. This reduces the FPGA pin count, component count, board

space, and overall system cost. The user-defined data can be a bit stream revision

code and so on. A Jbit or Perl script might be created that automatically modifies

existing configuration PROM files with user-defined data with optional bit swapping.

5.2.1 PROM and FPGA Connections

First we come to the mode configuration of PROM; here is a truth table for the

mode pins:

Configuration Mode | M2 M1 M0

Master Serial | 0 0 0

 58

Slave Serial | 1 1 1 -- Not needed for us

JTAG | 1 0 1

The PROM can only program the FPGAs in either Master Serial or Slave Serial. If it

is Slave Serial, then the FPGA and the PROM have to get a clock from an external

source to drive the configuration. DU100 is truly designed for Master Serial Mode

since the FPGA‘s configuration clock (M14) is connected to the PROM‘s clock CLK

pin and M 0/1/2 are tied to ground which means Master Serial from truth table.

Figure 29 clearly shows the connections necessary to create a suitable interface

between the PROM and the FPGA.

Figure29: PROM and FPGA Connections with Control Signal

Considering I already tested out PROM successfully, I refer Xilinx

ML405 design into DU100 PROM verification as following.

1. The DU100 JTAG config is all right as ML405: specifically FPGA TDI connected

to PROM TDO.

2. CE_n (PROM Pin 13) was the one we concern the most, ML405 use Config Switch

and pull up resistor to ground it which is similar as I tied CE_n pin on the PROM to

 59

ground via a pull down resistor

3.PROM CLK should be connected to FPGAs CCLK (FPGAs PinM14).

4. Also, I checked CF_n (PROM Pin 6) has to be ground as we expected.

Figure30: PROM connections with improvement on DU100 baseboard

From the above schematic, I did find that the CE_n pin of the PROM goes

nowhere. From [29], and there are two options on how to connect the PROM CE pin:

1. Connect the CE pin to GND.

2. Connect the CE pin to a User I/O pin of the FPGA. This option requires an

FPGA

 I/O

PROM

CE_n (Active low)

VCC

 60

additional I/O pin to the solution; however, it allows the PROM to be put into standby

mode to allow power saving. The FPGA needs to get its bit stream from the

PROM. The PROM‘s clock gets enable by the CE_n pin. All users I/O on the

FPGA are tri-stated before the FPGA is configured with its bit stream so the CE_n pin

is also tri-stated which means that the FPGA will never get its bit stream. The

recommendation is to tie CE_n pin to ground through a pull down resistor and keep it

connected to the user I/O as following, this way we can configure the FPGA on power

up and have the user I/O configured to be tied high. Once the FPGA is configured, the

PROM can still be in power saving mode but we will also be able to reconfigure if we

need to.

5.2.2 Programming PROM

After hardware requirements are met, software flows for generating and

programming PROM files is described as follow: The iMPACT software tool converts

the bitstream targeted to an FPGA family into a PROM file. Figure 31 shows the

options available for downloading the PROM file into the PROM device [30]

 61

Figure31: PROM Programming Options [30]

Here we use iMPACT to create and download a PROM file. iMPACT accepts any

number of bitstreams and creates one or more PROM files containing one or more

daisy chain configurations. In iMPACT, a wizard enables us to do the following:

1.Create a PROM file by adding bit streams into PROM File Formatter.2.Generate

File in the MCS file format .With the resulting .bit, .mcs and a MSK file generated

along with the BIT file, we are ready for programming DU100 using iMPACT.

Figure32: PROM File Formatter

5.3 Battery board validation

 62

5.3.1 Battery and charger

Our need for the battery is 7.4V, 5or 6 amp discharge rate to drive DC Motor

used in DU100. These batteries aren‘t rated for the peak discharge rates we need. We

may want to put 4 UBP002 batteries in series/parallel rather than 2 UBP001 batteries

in series for the motors. This should give us greater peak current capability. So our

design seems to accommodate it, considering it is unlikely for six motors working at

the same time. When it comes to physical space size to hold batteries between base

board and power board, 5 UBP002 batteries are 31mm tall, while 1 UBP002 and 2

UBP001 batteries are 28.2 mm tall. This obviously affects my choice of

board-to-board connectors. I choose Semtac board stacker with space could hole 5

batteries at most. There are three height of a board stacker we need to consider tail,

post and board space.

On-board charging batteries on RecoNode is other concern for us; here we use

The MAX1908 evaluation kit (EV kit) which is an accurate and efficient

multichemistry battery charger. It uses analog inputs to control charge voltage and

current. The EV kit can charge 2 to 4 series lithium-ion (Li+) cells with a current up

to 3A. The EV kit provides outputs that can be used to monitor the input current, the

battery-charging current, and the presence of an AC adapter.

 63

Figure33: DU105 with MAX1908 evaluation kit

5.3.2 Load Test

Our RecoNode electronic systems use a regulated DC power supply to provide

DC voltages to its circuitry like FPGAs and other components. The circuitry draws

current from the power supply and is said to ―load‖ the supply. The product of the

output voltage and current to the circuitry is the power usage or load. I have DU105

tested in lab workbench condition (digital multimeter and oscilloscope).First we test

the functionality of the power board DU105; including TI TPS75003 and TPS61032,

TPS 75003 output 3 voltages (VCCINT (1.2V), VCCAUX (2.5V), VCCO (3.3V) as

we expected. But we face problem from TPS61032 5V after test the ringing and

inappropriate layout lead to chip damage, to remove this bug, I added filter capacitor

at the input and the Schottky Diode to SW and output with low current limit from the

bench supply, but tps61032 was still damaged, high frequency large ring is the reason

shock internal PMOS switch. Then we decide to switch to other alternate IC such as

LTC 3426 from linear technology, and it is working with current board. Then we will

implement function test with load connection to baseboard.

 64

Figure34: Battery board with FPGAs load

5.4 Motion control validation

Here we test RecoNode‘s motion control part in hardware and software together.

RecoNode has a motor control module allowing it to control multiple types of motors.

The motor control module contains trajectory generation software running on the

PowerPC and a PWM generator, Encoder counter, PID controller hardware logic

module inside the FPGA chip. Figure 34 shows how it works as a closed-loop control

system. The motor module consists of 5 major components, the trajectory generator in

the control area (the PPC), a PD or PID controller, an encoder counter, a PWM

generator and the physical motor/power circuitry. The parts of major interest to us are

the three modules implemented on the FPGA; the PD controller, the encoder counter

and the PWM generator. The PD controller takes in the data from the trajectory

generator and the encoder counter to determine where the motor should be and where

it is. It uses this information to feed the PWM generator a pulse width. To implement

encode counter, we created a VHDL module to replace the HP IC HCTL2000. The

PWM module was custom coded to create a modulation at any frequency desired; this

 65

allows the motor module to use many different types of motors. Because their is an

FPGA on RecoNode, the PD controller was implemented in it because it allows CPU

clock cycles to be saved for other tasks, and the time granularity can be more easily

adjusted on the FPGA based controller

PWM-Encoder IP which is built inside the FPGA fabric to drive the motor with

the help of power amplifier circuit L6205. The PWM and encoder module is

connected to the OPB bus via IPIF (Intellectual Property Interface) logic from Xilinx.

The architecture of the PWM module consists of two software accessible registers;

PPC405 can access reg1 and reg2 via the OPB. When the motor rotates, the encoder

sensor attached to it generates two channels of quadrate encode pulses with 90 degree

phase shift, which are fed into the Encoder Module via the two morphing bus I/O pins.

The Encoder Module detects and analyzes these two pulses, and determines the

direction of the motor (i.e., forward or backward) and then counts up or down

accordingly.

The PD/ PID control algorithm, which is implemented in software called

PDCTRL.C, is invoked periodically in Real time scheduler. The following major

steps of the algorithm will rotate the motor and ensure that the rotation is smooth

during its movement from an initial position to a final desired position. 1. The desired

position is generated at each control cycle according to a velocity profile. 2. The

actual motor position from register is obtained and the error between the desired and

the actual positions are calculated generating a control output. 3. The PWM duty

cycle value is uploaded into reg1 based on the PID control output to be used by the

 66

PWM module to drive the motor. PWM pcore is now working at 48.8 kHz and Duty

cycle is 70% on DU100 with SDK software function support.

Figure35: Motion control HW/ SW co-test

Because their is an FPGA on RecoNode, the PD controller was implemented in it

because it allows CPU clock cycles to be saved for other tasks, and the time

granularity can be more easily adjusted on the FPGA based controller. Recently, W.

Zhao et al. have implemented the closed-loop PID algorithm on a FPGA (Spartan II)

and conducted comparative study of their design options (serial, parallel, and

multichannel designs) relative to speed, area, and power consumption [31]. Our main

goal is to implement W.Zhaos channel-level parallel (CLP) PID design and this will

further reduce the motor modules over all power use. Our experiment results of step

response control for all designs are shown in Figure 35. Here no load is placed on the

motor for realism. The X-axis is in seconds and the Y-axis is in encoder counts

 67

Figure36: The step response of the motor control block(X axis in Second)

Software PD design implementation was developed and tested. A performance

evaluation is verified as functionally correct; we implemented and used to perform

step response control tests of a DC motor. Additionally, in software, a set of

preliminary PD parameters and control periods were determined by experimental

method, and then we expected the parameters were tuned to an ideal step response.

The parameter tuning experiment yielded the following results: proportional gain Kp

= 15, integral coefficient Ki= 0, derivative coefficient Kd = 70, which were used to

perform control testing. To test motor control for the PD controller design, the motor

was set to toggle from an initial position of 0, and then a desired position command of

500 was issued. From Figure 36, the curve is the real response sampled from the

encoder counter at 10Hz sampling period. The results show that all the designs

performed correctly and similarly. Response speed is fast, overshoot is small, and

static accuracy is high. The average rise time is 40.2 ms and the steady state error is 2.

 68

Chapter 6 Conclusion and Future Work

6.1. Conclusion

Here we are building FPGA-based Real-Time reconfigurable architectures

including hardware and software infrastructure for miniature mobile robots, relative

concepts like self adaptive, reconfigurable computing; dynamic partial

reconfiguration and morphing bus are also presented in this paper. RecoNode is

supposed to a small, low power, low-cost, and highly modular platform that have

ability to host large amount of sensors and actuators not at the same time to adapt

complex USAR environment. VHDL IP cores (such as PWM, Encoder and UART)

are developed and simulated and all of them are seamlessly incorporated to the whole

embedded system by connecting IP Core with OPB/PLB bus. RecoNode is a ideal

research platform for Wireless sensor and actuator/ Wireless control network. The

result of RecoNode can not only been apply to comprehensive USAR robotics, but

also could transfer to the Infrastructure of industrial process automations, building

automation, intelligent traffic control or even future smart grid.

6.2. Future work

6.2.1 Vision module

Because it is one of the largest nodes RecoNode has the most computing power,

this allows it to have a vision module. The vision module allows any RecoNode based

robot to see the world around it and navigate based on what it sees. A high level

 69

description of RecoNode‘s vision module architecture will consists of main control

logic, I2C interface logic, image grabber control logic and memory module interface

logic. The main control logic block is responsible for the high level operation of the

digital camera. The image capture module is responsible for reading captured frame

data from the image sensor. In order to detect when it needs to capture data, the image

grabber module looks for certain embedded codes. These embedded codes are placed

within the stream of digital data by the camera. Once it has found an escape sequence;

it knows to start or stop capturing data. In addition to data capture, the RecoNode

camera module has the ability to control the CCD reader chip to enable dynamic

control of settings like contrast. Image processing is probably the most memory

intensive operation robots do; because of this the RecoNode has 128MB of onboard

RAM, allowing image data to be stored in the control computer or on the attached

ram.

6.2.2 Wireless communications

RecoNode definitely should have a data communication wireless interface. , like

all the other nodes of the WSAC. Because of its large size, reconfigurability and

higher capacity batteries, RecoNode can carry multiple RF data interfaces.

RecoNode‘s RF module contains an RF Stack and a wedge with a RF transmitter chip.

The stack will be implemented in PowerPC or VHDL on the FPGA. Having multiple

wireless protocols supported will allow RecoNode to communicate not only within

the WSAC but also use other protocols to talk to other systems, networks and robots.

For wireless sensor network applications in urban search and rescue scenarios, low

 70

power consumption, low cost and being highly robust are the most important

characteristics. In our design, we considered two protocol options; ZigBee, and

Locally Switchable Protocol (LSP) created by J. Bae and R. Voyles[32]. ZigBee is a

new global standard for wireless communication, which provides a short-range cost

effective networking capability. ZigBee technology is a low data rate, low power

consumption, low cost, wireless networking protocol targeted towards automation and

remote control applications. One of the most popular ZigBee chip is CC2520 from

Texas Instruments, it is a single-chip 2.4 GHz IEEE 802.15.4 compliant RF

transceiver, it also provides extensive hardware support for packet handling, data

buffering, burst transmissions, data encryption, data authentication, clear channel

assessment, link quality indication and packet timing information. We will use a

ZigBee wedge to interface the RecoNode with other ZigBee enabled nodes.

 71

Bibliography

[1] RR Murphy, Rescue robotics for homeland security - Communications of the

ACM, 2004

[2] R Grabowski, LE Navarro-Serment Heterogeneous teams of modular robots for

mapping and exploration, Autonomous Robots 8, 293–308, 2000

[3] D Jung, A Zelinsky ―Grounded Symbolic Communication between Heterogeneous

Cooperating Robots ", Autonomous Robots, 2000 – Springer

[4] Z. Wang, Z. Song, P. Chen, A. Arora, D. Stormout, and Y. Chen, MASmote - a

mobility node for MAS-net (mobile actuator sensor networks)," in Proceedings of

2004 IEEE International Conference on Robotics and Biomimetics

[5] Gabriel T. Sibley, Mohammad H. Rahimi and Gaurav S. Sukhatme, "Robomote: A

Tiny Mobile Robot Platform for Large-Scale Sensor Networks", Proceedings of the

2002 IEEE International Conference on Robotics and Automation (ICRA2002)

[6] S Bergbreiter, KSJ Piste Cotsbots: An off-the-shelf platform for distributed

robotics, 2003 IEEE/RSJ

[7] R. Krohling, Y. Zhou, and A. Tyrrell, ―Evolving FPGA-based robot controllers

using an evolutionary algorithm,‖ First International Conference on Artificial Immune

Systems, pp. 41-46, Sept, 2002.

[8] J. Barton, G. Hynes, B. O‘Flynn, K. Aherne, A. Norman, A. Morrissey, ―25mm

sensor–actuator layer: A miniature, highly adaptable interface layer‖, Sensors and

Actuators A 132 (2006), pp.362–369, November 2006

[9] R.M. Voyles, "TerminatorBot: A Robot with Dual-Use Arms for Manipulation and

Locomotion," in Proceedings of the IEEE International Conference on Robotics and

Automation, 2000.

[10] R.M. Voyles and A.C. Larson, ―TerminatorBot: A Novel Robot with Dual-Use

Mechanism for Locomotion and Manipulation", in IEEE/ASME Transactions on

Mechatronics, 2005.

http://portal.acm.org/citation.cfm?id=971617.971648
http://www.springerlink.com/index/K555256426121451.pdf
http://www.springerlink.com/index/K555256426121451.pdf

 72

[11] K Compton, S Hauck "An introduction to reconfigurable computing ",IEEE, Apr,

2000

[12] B Blodget, P James-Roxby, E Kelle" A self-reconfiguring platform Logic and

Applications", 2003 - Springer

[13] Product Overview PowerPC 405 CPU Core, IBM September 2006

[14]C. D‘Souza, B. H. Kim, and R. Voyles, "Morphing Bus: A rapid deployment

computing architecture for high performance, resource-constrained robots," in 2007

IEEE International Conference on Robotics and Automation (ICRA 2007) Roma, Italy,

April 2007, pp. 311-316.

[15] Virtex-4 FPGA User Guide UG070 (v2.6), Xilinx December 1, 2008

[16]Xilinx PowerPC Processor Reference Guide UG011 (v1.3) January 11, 2010

[17] http://www.maxonmotor.com/

[18]http://www.circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator/

[19] TPS75003 datasheet Triple-Supply Power Management IC for Powering FPGAs

and DSPs REVISED AUGUST 2008

[20] LTC3426 datasheet 1.2MHz Step-Up DC/DC Converter in SOT-23

[21] TPS61030/1/2 - 96% Efficient Synchronous Boost Converter With 4A Switch

(Rev. D)

[22] Anand Eswaran, Anthony Rowe, and Raj Rajkumar, "Nano-RK: An

Energy-Aware Resource-Centric Operating System for Sensor Networks," IEEE

Real-Time Systems Symposium, December 2005.

[23] David B. Stewart, Richard A.Volpe, and Pradeep K. Khosla，―Design of

Dynamically Reconfigurable Real-Time Software Using Port-Based Objects‖. IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12,

DECEMBER 1997

[24] Anthony Rowe, Rahul Mangharam and Raj Rajkumar, "RT-Link: A

Time-Synchronized Link Protocol for Energy Constrained Multi-hop Wireless

Networks." IEEE International Conference on Sensors, Mesh and Ad Hoc

Communications and Networks Reston, VA, September 2006

[25] Rahul Mangharam, Anthony Rowe and Raj Rajkumar FireFly: A Cross-Layer

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.102&rep=rep1&type=pdf
http://www.springerlink.com/index/ACK3YYV1XL59PT09.pdf
http://www.maxonmotor.com/
http://www.circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator/
http://www.ti.com/lit/gpn/tps61032
http://www.ti.com/lit/gpn/tps61032
http://www.seas.upenn.edu/~rahulm/docs/mangharam_rt_link06.pdf
http://www.seas.upenn.edu/~rahulm/docs/mangharam_rt_link06.pdf
http://www.seas.upenn.edu/~rahulm/docs/mangharam_rt_link06.pdf
http://www.ece.cmu.edu/firefly

 73

Platform for Wireless Sensor Networks, Real-Time Systems Journal, Special Issue on

Real-Time Wireless Sensor Networks, 2007

[26] Xilinx XAPP778 (v1.0) Using and Creating Interrupt-Based Systems January 11,

2005

[27] Hewlett Packard, Quadrature Decoder/Counter Interface ICs HCTL-2000, 2016

data sheet.

[28]Abdelkrim K. Oudjidaa, Youssef I. EI-Haffaf,A reconfigurable counter controller

for digital motion control applications, Microelectronics Journal Volume 28, Issues

6-7, August-September 1997, Pages 683-690

[29] Xilinx Application Note XAPP482 [1]

[30]Xilinx Application NoteXAPP501 (v1.5) October 2, 2007

[31] W. Zhao, B. H. Kim, A. C. Larson, and R. M. Voyles, ―Fpga implementation of

closed-loop control system for small-scale robot,‖

[32] J. Bae and R. Voyles, ―Wireless video sensor networks over Bluetooth for a team

of urban search and rescue robots,‖

http://tinyurl.com/yde9zt
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V44-3VXRGC6-7&_user=1497530&_coverDate=09%2F30%2F1997&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1318785234&_rerunOrigin=google&_acct=C000053135&_version=1&_urlVersion=0&_userid=1497530&md5=f43457c844581b5856e312f398cd30fd#aff1
http://www.sciencedirect.com/science/journal/00262692
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235748%231997%23999719993%2371792%23FLP%23&_cdi=5748&_pubType=J&view=c&_auth=y&_acct=C000053135&_version=1&_urlVersion=0&_userid=1497530&md5=fefedd977cc5c4d81b45073159f71524
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235748%231997%23999719993%2371792%23FLP%23&_cdi=5748&_pubType=J&view=c&_auth=y&_acct=C000053135&_version=1&_urlVersion=0&_userid=1497530&md5=fefedd977cc5c4d81b45073159f71524

 74

APPENDIX A: DU100 and DU120 Shematics

Figure A-1: Motor board DU120

 75

Figure A-2: Baseboard DU100

 76

APPENDIX B: DU105 Shematics

Figure B-1: Version 0.9 with TPS61032

3
.
8
m
m

x

1
.
3
m
m

2

C
P
-
0
1
4
D
P
J
C
T
-
N
D

13

C
K
N
5
0
0
6
-
N
D

2

b
a
t
t
e
r
i
e
s

i
n

s
e
r
i
e
s
,

7
.
4

V
,

1
.
8
-
3

A

R
5

1
8
0
k

C
3 2

2
u
F

C
1 1

0
p
F

C
1
5 1
0
u
F

+C
1
4 1
0
0
u
F

+C
1
3 1
0
0
u
F

+C
1
1 1
0
0
u
F

R
9 0

.0
2
0

R
1
0 0
.0

2
0

R
8 6

1
9
k

R
7 3

6
5
k

2

b
a
t
t
e
r
i
e
s

i
n

p
a
r
a
l
l
e
l
,

3
.
7

V
,

3
.
6
-
6

A

R
1 6

1
9
k

R
2 1

5
4
k

D
1

D
IO

D
E

 S
C

H
O

T
T
K

Y
 3

.0
-A

,
2
0
-V

3
.7

V

1
.
2
V

@

3
A

3
.
3
V

@

3
A

2
.
5
V

@

3
0
0
m
A

5
V

@

1
.
2

A

D
2

D
IO

D
E

 S
C

H
O

T
T
K

Y
 1

.0
-A

,
2
0
-V

L
1

1
5
u
H

L
2

4
.7

u
H

4

b
a
t
t
e
r
i
e
s

i
n

s
e
r
i
e
s
/
p
a
r
a
l
l
e
l
,

7
.
4

V
,

3
.
6
-
6

A

2
.5

V

2
.5

V

3
.3

V

Q
2

1

2

3

J
9

W
e
d
g
e
 P

o
w

e
r

C

1 2

1
.2

V

3
.3

V

5
V

M
A

IN
C

O
N

2

U
M

1
0
0

1234567891
0

C
D
R
H
1
2
5
N
P
-
1
5
0
M
C

3
.
7
V

L
o
g
i
c

B
a
t
t
e
r
y

C
h
a
r
g
e

P
o
i
n
t

J
7

L
O

G
IC

 B
A

T
T
E

R
Y

1 2

T
it
le

S
iz

e
D

o
c
u
m

e
n
t

N
u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

D
U

1
0
5

<
2
.0

>

P
o
w

e
rB

o
a
rd

 f
o
r

V
ir
te

x
-4

 b
a
s
e
d
 D

U
1
0
0

C
u
s
to

m

1
1

S
u
n
d
a
y

,
F

e
b
ru

a
ry

 2
8
,

2
0
1
0

K
a
n
g
 L

i,
 U

 o
f

D
e
n
v

e
r

J
2

L
o

g
ic

 C
h

a
rg

e

1 2

3
.
7
V

B
o
a
r
d

L
o
g
i
c

P
o
w
e
r

3
.7

V

R
4

1
K D

3

L
E

D

U
2 T

P
S

6
1
0
3
2
P

W
P

S
W

1

S
Y

N
C

8

E
N

9

F
B

1
2

V
O

U
T
1
5

1
5

V
B

A
T

6

L
B

I
7

G
N

D
1
1

P
G

N
D

3
3

P
G

N
D

4
4

P
G

N
D

5
5

V
O

U
T
1
3

1
3

S
W

2

L
B

O
1
0

V
O

U
T
1
4

1
4

N
C

1
6

2
.5

V

1
.2

V

3
.3

V
M

A
IN

C
O

N
1

U
M

1
0
0

1234567891
0

5
V

1
.2

V

5
V

3
.7

V

+C
1
8 1
0
0
u
F

U
1

T
P

S
7
5
0
0
3
_
2
0
P

O
U

T
3

1

F
B

3
2

E
N

3
3

E
N

2
4

S
S

2
5

D
G

N
D

6

S
W

2
7

IN
2

8

IS
2

9

F
B

2
1
0

F
B

1
1
1

IS
1

1
2

IN
1

1
3

S
W

1
1
4

D
G

N
D

1
5

S
S

1
1
6

E
N

1
1
7

A
G

N
D

1
8

S
S

3
1
9

IN
3

2
0

S
L
F
6
0
4
5
T

Q
1

1

2

3

C
7 0

.1
u
F

C
5 0

.1
u
F

C
4 1

u
F

C
6 1

5
0
0
p
F

W
2

P
a
d1

C
1
0 1
5
0
0
p
F

C
9 0

.0
1
u
F

C
2 2

2
u
F

C
1
2 1
.0

u
F

C
8 1

.0
u
F

C
1
6 1
0
u
F

P
1
.
0
0
M
H
T
R
-
N
D

L
3

6
.8

u
H

C
1
7 2
.2

u
F

A
3
0
7
8
6
-
N
D

R
3

5
6
0
k

R
1
1

1
M

W
4

P
a
d1

W
1

P
a
d

1

S
W

S
P

D
T

B
a
t
t
e
r
y

p
a
c
k
s

c
a
n

b
e
:

B
a
t
t
e
r
y

c
u
r
r
e
n
t

l
i
m
i
t
:

1
.
8

-

3

A

J
6

W
e
d
g
e
 P

o
w

e
r

B

1 2

A
3
0
7
8
6
-
N
D

1

b
a
t
t
e
r
y
,

3
.
7

V
,

1
.
8
-
3

A

W
e
d
g
e

C
o
n
n
e
c
t
o
r
s

R
a
t
e
d

f
o
r

5
A

J
5

W
e
d
g
e
 P

o
w

e
r

A

1 2

A
3
0
7
9
4
-
N
D

J
3

M
O

T
O

R
 B

A
T
T
E
R

Y
 A

1 2

J
1

M
O

T
O

R
 B

A
T
T
E
R

Y
 B

1 2

M
o
t
o
r

B
a
t
t
e
r
y

C
h
a
r
g
e

P
o
i
n
t

J
4

M
o

to
r

C
h

a
rg

e

1 2

S
e
r
i
a
l
:

W
1
-
W
2
,

J
4

n
o
t

u
s
e
d

P
a
r
a
l
l
e
l
:

W
1
-
W
3
,

W
2
-
W
4

W
3

P
a
d

1

C
P
-
0
1
4
C
H
P
J
C
T
-
N
D

3
.
5
m
m

x

1
.
1
m
m

J
8

M
O

T
O

R
 B

A
T
T
E
R

Y
 C

1 2

 77

FigureB-2: Version 1.0 with LTC3426

3
.
8
m
m

x

1
.
3
m
m

U
2

L
T
C

3
4

2
6

V
O

U
T

5

F
B

3

V
IN

6

S
W

1

G
N

D
2

S
H

D
N

4

2

C
P
-
0
1
4
D
P
J
C
T
-
N
D

L
3

2
.2

u
H

13

C
K
N
5
0
0
6
-
N
D

3
.7

V

2

b
a
t
t
e
r
i
e
s

i
n

s
e
r
i
e
s
,

7
.
4

V
,

1
.
8
-
3

A

C
3 2

2
u
F

C
1 1

0
p
F

C
1

5 1
0
u
F

+C
1
4 1
0
0
u
F

+C
1
3 1
0
0
u
F

+C
1
1 1
0
0
u
F

R
9 0

.0
2

0

R
1

0 0
.0

2
0

R
8 6

1
9
k

R
7 3

6
5
k

2

b
a
t
t
e
r
i
e
s

i
n

p
a
r
a
l
l
e
l
,

3
.
7

V
,

3
.
6
-
6

A

R
1 6

1
9
k

R
2 1

5
4
k

D
1

D
IO

D
E

 S
C

H
O

T
T
K

Y
 3

.0
-A

,
2
0

-V

3
.7

V

1
.
2
V

@

3
A

3
.
3
V

@

3
A

2
.
5
V

@

3
0
0
m
A

5
V

@

1
.
2

A

D
2

D
IO

D
E

 S
C

H
O

T
T
K

Y
 1

.0
-A

,
2

0
-V

L
1

1
5
u
H

L
2

4
.7

u
H

4

b
a
t
t
e
r
i
e
s

i
n

s
e
r
i
e
s
/
p
a
r
a
l
l
e
l
,

7
.
4

V
,

3
.
6
-
6

A

2
.5

V

2
.5

V

3
.3

V

Q
2

1

2

3

J
9

W
e

d
g

e
 P

o
w

e
r

C

1 2

1
.2

V

3
.3

V

5
V

M
A

IN
C

O
N

2

U
M

1
0
0

1234567891
0

C
D
R
H
1
2
5
N
P
-
1
5
0
M
C

3
.
7
V

L
o
g
i
c

B
a
t
t
e
r
y

C
h
a
r
g
e

P
o
i
n
t

J
7

L
O

G
IC

 B
A

T
T

E
R

Y

1 2

T
it
le

S
iz

e
D

o
c
u
m

e
n
t

N
u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

D
U

1
0

5
<

1
.0

>

P
o

w
e
rB

o
a
rd

 f
o
r

V
ir
te

x
-4

 b
a
s
e
d
 D

U
1

0
0

C
u
s
to

m

1
1

T
h
u

rs
d
a

y
,

M
a

y
 2

0
,

2
0
1
0

K
a
n

g
 L

i,
 U

 o
f

D
e

n
v

e
r

J
2

L
o

g
ic

 C
h

a
rg

e

1 2

3
.
7
V

B
o
a
r
d

L
o
g
i
c

P
o
w
e
r

3
.7

V

R
4

1
K D

3

L
E

D

2
.5

V

1
.2

V

3
.3

V
M

A
IN

C
O

N
1

U
M

1
0
0

1234567891
0

5
V

1
.2

V

R
3

9
5
.3

k

U
1

T
P

S
7
5
0

0
3

_
2

0
P

O
U

T
3

1

F
B

3
2

E
N

3
3

E
N

2
4

S
S

2
5

D
G

N
D

6

S
W

2
7

IN
2

8

IS
2

9

F
B

2
1
0

F
B

1
1
1

IS
1

1
2

IN
1

1
3

S
W

1
1
4

D
G

N
D

1
5

S
S

1
1
6

E
N

1
1
7

A
G

N
D

1
8

S
S

3
1
9

IN
3

2
0

S
L
F
6
0
4
5
T

Q
1

1

2

3

C
7 0

.1
u

F
C

5 0
.1

u
F

C
4 1

u
F

C
6 1

5
0
0
p
F

W
2

P
a
d1

C
1

0 1
5
0
0
p
F

C
9 0

.0
1
u

F

C
2 2

2
u
F

C
1
2 1
.0

u
F

C
8 1

.0
u
F

R
5

3
0
.9

k

A
3
0
7
8
6
-
N
D

W
4

P
a
d1

C
1

6 1
0
u
F

W
1

P
a
d

1

S
W

S
P

D
T

C
1
7 2
2
u
F

B
a
t
t
e
r
y

p
a
c
k
s

c
a
n

b
e
:

B
a
t
t
e
r
y

c
u
r
r
e
n
t

l
i
m
i
t
:

1
.
8

-

3

A

J
6

W
e

d
g

e
 P

o
w

e
r

B

1 2

A
3
0
7
8
6
-
N
D

1

b
a
t
t
e
r
y
,

3
.
7

V
,

1
.
8
-
3

A

W
e
d
g
e

C
o
n
n
e
c
t
o
r
s

R
a
t
e
d

f
o
r

5
A

J
5

W
e
d

g
e

 P
o

w
e
r

A

1 2

A
3
0
7
9
4
-
N
D

J
3

M
O

T
O

R
 B

A
T
T
E
R

Y
 A

1 2

J
1

M
O

T
O

R
 B

A
T
T
E
R

Y
 B

1 2

M
o
t
o
r

B
a
t
t
e
r
y

C
h
a
r
g
e

P
o
i
n
t

J
4

M
o

to
r

C
h

a
rg

e

1 2

S
e
r
i
a
l
:

W
1
-
W
2
,

J
4

n
o
t

u
s
e
d

P
a
r
a
l
l
e
l
:

W
1
-
W
3
,

W
2
-
W
4

W
3

P
a
d

1

C
P
-
0
1
4
C
H
P
J
C
T
-
N
D

3
.
5
m
m

x

1
.
1
m
m

J
8

M
O

T
O

R
 B

A
T
T
E
R

Y
 C

1 2

5
V

D
4

D
IO

D
E

M
B

R
A

2
1
0

L
T
3

 2
.0

-A
,

1
0
-V

	RecoNode: Towards an Autonomous Multi-Robot Team Agent for USAR
	Recommended Citation

	RecoNode: Towards Autonomous Multi-Robot Team Agent for USAR

