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Abstract 

Urban search and rescue (USAR) robots can benefit from small size as it facilitates 

movement in cramped quarters. Yet, small size limits actuator power, sensor 

payloads, computational capacity and battery life. We are alleviating these issues by 

developing the hardware and software infrastructure for high performance, 

heterogeneous, dynamically-reconfigurable miniature USAR robots, as well as a host 

of other relevant applications. In this thesis, a generic modular embedded system 

architecture based on the RecoNode multiprocessor is proposed, which consists of a 

set of hardware and software modules that can be configured to construct various 

types of robot systems for dynamic and unforeseen changes in the USAR 

environment. The benefit of this Reconfigurable Node is that, at run-time, the system 

can react to unexpected changes in configuration, such as nodes exhausting their 

batteries or the failure of sensors. These modules include a high performance 

microprocessor supporting complete on board processing for autonomous control, a 

reconfigurable hardware component, and diverse sensor and actuator interfaces. The 

design of all the modules in the electrical subsystem allows for the replacement of the 

motion control and serial communication capabilities within a dedicated FPGA logic 

module, which helps gain system performance by releasing the CPU from these tasks. 

The selection of module components and real-time scheduler and operating system 

(OS) are described. The portable power supply solution is also designed and tested.  
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CHAPTER 1 Introduction 

In the past, catastrophic disasters such as earthquakes, mine disasters such as 

Chinese miners, the explosion in a mine in West Virginia and the terrorist attacks on 

the World Trade Centers have frequently appeared on the news. These events clearly 

demonstrate the need for special-purpose resources to respond to incidents of partial 

or complete structural collapse caused by these types of major disasters. Urban search 

and rescue (USAR) is defined to be the emergency response function which deals 

with the collapse of man-made structures, has a different emphasis than traditional 

wilderness rescue or underwater recovery efforts, and can be even more demanding 

on robot hardware and software design than military applications. [1] 

1.1 Background and Motivation: urban search and rescue robot 

The USAR robot‘s main role is a source of collecting and feeding back 

information to help responders identify victim in an ambient environment that 

generally implies collapsed structures. USAR robots need to be mobile to achieve a 

higher degree of coverage and connectivity. In the presence of obstacles at the USAR 

site, mobile robots can plan ahead to avoid debris and move appropriately to 

obstructed regions to increase rescue target exposure. During the above process, there 

are mainly two challenges that the USAR environment presents for a USAR robot: 

limited time and limited space. From the time perspective, the search and rescue task 

is most effective in the 48-72 hours ―Golden Window‖ immediately after the disaster. 
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If survivors are not found within this window, profound difficulties for survival 

worsen as time passes. From the space perspective, survivors are usually entombed in 

voids with minimal access and entry ways are often blocked or tortuous. Therefore, 

intended solutions for USAR require a small-scale, rugged, and lightweight robot to 

access small spaces /voids and cross over tough terrain to inspect victims. Currently, 

no robot system design serves the above search and rescue needs, and these 

challenges motivate us to create and design a next generation USAR robot system. 

1.2 Problem statement  

1.2.1 Resource constraints  

Miniature robots for USAR are decided to meet the need to access small spaces 

in a collapsed structure. Small size inherently benefits USAR robots as it facilitates 

movement in cramped quarters and permits easy navigation through small, tight 

spaces and voids deep in a rubble pile that humans and dogs cannot safely enter (as 

well as larger robots). Yet meanwhile, small size consequently brings a new problem: 

limiting capability such as sensing, actuation (torque), computation capacity 

(precision) and power (battery life), etc. Therefore, creating a suitable actuation 

mechanism, making maximum use of sensors, finding balance between computation 

and power are all our concern. 

a. Actuation  

Most popular mobile robotics platform consist of wheels or tracks. Wheeled 

robots are simple to construct but they require continuously traversable terrain. Big 

wheeled robots can surmount large obstacles while smaller robots will get stuck if 
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they encounter obstacles larger than the robot‘s wheels themselves. Tracked robots 

are much more common in the arena of search and rescue because their design is only 

slightly more complex than wheeled robots, yet remain simple to control. Most of 

tracked vehicles are typically heavy and big with similar problem as wheeled robots. 

Thus, we need to come up with a small, light and highly mobile robot may be able to 

more easily and rapidly explore voids deep in a rubble pile unreachable by humans, 

dogs, or currently available commercial robots. 

b. Sensors 

Sensors are needed for collecting vision features, heat, and sound information for 

two main tasks: survivor identification, and navigation of the robot. Most robots‘ 

relationship to their environments is limited by sensors; normally, we use cameras for 

detecting survivors Sensory System for USAR environment may also include 

CO2/CO/O2 /pulse detectors, GPS locators, infrared thermal camera FIR, audio 

transmitters, and laser beam scanner .etc. Apparently, we cannot expect the USAR 

robot carry all the sensors due to size or power limit. However, we would like robots 

to prepare for unexpected situation with as much sensors as possible. For example, if 

survivor detecting is being done with the camera, but it suddenly becomes very foggy 

so the camera cannot be used.  Then we hope the hardware previously set aside for 

the camera can be reconfigured for thermal sensor to compensate for the loss of sight. 

So we need come up a sensors configuration scheme to adapt complex, changing and 

unknown environment. 
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c. Power  

For a multi-robot team working in large scale USAR area, using tether to provide 

unlimited power is not applicable anymore, because cables are easy to tangle with 

each other or obstacle commonly in USAR condition. Then battery package is 

naturally considered as power source for mobile robotics systems. But for miniature 

robot, the addition battery to the robot is greatly limited by robot confined spaces. 

Therefore, the power consumption issue has become a fundamental concern. 

Especially we need to find a balance between limited robots power supply and dense 

computing demand applications like processing and communication. Our approach is 

to rededicate limited resources to current task and provide low-power consumption 

and power aware design.  

1.2.2 Time constraints  

To meet the golden window time frame requirement, responders need to quickly 

deploy a team of robots to maintain adequate sensing coverage and network 

connectivity. In this way, USAR might help responders reduce search time to identify 

victims; besides, autonomous and flexible robotics system architecture proposed 

might help responder reduce operation time of robots. 

a. Reconfiguration and modular design   

A USAR robot designed for a single purpose can perform that specific task well 

however poorly on some other tasks, especially in a different environment. 

Specifically, a fixed-architecture robot is acceptable if the environment is structured, 

but for tasks in a complex urban search and rescue (USAR) environment, which 
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normally contains unstructured components, tough terrain and uncertain/ unknown 

factors; a robot with highly adaptive capabilities is more suitable. Because it‘s 

impossible for a robot to carry all kinds of sensors and operate them at the same time 

which will kill battery fast, we want to assign and configure potential usable sensors 

before the robots deployment and then decide specific ones we need to use after 

deployment. Modular reconfigurable robots show the promise of great versatility in 

this scenario: it allows off-line swapping the sensor and actuator peripheral hardware 

and then reprogramming the new added hardware on- the-fly to serve a specific task. 

In contrast most robots today are built monolithically; the characteristic of modular 

design allows robots to be constructed in a fast and easy manner at large quantity and 

could be used and deployed for various complex applications. Moreover, a modular 

design allows a wide range of heterogeneous robots to be assembled from a basic set 

of modules like CPU and peripheral board etc. Besides maintains, modular unit 

change within system structure, and specifically focuses on the reconfiguration of 

internally developed. We could remove devices if their functions are not in use or if 

modules break they can easily be replaced by spare modules. Finally, the 

reconfiguration/repair time and cost of the entire system can be reduced because we 

do not have to repair or replace the whole robot system and individual modules can be 

mass-produced. Our goal is to introduce of modular robotics concepts into our design 

and thereby take the advantages of it. 
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b. Autonomous multi-robot team 

Urban search and rescue robots working together based on the cooperation in a 

team could dramatically reduce rescue time. There are several reasons: first of all, if 

the given targets will be assigned separately, we could send out multi-robot team and 

every agent communicate with the others and perform distributed activities. Secondly, 

for victim identification and environmental monitoring in disaster areas, manual 

deployment of multi-Robot team might not be possible. Mobile multi-robot team can 

move to areas of events after deployment to provide the required coverage. Finally, 

we also want to increase multi-robot team agent‘s autonomy with lower demands on 

humans after deployment so they can do collaborative computation, sensing, action 

and make decisions to perform higher level task on target. For each agent, we would 

like it to have high and fast computation capability to support for autonomous 

mobility for complete real-time on-board processing for autonomous control 

including motion control application such as hardware timers, PWM outputs for 

controlling motors and other actuators, vision application such image data acquisition 

and processing and  wireless communication. In summary, our vision for ultimate 

robotic design and functionality is to create more versatile robots by combining basic 

modules with general reconfiguration capabilities to achieve greater system efficiency 

and flexibility for complex tasks. 

1.3 Heterogeneous multi-robot team 

In collapsed areas where intervention by humans or dogs may not be possible, a 

large team of miniature robots that are densely deployed has distinct advantages over 
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single robots with respect to sensing various information either inside or close to the 

observation objective. Team members may share sensor information and help each 

other to scale obstacles and detect victims. Multi-robots can move to areas of events 

after deployment to provide the required coverage and interact with their environment 

by sensing or controlling objectives and collaborate to fulfill their tasks since a single 

robot is incapable of doing so on its own. As for sensing, a team of robots can 

perceive its environment from multiple disparate viewpoints. Besides sensing, 

Multi-robot team has actuation advantage as well: For example, when multi-robot 

team manipulate or carry large objects, a given load can be distributed over several 

robots so that each robot can be built much smaller, lighter, and less expensive[2], 

which meet our criteria of miniature scale USAR robots. A multi-robot team system is 

usually classified as heterogeneous if one or more agents are different from the others 

based upon physical attributes such as sensors and actuators [3]. And heterogeneous 

multi-robot team could refer to multiple robots with different HW/SW configuration, 

sensor/actuator components and other external entities communicating and 

cooperating such as motion coordination to achieve a common goal. Heterogeneous 

multi-robots could provide powerful situation awareness capability due to different 

locomotion capabilities and sensor information. However, it would be expensive and 

time consuming to develop specific embedded system for different type of robots. So 

we need come up with a new node platform, where the node itself could be 

reconfigurable to a different HW/SW system for various USAR applications with 

multiple sensors and actuators. This feature for USAR robots is also called adaptive 



 8 

capability. So each agent is a multi-purpose robot and should be reconfigurable 

adaptive to deal with complex USAR environment. As a result, it will avoid 

unnecessary redistribution of multi-robot to save much energy and rescue time. More 

over, the robotics platform will take completely modular architecture that allows 

individual components to easily be added, replaced, or modified and many different 

miniature mobile robot systems could be constructed. 

1.4. Innovations and contributions 

A summary of the primary innovations and contributions includes: 

1. Test out FPGA baseboard and PROM. 

2. Finish the schematics and PCB design, assembly, and test process of motor board 

and power board.  

3. Physical external Morphing Bus realization. 

4. Build embedded processor system platform for DU100 under Xilinx EDK XPS.  

5. New IP Development: Come up with PWM and encoder, UART VHDL IP core for 

motion control and communication purpose.  

6. Port software infrastructure Scheduler, UART and PID software.   

1.5. Thesis Outline 

Chapter 1 offers a brief outline of the project, its motivations and its background. 

Chapter 2 goes through existing networked mobile robotics hardware architecture.   

Chapter 3 presents some concepts and technologies in the areas of high performance 

reconfigurable computing systems where we could bring to my design. 

Chapter 4 describes the RecoNode architecture including HW and SW infrastructure  
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Chapter 5 evaluates the success of the design and its fulfillment of the design criteria, 

details the performance obtained from the system  

Chapter 6 summarizes the project and discusses future work on the RecoNode 
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CHAPTER 2 Literature Review 

We are interest in reconfigurable hardware infrastructure architectures for an 

agent of a group of distributed robots systems working cooperatively on a common 

task for urban search and rescue. In this application, if robots operate in a 

well-coordinated manner, the overall mission can be accomplished much more 

effectively in shorter time. Let us go through current existing hardware platforms to 

see whether they support our applications.  

2.1 Mobile WSN node: Cotsbots/ MAS-net/ Robomote 

Several research groups have developed different kinds of mobile node platforms 

for wireless sensor networks. MAS-net [4], Robomote [5] and CotsBots [6] are 

examples of such systems, based on MICA boards that, together with sensing and 

motor control stacks, constitute a wireless sensing node. Cotsbots is a combination of 

Mica Mote, Motor Board on a RC Car Platform; Cotsbots use commercial 

off-the-shelf (COTS) components to build distributed robotics, so it is inexpensive 

and modular. Open-source hardware and software platform for distributed robotics. 

USU MAS-net is very similar to CotsBots, especially the mobility platform is also 

based on MICA serial mote. Employing Atmel ATmega128L 7.3827 MHz 8-bit CPU 

and Chipcon CC1000 radio the difference is the mobility mechanism. Unlike 

CotsBots, which implements an Ackerman steered wheel robot, MASmote is a 

two-wheel differentially steered mobile robot. It is structurally much simpler, yet still 

https://www.millennium.berkeley.edu/cgi-bin/mailman/admin/cotsbots-help
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manipulation flexible. MASmote has digital IR reflector as its wheel encoders which 

can be used for odometry measurement and localization. The USC Robomote is a 

single board with dimensions 3.81cm x 2.23cm based on an Atmel AT9OS8535L 8 

bit micro controller. This board connects to a Renemote, the "Mote" component, 

making the complete Robomote. 

2.2 Kephera and Tyndall Mote 

Compared with most of these WSN nodes focus on low-power, simple 

microprocessor and sensors based platform hardware infrastructure all duplicated 

across the network, we are more interested in distributed robotics system utilizes 

high-end FPGA devices to achieve more powerful onboard computing capability as 

well as hard/soft reconfigurability and implements the DSRP mechanism for 

providing more flexible and reliable applications such as video and communication. 

Some research groups use FPGAs as coprocessor in MCU- FPGA embedded systems 

module architecture such as Kephera [7] and Tyndall Mote [8]. The FPGA module act 

as a coprocessor dedicated for running real-time or parallel tasks such as the image 

processing (image data acquisition and computation) and Bluetooth communication 

task due to advantages in the parallelism performance and the flexibilities. The 

Kephera‘s base module possesses the processing platform from a Motorola 68331 

microcontroller, running with 25MHz clock frequency, 512 KB RAM and 512 KB 

Flash. The FPGA is reconfigured to change its tasks during run-time and also supports 

partial reconfiguration. Tyndall Institute developed a WSN platform for environment 

monitoring application, it‘s stackable and modular. The platform runs an adapted 
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version of TinyOS. On the other hand, the platform includes an FPGA module, for 

fast DSP processing. They have some sensor layers for different applications and the 

power supply layer can include batteries or energy harvesting elements. The system 

incorporates a 2.4 GHz transceiver with a special protocol to minimize power 

consumption. 

2.3 TerminatorBot 

Besides the computing platform, we also need to consider the actuation 

mechanism which is adaptable to explore rough, uneven and unknown terrains 

especially common in collapsed structures in USAR environment. Apparently, we 

need to keep current TerminatorBot‘s [9] actuation mechanism and fit improved 

reconfigurable computing platform into the enclosure. TerminatorBot is a small size, 

resource-constrained, search-and-rescue robot and it has a small form factor for 

core-bored search and rescue operation and its dual use mechanism for both 

locomotion and manipulation with its two 3 DOF articulated limbs for surveillance, 

search and rescue purpose [10]. Limbs are not used only for locomotion but also for 

dexterous manipulation (e.g. Terminator lifts a small wheeled robot like the Scout into 

a place that the Scout cannot otherwise access). Thus, T-bot is a good research 

platform for robotics mobile manipulation. The applications for mobile manipulators 

have been growing because of the increased ability of robots to interact dynamically 

with their environment in a precise manner. It combines a wide variety of research 

areas, ranging from force control to mechanism design and sensor design.  
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Figure1: TerminatorBot 
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CHAPTER 3 Reconfigurable computing system 

Robotics platform usually take general-purpose microprocessor such as MCUs 

and DSPs as CPU. These devices are designed with fixed hardware, leaving software 

as the only method for designers to update designs; also limiting the development of 

application-specific functions. In previous design, FPGAs logic is mostly used as 

hardware acceleration, which means we need separate FPGAs and microprocessor 

boards. In comparison, current fully reconfiguration computing platform with FPGAs 

logic driven by an embedded hard/soft core processor could be completed in one chip 

instead of separate boards. Specifically, FPGAs based SoC solution can integrate 

processor, bus standards, custom modular logic, peripheral interfaces, and DSP 

functions in one consolidated device. SoC give us freedom to create custom functions 

completely adapted to specific USAR application requirements by enabling both 

hardware and software customization. The following concepts show how we can 

design the next generation of USAR robot with the required functions fully integrated 

on a single SoC chip. 

3.1 Reconfigurable computing 

Reconfigurable computing is a computer architecture combining some of the 

flexibility of software with the flexible and high performance of hardware fabric like 

FPGAs. Reconfigurable computing is intended to fill the gap between hardware and 

software, achieving potentially much higher performance than software alone, while 

http://en.wikipedia.org/wiki/Computer_architecture
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maintaining a higher level of flexibility than hardware alone. [11] Mostly, 

reconfigurable computing systems use FPGAs or other programmable hardware, and 

what we specially use here is not only FPGAs logic but also refer to a 

System-on-a-chip (SoC) architecture containing hard core microprocessor. Here is a 

scenario to demonstrate how it could benefit USAR robot application: During the 

USAR Robot real-time operation, it may also become necessary to perform an update 

to take advantage of new hardware and algorithms. How to switch hardware and 

software resources is a challenge for these applications. For example, when a USAR 

robot is deployed, some application may need a module to perform in a mode that 

demands high power consumption for only 25% of the time. After the high power task 

finished, we do not need to keep it on in the rest of time. In this situation, if the 

system is developed using FPGAs with the capability to perform partial 

reconfiguration and morphing bus, the system can take advantage of operating in a 

low power consumption mode at other 75% time, reducing the whole power supply 

needs of the system. 

3.2. Self-adaptive  

The RecoNode system should have the self-adaptive ability to adapt to system/ 

component failure or complex USAR environment changes; self-adaptive allows 

RecoNode to change its configuration and functionality in order to improve the 

operation of the system in a changing environment. The adaptation of a system can 

occur from hardware to software. Here, we study self-adaptive at the hardware level 

and especially with reconfigurable architectures. Reconfigurable architectures such as 
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FPGAs are a key technology for implementing self-adaptive and flexible systems, 

since the possibility for dynamic and partial hardware reconfiguration described later 

offers a higher degree of freedom in the resource allocation. Reconfiguration here not 

only means reprogramming but also means the change of all the hardware and 

software system. FPGAs provide the capability to implement functions in hardware, 

accelerating performance through accelerate algorithm execution by mapping 

compute-intensive calculations to the reconfigurable substrate and simplifying the 

software porting effort. This freedom will enhance overall system performance and 

flexibility. 

3.3. Dynamic Partial Reconfiguration (DPR) 

The RecoNode robot supports dynamic reconfiguration of its hardware during 

runtime. At startup of the RecoNode, the FPGA is programmed by the processor with 

the contents of the on-board memory. Specifically, processor loads partial bit streams 

from a bit stream repository via wireless communication, and stores them on PROM 

memory; this allows loading different hardware configurations for the FPGA at 

power-on of the robot. The FPGA is capable of dynamical reconfiguration, so that 

parts of the hardware design on the FPGA can be exchanged on demand by new 

modules, kept in PROM or received wirelessly by Bluetooth or WiFi via a network 

link. RecoNode could realize various hardware configurations or algorithm depending 

on the task. 

Dynamic partial reconfiguration [12] is considered as a way to make RecoNode 

accomplish reconfiguration as fast as possible. The whole process is controlled either 
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by the user or by the system itself. DPR sets up a communication between the source 

of configuration and the configurable unit and permits change to parts of the device 

while the rest of an FPGA is still running; In other words, the dynamic 

reconfiguration can swap the logic contents of a FPGA during system operation 

without affecting the remaining parts operation. It will always be much faster to 

change a small piece of the logic than the entire FPGA contents. Not only does DPR 

give RecoNode system flexibility, but the use of DPR is one efficient way to reduce 

static power consumption by reduction of chip area for the adaptive system.  

Partial reconfiguration is supported by Xilinx Virtex II, Virtex II Pro, and Virtex 

4 FPGA. A special software flow in ISE with emphasis on modular design is used 

dring configuration; typically the design modules are built along well defined 

boundaries inside the FPGA that require the design to be specially mapped to the 

internal hardware. However, to our point of view, the dynamic reconfiguration is an 

important specificity of FPGAs and is still largely underexploited. This would 

probably change in the future. The most feasible way to implement DPR is using 

HWICAP interface and open the routed design with FPGA editor, modify any LUT 

function or memory content and generate a partial bit stream with bitgen. 

3.4. PowerPC 405 Core and Bus Architecture  

RecoNode use Virtex-4 FPGAs as computing platform. as the IBM PowerPC is 

widely used in embedded system design, The PowerPC405 is also available in 

Virtex-4 family of devices. Here we present a brief overview of the PowerPCs general 

capabilities and internal organization. The PowerPC 405 CPU Core is a 32-bit 

http://en.wikipedia.org/wiki/Xilinx
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_platform_fpgas/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_pro_fpgas/
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
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Reduced Instruction Set Computer (RISC) PowerPC Embedded Processor, which 

possesses all of the qualities necessary to make system-on-a-chip designs a reality. 

This core consumes minimal power, and provides a high performance 100% PowerPC 

architecture compatible platform capable of taming the most demanding embedded 

applications. The PowerPC 405 is a low-power consumption processor with operating 

frequency at approximately 450 MHz in the Vitex-4 FX, which will resolve our low 

power but high computation requirement. The PowerPC uses two different buses to 

connect memory and peripherals, namely the Processor Local Bus (Processor Local 

Bus (PLB) and the On-Chip Memory (OCM) bus. The PowerPC also supports the 

IBM CoreConnect bus system [13]. The core connect system introduces two new 

main buses, the On-chip Peripheral Bus (OPB) and the Device Control Register (DCR) 

bus. The OPB is used to connect relatively slow peripherals and typically runs on a 

frequency lower than the PLB. The DCR bus is mainly used to transfer device 

configuration data and settings, the DCR is not used to transfer data or instructions. 

Figure 2 depicts the IBM CoreConnect bus system as used in the Xilinx 

implementation of the PowerPC core. The OCM buses are not part of the IBM 

CoreConnect system, but are depicted to give a complete overview. The OCM bus 

and the PLB will be discussed in more detail. 
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Figure 2: Xilinx PowerPC CoreConnect bus system  

3.5. Morphing bus 

The morphing bus [14] is a feature that allows for different peripherals to be 

attached to the main CPU base board without having custom hardware interfaces for 

each peripheral device. This is valuable because small robots like the TerminatorBot 

don‘t often have space for large motherboards. The morphing bus design allows for 

stacked peripheral boards that can be attached only when they are needed. Due to the 

applications of small search and rescue robots, many times their operators are not 

trained robot technicians. This means that any software changes needed when 

attaching a new peripheral module must be as transparent to the operator as possible. 

The way the morphing bus works is to send the signals directly to the sensor.  The 

conversion logic is incorporated into the bus interface when it is statically 

reconfigured for the sensor. This combination of reconfigurable hardware and easy-to 

-use software make for a robot that is easy and fast to customize and deploy. The 

morphing bus uses a small section of the FPGA already used by other features of the 

DU100 to statically reconfigure the inputs and outputs of the main computational 

system. This means that any peripherals can be attached to any physical ports on the 
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FPGA. The physical connector takes advantage of this arbitrary pin-out, by allowing 

each peripheral to take the signals it needs and allowing the rest to pass through to the 

next connector. For example, if one wanted to connect a three wire video capture 

peripheral and two wire motor controllers, all one would have to do is plug the video 

capture board into the DU100 and the motor controllers into it. The video capture 

board would take its three wires and shift the rest of the bus over by three wires as 

seen in figure 3. This architecture assures that all wires are usable while allowing any 

peripherals to be connected in any order. 

Motor
Driver

circuitry

Camera

Wedge 2

Wedge 1

Baseboard

FPGA

PWMPower
Lines

Video
Capture

 

Figure 3: Morphing bus signal routing [14] 

The morphing bus is made up of circuit boards each of which is dedicated to 

only one or more sensors or actuators. The main emphasis is that the boards should be 

of low complexity and thus small size. Each board has electrical connectors at both 

ends. All the boards provide the same interface to the preceding and succeeding stages. 

Thus their position in the bus can be swapped. Each board uses as many bits of the 

bus as required to support the logic on that wedge and the remaining are fed to the 
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next connector of the next stage, which in turn does the same and so on. The input 

lines to a wedge are used as follows: few initial lines are dedicated to power and 

ground. These are common to all circuit boards and run through all of them. Starting 

from the next connection the wedge circuitry uses as many I/O pins as it requires. The 

remaining lines are shifted to the output connector such that the unused lines are now 

immediately after the power lines.  
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CHAPTER 4 RecoNode architecture 

We develop a novel small computational platform named RecoNode based on 

reconfiguration technology for urban search and rescue application features only, 

instead of a comprehensive one. We adopt reconfigurable hardware architectures for 

increasing demand of complex computationally intensive applications due to the 

possibility for parallel processing but also to the high flexibility of such architectures. 

4.1 Architecture Overview  

Currently the RecoNode hardware is composed of four main components: the 

base board DU100 with Xilinx Virtex 4 chip [15], the image sensor processing board, 

the motion control board and wireless communication board, Block diagram (Figure 4) 

of FPGA-based RecoNode architecture shows the basic hardware architecture of 

RecoNode. All of parts mentioned above are connected via an innovative Bus 

System-- Morphing Bus and we will present the detail later. Besides designing the 

various peripheral boards, all kinds of user IP (Intellectual Property) to realize 

full-fledged robotic functions (e.g., motion control, wireless communication, and 

on-board real time vision processing) were designed to take advantage of the 

hardware/software re-configurable nature of the Virtex 4 FPGA. The RecoNode is 

based around Virtex-4 FX20 FPGA device which combines dual 32-bit RISC 

embedded microprocessor hard cores (on-chip 400 MHz IBM PowerPC 405 (PPC405) 

processor cores [16]) and FPGA logic in one silicon chip, design is greatly simplified.                                                                            
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The guiding principle of this SoC approach is to combine large amounts of 

reconfigurable logic with embedded RISC processors, in order to enable highly 

flexible and tailorable combinations of hardware and software processing to be 

applied to a design problem. In addition the Virtex-4 on the baseboard there is CMOS 

SDRAM (128 Mb x8 bits format MT48LC16M8A2 from Micron) for memory 

intensive applications, like image processing. Benefiting from the powerful 

computation ability of dual core mechanism, the processors could run Real Time 

Operating System (RTOS) / TinyOS (specifically for Wireless Sensor Network 

application) for some time sensitive applications and also run many application 

programs at the same time such as various vision algorithms. The FPGA fabric is used 

for custom computational logic and interfaces. Examples of the computational logic 

include PWM and Quadrature Encoder Module, as well as an image capture module. 

Besides these user IP cores, Xilinx provides us IP Cores which enable us to use 

pre-verified, pre-optimized design blocks to implement commonly used functions 

such as memory management and UART interfaces. To let the peripherals get 

communication with PowerPC, we use one of the PPC internal bus structures like 

PLB (Processor Local Bus), a general-purpose OPB (On-chip Peripheral Bus), a bus 

bridge, and two arbiters [13]. We used the Xilinx Embedded Development Kit (EDK) 

in conjunction with the Xilinx ISE tools to develop our embedded hardware and 

software system co-design, thus facilitate our whole design procedure. The whole 

design methodology is HW/SW co-design flow using Xilinx XPS (part of Xilinx 

EDK) includes hardware configuration and embedded software developments 
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software on the hardware side, the order is generate libraries and BSPs (broad support 

package), create custom peripherals, populate and connect design, build hardware and 

generate HW bit stream. On the software side, the basic system library is generated 

and system will configure and generate SW Platform, then we could develop & debug 

SW apps in SDK like normal software development environment. 

 

 Figure 4: Block diagram of FPGA-based RecoNode architecture 

Terminatorbot‘s unique dual locomotion and actuation mechanism is a big 

advantage for Core-Bored SAR application, so RecoNode will adapt its mechanical 

design and fit in DU100 into previous can shaped enclosure. So DU100 will still drive 

6 DC motors without losing degree of freedom. Also we could see the figure below: 

we still have a lot room for adding extra sensors and actuators peripheral.     
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Figure5: A proposed version of the DU100 installed in the TerminatorBot enclosure 

4.2 Hardware infrastructure  

The hardware is following a modular design paradigm and basic modules are to be as 

small and simple as possible in terms of physical size, because the smaller the module, 

the greater the range of shapes that can be built from it. The modules should also be 

able to function independently of one another. The circuit board design (Figure 6) for 

the wedges required a hole in the middle of the RecoNode for wires to pass through, 

so part of the ―tip‖ of the wedge needed to be cut off to allow for this space.  It was 

also required to leave a small gap between the circuit boards and the exterior wall of 

the RecoNode for extra airflow. For hardware part, I finished all the PCB design 

including schematic entry design and PCB layout by following OrCAD design flow 

with detail as following.   

 

 

(a) Spiral structure without wrapping around   (b) Spiral structure with wrapping around 
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(c) front view                                           (d) basic cheese wedge 

 

(e) double cheese wedge                       (f) FPGA mainboard 

4.2.1. External Morphing Bus implementation  

The morphing bus is designed for use in the RecoNode and its structure is shown 

in Figure7. Because of the shapes of the wedges, when they are stacked up they take 

the form of spiraling staircase. To provide support to this structure mechanical 

reinforcements are provided. Air is blown from the base upward, which follows the 

path along the spiral, cooling the ICs on every wedge. The number of devices that can 

be connected in the morphing bus architecture is limited by the number of available 

pins routed from the FPGA through the wedges, since each board has a dedicated 

connection to an FPGA pin. This is ultimately determined by size of the connector 

that can fit on each circuit board which in our case is limited by the size of the robot 

this system is being used in. Also a large portion of the wedge is taken up by the pass 

through routing of the unused lines, which again restricts us. However this is 

acceptable, since although this places an upper limit on the number of devices, it has 

Figure 6: Circuit Board design for the RecoNode with Spiraling diagram [14] 
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the great advantage of being able to swap peripherals without interface and arbitration 

hardware on the devices plugged in. Thus they can be very small, ideal for deployed 

field robots. 

The connectors chosen for the morphing bus have a 0.3A per pin current rating.  

This is another important factor that needs to be considered when creating the 

individual wedges. They need to be designed such that the current draw is not enough 

that it will exceed the limit of the connectors. For typical wedges, this current limit 

should not be an issue as the current draw for each wedge should not exceed about 

50mA. Assuming each wedge takes about 7 or 8 signals, there would be enough room 

to add 6 wedges onto the morphing bus. At 50mA each, that would just reach the 

current limit of the connector, but typically it is not expected that the wedges will 

require 50mA each (the camera, for instance, uses a significant amount of power, but 

the maximum current under normal operation is 30mA).  If more current is needed 

for an individual wedge, the wedge will need to have its own power supplies; the 

control circuitry for the motors are one such wedge where part of it will need to be 

driven by an external power source due to the current requirements. 

 

 

              a                                   b. 
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                 c.                                 d. 

Figure7: Morphing bus spiraling structure. (a) One wedge is connected to the base board, starting off a 

chain where every wedge is connected to the previous. (b) Double wedge (c) FPGA base board. (d) A 

single cheese wedge. 

4.2.2 Base Board  

The base board DU100 is composed of four main components; the base board 

DU100 with Xilinx Virtex 4 FPGA, Platform ROM, JTAG download as well as 

external memory device SDRAM (as shown in Fig 8). The Xilinx Virtex-4 strongly 

supports reconfigurable computing, because it contains two 32-bit RISC PowerPC405 

embedded processor cores which provide high computation performance: 450 

DMIPS@ 300MHz, compared with Atmege128 CPU (16 MIPS at 16MHz) in 

Terminatorbot. Additionally, multi-core with soft-core is a possible option beside the 

PPC405 hardcore processor, inherent parallel I/O interfacing manner and dedicated 

DSP slices are extremely helpful for processing signal from various sensors in USAR. 

Moreover, a large amount of FPGA logic gates and cells (CLB) are useable for 

hardware acceleration to help us build our digital circuit at we need. In summary, this 

System-on-Chip hardware solution will give RecoNode system powerful on-board 

real-time processing ability for computing intense multitask applications and enable 

robot system with hardware reconfigurability. 
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                Figure8: Base board PCB and Schematics 

4.2.3 Motion control board 

We need to get the baseboard DU100 with Motor board DU120 so the PowerPC 

can control the motors, thus motor control board was developed first. The 

TermionatorBot has 6 Maxon DC motors [17]. So does RecoNode. The nominal 

voltage of the motors is 6 volts and the output power is 1.41 Watts. The efficiency of 

the motors is 71% with a no-load speed of 16,300 rpm and a no-load current of 30 mA. 

The motors are controlled using an L6205 H-bridge, made from discrete IC 

components, and utilizes Pulse Width Modulation (PWM) for its operation. The four 

signals which control the motors are PWM1, PWM2, Direction1 and Direction2. By 

changing the direction bits, the direction of the motors can be reversed. Motion 

control is triggered by velocity and distance commands from the upper layer. These 

commands are converted to the corresponding PWM and tick values. The gear ratio is 

25:1. The RecoNode relies on precise odometry for movement from one location to 
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another. The feedback uses built in optical encoder mechanism for sensing the number 

of ticks on the motors. This is then fed back to the counters of the RecoNode‘s 

decoder logic via 50 pins morphing bus connector and the two 6 pins motor 

connectors. 

 

 

Figure9: Four layer motion control schematics &PCB layout 

Prototype of motion control board is shown as figure 10; during the design 

process we have PCB Layout considerations as following: many PCB layout 

techniques have been taken into consideration while designing the PCB layout. 

Special Emphasis has been laid on reducing EMI; signal routing, trace width, 

footprint designs and board-size constraints.  
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Figure 10: Prototype of motion control board 

Standard PCB layout procedures such as grounding unused general purpose I/O 

pins and routing wires at 45 degree turns to reduce transmission reflection have also 

been implemented. Board-size was one of the major constraints for us while designing 

the layout. Since we have 50 pins morphing bus connecting rout will occupy most of 

the square and double wedge shape reduce even more usable space, space constrain is 

the biggest concern in design. Regarding trace widths and signal routing, we used an 

online PCB trace width calculator [18] to find appropriate trace widths for our layout. 

Standard copper thickness on PCBs is 1oz.; 12A traces in 1 oz copper should be 150 – 

200 mils wide. At 3 Amps, a 100 mil wide trace will heat up 10 deg C; a 70 mil trace 

will heat up 20 deg C. The 3-A motor traces should be at least 70 mil wide and short 

as possible or preferably 100 mils wide. The power coming in to the L6502 chip is up 

to 6 A. These traces should be 200 mils wide and also short. For all the other signals, 

we used a width of 12 mils. It was impossible for us to route all the signals on two 

layers. Therefore, we used four layers for routing all the signals. We used Vias to 
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switch between the top layer and the bottom layer. 

4.2.4 Power solution  

The power supply section is to supply electrical power to the whole RecoNode 

system including FPGAs base board, sensor/actuator board such as plug-in camera 

and wireless communication peripherals; we name the power supply board as DU120. 

Given the FPGAs and other components on-board, numerous voltages are required.  

The main power supply must provide different voltage levels for the FPGA. There are 

3 required voltage levels VCCINT (1.2V), VCCAUX (2.5V), VCCO (3.3V) for 

Xilinx Virtex4 FPGAs need. Besides the power supply input is from 3.7V Lithium 

battery. TI provides highly integrated TPS75003 [19] three supplies in one package to 

power Virtex-4 chips and input voltage range from 1.2V-6.5V which meet our 

specification. Each supply has soft-start circuits to eliminate inrush current spikes and 

slow down the ramp time. TPS75003 has two high current buck controllers with about 

95% efficiency and a lower power LDO for the 2.5V auxiliary supply. Two integrated 

buck controllers allow efficient voltage conversion 1.2V to 6.5V for both low and 

high current supplies such as core and I/O. so that operation is guaranteed even with 

deeply discharged batteries. A 300mA with Vout range from 1.0v to 6.5V LDO is 

integrated to provide an auxiliary rail such as VCCAUX on the FPGA. All three 

supply voltages are offered in user-programmable options for maximum flexibility.  
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Figure 11: Highly Integrated TPS75003 Triple Supply Powering Virtex-4 

Power-on current is not an issue for Virtex-4 because current requirement is 

equivalent to the quiescent current for unconfigured FPGA, the recommended 

sequencing for Virtex-4 is VCCINT--VCCAUX—VCCO. The load current and the 

voltage difference between the input supply and Morphing Bus power determine 

which dc/dc converter to use. Specifically, Morphing Bus need 5V input to drive 

sensors and actuators with 3.7 V lithium batteries input, so DC/DC boost up converter 

is needed. There are two high current output step-up converters we could choose: 

Linear LTC3426 [20] and TI TPS61032 [21]. TPS61032 is used at the beginning, 

because TI TPS61032 will probably meet our 1.2A load current at 5V output voltage 

need. Specifically, after I went through all typical characteristics, TPS61032 is the 

better to fit our requirement. Like EFFICIENCY vs OUTPUT CURRENT/INPUT 

VOLTAGE, MAXIMUM OUTPUT CURRENT vs INPUT VOLTAGE [21].  
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Figure12: 5V DC/DC convertors TPS61032 and LTC3426 

The LTC3426 step-up switching regulator generates an output voltage of up to 

5.5V from an input voltage as low as 1.6V. Ideal for applications where space is 

limited, it switches at 1.2MHz, allowing the use of tiny, low cost and low profile 

external components. And the output 5v at efficiency is estimated 89% when input is 

3.7 V, LTC 3426 takes SOT-23 Package where there is a possibility to adopt to old 

PCB layout. The LTC3426 demands less careful attention to board layout. So we 

finalize it as out solution. 

Another concern is to provide sufficient current to 6 motors; there are 2 Motor 

power configurations now, serial and parallel. We just use some pads for hard wiring 

the different configurations. There is little need to change this and changing the 
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configuration will require a change in the maincon3 and maincon4 and J4 connectors. 

For serial, parallel, and separate, we only need 5 pads to meet our requirement. 

Parallel & Serial Mode switch: 2 batteries in parallel, 3.7 V, 3.6-6 A and 2 batteries in 

series, 7.4 V, 1.8-3 A 

PCB Design Considerations follows: As for power supply design, the layout is an 

important step in the design, especially at high peak currents and high switching 

frequencies. If the layout is not carefully done, the regulator could show stability 

problems as well as EMI problems. Therefore, wide and short traces for the main 

current path and for the power ground tracks are chosen, also large area of copper 

pour for ground is used in the design. Copper pour is isolated from all tracks, even if 

they belong to the same net as the copper pour. We want to use the copper pour to 

create an EMI shield. Normally, copper pour flows over tracks and vias belonging to 

the same net as the copper pour. I placed the input capacitor, output capacitor, and the 

inductor as close as possible to the IC. The trace width depends on three design 

considerations. The first consideration is the capabilities of board manufacturer. The 

traces need to be wider than their minimum fabrication capability. The second 

consideration is the required current handling capability, and the third is the 

impedance. Use a common ground node for power ground and a different one for 

control ground to minimize the effects of ground noise. Connect these ground nodes 

at any place close to one of the ground pins of the IC. The feedback divider should be 

placed as close as possible to the control ground pin of the IC and trace area for FB 

and VC pins are kept small. Lead length to battery should be kept short and use short 
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traces to lay out the control ground as well, separated from the power ground traces. 

This avoids ground shift problems. Plus, Traces carrying high current are direct. The 

PCB with TPS75003 uses PowerPAD packages which features have included in the 

design to create an efficient thermal path to remove the heat from the package. As a 

minimum, there must be an area of solderable copper underneath the PowerPAD 

package. This area is called the thermal land. In addition, this thermal land may or 

may not contain thermal vias depending on PCB construction. 

 

Figure13: power board PCB layout and prototype  

4.3 Software infrastructure 

RecoNode Robotics system‘s real-time embedded processor and 

high-performance FPGA enable us not only to create an application with normal 
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software implementation of various system functions (e.g. motion control) on the 32 

-bit hardcore PowerPC405 microprocessor, but also allow us to write VHDL IP Cores 

to realize Hardware acceleration to significantly increase the performance of the 

embedded system built on programmable logic. We would like Real-Time scheduler 

and driver are reusable which means we want to keep the previous function names.   

4.3.1 Porting Scheduler or OS   

Since the hardware design is finalized and fabricated, we will mainly focus on 

developing the software on the RecoNode systems. Portability/Reusability of current 

software infrastructure is another key concern for the RecoNode system; because we 

would like to reuse T-bot‘s basic module function (such as HMI menu, two 3 DOF 

motion control, and UART communication) across different microprocessors (from 

Atmega128 to PowerPC 405) and toolsets with minimized development effort.   

First all, we need have a real time operating system or scheduler to have multiple 

applications running on it. In RecoNode, a real time operation system (RTOS) is 

needed to support for CPU, memory, network, as well as, sensor and actuator. For this 

work, we have first modified scheduler (Sched2) for PowerPc 405 in Xilinx Virtex-4, 

and then aim to run wireless sensor networks concentrated RTOS Nano-RK [22] onto 

PowerPC architecture. Sched2 is a library of routines that provide task scheduling and 

task dispatch functions on the ATmega128, ARM7, PSX embedded platforms. The 

sched2 library is modeled after the Chimera Port-Based Object interface [23] for 

subsystems servers (SBS). It is a coarse object-oriented model of a task in which each 

task consists of several standard "methods" that govern its real-time operation. 

http://www.engr.du.edu/richard/Classes/ENMT3210/help/dstewart.icse91.pdf
http://www.engr.du.edu/richard/Classes/ENMT3210/help/dstewart.iros92.pdf
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Different from the task scheduling micro-kernel scheduler (Sched2), Nano-RK is 

thread or task control Nano-kernel scheduler and it is a fully preemptive 

reservation-based real-time operating system, it includes a light-weight embedded 

resource kernel (RK) with rich functionality and timing support(shown in the Fig 14) 

and  supports fixed-priority preemptive multitasking for ensuring that task deadlines 

are met. Another Nano-RK‘s advantage over other RTOS is network management: 

Nano-RK has an architecture that supports easy installation of various wireless 

networking link layer protocols including RT-Link [24] for collision free Real-Time 

communication and b-mac for low-power contention based communication. Besides 

Nano-RK takes the approach of socket-like abstraction, which is convenient for 

software developers. Currently, Nano-RK runs on the FireFly [25] Sensor Networking 

Platform as well as the MicaZ motes, both of them are ATmega128 based.  
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Figure14: Nano-RK architecture figure showing user applications and RT-Link. 

For a scheduler, we need using timer to provide periodic tick interrupts.  There 

are three timer-event interrupts options that I could use: XPS TIMER IP, Fixed 

Interval timer (FIT) or Programmable-interval timer (PIT) to do that [26]. PIT timer is 

suitable for our case. The programmable interval timer (PIT) is a 32-bit register that is 

decremented at the time-base increment frequency. The PIT register is loaded with a 

delay value. When the PIT count reaches 0, a PIT interrupt occurs. Optionally, the PIT 

can be programmed to automatically reload the last delay value and begin 

decrementing again. In order to configure the PIT, two special registers are going to 

be used. The first one is the Timer Control Register (TCR) and the second one is the 

Timer Status Register (TSR). The following code shows the functions we used. 

  /* Initialize exception handling */ 

  XExc_Init(); 

  

  /* Register PIT interrupt handler */ 

  XExc_RegisterHandler(XEXC_ID_PIT_INT, (XExceptionHandler)pit_timer_int_handler, (void 

*)0); 

  

  /* Initialise and enable the PIT timer */ 

  XTime_PITSetInterval( 0xffffff00 ); 

  XTime_PITEnableAutoReload(); 

  

  /* Enable pit interrupt */ 

  XTime_PITEnableInterrupt() ;  

4.3.2 Drivers 

Besides porting the scheduler, I also duplicated T-bot application codes including 

UART and PID control from the Atmega128 to PowerPC 405, considering they are all 

hardware depend code, For software compatibility, it is important to keep the API 

functions names and calling conventions, but change the hardware-specific I/O access 

http://www.nanork.org/wiki/RT-Link
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code to work with the PowerPC platform. The library generator--Libgen in Xilinx 

EDK-- automatically generates Xilinx libraries such as xparameters.h, which contains 

important system parameters used by the application drivers and the Board Support 

Package (BSP). The input file of Libgen is MSS which defines the drivers associated 

with peripherals, standard input/output devices; interrupt handler routines, and other 

related software features. The Xilinx ISE employs the GNU GCC (powerpc-eabi-gcc) 

compiler for the PowerPC processor.    

a. UART Software Module 

To implement serial communications, I designed some compatible function 

codes for the UARTLite hardware IP core. I use UARTLite function library directly 

under EDK XPS. One big difference between the UARTLite and the UART for the 

Atmega128 is the UARTLite has a fixed baud rate that is set in the HDL code. The 

baud rate is set through the UARTLite PCORE under the XPS project interface to the 

FPGA. 

b. Menu Software Module 

Menu acts as an interface between PC and RecoNode via the UART serial port 

and print results out on HyperTerminal. So we could get updates information like 

motor speed or trajectory needed to predict the unknowns in each stage. Currently, we 

successfully transfer initialization function menu_init(uint8_t index), toggle display of 

measured position (Q_MezG), toggle display of measured velocity (Qd_MezG) 

c. PD controller Software Module 

By customizing FPGA logic, we can accurately control torque, velocity and 
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position with feedback showing on HIM, and implement classic control algorithm 

such as PD/PID. We can implement functions such as supervisory control and 

trajectory generation for multi-axis coordination like RecoNode six degree of freedom 

(DOF) and accurate velocity/acceleration profiles for smooth movements. Sample of 

PD control module is shown as below:                                             

char pd_cycle(uint8_t index) 

{ 

  int32_t torque[6], tmp; 

 

  read6Encs(); /* get current robot pos and vel */ 

 

  /* computer joint torques */ 

  torque[0] = KPosG[0]*(Q_RefG[0] - Q_MezG[0]) - KVelG[0]*(Qd_MezG[0]); 

  

  /* re-compute coupled motor torques */ 

  tmp = (torque[0] + torque[1])/2; 

  torque[1] = (torque[1] - torque[0])/2; 

torque[0] = tmp; 

 

  /* Write the PWM values */ 

  /* Channel 1 on first wedge */ 

  if (torque[0] < 0){ 

    if (torque[0] < -PWM_MAX) 

      torque[0] = -PWM_MAX; 

    MOTOR1_PWM_VALUE = -torque[0]; 

    /* set direction for reverse */   

  } else { 

    if (torque[0] > PWM_MAX) 

      torque[0] = PWM_MAX; 

    MOTOR1_PWM_VALUE = torque[0]; 

    /* set direction for forward */   

  } 

4.3.3 PWM Generator IP  

We implemented Pulse Width Modulation (PWM) generation module in 

hardware by VHDL. And have it working with the software – brake, forward and 
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backward .The two key parameters of PWM are the duty cycle and period of each 

pulse can be set in software. Fully digital accumulator based pulse-width modulation 

(PWM) permit to autonomously control frequency parameters independently without 

the need for additional processor resource.  

a. PWM generator  

The PWM code is imported as a pcore to be used in an EDK project for the 

DU100. I created a PWM module (attached) that has two parameters: 

1.  pwm_period : A 16 bit number that is based off of the system clock.  This value 

determines how frequently the pulse happens 

2. pwm_duty_cycle: A number that will subtract from pwm_period above. 

Pwm_duty_cycle‘s resolution increases as the pwm_period number gets larger.  

For example, if the pwm_period is the same as the system clock (a value of 1), then 

the duty cycle is either 0% or 100%. There will be two separate commands to write 

the PWM period and duty cycle in software. In the user_logic.vhd, we define PWM 

pulse duration register 0x<BASE_ADDRESS> + offset for PWM with read and write 

ability and the register is indexed as [0:31], all data is MSB: LSB. Correspondently, in 

the application code PDCTRL.C we define MOTOR1_PWM_VALUE with the same 

location, so we could set PWM pulse duration in hardware by software. DC motors 

controlled by PWM will have a PWM period that is much longer (1 ms) than the 

clock of the embedded system (10 ns) so the above two values should work out for 

now. Clk is the system clock.  Clk_period is the testbench clock and pwm1 is the 

PWM output. 
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Figure15: Behavior simulation  

 

                     Figure16: screen shot of a simulation and RTL view 

It should be real easy to add in as many PWM channels as necessary.  The 

important parts of my project are: 

1.  Add the PWM core (drag and drop the core into project, connect the core to the 

PLB bus) -    Generate addresses so that the core has its own address (addresses tab in 

XPS, then push the Generate Addresses button) 

2. Select the Ports tab, expand the PWM core and notice the only port that is not 

connected.  Make this port external 

3. Open the MHS file to notice the newly added port.  Grab the port name from the 

MHS and add it to the UCF placing a LOC constraint on F14, then rerun the design 

through implementation and download the BIT file 
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a. Interfacing the FPGA with the L6205 drive IC for Motor Control 

The FPGA will process the PWM program and the output will be given to enable 

pin of H-bridge chip L6205 which activate the L6205 chip (L6205 Datasheet) and 

controls the speed of the motor. Fig17 shows the truth table we use to get the L6205 

to perform the different movement operations such as ―Forward‖, backward‖ and 

Brake etc. 

 

Figure17: the truth table of the L6205 

We notice that when the outputs are in a high impedance state that the motor will 

freely run. And when the outputs are both tied to Vs or are both tied to GND, and then 

the motors will brake. So we modify the motor_wedge pcore to handle this extra 

functionality. 

Our method to accomplish this is to set the direction of the bridge with IN1, IN2 and 

to generate PWM by pulsing the ENABLE line. Because EN Signal enables the 

L6205 out1 and out2 signals on motor 1, a value of 1 for the setting register turns on 

the brake. Here is a portion of the PWM VHDL code added brake function: 

        INA1 <= pulse_duration_msb_1 AND (NOT brake1); 

        INB1 <= pulse_duration_msb_1 NOR brake1; 
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b. Interface IP core with software on PowerPC405  

We can do a memory write command to PWM‘s address will modify the full 32 

bits under XMD shell tool or SDK environment. 

 

Figure18: software accessible registers schematic 

Where Reg0, Reg1 and Reg2 are 32 bits software register which are accessible by 

Power PC405, Reg2 is the register will show the motors' current values of the 

encoders and this is actually another register for presetting the motors' encoder values. 

Reg0 register containing the "frequency" (pwm_period) of the PWM pulses.  The 

number represents an absolute upper value before starting the count over again. Reg1 

"pwm_duty_cycle" value cannot be greater than the value in Reg0. The PWM pulse 

happens at every pwm_period - pwm_duty_cycle. 

c. Generating custom IP and Adding OWN IP to PLB/OPB bus    

Different from using Uartlite IP core directly from existing library, we need to 

customize our own IP core for PWM generator and encoder. There is a Create/Import 

IP wizard helps us create our own peripheral, set bus system interface and then import 

 

PPC405 
PWM 

Reg0 

Encoder 

 

Reg1 
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custom IP into XPS design, the next screen is the IP Interface Services screen. The IP 

Interface (IPIF) provides a variety of services for easily connecting custom peripheral 

to a processor bus. A detailed description of each service can be found in the IPIF 

Features document2. For our application, we will use the User logic software register 

services. The peripheral will appear under the Peripheral or Project Repository folder 

in the IP Catalog after all the steps finished. After completing this module, we will be 

able to have functional IP attached to PLB bus which enables PowerPc talk to custom 

peripheral logic interface for sensors and actuators. This is the essence of RecoNode 

hardware structure. 

4.3.4 Quadrature decoder IP 

a. Encoder logic  

In this part we have designed a quadrature decoder/counter interface IC like logic 

that performs the decoding, counting, and latching in digital motor control systems, 

employing a Virtex 4 FPGAs device. 

 

 

Figure19: Quadrature decoder /counter logic inside Virtex-4 FPGAs  

When DC motor shaft is moving, build in encode will convert rotary mechanical 

motion into a digital output .Then we have two channels from a rotary encoder: CHA 

optical 
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/counter 

FPGAs  
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and CHB the direction of rotation is indicated by a +/-90º phase (quadrature phase) 

difference between the two channels. For Terminatorbot, HCTL 2000 [27]Quadrature 

decoder /counter are used to interface an optical shaft encoder to a microprocessor‘s 

system, it contains 16 bit counter, 16 bit Latch & Multiplexer.  

 

 

Figure20: A Simplified Logic block diagram of the HCTL 2000[27] 

When it comes to Quadrature Decider for RecoNode, we adopt similar features of 

Htcl2000 in VHDL: Input noise filter, 4X decoder, 32bits counter, and counter 

register to store the encoder count value. 

b. Shift Registered Digital noise Filter  

Clearly the objective of the filter is to eliminate input signal‘s short duration 

noise spike and switch chatter completely. This is a achieved by detecting only the 

first change of the signal and ignoring all subsequent activity on the same signal until 

the other switch also changes state[28]. In other words, the filter‘s output can change 

only after its input had the same value at three consecutive triggering clock edges. 

The filtered signals are then passed to a four-bit delay filter (Fig.21). Therefore, the 

filtered output waveform is four-bit shift registered and can change only if the input 
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has the same value for three consecutive rising clock edges 

 

Figure21: Digital noise filters architecture [28]  

Each input channel(A and B) is filtered by a separate copy of the digital noise filter, a 

VHDL code description of the functionality of the shift register and J-K flip-flop with 

gated inputs in Figure 21 is as following: the filtered output is computed from the 

right most 3 bits of the shift register:  

       if enca_q_1(2 downto 0) = "111" then 

          enca_filtered_1 <= '1'; 

        elsif enca_q_1(2 downto 0) = "000" then 

          enca_filtered_1 <= '0'; 

        else 

          null; 

        end if; 

 

        if encb_q_1(2 downto 0) = "111" then     ---filter 

          encb_filtered_1 <= '1'; 

        elsif encb_q_1(2 downto 0) = "000" then 

          encb_filtered_1 <= '0'; 

        else 

          null; 

        end if; 

        enca_q_1 := ENCA1 & enca_q_1(3 downto 1); ---right shift 

        encb_q_1 := ENCB1 & encb_q_1(3 downto 1); 

        enca_q_2 := ENCA2 & enca_q_2(3 downto 1); 

        encb_q_2 := ENCB2 & encb_q_2(3 downto 1); 

c. Decoders 

Examination of the CHA, CHB waveforms as in Fig 22 shows: CHB lagging 

CHA: CHB = ‗1‘ at CHA rising edge and CHB leading CHA: CHB = ‗0‘ at CHA 
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rising edge.So CHB can be used to indicate direction, if we can hold the value on 

CHB at CHA rising edge 

 

Figure22: two 90 degree phase different encoder signals 

But the problem with the simple detector is that the direction indication is 

synchronized to the rising edge of CHA. We adopt decoder logic of TRC 040 for 

PUMA560 as following, where we double the pulse rate from the XOR function by 2 

to give 4 times the pulse rate  

 

U/P 

EN 

 

Figure23: TRC040 decoder logic  

-- Process to generate the clock enable (ce) and the up / down (ud) 

-- signals for the encoder counter. 

enca_d1_1 <= enca_filtered_1; 

enca_d2_1 <= enca_d1_1; 

encb_d1_1 <= encb_filtered_1; 

encb_d2_1 <= encb_d1_1; 

enca_d3_1 <= enca_d1_1 xor encb_d1_1; 

encb_d2_1 <= encb_d1_1; 
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ce_1 <= enca_d3_1 xor (enca_d1_1 xor encb_d1_1); 

ud_1 <= enca_d3_1 xor (encb_d1_1 xor encb_d2_1); 

Also, we can double the pulse rate with Four times decoder which will increases 

the effective resolution of the encoder by a factor of four, compared to simply 

counting positive edges of A (or B) directly. To accomplish this we need to build an 

edge-detect circuit that detects both positive-going and negative-going edges – a 

double-edged detector. Specifically, the 4X decoder logic uses the system clock to 

decode the incoming filtered signals into count information. The decoder samples the 

combination of outputs change of the Channel A & B samples. Based on the past 

binary state of the two signals and the present state, it asserts a count enable signal 

(CE) and direction signal (UD) to the position counter until the next triggering clock 

edge. Channel A leading Channel B results in counting up. Channel B leading channel 

a results in counting down. 

d. 32 bits Counter  

The counter module requires a simple 32bits up/down counter with an enable 

input. Such a counter was described in the following VHDL code segment. 

-- The counting of the encoder values happens here 

          when others => 

            cnt_value_1 := slv_reg1; 

            cnt_value_2 := slv_reg3; 

            if (((encb_d1_1 xor encb_d2_1) = '1') or ((enca_d1_1 xor enca_d2_1) = '1')) then 

              cnt_digit_1 := '1'; 

            else 

              cnt_digit_1 := '0'; 

            end if; 

            if ce_1 = '1' then 

              if ud_1 = '1' then 

                cnt_value_1 := cnt_value_1 + cnt_digit_1; 

              else 

                cnt_value_1 := cnt_value_1 - cnt_digit_1; 
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              end if; 

            end if; 

Notice that the HCTL2000 includes an output multiplexer and double buffer inhibit 

logic. The multiplexer is for the 12 bits output of the double buffer register to the 8-bit 

data bus output, while the double buffer inhibit logic is designed for reading a 

counter‘s output while it is counting (read on the fly). If the counter‗s output were 

read directly and the read occurred while the counter was in the process of changing 

value, the value read might be incorrect. For our case, there is no need to consider this 

issue because we use 32 bits register and counter. The simulation is done as following 

in ISE‘s simulator called Isim. The testbench was created using ISE‘s automatic 

testbench creator. 

 

Figure24: Simulation waveform for driving-signals of DC Motors 

4.3.5. UART IP 

We use RS232 serial cable and serial communication utility (HyperTerminal) to 

debug our motion control design and wireless communication setting. For UART 
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serial communication part, RS232 signal is actually connected to the FPGA. Our 

approach is to add existing peripherals IP called UARTLite into building PLB/OPB 

bus of RecoNode system. UARTLite is written in VHDL at building XPS library; this 

will be attached to the OPB bus as follow and we can find the view of IP cores 

connection with PPC405 under XPS 

     

Figure25: UART IP core connecting to PPC 

The process is to select and add the opb_uartlite from project menu. UARTLite has a 

fixed Baud rate that is set in the HDL code, thus, Baud rate will be set through 

UARTLite PCORE under XPS project interface. 
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Figure26: UARTLite configuration 

The instant UARTLite address is defined in Xparameters to variable in code 

UARTLITE_BASEADDR = XPAR_RS232_BASEADDR; and there are UARTLite 

function library we use directly like XUartLite_RecvByte (UARTLITE_BASEADDR) 

and XUartLite_initial function. For hardware interface, I just set up the Brainstem 

interface with DU100, so UART hardware configuration for DU100 is ready. Later I 

have UART Lite to DU100 XPS project embedded design on the board with 

UCF setting with respect to DU100. After running a simple print command should 

verify that everything is working: it prints out on screen of HyperTerminal. 

#include "xparameters.h" 

#include "stdio.h" 

//==================================================== 

 int main (void) { 

    print("-- Entering main() --\r\n"); 
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     /* 

    * Peripheral SelfTest will not be run for RS232_Uart 

    * because it has been selected as the STDOUT device 

    */ 

   print("-- Exiting main() --\r\n"); 

   return 0; 

} 
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Chapter 5 Test and Verification   

5.1 Board verification 

My main task is to test out FPGAs baseboard functionality by download Ring 

Oscillator VHDL logic and probed waveform signal on assigned morphing bus pin on 

DU100. And specifically we use JTAG on the board to download bit stream by IPACT 

(static configuration) after all are verified as having correct signal, power, and 

continuity connectivity and we could read device code if connection and chip are all 

right.  

 

Figure27: Internal free-running clock generator made from ring oscillator 

entity ERINGOSC is 

  generic(len:integer:=1600;   --len even 

          invdel:time:=5ps);  

  port( 

    RUN : in std_logic; 

    CLK : out std_logic); 

end ERINGOSC; 

 

architecture STRUCTURAL of ERINGOSC is 

 

component EINVS 

  generic(len:integer;  

          invdel:time); 

  port( 

        A   : in std_logic_vector(len downto 1); 

        Q   : out std_logic_vector(len downto 1) 
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        ); 

end component; 

 

signal Atemp,Qtemp : std_logic_vector(len downto 1); 

attribute KEEP : string;  

attribute KEEP of Atemp,Qtemp : signal is "true";  

 

begin 

  Atemp(1)<=not(RUN) nand Qtemp(len) after 2*invdel; 

  Atemp(len downto 2)<=Qtemp(len-1 downto 1); 

  DELAY : EINVS 

    generic map (len, invdel) 

    port map(Atemp,Qtemp); 

  CLK <= Atemp(1); 

end STRUCTURAL; 

Also PROM test is our main task will be described as following. Specifically, the 

oscillator is implemented as a ring oscillator with one inverter replaced by a 

NAND-gate as shown in Fig. 27. The NAND gate is used to enable power down by 

shutting down the oscillator. A frequency divider is inserted to give the ability to 

select between 4 clock rates f, f=2, f=4 and f=8, where f is the output frequency from 

the ring oscillator. 

     

Figure28: Base board test setup 

5.2 PROM verification 

Another key feature is the RecoNode ability to boot a new system configuration 
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file at reset. Xilinx FPGAs are volatile because they are based on SRAM technology. 

That is, the device loses its configuration if the power to the device is turned off. After 

RecoNode‘s FPGA logic has been configured, it is often necessary to retrieve new 

user-defined configuration data that issued by the FPGA during operation. The data 

needs to be retrieved from an external storage device like PROM without a control 

circuit is required to interface to the storage device. 

Xilinx configuration PROM is generally used to store an FPGA design, which is 

downloaded to the FPGA upon system power-up. In most cases, this is the PROM‘s 

only function, and its capacity is usually not fully used by the FPGA design. Besides 

PROM is also the component to store bit stream for Dynamic Partial Reconfiguration. 

The design here describes how bit stream- Dynamic partial reconfiguration data can 

be stored and retrieved from Xilinx configuration PROMs using existing connections 

and only one user I/O. This reduces the FPGA pin count, component count, board 

space, and overall system cost. The user-defined data can be a bit stream revision 

code and so on. A Jbit or Perl script might be created that automatically modifies 

existing configuration PROM files with user-defined data with optional bit swapping. 

5.2.1 PROM and FPGA Connections 

First we come to the mode configuration of PROM; here is a truth table for the 

mode pins: 

Configuration Mode   | M2 M1 M0 

------------------------------- 

Master Serial        | 0  0  0 
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Slave Serial         | 1  1  1   -- Not needed for us 

JTAG                 | 1  0  1 

The PROM can only program the FPGAs in either Master Serial or Slave Serial. If it 

is Slave Serial, then the FPGA and the PROM have to get a clock from an external 

source to drive the configuration. DU100 is truly designed for Master Serial Mode 

since the FPGA‘s configuration clock (M14) is connected to the PROM‘s clock CLK 

pin and M 0/1/2 are tied to ground which means Master Serial from truth table.  

Figure 29 clearly shows the connections necessary to create a suitable interface 

between the PROM and the FPGA.  

 

Figure29: PROM and FPGA Connections with Control Signal 

Considering I already tested out PROM successfully, I refer Xilinx 

ML405 design into DU100 PROM verification as following.  

1. The DU100 JTAG config is all right as ML405: specifically FPGA TDI connected 

to PROM TDO. 

2. CE_n (PROM Pin 13) was the one we concern the most, ML405 use Config Switch 

and pull up resistor to ground it which is similar as I tied CE_n pin on the PROM to 
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ground via a pull down resistor 

3.PROM CLK should be connected to FPGAs CCLK (FPGAs PinM14).   

4. Also, I checked CF_n (PROM Pin 6) has to be ground as we expected.  

 

Figure30: PROM connections with improvement on DU100 baseboard 

From the above schematic, I did find that the CE_n pin of the PROM goes 

nowhere. From [29], and there are two options on how to connect the PROM CE pin: 

1. Connect the CE pin to GND. 

2. Connect the CE pin to a User I/O pin of the FPGA. This option requires an 

FPGA 
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additional I/O pin to the solution; however, it allows the PROM to be put into standby 

mode to allow power saving. The FPGA needs to get its bit stream from the 

PROM.  The PROM‘s clock gets enable by the CE_n pin.  All users I/O on the 

FPGA are tri-stated before the FPGA is configured with its bit stream so the CE_n pin 

is also tri-stated which means that the FPGA will never get its bit stream. The 

recommendation is to tie CE_n pin to ground through a pull down resistor and keep it 

connected to the user I/O as following, this way we can configure the FPGA on power 

up and have the user I/O configured to be tied high. Once the FPGA is configured, the 

PROM can still be in power saving mode but we will also be able to reconfigure if we 

need to. 

5.2.2 Programming PROM 

After hardware requirements are met, software flows for generating and 

programming PROM files is described as follow: The iMPACT software tool converts 

the bitstream targeted to an FPGA family into a PROM file. Figure 31 shows the 

options available for downloading the PROM file into the PROM device [30] 
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Figure31: PROM Programming Options [30] 

Here we use iMPACT to create and download a PROM file. iMPACT accepts any 

number of bitstreams and creates one or more PROM files containing one or more 

daisy chain configurations. In iMPACT, a wizard enables us to do the following: 

1.Create a PROM file by adding bit streams into PROM File Formatter.2.Generate 

File in the MCS file format .With the resulting .bit, .mcs and a MSK file generated 

along with the BIT file, we are ready for programming DU100 using iMPACT. 

  

Figure32: PROM File Formatter 

5.3 Battery board validation  
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5.3.1 Battery and charger  

Our need for the battery is 7.4V, 5or 6 amp discharge rate to drive DC Motor 

used in DU100. These batteries aren‘t rated for the peak discharge rates we need. We 

may want to put 4 UBP002 batteries in series/parallel rather than 2 UBP001 batteries 

in series for the motors. This should give us greater peak current capability. So our 

design seems to accommodate it, considering it is unlikely for six motors working at 

the same time. When it comes to physical space size to hold batteries between base 

board and power board, 5 UBP002 batteries are 31mm tall, while 1 UBP002 and 2 

UBP001 batteries are 28.2 mm tall. This obviously affects my choice of 

board-to-board connectors. I choose Semtac board stacker with space could hole 5 

batteries at most. There are three height of a board stacker we need to consider tail, 

post and board space.   

On-board charging batteries on RecoNode is other concern for us; here we use 

The MAX1908 evaluation kit (EV kit) which is an accurate and efficient 

multichemistry battery charger. It uses analog inputs to control charge voltage and 

current. The EV kit can charge 2 to 4 series lithium-ion (Li+) cells with a current up 

to 3A. The EV kit provides outputs that can be used to monitor the input current, the 

battery-charging current, and the presence of an AC adapter. 
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Figure33: DU105 with MAX1908 evaluation kit  

5.3.2 Load Test  

Our RecoNode electronic systems use a regulated DC power supply to provide 

DC voltages to its circuitry like FPGAs and other components. The circuitry draws 

current from the power supply and is said to ―load‖ the supply. The product of the 

output voltage and current to the circuitry is the power usage or load. I have DU105 

tested in lab workbench condition (digital multimeter and oscilloscope).First we test 

the functionality of the power board DU105; including TI TPS75003 and TPS61032, 

TPS 75003 output 3 voltages (VCCINT (1.2V), VCCAUX (2.5V), VCCO (3.3V) as 

we expected. But we face problem from TPS61032 5V after test the ringing and 

inappropriate layout lead to chip damage, to remove this bug, I added filter capacitor 

at the input and the Schottky Diode to SW and output with low current limit from the 

bench supply, but tps61032 was still damaged, high frequency large ring is the reason 

shock internal PMOS switch. Then we decide to switch to other alternate IC such as 

LTC 3426 from linear technology, and it is working with current board. Then we will 

implement function test with load connection to baseboard. 
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Figure34: Battery board with FPGAs load 

5.4 Motion control validation  

Here we test RecoNode‘s motion control part in hardware and software together. 

RecoNode has a motor control module allowing it to control multiple types of motors. 

The motor control module contains trajectory generation software running on the 

PowerPC and a PWM generator, Encoder counter, PID controller hardware logic 

module inside the FPGA chip. Figure 34 shows how it works as a closed-loop control 

system. The motor module consists of 5 major components, the trajectory generator in 

the control area (the PPC), a PD or PID controller, an encoder counter, a PWM 

generator and the physical motor/power circuitry. The parts of major interest to us are 

the three modules implemented on the FPGA; the PD controller, the encoder counter 

and the PWM generator. The PD controller takes in the data from the trajectory 

generator and the encoder counter to determine where the motor should be and where 

it is. It uses this information to feed the PWM generator a pulse width. To implement 

encode counter, we created a VHDL module to replace the HP IC HCTL2000. The 

PWM module was custom coded to create a modulation at any frequency desired; this 
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allows the motor module to use many different types of motors. Because their is an 

FPGA on RecoNode, the PD controller was implemented in it because it allows CPU 

clock cycles to be saved for other tasks, and the time granularity can be more easily 

adjusted on the FPGA based controller 

PWM-Encoder IP which is built inside the FPGA fabric to drive the motor with 

the help of power amplifier circuit L6205. The PWM and encoder module is 

connected to the OPB bus via IPIF (Intellectual Property Interface) logic from Xilinx. 

The architecture of the PWM module consists of two software accessible registers; 

PPC405 can access reg1 and reg2 via the OPB. When the motor rotates, the encoder 

sensor attached to it generates two channels of quadrate encode pulses with 90 degree 

phase shift, which are fed into the Encoder Module via the two morphing bus I/O pins. 

The Encoder Module detects and analyzes these two pulses, and determines the 

direction of the motor (i.e., forward or backward) and then counts up or down 

accordingly. 

The PD/ PID control algorithm, which is implemented in software called 

PDCTRL.C, is invoked periodically in Real time scheduler. The following major 

steps of the algorithm will rotate the motor and ensure that the rotation is smooth 

during its movement from an initial position to a final desired position. 1. The desired 

position is generated at each control cycle according to a velocity profile. 2. The 

actual motor position from register is obtained and the error between the desired and 

the actual positions are calculated generating a control output. 3. The PWM duty 

cycle value is uploaded into reg1 based on the PID control output to be used by the 
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PWM module to drive the motor. PWM pcore is now working at 48.8 kHz and Duty 

cycle is 70% on DU100 with SDK software function support. 

 
Figure35: Motion control HW/ SW co-test  

Because their is an FPGA on RecoNode, the PD controller was implemented in it 

because it allows CPU clock cycles to be saved for other tasks, and the time 

granularity can be more easily adjusted on the FPGA based controller. Recently, W. 

Zhao et al. have implemented the closed-loop PID algorithm on a FPGA (Spartan II) 

and conducted comparative study of their design options (serial, parallel, and 

multichannel designs) relative to speed, area, and power consumption [31]. Our main 

goal is to implement W.Zhaos channel-level parallel (CLP) PID design and this will 

further reduce the motor modules over all power use. Our experiment results of step 

response control for all designs are shown in Figure 35. Here no load is placed on the 

motor for realism. The X-axis is in seconds and the Y-axis is in encoder counts 
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Figure36: The step response of the motor control block(X axis in Second) 

Software PD design implementation was developed and tested. A performance 

evaluation is verified as functionally correct; we implemented and used to perform 

step response control tests of a DC motor. Additionally, in software, a set of 

preliminary PD parameters and control periods were determined by experimental 

method, and then we expected the parameters were tuned to an ideal step response. 

The parameter tuning experiment yielded the following results: proportional gain Kp 

= 15, integral coefficient Ki= 0, derivative coefficient Kd = 70, which were used to 

perform control testing. To test motor control for the PD controller design, the motor 

was set to toggle from an initial position of 0, and then a desired position command of 

500 was issued. From Figure 36, the curve is the real response sampled from the 

encoder counter at 10Hz sampling period. The results show that all the designs 

performed correctly and similarly. Response speed is fast, overshoot is small, and 

static accuracy is high. The average rise time is 40.2 ms and the steady state error is 2. 
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Chapter 6 Conclusion and Future Work 

6.1. Conclusion  

Here we are building FPGA-based Real-Time reconfigurable architectures 

including hardware and software infrastructure for miniature mobile robots, relative 

concepts like self adaptive, reconfigurable computing; dynamic partial 

reconfiguration and morphing bus are also presented in this paper. RecoNode is 

supposed to a small, low power, low-cost, and highly modular platform that have 

ability to host large amount of sensors and actuators not at the same time to adapt 

complex USAR environment. VHDL IP cores (such as PWM, Encoder and UART) 

are developed and simulated and all of them are seamlessly incorporated to the whole 

embedded system by connecting IP Core with OPB/PLB bus. RecoNode is a ideal 

research platform for Wireless sensor and actuator/ Wireless control network. The 

result of RecoNode can not only been apply to comprehensive USAR robotics, but 

also could transfer to the Infrastructure of industrial process automations, building 

automation, intelligent traffic control or even future smart grid.  

6.2. Future work  

6.2.1 Vision module 

Because it is one of the largest nodes RecoNode has the most computing power, 

this allows it to have a vision module. The vision module allows any RecoNode based 

robot to see the world around it and navigate based on what it sees. A high level 
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description of RecoNode‘s vision module architecture will consists of main control 

logic, I2C interface logic, image grabber control logic and memory module interface 

logic. The main control logic block is responsible for the high level operation of the 

digital camera. The image capture module is responsible for reading captured frame 

data from the image sensor. In order to detect when it needs to capture data, the image 

grabber module looks for certain embedded codes. These embedded codes are placed 

within the stream of digital data by the camera. Once it has found an escape sequence; 

it knows to start or stop capturing data. In addition to data capture, the RecoNode 

camera module has the ability to control the CCD reader chip to enable dynamic 

control of settings like contrast. Image processing is probably the most memory 

intensive operation robots do; because of this the RecoNode has 128MB of onboard 

RAM, allowing image data to be stored in the control computer or on the attached 

ram. 

6.2.2 Wireless communications  

RecoNode definitely should have a data communication wireless interface. , like 

all the other nodes of the WSAC. Because of its large size, reconfigurability and 

higher capacity batteries, RecoNode can carry multiple RF data interfaces. 

RecoNode‘s RF module contains an RF Stack and a wedge with a RF transmitter chip. 

The stack will be implemented in PowerPC or VHDL on the FPGA. Having multiple 

wireless protocols supported will allow RecoNode to communicate not only within 

the WSAC but also use other protocols to talk to other systems, networks and robots. 

For wireless sensor network applications in urban search and rescue scenarios, low 
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power consumption, low cost and being highly robust are the most important 

characteristics. In our design, we considered two protocol options; ZigBee, and 

Locally Switchable Protocol (LSP) created by J. Bae and R. Voyles[32]. ZigBee is a 

new global standard for wireless communication, which provides a short-range cost 

effective networking capability. ZigBee technology is a low data rate, low power 

consumption, low cost, wireless networking protocol targeted towards automation and 

remote control applications. One of the most popular ZigBee chip is CC2520 from 

Texas Instruments, it is a single-chip 2.4 GHz IEEE 802.15.4 compliant RF 

transceiver, it also provides extensive hardware support for packet handling, data 

buffering, burst transmissions, data encryption, data authentication, clear channel 

assessment, link quality indication and packet timing information. We will use a 

ZigBee wedge to interface the RecoNode with other ZigBee enabled nodes.  
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APPENDIX A: DU100 and DU120 Shematics 

 

 

Figure A-1: Motor board DU120 
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Figure A-2: Baseboard DU100  
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APPENDIX B: DU105 Shematics 

 

 

Figure B-1: Version 0.9 with TPS61032 
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FigureB-2: Version 1.0 with LTC3426 
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