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ABSTRACT 

 With the use of Polymer Matrix Glass Fiber Composites ever expanding, 

understanding conditions that lead to failure before expected service life is of increasing 

importance.  Stress Corrosion Cracking (SCC) has proven to be one such example of 

conditions found in use in high voltage transmission line applications that leads to brittle 

fracture of polymer matrix composites. 

 SCC has been proven to be the result of acid buildup on the lines due to corona 

discharges and water buildup.  This acid leaches minerals from the fibers, leading to 

fracture at low loads and service life.  In order to combat this problem, efforts are being 

made to determine which composites have greater resistance to SCC.  This study was 

used to create a methodology to monitor for damage during SCC and classify damage by 

mechanism type (matrix cracking and fiber breaking) by using 4-point SCC bend testing, 

3-point bend testing, a forward predictive model, unique post processing techniques, and 

microscopy.  This would allow a classification in composite resistance to SCC as well as 

create a methodology for future research in this field. 

 Concluding this study, only matrix cracking was able to be fully classified, 

however, a methodology was developed for future experimentation.  
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1. INTRODUCTION 

The electrical grid for the United States and many other countries around the 

world is the lifeblood of the nation.  Without power, everything shuts down.  Our ever 

growing digital world is more dependent on electricity than ever before and consumption 

only increases every year.  This increased demand, coupled with aging infrastructure has 

caused the power industry to re-evaluate their technology and methods. 

While new conductors are in the process of being evaluated, so are new 

insulators.  Previous insulator designs were ceramic, which is fairly expensive and prone 

to vandalism and contamination. (Gorur 1991)  The newest concept is to use Polymer 

Matrix Composites (PMC) as insulator material with glass fibers.  These materials are 

desirable due to their low cost and track record in other applications, however, with new 

application come concerns of reliability and durability. (W. Jones 2006) (Sause, 

Simulation of Lamb Wave Excitation for Different Elastic Properties and Acoustic 

Emission Source Geometries 2010) 

With new materials and implementation come new challenges.  These new 

composites were found to have issues with Stress Corrosion Cracking (SCC) which 

caused brittle fractures on in service PMC insulators. (Megel 2001)  This SCC damage 

was causing lines to fail very early in service life and costing power companies money to 

fix.  This scared a lot of companies off because the mechanism was not understood and 

composites in this form were relatively new. 
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This study has been requested by the sponsoring power utility MacLean Power 

Systems (MPS) because of the concern of SCC damage in these new materials.  Of 

particular concern is ranking a list of potential replacement materials, determining the 

level of SCC damage to the PMCs, and classifying this damage. 

The goal of this study is to use a combination of Modal Acoustic Emission 

(MAE), four point bend testing, Microscopy and Finite Element Modeling to determine 

specific damage mechanisms caused by SCC, primarily fiber fracture, matrix cracking 

and fiber matrix debonding. (Qiu 1997)  

Live monitoring of damage is accomplished via broadband AE sensors, which 

have shown to be useful for this purpose in previous experiments. (W. H. Prosser 1995) 

(M. Hamstad 1995)  (Sause, Simulation of Lamb Wave Excitation for Different Elastic 

Properties and Acoustic Emission Source Geometries 2010) This study will provide 

advanced methods of classification of spectral content contained within the waveforms of 

acoustic emissions to identify fiber fracture and matrix cracking.  It will be shown that 

the frequency content of the acoustic emissions is most strongly affected by the source 

mechanism.  This supposition was confirmed through forward predictive modeling of the 

acoustic emission detection process (i.e., transient source, wave propagation through the 

structure, and sensing of the wave motion), controlled experiments intended to cause 

specific damage mechanisms, and microscopic observation.  This unique contribution 

will allow a more reliable classification of material groups for their resistance to SCC. 

The study was performed at the University of Denver over the period 2012-2014. 
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1.1 Insulator History and Failures by Brittle Fracture 

Insulators are necessary with the current construction of overhead high voltage 

power lines carrying 69-735 kV to safely ground power being driven through lines to the 

poles that support them.   

Originally, porcelain and glass were the most widely used materials for insulator 

design. (Gorur 1991)  These designs were efficient and cost effective, however, subject to 

frequent vandalism, mainly destruction by civilians for their explosive reaction when 

damaged.  The advent and subsequent improvement in quality of PMCs lead to their 

introduction in insulator lines as early as the mid-1960s.  This design was a PMC rod 

with rubber weather-sheds.  This design involves one end connecting to the line (hot end) 

while the other connects to the tower or ground source (cold end).  The composite was 

oriented with fibers in the axial direction for strength.  Weathersheds were implemented 

to protect the composite rod while increasing the leakage distance and allow for an 

interrupted path for water drainage. (Sharma 2001)   Most modern designs made only 

small changes to this primary design (see Figure 1). 
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Figure 1: Modern Insulator Line 

Source: (M. D. Kumosa 2011) 

 

 Material selection for these rods was crucial to their succession of the ceramic 

models previously used. E-glass fibers were chosen for their cost, relative strength, light 

weight and electrical insulation properties.  ECR glass fibers are also used for their 

increased corrosion resistance and similar properties to E-glass; however, they tend to be 

more expensive. These composites are typically pultruded, with anywhere from 60%-

80% fiber fractions, and then coated with a polymer matrix. Polymers used for the matrix 

material of these composites are usually polymers, epoxies and esters.  The main concern 

with material selection for the matrix is electrical insulation, degradation, ability to 

process, and cost.  These designs were an improvement on the previous models for their 
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weight to strength ratio, impact resistance, contamination performance and increased 

resistance to vandalism.  These newer PMCs were met with great success even as far 

back as the late 1980’s, with only 4% being deemed poor performers. (Schneider 1989)   

 These lines are subject to mechanical, electrical, and environmental conditions, all 

of which affect the service life of insulators.  All of these conditions can be exacerbated 

by improper installation techniques, the most common of which is over crimping. This 

over crimping leads to premature failure, primarily due to damaging of the conductor and 

increased mechanical loads. (M. K. Kumosa 2005)   

 Mechanical failures of these rods began to appear in the form of brittle fracture 

(see Figure 2).  Brittle fracture occurs when there is very little plastic deformation, but 

rapid crack growth.  This failure can occur with little or no warning, and is usually 

catastrophic in nature.  Cracks run close to perpendicular to the applied stress, with 

relatively flat surface at the break.  The reason for these fractures at the time was 

unknown and warranted extensive testing.  
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Figure 2: Brittle Fracture of a 500 kV Composite Insulator 

Source: (Megel 2001) 

 

 Since brittle fracture was not expected for these materials, the cause was most 

likely an outside interaction. These materials were deemed acceptable for long term use 

but some were found to be failing at relatively low loads and as very short service lives. 

(Schmuck 2003) It was found that the cause of these failures was attributed to SCC. 

(Noble 1983)   Additionally it was later narrowed primarily to Nitric acid created from 

Corona discharges on the lines in combination with water. (L. A. Kumosa 2001) 
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1.2 Stress Corrosion Cracking 

In order to investigate the cause of SCC, the differences between E-glass fibers with 

high boron content and those with little to no boron or ECR glass were examined.  

Specifically Acid corrosion and stress corrosion characteristics using 1N H2SO4 acid at 

96°C and room temperature were studied.  Stress corrosion testing was done on both 

sample types. (H. G. Li 2012) 

 ECR and E-glass fiber are the most common form of reinforcement for PMC’s.  

In recent studies of boron containing E-glass in acid at room temperature significant 

losses of Al and Ca were found.  Limited acid corrosion studies focused on boron-free 

fibers show no significant composition difference and do not have the same ion-exchange 

mechanism as boron E-Glass. 

 Composite rods for this study were fabricated with a bisphenol-A epoxy vinyl 

ester resin.  E-glass fiber direct roving strands of 0, 1.3, and 5.5% B2O3 were tested 

where the samples with 50% glass content by weight were chosen for consistency.  Prior 

to the tests the average ultimate tensile strength values were done to determine the effect 

of acid on the samples. 

 Of the samples tested it became immediately apparent that higher levels of boron 

in the fiber increase corrosion and weight loss (see Figure 3).  This corrosion is most 

likely controlled by surface reaction for a short period of time and by diffusion for longer 

periods of time.    Fibers reached a saturation level after 2 hours in the acid.  In the acid 

the study showed that fibers with higher boron content lost strength rather quickly, 1.3% 

B2O3 outperforms 5.5% B2O3 by an order of magnitude.  The degradation is taking place 
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for Si, Ca, and Al in acid where the boron-free glass fibers hydrolysis of the Si-O-Si 

network prevents degradation.  

 

Figure 3: Weight Loss by Boron Content 

Source: (H. G. Li 2012) 

 

 These results proposed that in the high boron fibers a majority of Ca and Al are 

separated from the silicate network.  This leads to the mass loss in the high boron content 

fibers whereas the boron free fibers do not react in this manner.  This means that the 

resistance to SCC of boron containing fibers is substantially lower than the boron free 

fibers. 

 Additionally, fibers were exposed to Oxalic, hydrochloric, nitric and sulfuric 

acids with the intent to understand the reaction to different types of acid on glass fiber 

strands that were sized with a silane agent. (Qiu 1997)  

 The test was performed with E-glass fibers with average diameters of 13µm sized 

with a silane agent and cut from a fiber strand with each fiber being about 10 cm in 

length in a strand of approximately 2500 fibers.  These fibers were immersed in nitric, 
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oxalic, sulfuric and hydrochloric acids, each diluted with deionized water into four 

solutions of pH1, pH2, pH3, and pH4.  This was done in Teflon bottles for a period of 2 

weeks after which samples were removed, rinsed with deionized water and air dried. 

 Fiber weight loss was estimated by comparing weight before and after acid 

immersion.  Loss was strongly dependent on acid type and concentration but more 

influenced by the former.  Oxalic acid created the highest weight loss in all four 

concentrations.  Nitric and hydrochloric acids were similar to one another but much less 

effective at weight loss than oxalic.  The trend for all acids was weight loss became more 

severe as acid concentration increased (pH decreased). 

 Calcium and aluminum ion contents in the resultant solutions after acid 

immersion were analyzed using atomic absorption and colorimetric spectrophotometry.  

The results of this immersion showed calcium and aluminum depletion from the fibers 

during acid immersion, as before.  The leachables were much higher in oxalic and 

sulfuric acids than in nitric and hydrochloric acids with calcium depletion appearing more 

severe than aluminum depletion. 

 This research showed that acid corrosion of E-glass fibers is primarily attributed 

to calcium and aluminum depletion, the severity depending on the acid type and 

concentration.  Oxalic and sulfuric acids were much more corrosive than nitric and 

hydrochloric acids.  This leaching is controlled by acid concentration for hydrochloric 

and nitric acids but for oxalic and sulfuric acids are dominated by the formation of 

insoluble salts or complex ions.  Spiral and axial crack were observed from acid 

immersion.  Ion-depletion-depth is established to explain fiber cracking due to internal 

stresses as was confirmed. (M. Megel 2001) (L. A. Kumosa 2001) Axial crack formation 
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is associated with ion-depletion depth relative to spiral crack formation.  Fiber surface 

cracking in acids suggests post-failure damage in E-glass fibers which is much less 

prevalent in nitric and hydrochloric acids than in sulfuric and oxalic acids. 

After the mechanisms behind SCC were understood, it was necessary to test three 

unidirectional pultruded E-glass/polymer composites with modified polyester, epoxy and 

vinyl ester resins for their resistance to SCC. (Megel 2001)These specimens were tested 

due to the common occurrence of brittle fracture during their use as suspension insulators 

for overhead transmission.  These rods are the principle load bearing components and 

their brittle fractures result from SCC.  This cracking is a result of chemical attacks on 

fibers in conjunction with tensile stresses applied along the rod axis.  This acid forms as a 

result of moisture and corona discharges and penetrates the end fittings to reach the rod.  

They were tested using nitric acid with a pH of 1.2 in a uniquely designed four point bend 

fixture (see Figure 4). 

 

Figure 4: Four Point Bend Fixture 

Source: (Megel 2001) 
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This fixture has four contact points which are labeled load pins.  The two 

outermost pins are allowed to roll but not slip while the two innermost pins apply the load 

from perfectly centered weights placed on the table above.   These pins are spaced far 

enough from the gage section to allow no shear stress and no local stress concentrations 

from the pins to affect the test section (see Figure 5). The weights are centered with a 

weight centering pin which has an LVDT measuring device to monitor displacement.  

The fixture has guide pins to ensure vertical loading but are spaced far enough apart to 

allow for acoustic emission sensors to be placed on the end of the specimen.  Centered on 

the specimen is a nitric acid tank which exposes the as received samples to acid while the 

sample is under load.  This tank is made from poly methyl methacralate and sealed with 

silicone rubber. 

 

Figure 5: Shear Moment Diagram, 4-point Bend Test 

Source: (Rusmee 2005) 

 

Final dimensions of 3.2mmx12.7mmx304.8mm were selected based on a 

parametric study of stresses and displacements by the ability to have specimens respond 

linearly to load, simulate tensile stress in the gauge equivalent to in-service conditions, 
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and geometry allows for AE analysis.   Finite element models and numerical modeling 

were used to in addition to experimental data to validate the test.  Only one FEA model 

was used due to the similarity in the 3 composites.  This model was a simplified 4 point 

bend setup to prove loading conditions matched experimental results (see Figure 6).  The 

test sections were tested in the apparatus up to 110 N where the test data was in good 

agreement with numerical and analytical results (see Figure 7). 

 

Figure 6: 4-Point Bend Test, FEA 

Source: (M. Megel 2001) 
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Figure 7: 4-Point Bend Test, FEA, Verification 

Source: (M. Megel 2001) 

 

In order to test for stress corrosion the plates were placed in the apparatus with 

jelly placed on the 3 machined surfaces to ensure the acid only affected the as received 

surface (which was to be put into tension during four point bending).   Each specimen 

was loaded with a constant load of 83.97 N which generates an equivalent tensile stress 

on the free surface of 26.7 kN load applied to a composite insulator in-service with a rod 

diameter of 16mm.  After testing the samples were cleaned and prepared for SEM 

analysis.   

 SCC experiments have to be performed as a function of time.  This opens up the 

possibility that displacements, stresses and strains could be time dependent with 

significant creep for long tests.  To examine the possibility of creep, two tests under the 

constant load of 83.97N were performed.  One of these tests was dry while the other had 

the acid tank filled with water.  Third order polynomials were fit to this data but it was 
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more or less the same due to the composites inability to absorb very much moisture (see 

Figure 8).  

 

Figure 8: Displacement vs. Time, Dry and Wet 

Source: (M. Megel 2001) 

 

 SEM testing was also done on each sample to view the overall surface conditions 

and morphology of SCC damage evaluation.  Each composite material had various 
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amounts of exposed fiber with E-glass/modified polyester having the most.  

Misalignment of surface fibers existed and varied from sample to sample in amount.  

Specimens showed signs of mechanical damage such as surface holes and scratches 

which varied from sample to sample and were likely byproducts of the pultrution process.  

These are expected to contribute to the SCC process. 

 

Figure 9: Surface Morphology, As Received, E-glass Epoxy 

Source: (M. Megel 2001) 

 

 Cracks varied with samples as well.  The SCC surface damage in the E-

glass/vinyl ester specimens had several cracks on the surfaces of exposed fibers which 

were located in individual fibers without crack extensions to neighboring fibers.  The 

other two composites had the least amount of SCC damage on the surfaces.  The E-

glass/modified polyester consisted of numerous cracks on exposed individual fibers, 

cracks extending to neighboring fibers and a few straight long cracks extending through 
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multiple fibers and a few long irregular cracks.  All surface cracking initiated on the 

surfaces of exposed fibers but in a few cases it was noticed that cracks initiated from 

surface imperfections.  In one case this lead to total failure of the sample.  The cracks 

formed on the surfaces for all loads but single-fiber cracks were also observed in the 

specimen with no loading. 

 The results of this testing showed that the results indicate SCC damage is strongly 

dependent on the type of polymer resin used.  The stress corrosion process has 3 stages:  

crack initiation, sub-critical crack growth and stable propagation.  The initiation stage and 

sub-critical crack extension stage are random but identifiable using acoustic 

emission/time curves.  The numbers of these signals generated in the first 2 phases are 

linear functions of time and can be used to determine SCC properties in these composites.  

The SCC process in these composites, when subjected to nitric acid and tensile stresses, 

initiate on the surface of exposed glass fibers.  The amount of exposed surface area of the 

fibers alters the amount of SCC surface damage on the samples. The materials resistance 

to the initiation of stress-corrosion cracking is as follows: E-Glass/vinyl ester is 10 times 

better than E-glass/epoxy whereas the E-glass/modified Polyester is 5 times worse than 

the E-glass/epoxy system.  Sub-critical crack extension process resistance ranks as 

follows:  E-glass/epoxy is 5 times more resistant than E-glass/modified polyester system. 

 These samples reacted differently depending on the existence of surface flaws and 

holes and the manufacturing process.  Some samples had SCC without the presence of 

loading conditions.  Samples had contributing factors for initiation of fiber cracking from 

the following:  total surface area exposed, applied and residual stresses, deterioration of 
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the polymer from acid attack, diffusion of acid through the polymer matrix and 

interfaces, and fiber sizing. 

 Further research was conducted as continuation upon the work of Megel as it 

relates to nitric acids involvement in Stress-Corrosion Cracking on three unidirectional 

pultruded E-glass/polymer composites with modified polyester, epoxy and vinyl ester 

resins.  The same resins were tested due to their use in high voltage insulators on 

overhead transmission lines brittle failure from SCC.  This work in particular was done to 

establish critical surface conditions that lead to the initiation of SCC on the surface of 

these as-supplied resins.  This study, in contrast to the Megel research, was done without 

the presence of mechanical loading. (L. A. Kumosa 2001) 

 SCC from nitric acid is primarily attributed to calcium and aluminum ion 

depletion where the leachability of these metallic ions is determined by hydrogen ion 

concentration and strongly affected by the anions in the acid.  The acid corrosion may 

generate axial and spiral cracks on the surface depending on the acid used. 

 For this experiment, 15 small samples, 5 of each type from each of the three 

materials of interest- E-glass/modified polyester, E-glass/epoxy and E-glass/vinylester, 

were cut using a diamond saw.  These samples were wrapped in small aluminum coupons 

and sputter-coated with gold.  The aluminum was then removed to expose a region of 

2mmx2mm region not coated in gold.  The purpose of this was to aid in the location of 

the same region multiple times for SEM work.  These samples were viewed in the SEM 

and then placed into nitric acid and left for 24 hours.  They were then removed, washed 

in alcohol and allowed to air dry for 15 minutes.  Then the samples were viewed again.  

This process was repeated with exposure times being 0,24,48,72,144,214,336 hours to the 
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acid between viewings.  The samples were measured for percentage of exposed surface 

fibers using UTHSCSA Imagetool 2.0.  This was determined to have too much error do 

to the differences in contrast.  The SEM was also used to determine surface damage in 

the form of SCC. 

 Each resin exhibited different amounts of exposed fibers on as-received samples, 

with E-glass/epoxy having the most, E-glass/Vinyl ester having the least and E-

glass/modified polyester having somewhere in-between.  These samples had a few fiber 

cracks but the morphology of these fiber cracks were entirely different than those 

resulting from acid attack.  Three types of cracking that formed during exposure to nitric 

acid were: fiber center cracks (straight fiber on the composite surface), fiber end cracking 

(submerged below the surface), and fiber bend crack (exposed fibers).  The third crack 

was largely absent from these samples. 

 It can be seen that crack initiation rates in the three composites are significantly 

different.  The majority of all crack growth occurs in the first 48-72 hours after which 

rates or crack initiation slowed and after 2 weeks essentially stopped.  The total number 

of cracks in the five E-glass/epoxy, five E-glass/modified polyester and five E-glass/vinyl 

ester specimens were 56, 24, and 2 respectively.   This data has a direct correlation 

between to the total surface area of fibers exposed with a larger area denoting more SCC.  

The E-glass/vinyl ester ranged between 2-7% surface area exposed while the E-

glass/epoxy specimens had 30-45% and the E-glass/modified polyester between 7-20% 

total surface area exposed. 

 The cracking of the fibers from the nitric acid appears to be a result of residual 

manufacturing stresses instead of the actual wearing-away of fibers from nitric acid.  This 
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was confirmed when pure fibers were exposed to nitric acid and no cracking was formed.  

There was a slight contradiction between this study and Megel regarding the resistance to 

SCC of the same kinds of samples. It was shown by Megel that E-glass/vinyl ester is 10 

times better than E-glass/epoxy and that E-glass/modified polyester exhibits 5 times 

worse resistance to SCC than E-glass/epoxy.  Megel showed as well that SCC in vinyl 

ester composites in comparison with the other two were quite similar but the presence of 

mechanical loading could be responsible for this difference.  The properties of this 

composite are superior to the other two if it is determined regardless of mechanical 

loading. 

 The results of this test show that SCC is initiated in the samples, even without 

mechanical loading and that the number of cracks is largely dependent on the volume of 

exposed fibers on the composites surface.  Of the three types tested, the highest rates of 

SCC and largest total surface areas of exposed fibers were found in the E-glass/epoxy 

system.  The externally applied stresses are not necessary for SCC on the as-supplied 

surfaces of the composites and SCC can develop in the fibers embedded in the polymer 

resins due to residual stresses.  These initiation rates go to zero if loads are not applied. 
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1.3 Modal Acoustic Emission 

The main purpose for MAE testing is as an effective nondestructive evaluation 

technique.  MAE allows for real time monitoring of events in mechanical testing that are 

not be visible to the human eye.  Modal acoustic emission is a branch of acoustic 

emission that utilizes broadband transducers and the waveforms resulting from events to 

enable the categorizing and locating of signals through analysis.  Signals themselves are 

the result of stress-wave propagations due to microstructural changes from localized 

strain-energy releases.  For composites the energy release comes from matrix cracking, 

fiber matrix interface debonding, fiber fracture and delamination.  Despite this useful 

analysis technique, it must be understood the challenges that come with it.  MAE sensors 

are placed on the surface of the material and at some standoff distance from the signal 

origin.  This means accounting for wave propagation, attenuation, signal leakage and 

boundary surface interactions. 

Certain complications arrive when investigating wave propagation, particularly in 

plates.  While both primary low plate modes are generated, there is discrepancy between 

the flexural wave velocities and theory. (Gorman, Plate Wave Acoustic Emission 1991)  

It was noted that flexural waves being predominantly lower frequency than extensional 

modes, would attenuate more rapidly.  Also of note is that source changing from the face 

of the plate to the edge almost entirely eliminated flexural mode.  Modeling has been 

previously investigated for MAE in plates by use of Mindlin-Medick plate theory as well 

as dynamic finite element plate method. (W. H. Prosser 1999) From this research it was 

shown that both models predict flexural mode in agreement with experimental modes, but 

only the dynamic finite element plate method would be more accurate overall.  This is 
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due to its flexible nature to be able to model different source configurations and 

geometries.  Discrepancies also arose for long times due to contributions from reflections 

on plate edges, further exacerbated in the Mindlin-Medick plate theory model.  It should 

be noted that Mindlin-Medick plate theory models have trouble with matrix cracking 

when the source is symmetric with respect to the midplane.  This dynamic finite element 

plate method will be expanded upon in the next section. 

AE signals also become much more complex when laminated anisotropic plates 

are considered.  Accuracy when using exact elastic theories proved to have limited 

accuracy in predicting elastodynamic fields, being dependent on plate thickness, pulse 

width of the forcing function and source distance. (Lih 1995)  These differences are even 

greater when an approximate method is used.  Transfer Matrix method was also used to 

account for anisotropy, by satisfying continuity conditions at interlayer interfaces. 

(Nayfeh 1991)  This method relates displacements and stresses from one side of the 

composite to the other, which solves for the propagation of free waves on the plate by 

understanding the periodic repetition of the plate. 

The complex nature of wave propagation in anisotropic plates is further 

compounded in composites as the frequency content of the signal will experience 

different amounts of attenuation depending on the location of sensors with regard to fiber 

orientation. (B. H. Burks, On the Anisotropic Attenuation Behavior of the Flexure Mode 

of Carbon Fiber Composites 2013) 

In order to understand how AE works in composites, it must first be understood 

how it works in simpler structures, mainly thin metal plates.  Waves have classically, and 

for the purposes of investigation, been investigated by conducting a lead break on the 
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plates surface and monitoring the signals on AE sensors. (Gorman, Plate Wave Acoustic 

Emission 1991) (Gary 1994)  These lead breaks excite classic low order modes; 

extensional (S0) and flexural (A0) (see Figure 10 and Figure 11). 

 

Figure 10: Mode Example, Time Domain 

Source: (Huang 1998) 

 

 

Figure 11: Mode Example, Group Velocity Curves Overlay 
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Pencil lead breaks are ideal for their repeatability and availability, however, it can 

only be applied to the outer surface of a test sample and can only be easily applied as an 

out-of-plane source (In-plane sources are also quite common, depending on accessibility) 

as well as having a limited range of source rise times and dimensions.  Pencil lead breaks 

were compared to calculated values as well as the effect of rise time and geometric size 

on far-field displacements. (Gary 1994) 

Measurements were conducted on an aluminum alloy plate 31.mm thick with 

lateral dimensions of 1.5m by 1.2m.  A 0.3 mm mechanical pencil lead break was applied 

at the center of the top surface and measured at a distance of 0.254 m. Computer 

simulations were done by using a temporal variation of normal stress calculated from a 

previous study (see Figure 12). (Breckenridge 1990)  This is coupled with a change in 

rise time, which is the time required to achieve maximum stress, which is chosen so that 

the total force reached 1 N.  This matches the force in experiments and the output is 

measured 0.254 m from the source. 

 

Figure 12: Simulated Lead Break 

Source: (Gary 1994) 
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Experimental data was then compared to computer generated data, paying special 

attention to the wave between 40 and 90μs.  This was done to show agreement between 

the values calculated and experimental.  They both show radial component of the portion 

of the wave between 60 and 70μs and constant in the z direction and the vertical 

component nearly linearly anti-symmetric.  Almost the entire captured wave is shown to 

be anti-symmetric as all of the energy at 140μs is in this mode (see Figure 13). 

 

Figure 13: Out-of-Plane displacement (UZ) at Sensor 

Source: (Gary 1994) 

 

 Sensor diameter is also important to understanding signal analysis; this is known 

as the aperture effect. (Miller 2005) As the diameter of the sensor is increased to become 

comparable to the wavelength, phase cancellation occurs.  For this sensor distance setup, 

the displacement was integrated over a circular disk.  Severe distortion was seen before 
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signal filtering as the diameter sufficiently increased, yielding a maximum diameter of 

6.35mm for this waveform (see Figure 14).  At the time this was not understood, but by 

integrating over a line in an axi-symmetric model the sensor was not being replicated, but 

rather a large annular disc. 

 

Figure 14: Response as a Function of Sensor Diameter 

Source: (Gary 1994) 

 

 Key to understanding source location is the effect of Rise Time.  Rise time can 

effectively be seen as the amount of time it takes from beginning to end of an event, in 

this case, the lead break.  As rise time slows, there is observed a significant loss of 

amplitude, while shape is largely the same (see Figure 15). 
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Figure 15: Response as a Function of Rise Time 

Source: (Gary 1994) 

 

 These factors show the importance and dramatic effect rise time has on source 

detection.  Sources with rise times up to 40μs require an MAE system with good response 

to relatively low frequencies.  In addition, sensor diameters above 6mm do not preserve 

fidelity of measured waves. 

Investigation into classifying damage mechanisms in glass fiber reinforced 

polyester in tensile tests using acoustic emissions was done, with data from the acoustic 

emission sensors used as inputs into a Kohonen self-organizing map, which separates 

signals and allows for a correlation with failure modes. (Huguet 2002)  

 Several other researchers have experimented with AE in composites and found 

several results.  Some have found specific AE amplitude ranges for damage mechanisms 
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in their composites. (Barre 1994)  Others have showed that fiber breaks and longitudinal 

splitting occurs in the same location for their unidirectional graphite/epoxy specimens 

with stronger signals resulting from fiber breakage and weaker ones from longitudinal 

splits. (Ely 1995) However single damage mechanisms such as matrix cracking can 

produce a wide range of AE signal parameters.  Due to this fact, pattern recognition and 

multi-parameter analysis is necessary to determine the cause of signals.  This is 

accomplished with supervised pattern recognition in experiments where the number of 

damage mechanisms is known in advance.  Clustering algorithms were used to organize 

feature vectors into clusters so that points within a cluster are more similar to each other 

than vectors from other clusters.  This was done with the self-organizing neural network 

from Kohonen’s self-organizing map technique.  This technique organizes the output 

layer as a map where similar shapes are detected and categorized. 

 Tension tests were carried out on rectangular plates of unidirectional 

glass/polyester composite materials.  The composite was a laminate with 12 layers and 

the test was done at room temperature.  Samples were cut using a diamond wheel saw 

which was found to give a suitably smooth surface finish with minimum sub-surface 

damage.  Tests were done on plates of pure resin, 45° and 90° off-axis.  These 

orientations were chosen due to the expectation of damage modes during tests.  Pure resin 

was expected to have matrix fracture with 90° off axis expected to have mainly matrix 

fracture with come decohesion and 45° was expected to have mainly decohesions with 

some matrix fracture.  Micro-80 PAC Sensors (not broadband) were used with a sampling 

rate of 8 MHz and a 40 dB pre-amplification.  A total amplification of 80 dB was used 
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with a filtering threshold of 32dB and a nominal distance of 70 mm between sensors was 

used. 

 Tensile tests on pure resin generated little MAE activity.  The waves that were 

detected could all be grouped by burst type indicating that the waves were generated 

during dynamic and discontinuous micro-fracture.  After reaching 2% strain two phases 

can be considered:  micro-crack formation and dynamic breaking.  Between 2% strain 

and final rupture the signals have a typical distribution with values in the 55-70 dB with 

slow rising waveforms and short duration.  These signals cannot be associated with 

anything but nucleation and vacuoles growth in the resin, i.e. matrix micro-crack 

formation.  The second phase occurs at very high amplitude and high energies from 

rupture.  These signals occur with dynamic breaking and thus are not retained as they 

cannot be attributed to damaging material response under load. 

 Tests on the 90° off axis samples showed MAE activities with a noticeable 

increase in activity around 0.4% strain.  After an initiation period the number of MAE 

counts increased linearly with strain at stresses higher than 3MPa.  The activity begins 

early in loading indicating an early onset of damage.  Signals originated from sources 

randomly distributed within gauge length and their amplitudes fell into two zones.  A-

type signals were similar waveforms as the resin test (50-70dB range) while B-type 

amplitudes which are higher but have shorter decay time and higher energies (70-90 dB 

range).  B-type has sharp rising and decaying in a short duration while A-type has slowly 

rising waveforms with a longer decaying.  A-type is again identified as matrix cracking 

due to its similarity to the resin signals while B-type are identified as Matrix decohesion.  

This was again confirmed as classification of A-type and B-type signals in the 45° test.  
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These results can be seen in Figure 1 which shows Activation of the Kohonen’s map for 

the three tensile tests. 

 

Figure 16: Activation of the Kohonen’s Map for the Three Types of Tensile Tests 

Source: (Huguet 2002) 
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 This method is not without controversy, as growing support mounts within the AE 

community that amplitude is irrelevant and that mechanisms are distinguishable by their 

mode and frequency content rather than time domain structure. 

 Source location and real world application testing are also important towards 

establishing validity for MAE testing, prompting MAE testing on a spherical 

graphite/epoxy pressure vessel. (M. Hamstad 1995)  The reasoning for testing this 

structure was to draw results on the implications for MAE monitoring and future MAE 

studies of large fiber/polymer composite structures and increase the ability for source 

location in conjunction with a model for localized failure of large aerospace type 

fiber/polymer composites.  Previous studies had used MAE for source location but were 

on small samples with small standoff distances between sensor and source 

(approximately 60mm).  This study also sought to answer three questions associated with 

MAE signals: significance, location and source type. 

 The study was done on an aerospace-type graphite/epoxy pressure vessel (see 

Figure 17: Test specimen and sensor location.  Location of sensors was chosen based on 

the expected source of failure being at the poles and there were 16 in total.  Sources were 

placed in two concentric rings around the poles with the same orientation at each pole.  

The sensors used were wideband non-resonant with a fairly flat displacement response.  

The PZT sensor outputs were bandpass filtered with -3dB points at 85 and 325KHz.  The 

response was compared to the NIST standards with a pencil lead break. 
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Figure 17: Test specimen and sensor location 

Source: (M. Hamstad 1995) 

  

 Each pair of waveforms from this study was from a single MAE source event.  

This was proven from several observations.  Waveform pairs were recorded almost 

exclusively during Felicity ratio loading or well into constant pressure holds where event 

rates were very low.  Also time periods between events and hits from one event were 

typically observed to be of different orders of magnitude when the hit listings of the 

results from all sixteen sensors were studied.  In addition each waveform was recorded 

with a window of only 800µs with the trigger set at the central portion of the window.  

All of these factors allowed for pairs of waveforms to be from only a single event to be 

able to study the effects of distance from the source to sensor to be studied. 

 After some testing some observations were made about a single event detected by 

two sensors.  In one case a signal from one event believed to be at the South Pole was 

detected by sensor #9 and sensor #15.  What made the sensor hits interesting were the 
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large difference in the peak amplitudes of the two sensor hits from the same event.  The 

peak amplitude drops from 484mV for sensor #15 to 73 mV for sensor #9, a drop of 

about a factor of 5.  Also the character of the waveform at the second sensor hit, #9, has 

the form that is observed with wideband, flat with frequency sensors on a thin plate, i.e. 

low amplitude extensional wave packet followed by a flexural wave packet with a slower 

group velocity.  This signal is not present in the data collected from sensor #15.  Also the 

rise time and hit duration are much longer for the hit on sensor #9 as well as the energy in 

the waveform for that sensor shows that it is down by an order of magnitude from the 

energy at sensor #15.  Fast Fourier Transform spectral content shows a significant 

difference between sensors as well where sensor #9 has a shifted frequency much more 

towards the lower portion of the frequency band.  These differences show strong 

evidence that the small-specimen database might be inappropriate for far-field, large 

composite structures for assessing damage level via peak amplitudes or to distinguish 

source mechanisms. 

 In another case involving the same sensors rise time, peak amplitude, duration, 

energy, spectral content are all very similar from one event.  In this case the MAE source 

was located approximately equidistant from each of the two sensors as is evidenced by 

the nearly equal arrival times and almost identical time-lengths for the extensional 

portions of the waveforms.  This test does verify that for a given event all sensors 

behaved in the same fashion. 

 For the case in which an MAE event occurs very near one sensor several 

observations can be made.  Spectral content for the first sensor hit displays a range of 

frequencies and has a fairly high average frequency (greater than 200KHz).  If the second 
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hit sensor is in the near field the shorter propagation distance results in a spectral content 

for the second hit sensor that is similar in range and distribution to that for the first hit 

sensor but with amplitudes reduced.  Lastly if the second hit sensor is in the far-field the 

greater propagation distance causes the higher frequency content of its spectrum to be 

dramatically reduced, causing a lower average frequency (less than 200KHz) and a 

spectral distribution which is very different from the first hit sensor.  

 For the case in which an MAE event occurred in the far-field but equidistant from 

each sensors observations can be made.  Spectral content of the first hit sensor matches 

that of the spectral content of the second hit sensor with respect to amplitudes, 

distribution, range and frequency.  Also the average frequency is low (less than 200KHz). 

 Geometric spreading is present for all MAE sources which accounts for the large 

loss in amplitudes for short propagation distances when one sensor is near the source.  

This has two components: 1/r losses which govern propagation when spherical waves 

spread through structure thickness and 1/√r losses which govern wave propagation when 

circular wave fronts spread over the surface area.  For thin walled structures only the 

latter is relevant and as the circular spreading continues it becomes less relevant than the 

material attenuation which will continue to cause losses in amplitude.  For these longer 

distances the characteristic waveforms are those to be expected from Lamb waves, with 

the two primary modes being extensional waves with a higher group velocity and flexural 

waves of a lower group velocity and higher amplitudes.  This explains why differences in 

behavior when an event happened near one sensor but the second sensor hit is far enough 

away for full development of the Lamb waves.  Lastly Lamb waves are dispersive 

meaning they group velocity depends on frequency.  The time difference between the 
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initial arrival of the extensional wave packet and the subsequent arrival of the flexural 

wave packet increases with greater propagation distances.  

 For large composite structures with a plate or shell type geometries there are 

several implications of this research.  First, data and numerical models need to be 

developed to characterize dependence of MAE hit characteristics on the distance of 

propagation for different bandpasses and various thicknesses of fiber/polymer composites 

which would determine sensor distance.  Due to cost concerns, sensors must be lower in 

bandpass to monitor lower frequencies experiencing a lesser degree of material 

attenuation and take advantage of higher amplitudes which are present in the flexural 

mode at lower frequencies as well as lower thresholds.  Also, an approach needs to be 

developed to flag MAE hits for which the event characteristics were determined in the 

near field where event characteristics are changing at a very high rate.  There must also 

be a way to determine source distance by individual sensors. 

 In order to model stress-induced damage for these kind of composites the 

following must be accounted for: micro-damage beings at low percentages of failure 

level, composite structures loaded in biaxial stress increases in stress result in uniformly 

distributed characteristic damage state, failure of a composites is not determined by the 

characteristic damage state but rather by the result of a higher concentration of damage 

accumulation in a localized zone, in a composite the localized zone of concentrated 

damage often occurs at stress concentrations, and the number of MAE events resulting 

from the characteristic damage state is orders of magnitude greater than the number of 

events coming from the zone of localized, concentrated damage.  Based on that model it 

does not make sense to attempt MAE relating to failure strength of a composite unless 



35 

accurate track is kept of the source locations.  If one is ignored then MAE from the 

generation of characteristic damage state will confuse the data analysis due mostly to 

numerical superiority.  The same thing applies to MAE from different zones of 

concentrated damage distinction.  
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1.4 Finite Element Modeling 

Initially, the development of a model for MAE was desired.  For the purposes of this 

research, modeling MAE waves in plates is the most important preliminary modeling. 

Early AE modeling was applied using seismology modeling, which has been applied 

to model propagation of bulk and surface waves.  This model works well for infinite 

dimensions, however in plate geometry only for short propagation distances of less than 

ten plate thicknesses. (W. H. Prosser 1999)  For testing purposes, thin plates are desired, 

and for these geometries the wave propagation is dominated by guided modes.  These 

modes are more affected by reflections by pate edges.  AE signals with very low 

frequencies, such as flexural, tend to agree experimentally better than other high order 

modes.  For the purposes of advancing AE modeling, the Mindlin Plate Theory (MPT) 

and Dynamic Finite Element Method (DFEM) were tested to evaluate both thin plate 

modeling as well as anisotropic conditions. (W. H. Prosser 1999) 

For the purposes of investigating thin plates, an aluminum plate with a density of 

2770 kg/m
3
, Young’s modulus of 73 GPa, length of 0.508m, width of 0.381, and plate 

thickness of 3.175mm was examined.  Source was positioned centered on the sample 

both length and width wise with sensors along the central length line with distances 

varying from 7.62cm to 17.78 cm.  This model used a hexagonal mesh with 40 elements 

through the thickness.  Only asymmetric Lamb modes could be obtained based on 

conditions simulated.  Amplitude of the monopole source force function was 1N.  A 

comparison of results was examined for the two methods at 7.62cm, 12.7cm, and 

17.78cm source distance, which showed good comparison but had some discrepancy at 

higher frequencies (see Figure 18). 
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Figure 18: DFEM (solid) and MPT (dashed) Comparison 

Source: (W. H. Prosser 1999) 

 

This discrepancy is thought to be due to the approximate nature of MPT.  DFEM is 

based on exact linear elasticity and had been confirmed experimentally. The DFEM 

method accounts for displacements from all modes, symmetric and anti-symmetric while 

the MPT only for symmetric modes.  Other plate theories can calculate extensional 

modes, but do not agree well experimentally. 

The influence of microscopic elastic properties and the geometry of the MAE source 

are important to investigate by finite element analysis (FEA).  This will be done by 

investigating the formation process of lamb waves by simulation of five different MAE 

configurations. (Sause, Simulation of Lamb Wave Excitation for Different Elastic 
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Properties and Acoustic Emission Source Geometries 2010)  A comparison will be made 

between isotropic and anisotropic materials of aluminum and fiber reinforced materials 

respectively.  Through this work it will be determined if the microscopic elastic 

properties of the MAE source have significant influence on the excitation of distinct 

Lamb wave modes which can be used to identify failure mechanisms. 

 Analytical descriptions of MAE sources from crack formation and propagation 

are well documented and linked to macroscopic displacement by Green’s functions, they 

are much more difficult for complex geometries.  FEA is deemed as the solution to this 

problem for plate specimens due to its computational capacities and ability to model and 

simulate MAE.  This modeling can be done for the source mechanism, signal propagation 

and signal detection.  For the purposes of this research a source model with a finite 

dimension of the crack model and the geometry and elastic properties in the vicinity of 

the crack model was used. 

 After the signal excitation, the elastic wave propagates into the solid and is 

reflected at the respective boundaries of the geometry.  For the FEA simulation the 

propagation of such signals is modeled based on time dependent solutions of differential 

equations of the equilibrium states.  Different source radiation directions can excite 

different ratios of symmetric and anti-symmetric Lamb wave modes.  This can lead to 

different frequency compositions of the detected MAE signals.  Signal propagation in 

previously used specimen types suffered drastically from boundary reflections since 

interference of signals with their boundary reflections makes identification of distinct 

Lamb wave modes more difficult.  This is extended to larger specimen geometries and 

for isotropic media is treated as a reference.  Most importantly, the detection process of 
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MAE signals will be detected by the simulation of surface displacements at distinct 

positions. 

Simulations were performed for rectangular plate specimens utilizing symmetric 

boundary conditions at the yz and xz plane (see Figure 19).  The MAE source is located 

at the medial plane where (x,y,z) = (0,0,0)mm.  This model was used in 5 different 

configurations: Isotropic aluminum with homogeneous source, anisotropic CFRP plate 

with homogeneous source, Anisotropic with inhomogeneous source (resin properties), 

Anisotropic CFRP with inhomogeneous source (carbon fiber properties) and point force 

couple. 

 

Figure 19: FEA model 

Source: (Sause, Simulation of Lamb Wave Excitation for Different Elastic Properties and Acoustic Emission Source 

Geometries 2010) 

 

 The first configuration has a crack that is modeled as a three-axes cross, which is 

cut out of the homogeneous medium around the sources.  For this configuration all 

domains were assigned elastic properties of aluminum.  For the second configuration the 
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same configuration was used although all domains were now assigned homogeneous, 

anisotropic elastic properties of T800/913.  The third configuration has microscopic 

elastic properties of a cube with the properties of the HexPly 913 resin and the elastic 

properties of the macroscopic plate made of T800/913. While the dimensions of the crack 

model and domains were comparable to previous configurations, now a smooth transition 

between microscopic and macroscopic elastic properties is achieved utilizing a cube 

which encloses the resin cube.  This causes a gradual change in elastic properties of the 

enclosed medium to those of the surrounding medium along with gradual material density 

change.  

 In order to excite an MAE signal a linear source-time function was used to deflect 

the respective crack surface.  After the excitation time, the boundaries of the source 

model are free of constraints.  For better comparison of the obtained results the 

magnitude and excitation time was kept constant for all models at 100nm and 100ns 

respectively.  Refinement of the FEA mesh was gradual from 2.0 mm to 0.01 mm when 

approaching the model source.  The higher resolution close to the source is necessary to 

resolve the geometric details of the source model, while the coarse macroscopic 

resolution is sufficient enough to describe signal propagation within the plate specimen.  

As a result of the break of symmetry with respect to the xy-plane Lamb wave modes can 

occur with the sensitivity of the Lamb wave formation based on this effect.  With 

reasonable steps of refinement of the mesh density around the source model the 

excitation of anti-symmetric Lamb waves could not be prevented.  This setup ensures a 

more realistic model as opposed to perfect symmetric mesh conditions.  All simulations 

were done on identical meshes. 
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 Signals of both homogenous, isotropic medium models are dominated by the 

contributions of the So Lamb wave mode with an excitation of the Ao Lamb wave mode.  

This contribution is hardly visible in the Choi Williams Distribution (CWD)-diagram 

since the magnitude of the coefficients is dominated by the intensity of the So Lamb wave 

mode.  CWDs allow for the visualization of a signal in the time domain, but with 

frequency visible.  This is valuable because it allows for the visualization of wave content 

as it arrives at the sensor, and an easy classification of mode (see Figure 11).  Since the 

source model configuration A uses an axially oriented surface displacement, a 

dependency on the orientation of the source relative to the sensor can be expected.  

Surface displacement signals were detected at three distinct points, reflecting three 

different source-sensor angles of 0, 45, and 90 degrees respectively between the crack 

surface normal (x-axis) and the investigated propagation direction. 

 Inhomogeneous, anisotropic medium models modeling matrix cracking, the 

signals are dominated by the Ao mode for all source-sensor angles.  Only minor 

contributions of the So Lamb wave modes are observed.  This configuration for the fiber 

breakage model has a strong contribution of the So Lamb wave mode for propagation 

direction parallel to the crack surface normal.  Increasing source-sensor angle decreases 

So mode contribution.  The same source excitation time was used in this simulation for 

both source model configurations.  Source excitation time of fiber breakage is expected to 

be shorter than for resin fracture which results in a stronger contribution of the intensity 

of the So mode for the case of fiber breakage and emphasizes the characteristic difference 

between the associated source mechanisms further. 
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 As increased understanding of anisotropic, thin-plate modeling of MAE was 

understood, models could grow in accuracy to represent more experimentally accurate 

representations of damage mechanisms in fiber/polymer composites.  Explicit dynamic 

finite element methodology was determined the most ideal due to its explicit time 

integration scheme, computational efficiency, as well as ability to account for complex 

geometry, anisotropy, wave reflections and increase in model size. (B. K. Burks 2013) 

 In order to advance modeling capabilities, research was done to investigate a 

unidirectional hybrid polymer matrix composite, with carbon and glass reinforcing fibers 

in a high temperature epoxy matrix (see Figure 20).  This model was took advantage of 

symmetry by modeling ¼ of the cross section, and used fracture mechanics to set damage 

mechanisms in proper directions, which will be discussed later in more detail.  This 

model was meshed with hexahedral elements and converged at 147 μm element length. 

 

Figure 20: High Voltage Composite, Cross Sectional and FEA view 

Source: (B. K. Burks 2013) 

 

This methodology involved a 4 point bend test, with loading pins separated by 

202.8mm and 101.4mm for outer and inner pins respectively.  AE waves were 
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experimentally acquired with broadband sensors were placed on the ends of the rod, and 

signals acquired at a rate of 25MHz, with 2048 points captured and 256 pre-trigger 

points.  Only signals within the inner span were examined, which was identified by 

examining arrival times.  Experimental signals were recorded and examined (see Figure 

21 and Figure 22). 

 

Figure 21: Fiber Fracture (a,d), Matrix Cracking (b,e), Fiber Matrix Debonding (c,f) 

Source: (B. K. Burks 2013) 
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Figure 22: Experimental Waveforms, Burks, Frequency Domain 

Source: (B. K. Burks 2013) 

 

 These events were shown to have large amounts of energy content between 100 

and 300 kHz for every damage mechanism.  These results in the time domain also show 

the impact of source depth, with obvious amplitude effect as the source moves further 

into the composite (y distance is from rod center).   Post processing, a comparison of 

damage mechanisms was examined by analyzing their Peak Power (PP) (see Figure 23). 
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Figure 23: PP Comparison by Damage Mechanism and Fiber Type 

Source: (B. K. Burks 2013) 

 

 Burks found that three-dimensional FEA modeling is capable of distinguishing 

between damage mechanisms in rod type geometry.  These methods will be expanded 

upon for the purposes of this research.
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2. METHODOLOGY 

Since the primary experiment began off of the work of Megel et al, and the fixture 

was property of the University of Denver, it became the starting point for the 

experimental design.  The previous fixture (see Figure 4) was designed for 4 point bend 

testing, however improvements could be made. 

The most important design features for a 4 point bend test are the loading pins.  

Previous loading pins had loose tolerances on span width, allowing samples to move side 

to side and preventing reliable sample placement.  This bend point thickness was 

modified by fabricating from aluminum blocks new loading pins, with ¼” dowel pins 

press fit into them.  These loading pins were fixed to the base plate with an alternating 

dowel pin and threaded holes, allowing pins to be press fit into it, and it to be bolted into 

the loading pins through the base plate (see Figure 24). 
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Figure 24: Loading Pins 

 

The fixture also relies on separating top and bottom pieces, with the top piece 

containing the load pins, and the bottom piece acting as a sturdy base.  The base has 2 

guide pins which ensure alignment with the top piece via two bearings.  Previous 

bearings were sleeve bearings and previous guide pins were loose and bolted on.  These 

were replaced with high quality, press fit ball bearings and high quality steel, threaded 

guide pins.  These guide pins were threaded into a newly fabricated aluminum base plate.  

The new base plate was ½” rather than the previous ¼”, but with identical dimensions to 

comply with ASTM standards for 4 point bend tests.  These new pieces proved to provide 

much more evenly distributed load with little to no frictional resistance. 
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Load was placed on a weight centering pin which attaches to the top fixture piece.  

Previous loads were applied approximately by adding 1 and 2lb weights.  This method 

was found to be too approximate and cumbersome, so the weight centering pin was still 

utilized, but a single steel block was machined to load and used; this lead to more 

accurate loading and an easier test setup process. 

Previous acid tank design involved an acrylic tank, which was found along with 

the fixture, but promptly broke during initial testing.  This tank was critical to introducing 

acid to the samples while not putting additional notable stresses.  Initial redesigns 

involved slotting an acrylic tank and sealing the slots from the outside with silicon.  

While this kept acid from leaking during testing, it allowed acid into the walls, which 

proved to cause damage not intended by breaking composites at the tank/sample 

interface.  This design was ultimately replaced by a two part acrylic tank which could be 

sealed in two phases, first with the top open under the specimen lip and second up the 

sides and on top of the specimen.  This proved to keep acid out of the points where the 

sample touched the acrylic. 

Sensor attachment was placed on the ends of samples via superglue, but this was 

determined too high risk for the sensor damage and it was believed that increased 

sensitivity could be achieved by placing sensor faces parallel to fiber direction on the 

tension side between the loading pins.  In order to determine appropriate gain for these 

particular sensors, gain was increased until ambient electronic noise caused triggering, 

then gain was backed off 6dB.  This lead to an eventual gain of + 72dB, which by most 
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accounts of MAE, is considered quite sensitive, however, for the test of attempting to 

capture individual fiber breaks or small matrix cracks such sensitivity was necessary.  

 Along with this new placement, new sensor holders were designed for more 

repeatable placement and pressure.  Rubber banding a backer plate to sensors was 

experimented with, but ultimately discarded for rapid prototype (RP) sensor holders 

which slid onto the samples (see Figure 25).  All other aspects of the fixture were left as 

previous design dictated. A complete Solidworks assembly of the new fixture was created 

for visual representation (see Figure 26). 

 

Figure 25: Sensor holders 
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Figure 26: New Fixture Design 

 

 Implementation of safety procedures was important for the longevity of the test 

and protection of the tester.  This involved proper personal protective equipment (PPE) 

and procedures for handling spills. 

The following equipment was used:  Noxious fume mask, goggles, chemical resistant 

gloves, chemical resistant jump suit, funnel, High Density Polyethylene (HDPE) squeeze 

bottle, washing bin, and Sodium Bicarbonate.  The safety equipment was used during any 

portion of the test where acid was present.  The funnel and squeeze bottle were used to 

easily add acid to the tank after loading.  The test was done in this order to prevent a 

violent shaking of acid which could occur if acid was added before loading.  Sodium 
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Bicarbonate was used any time a spill occurred and also to neutralize used materials 

before they were rinsed and stored for the next test.  A mask was worn at all times for 

redundancy, as the tank was designed with only a small opening to prevent noxious 

fumes from propagating far from the sample. 

This procedure was adhered to for every test, and met University standards for 

hazardous materials. 
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2.1 Materials Tested 

The following seven PMCs were tested, which were classified by weight percent 

fibers: 

Glasforms      Epoxy E-glass 

1A    Vinylester Epoxy ECR-glass 1,  75% glass 

3A    Vinylester Epoxy E-glass 1,     75% glass 

4B    Vinylester Epoxy ECR-glass 2,  80% Glass 

5    Polyester E-glass 1,  

9    Epoxy E-glass 1, 

11    Proprietary Material ECR-glass 2 

 

The MPS composites were made by pultrusion and supplied to the project by 

MacLean Power Systems. 

Glasforms samples were available from University of Denver.  Each specimen 

was machined to 3.2 mm thick, 12.7 mm wide and 304.8 mm long. (Megel 2001) Each 

sample had one width-length face not machined, with this face being put in tension 

during the experiment.  Samples were then incased in an acrylic, two piece case on a 3 

inch section of the sample in the center.  This case was sealed from above and below with 

silicone to ensure an acid proof boundary on the gauge section.  In addition, the machined 

surfaces within the acrylic case were coated with petroleum jelly to prevent acid attacks 

on those particular surfaces. 
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Figure 27: Prepped Sample 

 

Sensors chosen for this test were Mistras CM-204S/R 90 degree broadband 

sensors.  These sensors have adequate frequency response for composite materials 

monitoring, approximately 100kHz to 1500kHz.Custom sensor holders were designed 

and printed out of ABS plastic using a 3-D printer.  Each holder has a spring behind the 

sensor and lips to mount the sensor.  Each sensor face was coated with couplant to 

acoustically couple the MAE transducer to the test specimen surface, and slid into 

position halfway in-between the inner and outer load pins on each side of the sample. The 

sensor face was placed on the tension side (see Figure 27).  The tension side was chosen 

over the compression side due to cracks only expanding in tension.  Choosing this 

placement instead of perpendicular to fiber direction at the ends of the samples allows for 

more consistent signal acquisition due to less attenuation.  These sensor holders ensured 

consistent sensor placement as well as equal and consistent pressure on the sensors.   
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2.2 Testing Procedure 

After the tank was affixed and the sensors were in place, a pencil lead break was done 

on each width-thickness side of the sample to ensure the sensors were working and 

coupled properly. (ASTM Standard E2374-10 5.1)  This test was done with the same 

acquisition settings as the full test and was saved for post-test analysis if necessary to 

determine proper coupling and sensor settings. 

After the pencil lead break was completed, the sample was loaded to 83.97N (Megel 

2001)  and the LVDT set.  This load generated an axial stress along the fibers of 134 MPa 

which corresponds to 26.7kN applied to a 16 mm diameter composite insulator in-

service.  Pencil lead breaks were again performed to ensure that loading had not caused a 

decoupling of the sensors to the sample.  At this point Personal Protective Equipment 

(PPE) was donned and acid was added to the tank until the sample was submerged.  For 

the majority of tests the acid used was 0.063N Nitric acid. (Megel 2001)  For one test 1N 

Nitric acid was used to explore the effect of acid strength on results. 

Upon completion of adding acid, the data acquisition was initiated on WaveExplorer 

and acoustic monitoring began. 
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Figure 28: Running test 
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2.3 Post-Test Procedure 

After completion of the test, sensors were removed, the tank cleaned, and the sample 

was cut, cleaned and prepped for microscopy.  Surface characterization of the specimens 

(matrix and fibers) was analyzed using a JEOL model JSM 5800 LV Scanning Electron 

Microscope (SEM) and an optical Olympus BX51M microscope.  All the specimens were 

previously prepared and mounted using conventional procedures for electron and optical 

microscope observations.  All microscopy, including procedure, results and images were 

done by Dr. Euripides Solis-Ramos. 

2.3.1 Surface Characterization 

To verify stress corrosion cracking of the fibers and their susceptibility to the 

corresponding testing condition, morphological surface characterization of the samples 

were conducted by microscopy techniques before and after of each test. The analysis of 

microscopic images is allowed to present and discuss a reasonable comparison of the 

degree of degradation of the composites and particularly of stress corrosion cracking on 

the fibers.  Since this characterization falls under separate research conducted by Dr. 

Euripides Solis-Ramos, only pre and post-test images are  shown to illuminate surface 

damage from SCC.  

2.3.2 Signal Processing 

For signal processing, the waveforms recorded by WaveExplorer were individually 

exported, along with event vs. time data and parametric data.  These signals were then 

processed by a custom Matlab code.  Electromagnetic interference (EMI) is inevitable 

when making MAE measurements at such high gains.  These signals were determined to 
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be signals whose peak amplitude occurs simultaneously on each sensor, as well as having 

any observable mechanical dispersion.  EMI signals were isolated, and ignored.  

Pre-trigger data should be very flat, indicating that the sensors are on, but not 

displacing until the damage mechanism wave hits.  When pre-trigger energy (PTE) is 

loud, it can increase the amplitude of signals, causing false triggers of events (see Figure 

29).  The level of acceptable PTE was determined to be          . 

 

Figure 29:PTE 

    

Each signal was passed through a high pass 4 pole Butterworth filter of 100 kHz and 

a low pass 14 pole Chebyshev filter of 1500 kHz.  These filters were established by doing 

a pole and filter study to determine how to properly filter out signals greater than 

1500kHz.  Initially a Butterworth filter with 4 poles was attempted for both high and low 

pass.  High pass filter was accurately cutting frequencies below 100kHz but the low pass 

was not.  As a test, an impulse signal was used on poles on the high pass were increased 

to determine effectiveness at cutting frequencies over 1500kHz (see Figure 30).  When it 

Pre-Trigger 

Noise 
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became apparent that the number of poles was not effective enough, a Chebyshev filter 

was tested in the same manner (see Figure 31). 

 

Figure 30: Butterworth HP Filter Test Signal, Pole Study 
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Figure 31: Chebyshev HP Filter Test Signal, Pole Study 

 

 This new filter had adequate high range frequency cut off, so a test signal was 

used to determine effect on the time and frequency domain.  The signal showed 

significant improvement in both cut off frequency filtering (see Figure 32) but also in the 

cleaning of errant noise in the signals (see Figure 33 and Figure 34). 
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Figure 32: Filtering Test Comparison, Time and Frequency Domain 
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Figure 33: Butterworth HP Filtering, CWD 
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Figure 34: Chebyshev Filtering, CWD 

 

 After filtering the data, the spectral content of the waveforms was evaluated in the 

frequency domain via a Fast Fourier Transform (FFT).  This data was paired with the 

signal in the time domain and saved in an image as well as a comparison between both 

channels in the frequency domain.   

Calculations were also done on the data to determine the PP and the weighted peak 

frequency (WPF) for each signal (equations 1 and 2).  WPF determines the scaled 

centroid of a spectrum, while PP determines the area under the spectrum curve for a 

given frequency range divided by the total area under the spectrum curve.  These metrics 
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provide a means of showing the natural clustering of different source mechanisms in the 

frequency domain when wave propagation effects are taken into account.    PP had 

bounds of 500, 0, 1500, and 700 kHz for f1, f2, f3, and f4 respectively.  This data was 

compiled for each test and graphed (see Figure 35). 

 

Figure 35: PP and WPF Example 
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2.3.3 Source Location 

In order to link potential signal clustering with damage mechanisms, a technique 

had to be used to locate the experimental signals with a source location.  This technique 

would show that the mechanism claimed by PP vs. WPF plots is, in fact, the damage 

observed by microscopy. 

 Typical source location for MAE events requires at least 3 sensors to triangulate 

the signal in 3D and uses only peak amplitudes.  This methodology usually involves 

taking the peak amplitude of signals in the time domain and using that arrival time to 

determine the source location as sensors are placed at varying distance from the source 

mechanism.  This is usually done by setting an amplitude threshold and using the time 

when the wave crosses this threshold for both sensors.  The difference in this time was 

the arrival time.  This was determined to be inferior to frequency based location due to 

the ability to isolate said frequency so that attenuation of higher frequency waves in 

larger plates could be negated. (Ziola 1991) 

For this experiment, only 2 sensors were used, which requires a linear source 

location methodology.  Since the sensors are placed on the tension surface, expected 

damage is also expected on the tension surface, and sample width is small relative to 

length, this assumption should be valid. 

 CWDs also have the ability to show strong modal differences.  CWDs show the 

signal in the time domain, with amplitude vs. time, as well as a secondary plot which 

shows the frequency domain, with frequency vs time and amplitude color coded.  This, 

along with dispersion curves, shows clear modal content.  Since different damage 
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mechanisms are believed to have different modal wave makeup, these CWDs can be used 

in combination with PP vs. WPF data to differentiate between different signal types (or 

equivalently source mechanisms) (see Figure 11). 

 In order to obtain accurate source locations and wave content, a methodology of 

obtaining wave speed at peak frequencies rather than amplitudes, and analyzing CWDs 

was used. (M. Hamstad 2014)   In order to obtain group velocities, PLBs were done on a 

glass fiber composite specimen with sensors at known distances of 6” and 9”.   These 

pencil lead breaks were then transformed and their CWDs examined.  In these CWDs the 

peak amplitude in frequency was observed for both channels.  Since this frequency is 

representative of a specific part of the wave, arrival at both sensors is staggered based on 

their distance. This frequency was used to determine an arrival time for each sensor, and 

with distances being known, a wave velocity was calculated.  Experimental data was then 

examined in the same manner, to determine peak frequencies for both channels, and with 

a known velocity, used to determine source distance from sensor location. (M. A. 

Hamstad 2012)   
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2.4 Modeling 

Modeling was used to link MAE signals with damage mechanisms.  The model 

simulates the composite samples by entering in material properties and MAE data for 

unidirectional composites.  The composite sample was built in HyperMesh, and meshed 

with all hexahedral elements.  The model requires a very fine mesh, with 20 linear 

elements per shortest wavelength for a converged solution (M. A. Hamstad 1994).  The 

high end of the observed frequencies is 1500 kHz with group velocities at approximately 

2mm/μs.  For this case elements have to be <=100 μm to capture desired data (see Figure 

36 -Figure 38). 

 

Figure 36: Mesh 
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Figure 37: Mesh, close up 

 

 

Figure 38: Model setup 
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Damage/fracture mechanics shows that energy release is preferential in unidirectional 

composites, where fiber fracture results in an energy release in the fiber direction, matrix 

splitting releases energy perpendicular to the fiber direction and debonding is a 

combination of the two.  For the purposes of this model, this information was used to 

apply loads in the directions of preferential energy release based on the damage 

mechanism; source aligned with fibers for a fiber break, and source transverse to the 

fibers for matrix splitting (see Figure 39).  

 

Figure 39: Matrix Crack Simulation Animation Snapshot 

 

Simulations are run as an explicit model with dynamic loading to excite the source 

mechanism, and then stepped forward in time to account for stress wave propagation.  

The aperture effect matters in this case, and is taken into account by numerically 

integrating the displacement or velocity at all nodes in the sensor region of the model.  
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An example signal for a matrix crack shows the amplitude wash out of the signal and a 

visualization of the sensor area shows how a single node velocity will not capture the full, 

realistic signal as the sensor face experimentally will (see Figure 40 and Figure 41). 

 

Figure 40: Waveform, Matrix Crack, 1550ns Rise Time, Sensor Node 
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Figure 41: Sensor Face, Matrix Crack, 1550ns Rise Time 

 

In order to simulate fiber breaks and matrix cracks properly, rise times must be 

calculated.  In this work, the rise time is defined as the total time taken for the excitation 

of a given damage mechanism.  This rise time is effected by material properties and total 

size of the crack.  For fiber breaks, crack length was determined to be the fiber diameter, 

and for matrix cracking the length was taken as an average of observed length based on 

material from microscopy. 

Calculations were done using two methods, which calculate the Rayleigh wave speed, 

the theoretical upper limit at which a propagation crack may run. (B. Burks 2013)  The 

most precise method is done by calculating longitudinal and shear wave velocities,    

and   , using the stiffness matrix for a given material, resulting in Rayleigh Wave Speed, 

   (equation 3). (Gilson 2008)  The approximate result can be obtained by calculating  , 

which gives the knockdown percentage used to multiply shear wave velocity by to solve 

for    (equation 4). (Pichugin 2006)  
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These calculations were based on the well determined published values for each 

matrix material (see Table 1), and yielded maximum Rise Times for each event type (see 

Table 2). 

Table 1: Matrix Material Properties 

Material 

Young's Modulus 

(GPa) 

Poisson's 

Ratio 

Density 

(g/cm^3) 

Epoxy 1.500 0.350 1.250 

Vinyl Ester 2.675 0.358 1.495 

Polyester 1.000 0.370 1.700 
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Table 2: Rise Time 

Material 

Calculated Rayleigh 

Wave Speed (km/s) 

Crack Length 

(μm) 

Rise Time (ns) 

Glass Fiber 2.80-3.10 12.50 2.0-4.0 

Epoxy 0.62 14.82 23.79 

Vinyl Ester 0.76 21.83 28.73 

Polyester 0.43 20.05 46.13 

 

These Rise Times represent the fastest possible wave speed, a speed that is not 

reasonable for practical application.   It should also be noted that fiber break theoretical 

rise times are an order of magnitude faster than for matrix cracking.  This script used has 

a rise time range of 0.1μs – 2μs for the fiber break, and 1-2μs for matrix cracking, values 

determined to be adequately larger than calculated rise times as were observed 

experimentally by others.  (Gorman, Modal AE Analysis of Fracture and Failure in 

Composite Materials, And the Quality and Life of High Pressure Composite Pressure 

Vessels 2011) These conditions have different amplitude cards, which were created by 

running a Matlab script to represent rise times used.   

The wave content of the simulated signal were processed in the same manner as the 

experimental signals were, by taking it to the frequency domain and examining the 

spectral content.  This data gives much insight into where each mechanism falls on the 

spectrum, thus allowing for a linking of MAE data to particular damage mechanisms.  

This data was then compared to SEM imaging to confirm the results.  
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 Since true rise times are more range based estimates rather than known 

certainties, this model is meant to be forward predictive while still operating within the 

reasonable ranges calculated numerically and postulated by previous MAE work.  Results 

from this model will give a more accurate Rise Time range for the specific materials 

used. 

 This model was also run with variance in source location ( 0.15”closer and further 

away source from sensor location).  This was done by changing the location of the source 

to alternate node sets.  Additionally the model was run for varying material properties, 

with the variables being fiber type, matrix material and volume fiber fraction.  For the 

purposes of this model, fibers used were E-glass and ECR.  Matrix material was Epoxy 

and the proprietary material.  Volume fiber fraction was 60% and 70%.  Both of these 

model types were run individually, with only a single variable for each set to determine 

dependency of the model to those characteristics.  This was done for both the matrix 

crack and fiber break simulations.
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3. RESULTS 

Presented are all results from SCC testing, 3 Point bend testing, Microscopy, and 

Modeling. 

3.1 Results from SCC Testing 

3.1.1 Events vs. Time 

Event vs. time data was exported directly from the WaveExplorer software that notes the 

time in the test when each event happened and logs this for the duration of the test.  Results for 

the Glasform’s data are shown in Figure 42. 

 

 

Figure 42: Glasforms Events vs. Time curves 
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Tests 1, 2, and 3 have event counts of 672, 446 and 132 respectively while the 1N test 

had an event total of 290.  This data includes EMI data, which had to be filtered out using Matlab. 

Total event total after filtering can be seen in Table 3, filtering techniques can be seen in section 

2.3.2.   

Events vs. time for MPS samples can be seen in Figure 43 and Figure 44.  Tests on E-

glass samples #3A(2), #5(3), and #9(2) had event totals of (12, 93), (442, 40, 92), and (27, 32) 

respectively before filtering out EMI.  Tests on ECR samples #1A, #4B and #11 had totals of 

1220, 8831, and 3868 respectively before filtering out EMI.   Due to time constraints, #4B and 

#11 had only 1000 signals each processed and the totals were extrapolated for the full set.  This 

data contains mostly non-event signals as it was determined post-test that cables were damaged.  

Adjusted totals can be seen in Table 3 for all of these tests.  Sample 11 was filtered twice, once 

with the previously mentioned EMI filter, and again by filtering out signals whose PTE exceeded 

a value of 0.2
  

  
, indicating a false trigger.  Only a forward modeling finite element approach 

along with accurate source location and microscopy observations at these locations can confirm 

what these events relate to. 
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Figure 43: MPS specimens Events vs. Time behavior 

 

 

Figure 44: MPS ECR specimens Events vs. Time behavior 
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Table 3: Events vs. Time Counts 

Sample Manufacturer Sample type Acid Type Event Total 

MPS ECR-1/Vinylester 0.063N Nitric 920 

MPS E-Glass/Vinylester(#3A) 0.063N Nitric 11 

MPS E-Glass/Vinylester(#3A) 2 0.063N Nitric 80 

MPS ECR-2/Vinylester (#4B) 0.063N Nitric 5026* 

MPS E-Glass/Polyester (#5) 0.063N Nitric 437 

MPS E-Glass/Polyester (#5) 2 0.063N Nitric 35 

MPS E-Glass/Polyester (#5) 3 0.063N Nitric 77 

MPS E-Glass/Epoxy (#9) 0.063N Nitric 27 

MPS E-Glass/Epoxy (#9) 2 0.063N Nitric 29 

MPS ECR/Proprietary (#11) 1 0.063N Nitric 590* 

Glassforms E-Glass/Epoxy 1 0.063N Nitric 597 

Glassforms E-Glass/Epoxy 2 0.063N Nitric 219 

Glassforms E-Glass/Epoxy 3 0.063N Nitric 110 

Glassforms E-Glass/Epoxy 1N Nitric 201 

*- Extrapolated data for entire set from 1000 signals 

 

The much higher event count for ECR composites was unexpected, as ECR fibers are 

resistant to SCC.  This data set also had a much higher frequency of EMI signals than other 

samples.  The reason for very “noisy” tests is thought to be largely related to degraded/antiquated 

equipment and limited facilities for MAE work.  The noisy environment, which was encountered 

after moving the test prior to MPS testing, does not lend itself to relevant event vs. time data.   
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Post testing it was hypothesized that equipment from another experiment, mainly hot plates used 

to maintain a certain temperature on electronic switches, caused large amounts of EMI.  While 

this kind of large error in event number is not helpful to data sorting, it does not eliminate signal 

analysis all together. 

3.1.2 Wave Velocity 

In order to properly source locate, a wave velocity had to be calculated for the 

composites.  PLBs were conducted as described in 2.3.2 using flexural mode as the 

dominant mode.  The CWDs resulted in arrival times of 102.04μs and 131.16μs 

respectively for Ch1 and Ch2 at 288kHz for 152.4 mm and 228.6 mm (see Figure 45and 

Figure 46).   Using the difference in known distance and arrival times, a velocity of 

2616.76m/s was calculated.  This number is reasonable with published data. (Giordano 

1998) 

 

Figure 45: Source Location PLB CWD, Ch1 
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Figure 46: Source Location PLB CWD, Ch2 

 

3.1.3 PP vs. WPF 

The primary goal in using MAE on SCC tests was to attempt to classify damage 

mechanisms by type.  Since event vs. time data has shown it is unable to do this, efforts 

were moved to analyzing the spectral content of waveforms which facilitates the natural 

clustering of source mechanisms to gain a better understanding of the SCC process.  To 

accomplish this objective, WPF and PP were utilized.  The methodology for creating 

these plots is discussed in 2.3.2. 

Clustering for these plots would indicate a repeated event type, giving a range of 

PP and WPF for which a particular event occurs.  The E-Glass/Epoxy composites show 

very good examples of this clustering (see Figure 47 - Figure 49). 
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Figure 47: Eglass Epoxy 6/18/13, Ch1 
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Figure 48: Eglass Epoxy 6/24/13, Ch2 
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Figure 49: Eglass Epoxy 7/2/13, 1N, Ch2 

 

 Results do show strong clustering between 300kHz-400kHz for each of the shown 

SCC tests.  Interestingly, only the 1N test shows any significant clustering outside of this 

range, which was expected to have at least two clusters (one for fiber breakage, and one 

for matrix cracking).  After this was observed, CWDs for each test were observed and 

representative ones shown, which all indicate strong flexural modes and are shown in the 

same order as the PP vs. WPF figures (see Figure 50-Figure 52 ). 
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Figure 50: Eglass Epoxy 6/18/13 CWD, Ch1 Waveform #312 

 

 

Figure 51: Eglass Epoxy 6/24/13 CWD, Ch2 Waveform #29 
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Figure 52: Eglass Epoxy 7/2/13 CWD, 1N, Ch2 Waveform #274 
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3.2 3 Point Bend Testing  

 Upon the completion of SCC testing, observing the experimental WPF vs. PP 

frequency, only one cluster was observed.  It was unclear whether this cluster was matrix 

cracking or fiber breaking, so in an effort to gain more insight, a 3 point test was done.  A 

smaller 5” sample was used due to test design, with sensors being placed 1 inch from 

each end (see Figure 53).  This test was done with fiber orientation parallel to loading 

pins to facilitate primarily matrix cracking (see Figure 54). 

 

Figure 53: 3 Point Sensor Set-up 
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Figure 54: 3 Point Bend Test 

 

 This test was performed using the same software and settings as the SCC test, 

with the only difference being the gain was decreased to +52dB.  This was done due to 

the expected energy of the events being large, sustained cracks, rather than the slow 

forming individual ones during SCC tests.  The post processing of the signals was 

completed and the PP vs WPF analyzed and the largest, most identifiable cluster circled 

(see Figure 55). 
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Figure 55: PP vs. WPF, 3 Point Bend 

 

 The circled data cluster represents the majority of the signals from the 3 point 

bend test.  This signal cluster ranges from 270kHz to 483kHz WPF and 6.07% - 19.16% 

PP.  Examining the CWDs of a few representative waves shows strong flexural mode 

(see Figure 56 and Figure 57).  This cluster location and CWD mode analysis both 

confirm with results from SCC testing, indicating observed signals were indeed matrix 

cracking.  Source location at one of the peak amplitude frequencies, in this case 203kHz, 

confirms that the source was in fact in the central section of the sample.  Arrival times for 

this example were 103.48 and 100.84 μs respectively, yielding a difference in arrival time 
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of less than 5mm (sample was not perfectly centered, but other arrivals times confirmed 

this was the location of the damage from the load pin).  It should be noted that this test 

involved fibers 90° off axis from the SCC tests, which does have an effect on the 

propagation of damage mechanisms through the composite to the sensors. 

 

Figure 56: Representative Waveform CWD, Waveform #8 Ch1 
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Figure 57: Representative Waveform CWD, Waveform #8 Ch2 
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3.3 Modeling Results 

The intent of the forward predictive model was to simulate fiber breaks and 

matrix cracks as well as the effect of source location and material properties.  The setup 

and explanation for this model can be seen in 2.4. 

Modal acoustic emission has been discussed previously, with the primary modes 

for this research having been flexural and extensional mode.  These modes have different 

propagation speeds as extensional propagates fastest in the down the length of the 

composite while the flexural arrives slightly later (see Figure 58 and Figure 59).  As well 

as having different speeds, strong reflections off of width edges and specimen end are 

noted (see Figure 60). 

 

Figure 58: Waveform Animation, Matrix Crack, Extensional Mode 

Leading Wave 

Edge 
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Figure 59: Waveform Animation, Matrix Crack, Flexural Mode 

Leading Wave 

Edge 



 

92 

 

Figure 60: Waveform Animation, Matrix Crack, Reflections 

 

3.3.1 Rise Time 

 Rise time was the primary variable in question, and thus the most resources were 

devoted towards its completeness.  For Fiber breaks, this Rise Time was varied between 

0.1μs – 2μs.  This signal was post processed in the same manner as the other waveforms 

through the Matlab code and the PP vs. WPF examined (see Figure 61). 

Reflections 
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Figure 61: PP vs. WPF, Fiber Break Model 

 

The trend immerged that as Rise Time increased, WPF decreased, until at one 

point, it decreases drastically.   In order to understand why there was a drastic decrease, 

the waveforms were examined in the time and frequency domain (see Figure 62 and 

Figure 63).  Each contains two dominant frequency peaks which greatly affect the WPF 

of the figures, which have identifying arrows in Figure 63.  As RT increases, the 

amplitude of the second peak decreased until at 1325ns it has equal magnitude as the first 

point.  Subsequently, higher RT waves have a second peak of increasingly smaller 

amplitude.  This is the point at which the WPF significantly drops off as is seen in Figure 

RT 
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61.  These combined factors lead to a reasonable RT between 800-1000ns with a 

resulting WPF of 459 kHz-500 kHz and a PP of 18.26%-19.3% for a simulated fiber 

break.   Longer RT than 1000ns were run, but were considered unrealistically long. 

 

 

Figure 62: Waveform, 1250 ns RT, Fiber Break 
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Figure 63: Waveform, 1325 ns RT, Fiber Break 

 

 The matrix crack simulation was similarly processed and the WPF vs. PP 

examined (see Figure 64). 
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Figure 64: PP vs. WPF, Matrix Cracking Model 

 

 Similarly this model experienced the same drop-off and for the same reasons, 

with the 3
rd

 frequency peak becoming less than or equal to the first frequency peak (see 

Figure 65). 
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Figure 65: Waveform, 1600 ns RT, Matrix Crack 

 

 These combined factors lead to a reasonable RT between 1500-1550ns with a 

resulting WPF of 406kHz-469kHz and a PP of 17.17%-21.35%.   1000ns was included 

but was deemed too fast to be realistic. 

 This data was graphed on top of the 3 point test data to show convergence of the 

model to experimental results with the same red circle superimposed to show clustering 

(see Figure 66).  Note that fiber break simulation does not have a cluster.  This result was 

expected as 3 point bending orientation should be primarily matrix cracking. 
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Figure 66: PP vs. WPF Overlay, 3 Point Test and Model 

 

3.3.2 Signal Distance 

 After adequate rise times were established, effect of signal distance could be 

quantified.  This was done by changing the node set where the force was being applied on 

the model rather than moving the sensor location.  For this distance, the source was left 

centered from width wise, while lengthwise distance was adjusted to be plus/minus 

3.81mm from its original length centered position.  The source was again left on the 

surface of the sample, as that is where the majority of events are expected to occur 

experimentally.  PP vs. WPF is again examined, with the original, centered value left for 

comparison (see Figure 67 and Figure 68). 
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Figure 67: Distance Study, Matrix Crack, 1550ns RT 
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Figure 68: Distance Study, Fiber Break, 800ns RT 

 

 Results for both fiber break and matrix crack were expected, as changing their 

location had large effects for a closer fiber break, and a further away matrix crack.  It was 

thought that the specific rise time chosen might have an effect, so alternate rise times 

within the acceptable range were tested and the PP vs. WPF again examined (see Figure 

69 and Figure 70). 
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Figure 69: Distance Study, Matrix Crack, 1000ns RT 
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Figure 70:  Distance Study, Fiber Break, 1000ns RT 

 

 The trend remained the same for both damage mechanisms so the waveforms 

were examined (see Figure 71 and Figure 72). 
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Figure 71: Waveform, Distance Study, Matrix Crack, 1550ns RT, Closer 
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Figure 72: Waveform, Distance Study, Matrix Crack, 1550ns RT, Further 

 

 This change in difference fundamentally changed both the shape of the wave in 

the time domain by increasing the peak at approximately 80μs and a peak amplitude in 

the frequency domain at approximately 400kHz for the further signal.  This is expected as 

distance should decrease the amplitude in the time domain slightly due to attenuation and 

reflections off of sides will create changes in the received wave based on constructive and 

destructive in.   The model is strongly affected by the reflections of the waves off of the 

narrow width of the generated surface waves, an issue which does affect experimental 

results, as can be seen by the clusters ranges as well as comparing signals from ch1 with 
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ch2.  This same issue was seen in the fiber break models, but with the peak amplitude 

being a lesser frequency peak and the time domain signal having different shape. 

3.3.3 Material Properties 

 Model variable dependence was again tested, but with the variable being material 

properties.  The method for doing this can be seen in 2.4.  Fiber break shows, as 

expected, that a change in material properties affects PP and WPF as the material 

constants of the propagation medium is important in determining wave content (see 

Figure 73) 

 

Figure 73: Material Study, Fiber Break, 800ns RT 

 

 
Prop 60f 
Prop 70f 
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 Waveforms were investigated for these types to examine how shape changed with 

material properties, beginning with volume fiber fraction. (see Figure 74 and Figure 75). 

 

Figure 74: ECR Epoxy, 60f, Fiber Break 
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Figure 75: ECR Epoxy, 70f, Fiber Break 

 

PP between 60% and 70% f shows a change from 16.94% to 18.36% while WPF 

changed from 431.7 kHz to 419.3 kHz.  Changes can be seen in both the time and 

frequency domain, with amplitudes both increasing at values around 65μs in the time 

domain and 100 kHz in the frequency domain.  Shape remains largely unchanged other 

than those two amplitude changes.  When compared to the E-glass model, a large portion 

of the time domain is different between the 40μs-60μs range (see Figure 76).  This 

appears to have impact only on the lowest amplitude peak, reducing that peaks amplitude.  

One of the largest reasons for this could be a result of Leaky Lamb Waves, which show a 

loss of flexural mode in solids by mode being absorbed into liquids when there is a 
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solid/liquid interaction at damage mechanisms.  (B. H. Burks, The Impact of Solid-Fluid 

Interaction on Transient Stress Wave Propagation due to Acoustic Emissions in Multi-

Layer Plate Structures 2014) 

 

Figure 76: Fiber Break, 800ns RT 

 

 This shape is completely different, but for this range of data only.  It should be 

noted observed impact on frequency domain is several larger amplitude “spikes” between 

250 kHz and 500 kHz.  This effectively lowers the WPF.  A similar effect can also be 

seen when matrix material is changed (see Figure 77). 
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Figure 77: E-glass Proprietary Material, 60f, Fiber Break 

 

 Arrows indicate where peak amplitudes in the frequency domain differ from 

volume fiber fraction in the E-glass PU samples.  The peaks shown contributed to the 

strong WPF difference between models, which was a PP of 17.03%-19.92% and 392.5 

kHz-490.6 kHz for 60%f and 70%f respectively. 

 In addition to fiber breaks, matrix cracks were also examined.  Using the same 

criteria, a rise time of 1500ns was used and the same material properties changed (see 

Figure 78). 
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Figure 78: Material Study, Matrix Crack, 1500ns RT 

 

 Similar trends can be noticed in the large discrepancies between similar materials, 

but with a large gap between ECR fiber types rather than PU matrix materials.  

Waveforms are examined to understand key differences (see Figure 79 and Figure 80) 

 

 
Prop 60f 
Prop 70f 



 

111 

 

Figure 79: ECR Epoxy, 60f, Matrix Crack 

 

 

Figure 80: ECR Epoxy, 70f, Matrix Crack 
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The largest difference between these two simulations is the dominating peak in 

each frequency domain.  The peak from the 60f model is 0.0062 in amplitude and located 

at 283kHz while the 70f model peaks with an amplitude of 0.0079 at 322kHz.  The 

increased amplitude and greater frequency push the 70f simulation WPF almost 100kHz 

higher. 

 When comparing the ECR fiber to the E-glass fiber model, the time domain looks 

very similar in shape and amplitude, however, when the frequency domain is examined, 

differences in dominating amplitudes can be observed (see Figure 81). 

 

Figure 81: Matrix Crack, 1500ns RT 
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 The same peak in the frequency domain that was highlighted in Figure 80 is 

completely missing in the original simulation, leading to a lesser WPF. 

 Examining the difference between matrix materials leads to the largest difference 

in WPF and PP for any of the simulations involving material properties (see Figure 82). 

 

Figure 82: E-glass Proprietary Material, 70f, Matrix Crack 

 

 For this simulation differences can be seen in both the frequency and time 

domain.  The signal between 20μs and 60μs has similar shape, but larger amplitude while 

the frequency has a large, lower frequency peak.  These differences lead to a largely 

decreased WPF. 
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3.4 Microscopy 

E-glass fiber reinforced composite materials had been very well documented and 

discussed from different perspectives. (H. Li 2011) (R. B. Jones 2004) (R. S. Jones 2010) 

However, for the new variants of ECR-glass fiber (corrosion resistant), it difficult to 

evaluate their susceptibility to failure when they are subjected to combined conditions 

such as stress and acidic environments.  Stress corrosion cracking can involve many 

mechanisms, such as the type of composite, exterior surface quality, fiber size, matrix 

fracture, fiber-matrix debonding, type of mechanical loading, etc.  These effects, alone or 

in combination, are often difficult to analyze.  The main factor responsible for the stress 

corrosion cracking in the composite materials appears to be the glass fiber rather than the 

matrix, as the resin appears to play a protective role by protecting the fibers from the 

corrosive environment.  

The purpose of this morphological surface characterization was to describe if the 

initial status of their surfaces, particularly the exposed fibers, played a determinant role in 

their susceptibility to stress corrosion cracking. Figure 83 through Figure 86 show 

representative microstructures (same magnification) of surfaces of the eight composites 

evaluated and Figure 87through Figure 90 show differences observed from SCC testing. 
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Figure 83: Vinylester, ECR-glass 1 and E-glass 1, As Received 

 

 

Figure 84: Vinylester ECR Glass-2, Polyester E-glass 1, As Received 
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Figure 85: Polyester ECR-glass 2, Epoxy E-glass 1, As Received 

 

 

Figure 86: Epoxy ECR-glass 2, Proprietary material ECR-glass 2, As Received 
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Figure 87: (3A) Vinylester E-glass 1, Before and After, 1N 

 

 

Figure 88: (4b) Vinylester E-glass 2, Before and After, 1N 

 

 

Figure 89: (3A) Vinylester E-glass 1, Before and After, 0.063N 
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Figure 90: (6) Polyester ECR-glass 2, Before and After, 0.063N
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4. DISCUSSION 

Presented are details concerning the more interesting results.  Comparison 

between SCC results and all other methodologies will be highlighted. 

4.1 SCC Testing 

SCC testing consisted of all of the data retrieved from the 4-point bend test and 

resulting post processing. 

4.1.1 Events vs. Time 

The results presented in this work show clear implications with respect to the AE 

monitoring of SCC.  It was noted early in experimentation that the original method of 

using event vs. time data to glean a quantitative sense of how resistant a material was to 

SCC was not going to be practical.  While normally this kind of data would be greatly 

useful for determining the number of events that occur in a test and at what point they 

happened, the test type and equipment hindered that.  In addition this type of data does 

not increase understanding of damage mechanism type or effect on material strength with 

events vs. time data. 

 SCC is an emerging field, and being such, does not have well defined and 

established methodologies for monitoring damage.    Normally, events vs time would be 

able to show a great deal about rate of damage accumulation, however, the noise 

associated with this test and break down in equipment hampered this, leaving it only 

useful for a small handful of data.  This meant that the method could not be applied to all 
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the accumulated data, and thus was not included as a useful methodology for the 

purposes of this experiment. 

4.1.2 Modal Acoustic Emission 

MAE is most commonly used on pressure vessels for cyclic loading at loads, 

much higher and cycles, longer test duration, and significantly larger samples than tests 

run for this experiment.  While this seems somewhat insignificant, the impacts were 

substantial. 

Increased loading means increased energy release at events.  This means 

sensitivity of the sensors does not require pushing the limits of them.  For SCC, loading 

rates are relatively small and comparable to in-service loading conditions whereas for 

composite vessels they are testing failure by creep or load.  The nature of SCC means that 

the fibers and matrix are cracking at lower loads due to the corrosion, meaning strain 

energy is not nearly as high upon damage.  This decreased strain energy release means 

that sensitivity of the sensors has to be high enough to monitor for such events, increasing 

the number of noise events significantly.  While tests were devised to improve upon the 

work of Megel et al, specifically in duration, increased noise proved a hindrance in tests 

of these lengths. In addition, most pressure vessel event types are multiple fibers, where 

SCC tends to be individual damage events rather than groups.  These kinds of differences 

help explain why 3-point tests experienced very few erroneous signals compared to SCC 

tests. 

Preparation impacted both the signal analysis as well and ability to isolate damage 

mechanisms.  Since the experiment was designed in the vein of previous similar tests, 
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sample size was already set and optimized.  This sample size was not a given cast size 

from the supplier, so samples had to be machined.  While great lengths were taken to 

protect these machined sides from additional mechanical and chemical damage, damage 

was inevitable.  Any machined surface, no matter how precisely is more susceptible to 

damage from defect and stress concentrations.  This is important for the purposes of this 

test because only two sensors were used.  Having only two sensors means location of the 

damage mechanism is linear, so having damage on the top surfaces would still register 

not only as an event, but also as one possibly on the side where monitoring was desired.  

This complicates ranking composites even further, but does not necessarily interfere with 

classification as the mechanism is slightly different.  Also, this was hopefully not as 

prevalent as desired damage since the largest machined face was solely in compression, 

where matrix cracking cannot occur and fiber breaks are less likely due to loading 

conditions. 

Sample sizes were quite small for standard MAE work.  Since propagation length 

is much larger than width and depth, geometry comes into play when it comes to signal 

shape.  Reflections of the wave off of the sides can change the shape of the wave before 

they reach the sensors.  Sensors were placed significantly closer than in previous tests, 

making this less prevalent, but geometry eliminates the possibility of proximity so close 

that interference is eliminated.  The new location does greatly decrease the amount of 

signal cancelation associated with end placed sensors.  Previous sensor setup was 

centered on the smallest dimension, causing top to bottom signals to have large degrees 

of wave manipulation from sample geometry. 
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The combination of all of these factors does make analysis significantly harder, 

but not impossible.  Robust methods of analysis should prove useful for tests of all types 

and more than likely would be strengthened with changes to the mentioned difficulties. 

 PP vs. WPF methods used showed strong clustering; however, clustering was 

isolated largely to a single cluster.  Observed microscopy and historical data shows more 

than one event type.  

 Clustering for each SCC test was consistently in the same range, a WPF of 300 

kHz-400 kHz and a PP from 7%-17%.  While this range could probably be tightened with 

more rigorous filtering, clustering remained strong through tests shown.  This method of 

analysis is not rigorously proven, so the wave content was also observed to give a more 

complete picture.  Cluster data all exhibited strong flexural modes, which matrix cracking 

has historically been linked to. (Sause, Simulation of Lamb Wave Excitation for Different 

Elastic Properties and Acoustic Emission Source Geometries 2010) (B. H. Burks, The 

Impact of Solid-Fluid Interaction on Transient Stress Wave Propagation due to Acoustic 

Emissions in Multi-Layer Plate Structures 2014)  The same clustering range in addition 

to the same wave content was strong evidence that observed and locatable events were 

matrix cracking.  While this identification of one damage mechanism was tremendous, it 

was not the totality of desired results.  Fiber breaks were not clearly identifiable in 

cluster, or in wave content by classical definition.  Microscopy confirmed that there were 

fiber breaks, but they were not registering on the sensors.  In addition, since wave content 

was not confirmation enough for a single mechanism, 3-point bend testing was added to 

ensure that clustering and content were a match.  
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4.2 3-Point Bend Test 

 3-Point bend testing was done to supplement SCC data, and to confirm the 

clustering from SCC tests was indeed matrix cracking.  This test proved to have another 

cluster in the same ranges as the SCC testing.  This cluster was the majority of the signals 

from the bend test, which should be comprised of mostly matrix cracking.  This was 

ensured by fiber direction and knowledge of the stress state applied to the specimen 

relative to the anisotropic strength of the material.  Damage mechanisms have been 

theorized this way in the past, with experimenters forcing damage mechanisms and 

determining them using various testing methods. (Huguet 2002)  This by itself should be 

considered inadequate to make such assumptions, but in combination with SCC PP vs. 

WPF clustering as well as wave content, sufficient evidence to make such a claim exists. 

 One key significant note should be mentioned, with the orientation of the 

composite for the 3-point test, comes a slight change in wave propagation.  3-point wave 

propagation goes through perpendicular fibers to reach the sensor surface, whereas SCC 

tests have a 90° fiber offset.  This can potentially change the wave shape and frequency 

response.  For the purposes of this test, it still overlapped within the same cluster, but 

perhaps there could be a slight difference in signals between tests. 
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4.3 Model 

 The purpose of using a model to compliment data was done for forward predictive 

purposes.  Despite many studies involving MAE and composites, projected Rise times are 

still largely theoretical and approximate.  The primary and initial purpose of the model 

was to achieve a more narrow range for Rise times.  This was done by using approximate 

material properties of the composite and importing them into a model.  This model takes 

into account the varying rate of propagation in composites, a very non trivial detail, and 

the understanding of preferential energy release by mechanism.  While this model is 

sophisticated in those methods, it still has limitations which are important to note. 

 Rise times of appropriate ranges were plugged into the model, and their PP vs 

WPF observed to compare to experimental data.  For matrix cracking, this range was 

clearly defined by the combination of SCC and 3-point bend data.  While running Rise 

times in these ranges did yield a PP and WPF within the range of SCC clusters, several 

implications should be understood.  While the model has sophisticated wave propagation, 

force application and accurate material properties associated with it, it does not in fact 

have clear boundaries separating “fibers” from “matrix”.  While this might be deemed as 

simplistic, waveforms are on the order of magnitude that they are not affected by this 

property for glass fibers. It has been defined as orthotropic, which is a more accurate 

characterization of material properties, but the wave would propagate differently with 

unavoidable differences in an experimental composite layup (imperfections, voids, fiber 

misalignment etc.).  This change could have slight effects on the tight range predictions 

given for Rise times. 
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 Distance study proved to show the importance of combining methodologies for 

classification of damage mechanisms.   Distance of a damage mechanism from source 

does have an effect on the WPF due to geometric restrictions causing increased 

reflections.  This has the potential to muddy clustering WPF data; however, it can be 

avoided with larger sample sizes or multiple sensors.  As this experiment was conducted 

without either of those controls, attention has to be paid not only to clustering data, but 

also to time domain, frequency domain, and CWD analysis of signals.  Geometry, as was 

mentioned earlier, can have a large effect on the waves’ reflections on boundaries before 

reaching the sensors.  The small dimensioning of this sample leads to complications in 

the WPF, and this is exacerbated in the model simulations. 

 The primary difference between the damage mechanisms modeled and their real 

world results is the simplification of their energy release.  Experimentally, they are not 2 

dimensional as the crack and the break start from the highest tension face and go to the 

depth of the medium being damaged.  While the model properly orients the energy 

releases by mechanism, the force is being applied on the surface, but is a body force.  

This method does yield very usable results, but it is a limitation none the less.  This 

orientation was used, mostly due to computational limitations for doing thickness out of 

plane forces as an even finer mesh would be required.  In order to supplement this 

limitation, a 2d model would need to be made with damage mechanisms having depth to 

handle the thickness out-of-plane damage. 

 A materials study showed some limitations in having a homogenous model with 

composite properties applied to directions vs. experimentally flawed, real world 
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composites.   In the fiber break, it was noted that only axial stiffness and density 

properties affected the WPF. The change for a given mechanism is more strongly affected 

by matrix material than is the case experimentally.  Also, the change in PU for fiber 

fraction is more pronounced since the PU is so pliable and the fibers are not.  

Experimentally, fiber properties would be much more important to wave content than 

matrix material for a fiber break.  The same material study for matrix cracked proved to 

support this theory when changing the fiber type kept values near original values.  Since 

the matrix energy release is perpendicular to fiber direction, the matrix properties would 

affect WPF much more strongly for this model.  This was also observed, as well as fiber 

fraction affecting density for all models contributing to a change in all WPFs.  
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4.4 Comparison Between Tests 

 At the onset of this research, it was desired to show the damage mechanisms 

detectable by MAE.  While an event type was isolated through PP vs. WPF, Modal 

Waveform analysis, and 3-point bend test data, fiber breaks were still not determined 

experimentally.  It is possible that some fiber breaks were seen by equipment, but 

numbers were not large enough to classify fully and show the trend.  Hypothesis for this 

reason is related to the nature of the events. 

 It has been shown that fiber breaks largely cause in-plane deformation, while 

matrix cracking largely results in out-of-plane deformation.  This could explain why fiber 

breaks were not recorded by MAE and matrix cracks were.  Sensors were placed on the 

intended damage face, meaning out of plane waves would be more likely to register on 

the sensor in this orientation.  Fiber breaks could pass right over the sensor without 

enough energy to start triggering.  It should be noted that during tension tests, which data 

was ultimately discarded, showed the ability to sense fiber breaks when they were in 

great numbers. 

 Despite the drawback in only showing a single cluster identity type, the analysis 

for that mechanism was quite thorough.  The method has proven to work across multiple 

samples and multiple test types.  This test has shown PP, WPF and Rise time values for 

the e-glass polymer matrix composites tested, as well as developed a forward predictive 

model for future experiments. 
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4.5 Evaluation of Shortcomings 

 One of the hardest things to overcome from this research was the rapid 

breakdown in equipment.  After the method had been refined, only a few tests were 

carried out before noise and false triggering began to interfere with data collection.  This 

coincided with a change in labs, however it was believed to also be a strong result of 

degrading equipment.  Used equipment was a decade and a half old, and proved not to be 

durable enough to complete this research as intended.  In addition, the age of the software 

proved to make for very inefficient testing.  As false signaling increased, problems were 

encountered with filtering and storage.  The computer only had 0.97 GB of memory, 

which would quickly fill up during a three day test, and would cause an overflow error, 

losing all data for that test.  In addition, if data was of a size able to be used, the software 

version required signals to be pulled off individually, by cycling through signals one by 

one and exporting them.  More current versions allow for all signals to be pulled off at 

once, which would streamline the process of post processing back to being automated 

through Matlab.  Also no USB port exists on this computer so signals had to be blocked 

to under 500, taken on a zip disk to a computer with both a zip drive and a USB, and then 

taken from USB to computer to be post processed.  This hurdle was more time 

consuming than prohibitive. 

 Despite these difficulties, enough data was collected to prove the methodology 

being used.  This was supplemented with additional tests due to lack of data, but proved 

to be adequate enough.  Since an additional purpose was to be able to rank composites for 

their SCC resistance, this proved to be impossible using MAE methodology given the 
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equipment failure.  The only way to properly do this is by using microscopy for this 

experiment; however, future implementation of this methodology could be used to do this 

very task with improved equipment and facilities.  



 

 

 

 

 

 

 130 

5. CONCLUSION 

1. Events vs. Time data proved to be irrelevant for more modern techniques, and 

were not used as a determining method. 

 

2. MAE showed several differences from traditional pressure vessel testing 

worth noting: 

 Decreased loading for SCC tests limited energy release from 

events.  These single events were harder to monitor for than group 

events typical of pressure vessel testing. 

 Sample size was set and required machining.  Both affect data by 

affecting modes through reflection and events through stress 

concentrations and surface damage. 

 

3. PP vs. WPF plots showed strong clustering for both 3 point tests and SCC 

testing in the same range, a WPF of 300kHz-400kHz and a PP from 7%-17%. 

 

4. Clustering signals were analyzed further using MAE methods and showed to 

be strongly flexural. 
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5. Combination of both MAE methods, PP vs. WPF plots, expected damage 

mechanism for 3 point test, and historical data showed that observed signals 

were matrix cracking. 

 

6. Fiber Breaks were not observable using MAE methods for SCC tests, despite 

microscopy confirming events taking place.  This is thought to be largely due 

to fiber breaks being in plane events rather than out of plane, making them 

harder to register given sensor placement. 

 

7. FEA modeling proved to be useful in predicting previous research range of 

Rise Times 

 Matrix Crack simulation falls within experimental ranges for WPF 

and PP. 

 Model material study showed impact of material properties as well 

as density has an effect on wave content. 

 Sample size within the model makes changes in source distance 

effect modal content of waves. 

 

8. Evidence between all testing clearly showed methodology to work for matrix 

cracking and identified reasonable Rise Times, MAE modes, WPF, and PP of 

those events.
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6. SUGGESTIONS FOR FUTURE RESEARCH 

1. 4 Sensors, 2 on damage face and two on sample ends to more fully 

encapsulate data. 

 

2. Change in sample dimensions to eliminate modal reflection issue and 

eliminate the need for machining surfaces. 

 

3. Update AE equipment to eliminate computer size and signal export issue. 

 

4. Update AE labs for less EMI interference. 

 

5. Include different acid types and strengths.  Sulfuric, nitric, hydrochloric, from 

low to high molarity. 

 

6. Create an SCC standard test (acid type and strength, load, methodology etc). 

 

7. Create a more sophisticated model to account for additional damage 

mechanisms (fiber matrix debonding, broken fiber vibration) and a thickness 

out of plane 2d damage model.
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