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Abstract 

Mobile manipulation is a hot area of study in robotics as it unites the two classes of 

robots: locomotors and manipulators. An emerging niche in the field of mobile 

manipulation is aerial mobile manipulation. Although there has been a fair amount of 

study of free-flying satellites with graspers, the more recent trend has been to outfit 

UAVs with graspers to assist various manipulation tasks. While this recent work has 

yielded impressive results, it is hampered by a lack of appropriate testbeds for aerial 

mobile manipulation, similar to the state of ground-based mobile manipulation a decade 

ago. Typical helicopters or quadrotors cannot instantaneously resist or apply an arbitrary 

force in the plane perpendicular to the rotor axis, which makes them inadequate for 

complex mobile manipulation tasks. Based on the concept of force closure (a term from 

the dexterous manipulation community), this thesis introduces the new type of dexterous, 

6-DoF UAV which provides the unique capability of being able to resist any applied 

wrench, or generalized force-torque. In this thesis, we describe the importance of force 

closure for mobile manipulation, explain why it is lacking in current UAV platforms, and 

describe how our hexrotor provides this important capability as well as exhibiting 

holonomic behavior.  
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Chapter One: Introduction 

 

A multicopter is a UAV (Unmanned Aerial Vehicle) that is lifted and manipulated by a 

number of rotors. Rotors of contemporary multicopters are mostly installed on the frame 

such that all their thrust vectors are parallel and vertical as in Fig. 1.1. Control of vehicle 

motion is achieved by alternating the pitch or roll rotation rates. 

 

Fig.1.1 Current UAV platforms (a) Helicopter (b) Linkquad Quadrotor (c) Holger Buss' 

MK Hexrotor (d) Octocopter. 

Numerous multicopter systems have been developed as custom research platforms, 

custom teaching platforms, toys, and commercially available systems (e.g. [1, 2, 3]). 

There even exist a number of open source projects [4, 5]. Most of these multicopters are 

like the ones used in [6] or [7], having a number of fixed pitch propellers with parallel 

and vertical thrust vectors.  
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Fig.1.2 Quadrotor illustrated with thrust vectors. 

Depending on how these N thrust actuators are physically arranged, various 

combinations of thrust magnitudes result in net force/torque vectors that span a subset of 

the 6-D Cartesian space of generalized forces. Coriolis forces induced by the spinning 

rotors can even be used to augment the net force vector on the multirotor body. 

Mathematically, a matrix can be constructed that provides a mapping from N-D actuator 

space to 6-D Cartesian force space, but this matrix can have rank no greater than four 

when the thrusters are all parallel. In fact, the standard quadrotor configuration results in 

rank of exactly four as the four thrusters provide linear force along Z axis, and torques 

around X and Y, while Coriolis effects provide torque around the Z axis. (This is what 

makes tri-rotors infeasible and conventional single-rotor helicopters also have four 

actuators: main rotor, tail rotor and two actuators on the swash plate.) Instantaneous 

exertion of linear forces along X and Y are impossible with these configurations, they can 
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only lift, pitch, roll and yaw. They cannot move laterally without first rolling or pitching 

an angle so these systems are nonholonomic.  

The multicopter system is dynamically unstable but allows for high maneuverability [8]. 

Some attempts have been made to change this system like quadrotors, to increase 

controllability [9], stability [10], or maneuverability, but they still only have four motors. 

This instability lends itself to surveillance where quick movement is key and inability to 

maintain a stable pose is not an issue, but not much else can be done with these platforms. 

Several hexrotor platforms have been developed including a miniature version from 

Airbotix and robust six- and eight-rotor versions from Aerobot [4] and Draganfly [1]. 

Recently, the U.S. Air Force announced a solicitation for hexrotor platforms for military 

procurement. All these known hexrotor configurations employ parallel thrust vectors 

(identical to the quadrotors) which result in rank-4 actuator-to-Cartesian mappings 

incapable of xerting arbitrary forces in 6-D space. These six-rotor helicopters have been 

created simply for the increased lift of six rotors, redundancy, and smoother operation. 

 

1.1 Motivation 

Manipulation is making a come-back in robotics. Through most of the 90’s and early 

2000’s, mobile robots dominated research and application, such as the DARPA grand 

challenge and autonomous helicopters. Now in kind of mid 2000’s and later up to now, 

there has been research in manipulation again.  Manipulation is about agility, dexterity, 

immobilizing a part when grasping.   

In harkens back in manufacturing, there is an emerging field of mobile manipulation, 

combining the growth of mobile robots with robots we can manipulate. The field of 
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mobile manipulation [17, 18, 19] combines two broad classes of robots, locomotors and 

manipulators, yet the potential impact is greater than the sum of the parts. Aerial mobile 

manipulation is an emerging field within mobile manipulation for which the locomotor is 

a UAV (unmanned aerial vehicle) [21, 34, 36, 37]. The popular quadrotor has become the 

main UAV of choice in robotics research, due to its ease of control and low cost. The 

added mobility and access that quadrotors provide brings a new dimension to the study of 

mobile manipulation and new challenges, as well. 

One of the greatest challenges that UAVs, in general, introduce, and quadrotors in 

particular, is the inability to instantaneously exert forces in the plane. Quadrotors are non-

holonomic; in order for them to move forward or sideways, they first have to pitch the 

entire body of the quadrotor to direct the thrust vector in the desired direction. What this 

means for aerial mobile manipulation is that the quadrotor cannot resist an arbitrary 

generalized force/torque instantaneously. In the parlance of the dexterous manipulation 

community, it lacks ''force closure''. In fact, in one of the first attempts to use a UAV to 

interact physically with its environment, Albers et al had to add an auxiliary actuator to 

maintain contact so Newton' Third Law of equal and opposite reaction would not 

immediately push the UAV away [38]. 

 

1.2 Related Works 

1.2.1 Force Closure 

Force closure and form closure [22] are concepts from dextrous manipulation that long 

pre-date the field of robotics. Reuleaux [23] and his contemporaries analyzed mobility 

under constraint in the late 1800's. Since those early days, force closure and form closure 
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have received significant attention, yet definitions have not always been consistent within 

the robotics literature. Historically, force closure has been the more mature research area 

with a well defined theory and set of definitions revolving around screw theory. Form 

closure, on the other hand, historically, has been more imprecise. Rimon and Burdick 

published a seminal work in robotics [24] that rigorously defined first and second order 

force and form closure and showed their equivalence. We base our discussion on this 

analysis and use their definition of the term “force closure” in this paper to reinforce the 

relevance to arbitrary wrenches. 

Force closure, as defined by Rimon and Burdick, is the ability of a mechanism to 

directly resist any arbitrary wrench (combination of force and torque) applied to it. A 

''force closure grasp'' in the dexterous grasping literature [25, 26, 27], is a grasp of an 

object that can resist an arbitrary wrench applied to the object. This class of grasps is 

important to the dexterous manipulation community but is often ignored by the mobile 

manipulation community because of the large mass of the mobile base and other issues 

have greater priority. 

 

1.2.2 Aerial Mobile Manipulation 

Aerial mobile manipulation is a newly emerging field even though it has existed for 

decades. Fig. 1.3 shows a ski resort being assembled in Canada. This is actually a ski 

resort being assembled in Canada. There are a group of workers doing the adjustment as 

this big helicopter doing the heavy lifting.  
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Fig. 1.3 A ski resort being assembled in Canada (Reprinted with permission from Judy 

Shellabarger Gosnell) 

Bring this apart, the helicopter can’t actually do the assembly. Due to Newton’s third 

law of equal and opposite reaction, as soon as the manipulated part comes into contact 

with the environment, it would balance away. Because the helicopter cannot exert forces 

instantaneously in the plane. It can only exert forces up and down. It can do some pitch 

and yaw, but it can’t exert forces instantaneously in the plane.  

 

Fig. 1.4 Aerial Mobile Manipulation: (a) Yale Aerial Manipulator capturing a block in 

hover (Three helicopters transporting a load (Reprinted with permission from Paul E.I. 

Pounds and Ivan Maza) 
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Through most of the 90’s and early 2000’s, mobile robots dominated research and 

application. And one of those things was quadrotors, helicopters with four blades. So 

people have started to apply helicopters and quadrotors to mobile manipulation. 

Arron Dollar has studied unstable dynamics of the vehicle and coupled object-aircraft 

motion while grasping objects during flight [34]. They also demonstrate grasping and 

retrieval of variety of objects while hovering, using Yale Aerial Manipulator. Paul Oh 

equipped the quadrotor with a gripper and studied about contact forces and external 

disturbances acted on the gripper and the entire manipulation system [37]. Anibal Ollero 

[39] and the GRASP lab at the University of Pennsylvania [21] both have worked on 

using multiple collaborative UAVs in order to perform transportation tasks. They did 

research on the interactions between UAVs, physical couplings in the joint transportation 

of the payload and stabilizing the payload along three-dimensional trajectories. 

The helicopter or quadrotor approach is limited though, only the top of objects can be 

grasped by the under-hung grasper and oddly balanced objects must be lifted by multiple 

UAVs. The UAV teams rigidly clamp to the manipulated object but, due to their design, 

they can only apply limited forces and torques. These piloted helicopters and quadrotors 

manipulate objects by hanging them from a line and/or employ fewer than six vehicles, 

severely limiting the range of wrenches that can be applied to the object. In generalized 

force space, they are effectively degenerate. 

The floating nature of aerial platforms and the highly compliant nature of their 

positioning bring the issue of force closure to the fore. With fixed-base manipulators, 

determining the degree of force closure of a manipulation system is simplified to 

determining the degree of force closure of the gripper or end effector. In mobile 
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manipulation, the manipulator base is not fixed to the ground so determining the set of 

wrenches that can be resisted is not strictly limited to the capabilities of the end effector. 

But due to the large differences in mass of the mobile base and end effector, it is 

generally safe to assume the degree of force closure is limited by the end effector and not 

by the ability of the mobile base to remain motionless. Therefore, for aerial mobile 

manipulation, the concept of force closure of the entire manipulation system needs to be 

considered.  

Conventional aerial platforms are not able to resist an arbitrary wrench so an end 

effector carried by such a vehicle will not be able to exhibit force closure. Force closure 

for arbitrary rigid objects in 3-D space requires six controllable degrees of freedom in 

force-torque space to truly accomplish. Current quad rotors lack both the number of 

degrees of freedom but also independence of the degrees of freedom due to the fact that 

the force vectors are all parallel.  

Furthermore, it is not sufficient to simply attach a 6-DoF manipulator to the bottom of 

a quadrotor or other degenerate aerial platform, as this does not guarantee force closure. 

While a 6-DoF manipulator can exert arbitrary wrenches when grounded, if the base upon 

which it is mounted cannot resist an arbitrary wrench, the combination remains 

degenerate. 

Finally with the multi-quadrotor approach force closure has not been obtained, lateral 

forces must be compensated for by torques, not direct opposition. We believe that a 

single UAV can have more manipulation abilities, chiefly force closure, all forces put on 

the grasped object can be opposed directly. Also a single UAV has numerous advantages 
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over a system that requires multiple UAV's including simplicity, communications, cost 

and available poses. 

 

1.2.3 Nonparallel Multicopter 

Besides force closure, an interesting side effect of a UAV with control over six degrees 

of freedom is the ability to accomplish 3D translational flight (hover at any orientations 

and translate in any directions). It would be much easier for a 6 degrees of freedom UAV 

to achieve unusual body attitudes as Mellinger et al did [31]. They developed elaborate 

dynamic control methodologies to achieve unusual body attitudes during aggressive flight 

maneuvers to allow their quadrotor UAVs to pass through narrow windows and other 

hazards. Using high precision external sensing of the pose of the vehicle and an accurate 

dynamic model, their quadrotor is capable of passing through the diagonal of a 

rectangular orifice, presumably to enter a damaged building through a narrow window in 

response to a disaster. The window presents an orifice of which the horizontal width is 

not sufficient to allow passage of the UAV, but the diagonal distance is. Since a typical 

quadrotor cannot hover at an arbitrary orientation (the result of a mapping from actuator 

space to Cartesian generalized force space with rank less than six, indicative of 

incomplete force closure), an aggressive dynamic maneuver is required to achieve entry.   

Therefore, as a way to gain full controllability over the 6-Dof robot pose and the ability 

of tracking an arbitrary trajectory over time (e.g., hover on one spot with an angled pose), 

some UAV platforms with tilting propellers have been designed. M. Ryll proposed a 

quadrotor design with tilting propellers [32]. In this work, to solve the problem of limited 

mobility of standard quadrotor, rather than four fixed rotors, four variable-pitch rotors are 
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used to provide an additional set of control inputs.  Because of standard quadrotor’s 

inherent under actuation for 6-DoF parameterizing the quadrotor position/orientation in 

space, Ryll claims that they can gain full controllability over the quadrotor 

position/orientation by means of these four additional actuated degrees of freedom. 

Developed about the same time as ours, a similar non-planar hexrotor design was 

introduced by D. Langkamp [33]. Using six fixed-pitch/variable-speed or variable-

pitch/fix-speed rotors, the “Tumbleweed” is designed to achieve full flight envelope 

(their saying of 3D translational flight).  

A prototype is proposed with fixed-pitch/variable-speed rotors and all rotors are 

pitched at 45°. But as they claimed, it cannot achieve full flight envelope because of 

limited forces it can generate in frame plane. So they abandoned this design and shifted to 

a variable-pitch/fix-speed rotors design.  And by the use of high thrust/weight electric 

variable pitch units and a low airframe mass fraction, the Tumbleweed can achieve full 

flight envelop if the robot can be lifted by only one pair of rotors. 

In these two works, the actuation concept of tilting propellers during flight actually 

makes it possible to access all 6 degrees of freedom of the robot. But for aerial 

manipulation tasks, full flight envelop is not important. What is important in resisting any 

arbitrary wrench is fast response of exerting forces. Tilting propellers during flight using 

servos may not be fast enough to act on outside wrench.  

 

1.3 Contribution 

We propose a new approach in aerial vehicles as the Dexterous Hexrotor UAV that can 

instantaneously resist arbitrary forces -- in other words, it provides force closure. To 
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perform precise and effective mobile manipulation, this is a property that any locomotor 

must have, be it ground-based, water-based, or air-based. To achieve this, the thrusters of 

our hexrotor are canted so that the combined thrust vectors span the space of Cartesian 

forces and torques. This adds little cost or complexity to a conventional hexrotor. 

With decomposed forces and torques, we derived a thrust mapping mapping from 

actuator space to force/torque space for the Dexterous Hexrotor. 

Since each rotor is rotated a cant angle around its radius, we also developed a metric 

for the optimization of Dexterous UAV performance for manipulation-based tasks based 

on the condition number of the conversion matrix. 

With an attitude controller created to stabilize the Dexterous Hexrotor for human 

controlled flight and a control system based on the conversion matrix, a flight-capable 

prototype with translational force control has been built and tested.  

 

1.4 Thesis Organization 

Chapter 2 is the heart of this work and describes the concepts of the Dexterous 

Hexrotor, the structure design, force/torque decomposition, and cant angle selection. 

Chapter 3 describes the control system and the attitude controller we built for stable 

flight. 

Chapter 4 gives some technical details of the Dexterous Hexrotor prototype.  

Chapter 5 presents the experiment results from the platform, while Chapter 6 concludes 

and mentions future directions that could be explored.  
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Chapter Two: Dexterous Hexrotor Theory 

 

The basic idea behind hexrotor is we are going to provide 6 actuators. So the input is 6 

degrees of freedom. If we want to control 6 degrees of freedom, we know we have to 

have a minimum of 6 actuators. Or else our matrix is going to deficient. If we have 4 

actuators as a quadrotor, we cannot possibly have independent control over 6 degrees of 

freedom. 

There are many hexrotors exist in the commercial world today.  They all have six 

parallel thrust propellers spaced evenly around the circumference of a circle. All its 

thrusters are vertical. Therefore, they still result in rank deficient matrices, in other words, 

there are no components from parallel thrusts that act in the plane perpendicular to the 

rotor axis. In this kind of configuration, these hexrotors work like quadrotors. 

 

Fig. 2.1 Typical Hexrotor 

Because all these thrusters are parallel and vertical, they can only provide linear force 

along Z axis, and torques around X, Y axes. Torque around Z is achieved indirectly 
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through Coriolis forces resulting from differential angular velocities of the counter-

rotating propellers.  

If we spin all the rotors at a particular same speed, the robot hovers. If we vary speed of 

these rotors, the robot can roll, pitch and yaw.  

 

Fig. 2.2 How quadrotor moves (a) Hover, (b) Roll, (c) Pitch, (d) Yaw. 

This configuration only has controllability over 4 degrees of freedom parameterizing the 

robot position and orientation in space. But it still can move arbitrarily in 6 degrees of 

freedom space, because translational acceleration in the plane perpendicular to the rotor 

axis can be achieved by maintaining a non-zero pitch or roll angle. So with these four 

degrees of freedom, quadrotors can do hover, roll, pitch, and yaw. If the robot wants to 
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move in the plane perpendicular to the rotor axis, it has to maintain a non-zero pitch or 

roll angle to get the translational acceleration.  

To achieve 6 degrees of freedom, we first provide 6 actuators as a typical hexrotor 

design. Then we just make these parallel thrusters nonparallel to explore full entirely 6D 

space of forces and torques.  

 

Fig. 2.3 The Dexterous Hexrotor, note the rotors are nonparallel. 

As Fig. 2.3 shows, the Dexterous Hexrotor has 6 independently controlled rotors 

arranged in pairs on 3 planes. Each rotor is rotated a cant angle around its radius. 

Therefore in-plane components result while still maintaining a symmetric basis of vectors, 

and forces and torques around each axis can be produced.  

Since the Dexterous Hexrotor can span the force-torque space. Therefore, by detaching 

and combining forces and torques produced by each rotor, forces and torques acting on 

the UAV around each axis can be accomplished and controllability over full 6 degrees of 

freedom can be achieved. By varying the speed and choosing the direction of the rotation 
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of the rotors, the Dexterous Hexrotor can get not only forces along Z axis, torques around 

X, Y, Z axes, but also forces along X, Y axes.  

 

 

 

Fig. 2.4 How the Dexterous Hexrotor moves: (a) Hover, (b) Roll, (c) Pitch, (d) Yaw, (e) 

Translational acceleration along X axis (f) Translational acceleration along Y axis 
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With the force along Z axis and torques around X, Y, Z axes, the Dexterous Hexrotor 

can hover, roll, pitch and yaw just like typical quadrotors do. But instead of pitching or 

rolling an angle like typical quadrotors, the Dexterous Hexrotor can get translational 

acceleration acceleration by simply varying speed of these rotors. It can truly control its 6 

degrees of freedom mobility.  

 

2.1 Dexterous Hexrotor Structure 

There are many ways to use six motors to create six independent degrees of freedom, 

but to create a design that was easy to fabricate, a disk design was used as seen in Fig.2.5. 

To get linear independence for all six degrees of freedom, the thrust vectors could not be 

on the same axis, nor pointed along one axis. This fact leads us to arrange these six rotors 

in pairs of three planes and rotate each thruster a cant angle φ around its radius as seen in 

Fig.2.6. We lay these rotors out along the edge of the disk canted tangentially to the edge 

of the disk alternating clockwise, counterclockwise, clockwise and so on as seen in Fig. 

2.7. 

 

Fig. 2.5 A CAD model showing Dexterous Hexrotor thrust vectors in place of the motors. 
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Fig. 2.6 A CAD model of the Dexterous Hexrotor thrust vector giving a clear picture of 

cant angle φ. 

 Position of six motors and their rotation are defined in Fig.2.7. X configuration of 

multicopter configuration is chosen, so X axis aligns with Motor3 and Motor6. 

 

Fig. 2.7 Motor definition of the Dexterous Hexrotor, where n is the motor number, θ 

represents angular displacements of the motors. 

 To keep the direction of each rotor’s torque same with its force’s in-plane components, 

Motor1, Motor3, Motor5 are rotating clockwise, Motor2, Motor4, Motor6 are rotating 

counter-clockwise. And to minimize the effects of the torques from the motors 

themselves, pusher and puller propellers are used, Motor1, Motor3, Motor5 use one type 

while Motor2, Motor4, Motor6 use the other. 

 



 

 

18 

2.2 Force Decomposition 

Each rotor produces a force and a torque. The force is a thrust point out along the rotor 

axis. The torque is generated by the drag of the propellers and acts on the body of the 

robot. The direction of the torque will be in the opposite direction of the motion of the 

propeller. This torque serves as yawing torque in typical quadrotors. But for the 

Dexterous Hexrotor, it will contribute to torque around all three axes. 

The lift and drag produced by the propellers is proportional to the square of angular 

velocity. And we assume the square of angular velocity is proportional to the pulse width 

modulation command sent to the motors. Therefore, force and torque produced by each 

motor can be expressed as equation (2.1). 

   (Eqn. 2.1) 

where Fmotor and τmotor are force and torque produced by the motors. K1 and K2 are 

motor-dependent parameters and can be determined experimentally. PWMmotor is the 

pulse width modulation command sent to the motor. 

To compute the net force/torque acting on the UAV from all thrusters, we first 

decompose each motor’s thrust and torque into X, Y, and Z components on the body 

frame. The components of Cartesian generalized forces from Motor1 can be put into a 

matrix as in equations (2.2) and (2.3). 

  (Eqn. 2.2) 
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          (Eqn. 2.3) 

where K1 and K2 is the constant between force and torque produced by Motor1 and 

PWM1(the pulse width modulation command sent to Motor1), φ is the cant angle from 

vertical, θ represents the rotor's position, d is the distance from rotor 1 to the central axis 

(the radius of the Dexterous Hexrotor). [F1fx F1fy F1fz F1τx F1τy F1τz]
T are forces and torques 

decomposed from F1 (the force produced by Motor1) and [τ1τx τ1τy τ1τz]
T are torques 

decomposed from τ1 (the torque produced by Motor1). 

   Then we can get the total force/torque [F1x F1y F1z τ1x τ1y τ1z]
T acting on the Dexterous 

Hexrotor from Motor1. 

                              
                    (Eqn. 2.4) 
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Once one rotor is decomposed, we can follow the same pattern and decompose forces 

and torques produced by other motors and get equations (2.5, 2.6, 2.7, 2.8, 2.9)  

        (Eqn. 2.5) 

        (Eqn. 2.6) 

        (Eqn. 2.7) 

         (Eqn. 2.8) 

        (Eqn. 2.9) 
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2.3 Mapping from actuator space to force/torque space 

After decomposition of force/torque produced by each motor, now we can compute the 

net force/torque of the Dexterous Hexrotor as equation (2.10). 

 (Eqn. 2.10) 

Where [Fx Fy Fz τx τy τz]
T is the net force/torque act on the body of the Dexterous 

Hexrotor. 

From equations (2.4 2.5, 2.6, 2.7, 2.8, 2.9), the right part of equation equals this 6×6 

conversion matrix multiplied by [PWM1 PWM2 PWM3 PWM4 PWM5 PWM6]
T. 

 

Express this matrix as Mφ. We can conclude this equation as  

              (Eqn. 2.11) 

In the Dexterous Hexrotor, [Fx Fy Fz τx τy τz]
T is the desired force/torque vector. Values 

of this vector will decide the robot’s orientation and position.  [PWM1 PWM2 PWM3 

PWM4 PWM5 PWM6]
T are six independent controlled inputs for the robot. Based on this 

equation, we can establish a relationship between inputs (PWM commands) and outputs 
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(force/torque) of the Dexterous Hexrotor and build a mapping from UAV’s actuator 

space to Cartesian force/torque space. Therefore, to control the Dexterous Hexrotor and 

get desired force/torque vector, we multiply the inversed conversion matrix by the 

desired force/torque vector, get PWM commands and sent them to the motors. The 

force/torque control equation can be derived as 

         (Eqn. 2.12) 

The conversion matrix is the mapping from actuator space to force/torque space. With 

K1 and K2 determined for our motors, if the cant angle is zero. The conversion matrix is 

M0°: 

  

which would conform to a typical hexrotor design. M0° only has a rank of 4. We have 

no ability to instantaneously control forces in X and Y axes through this matrix.  

If we cant the thrusters at an angle, for example, at 20°, the thrust mapping becomes 

M20°: 
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which would conform to a nonparallel design. This matrix provides a mapping from 6-

D actuator space to 6-D force/torque space and has a rank of 6, indicating we have 6 

independent controlled degrees of freedom in Cartesian force/torque space. 

 

2.4 Dexterous Hexrotor Performance Optimization 

The cant angle decides how much force we can put into [Fz τx τy]
T or [Fx Fy τz]

T. If φ = 

0°, the matrix becomes: 

 

Clearly the matrix becomes degenerate as there are no forces in X or Y from rotor 

force/torque decomposition, this would conform to a fairly typical quad-rotor design. 

There’s no mapping from actuator space to forces in X and Y. It’s rank deficient. The 

opposite happens when φ is 90°: 
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Force can be applied in X and Y but no lift and the matrix becomes deficient again. 

With these examples in mind it is obvious that the closer to φ = 0°the more the 

Dexterous Hexrotor can lift, but the closer to φ = 90°the more lifting force can be 

obtained while tilted, or the more the Dexterous Hexrotor can tilt. 

A cant angle has to be chosen somewhere between 0° and 90° when we build the 

Dextrous Hexrotor. So a metric for optimization of the Dextrous Hexrotor UAV’s 

performance has been developed. 

 

2.4.1 Engineering Requirement 

The performance of the Dextrous Hexrotor at different cant angles is affected by 

several variables, including the thrust of the motors, the diameter of the UAV, and the 

load we want to carry. For manipulation tasks, the engineering requirement for the 

Dextrous Hexrotor is the desired payload. We will set the desired payload before each 

task. 

So for the Dextrous Hexrotor engineering prototype, the thrust of the motors and the 

diameter of the UAV are given based on the motors and frame we chosen.  Given the 

system’s own mass and desired payload, the load we want to carry are also set. The only 

thing undecided is the cant angle. 
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Table I. Parameters of the Dextrous Hexrotor engineering prototype 

K1 5.7 

K2 1.3 

Diameter 550 cm 

Mass of UAV 2 kg 

Mass of Manipulator 0.5 kg 

Desired Payload 0.3 kg 

With these parameters, we can plot maximum forces and torques the Dexterous 

Hexrotor can achieve near hover condition at different cant angles in Fig. 2.8. 

 

Fig.2.8 Maximum forces the Dexterous Hexrotor can achieve at different cant angles 

Clearly at φ = 0°, there are no forces in X or Y and not much torques around Z. The 

opposite happens when φ = 35°, where all forces in Z are used to provide lift, but more 

force can be applied in X and Y. This means the Dexterous Hexrotor engineering 
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prototype can operate from 0°to 35°. So a cant angle between 0°to 35°should be 

chosen. 

 

2.4.2 Cant Angle Optimization 

To optimize the cant angle for the performance of our UAV, we adapt Yoshikawa's 

concept of ``manipulability'' to ours. As defined by Yoshikawa, ``manipulability 

measure'' is a quantitative measure of manipulating ability of robot arms in positioning 

and orienting the end-effectors, by looking at the isotropism of manipulator's motion in 

linear dimensions X, Y, Z and angles roll, pitch, yaw [40]. So for our UAV, we consider 

the combination of forces and torques as a similar measure of mobility. We are going to 

look at the isotropism of the forces and torques, not just how strong is it. To visualize 

how isotropic are the forces and torques, we plot these force/torque ellipsoids as shown in 

Fig. 2.9. 

 

Fig. 2.9 Force/Torque ellipsoids at different cant angles 
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The radius of these ellipsoids represents the magnitude of maximum force/torque the 

Dexterous Hexrotor can achieve around X, Y, Z axes at near hover condition. When the 

cant angle is 0°, we get no ability to control Fx, Fy, but a lot of ability to control Fz. We 

also have ability to control τx τy τz, but not too much control over yaw because coriolis 

effect is weak. Then we cant the motor a little bit, we get a little bit control over Fx, Fy, 

but still very strong control in Fz. And likewise we get a little more control over yaw. At 

20°, the force ellipsoid becomes almost equal and the torque ellipsoid also gets more 

round. At 30°, both force ellipsoid and torque ellipsoid start to squash down again. 

Therefore we can see from 0° to 30° and beyond, the force/torque ellipsoid can get 

very isotropic at some point, which is good in our mobility measure. 

 

Fig. 2.10 Condition Number of the conversion matrix 

We can also look at the condition number of the conversion matrix. Condition number 

is a mathematic term from linear algebra, which is the ratio of maximum eigenvalue to 

the minimum eigenvalue of the matrix. We can see it as the rate at which one side of the 
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equation will change with respect to the other side. If the condition number is large, even 

a small error in one side may cause a large error in the other side. 

At 0°, when we have no control over Fx and Fy, the condition number would be 

infinite, because two of the eigenvalues are 0. Then it can get smaller and smaller when 

we increase the cant angle. It is hard getting to 1 since force and torque are measured 

under different scale. Eventually it gets higher again and it will be infinite at 90°, 

because one eigenvalue is 0.  

We can combine these two metrics on a same plot as shown in Fig. 2.11. We plot the 

condition number of the conversion matrix with force/torque ellipsoids at different cant 

angles, giving us a measure of the isotropism of our UAV. 

 

Fig. 2.11 Condition number with force/torque ellipsoids 

Therefore, dependent on the motors we chosen, particular load of our manipulator, 

diameter of the UAV frame, we optimize the cant angle at 20° for this Dextrous 

Hexrotor engineering prototype. If we change the load or any other parameters, we would 
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optimize this for a different cant angle. And for tasks other than manipulation, we can 

optimize its performance with other parameters as well as the cant angle.  
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Chapter Three: Dexterous Hexrotor Control 

 
 

For human in the loop flight, the pilot controls the Dexterous Hexrotor’s orientation 

and position by manipulating the forces and torques acting on the platform. For the 

Dexterous Hexrotor, there are six independent controlled forces and torques acting on 

itself. Therefore, control systems to help the pilot control the Dexterous Hexrotor’s 

orientation and position have been developed and are described here. 

For simple flight in unstructured environments, the control system of the Dexterous 

Hexrotor is only implemented with an attitude controller and a low level translational 

force controller. 

For indoor 3D translational flight, a position controller using an 8-camera Vicon 

MXT40 motion capture system providing real-time position feedback has been 

implemented to augment the same attitude controller. 

 

3.1 Dexterous Hexrotor Control System 

Forces and torques acting on the Dexterous Hexrotor are generated by the thrust of 

each rotor. And the thrust is proportional to the PWM value put into the motor. Based on 

the force/torque control equation, to generate desired force/torque, PWM values which 

are calculated from desired force/torque vector [Fx Fy Fz τx τy τz]T through thrust 

mapping, need to be sent to each motor.  
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Multicopters are inherently unstable in the air.  Therefor an attitude controller is needed 

to stabilize the UAV during flight. A common control system used in quadrotors is as 

shown in Fig. 3.1. 

 

Fig. 3.1 Typical Quadrotor control system 

This system is constructed by radio receiver, attitude controller, IMU(inertial 

measurement unit), thrust mapping and motors. With help of the attitude controller 

stabilizing the UAV, the pilot only needs to control its attitude to change the orientation 

and position (e.g. pitching for moving forward).  

The difference between controlling the Dexterous Hexrotor and a quadrotor is the 

thrust mapping. Thrust mapping of quadrotor only maps [Fz τx τy τz]T to motors. 

Dexterous Hexrotor’s thrust mapping needs to map both force and torque around each of 

three axes to the motors. So the control system should be as it is shown in Fig. 3.2. 
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Fig. 3.2 Dexterous Hexrotor simple flight control system 

Thrust mapping in this system maps [Fx Fy Fz τx τy τz]T to [PWM1 PWM2 PWM3 

PWM4 PWM5 PWM6]T. It is a mapping from 6D actuator space to 6D force/torque 

space. 

The user interface to the control system of the Dexterous Hexrotor has two more 

channels controlling Fx and Fy than a quadrotor. These forces are in the plane 

perpendicular to the rotor’s axis. They can provide horizontal acceleration without 

pitching the body. These forces can be used to exert forces immediately in the plane and 

they also give the pilot another option of moving the Dexterous Hexrotor. When the pilot 

wants to move a quadrotor, it needs to pitch or roll an angle in order to get the 

translational acceleration. Dexterous Hexrotor can simply generate the translational 

acceleration by Fx or Fy. 

The difference between control system of Dexterous Hexrotor and typical quadrotor is 

as shown in Table II.  
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Table II. Difference between control system of the Dexterous Hexrotor and typical 

quadrotors 

 quadrotor Dexterous Hexrotor 

Pilot controlled variables Roll, Pitch, Yaw, Fz Roll, Pitch, Yaw, Fx, Fy, Fz 

Number of Pilot controlled 

variables 

4 6 

Inputs to thrust mapping Fz τx τy τz Fx Fy Fz τx τy τz 

Number of Inputs to thrust 

mapping 

4 6 

Outputs of thrust mapping PWM1 PWM2 PWM3 

PWM4 

PWM1 PWM2 PWM3 

PWM4 PWM5 PWM6 

 

For indoor 3D translational flight, a control system implemented with both attitude 

controller and position controller has been developed with an 8-camera Vicon MXT40 

motion capture system. 

 

Fig. 3.3 Dexterous Hexrotor indoor 3D translational flight control system 

In this control system, a Vicon motion capture system is used to provide real-time 

position of the Dexterous Hexrotor. Then a position controller uses this information to 

adjust the UAV’s position by controlling the forces acted on the platform. Since the 

Dexterous Hexrotor’s orientation and position is controlled by two separate controllers, 

now theoretically the Dexterous Hexrotor can achieve 3D translational flight, means 
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rotation without translation and translation without rotation. This is what typical 

quadrotors cannot do, because they can only control 4 DoFs in force/torque space. 

 

3.2 Hexrotor Attitude Controller 

The attitude controller is designed to stabilize Dexterous Hexrotor for hunman 

controlled flight. It helps Dexterous Hexrotor maintaining desired attitude during flight 

by controlling Dexterous Hexrotor roll, pitch and yaw. This is also a commonly used 

control structure in quadrotor commutity. 

For stability and also fast response, three double loop PID controllers for roll, pitch and 

yaw have been developed and they share same structure as it is shown in Fig. 3.3. 

 Fig. 3.4 Double loop PID controller 

The outer loop is using a PI controller for controlling the angle. It takes desired angle 

as input, actual IMU angle as feedback, and outputs desired angular rate to the inner loop.  

The inner loop is using a PD controller for controlling angular rate. It takes angular rate 

as input, actual IMU angular rate as feedback, and outputs torques to adjust the attitude of 

the Dexterous Hexrotor. 

The PI, PD combination is chosen for a good reason. A single traditional PID controller 

would work, but slow. An outer loop controlling angle and an inner loop controlling rate 
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would be much better for its fast response. P item is necessary in both loops for fast 

response. A D term in the inner loop is for improving response time. An I term in the 

outer loop is for helping Dexterous Hexrotor dealing with persistent external forces, like 

wind or incorrect center of gravity. 

Similar control structure is also implemented in the position controller. Actual position 

and its change rate will be provided by the Vicon motion capture system and sent to the 

Dexterous Hexrotor. 
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Chapter Four: Dexterous Hexrotor Prototype 

 

4.1 Design of Dexterous Hexrotor Prototype 

A prototype that uses off the shelf components, preferably those commonly used by 

modern research quadrotors has been built improve cost, compatibility and simplicity. 

The prototype of Dexterous Hexrotor design can be seen in Fig. 4.1. 

 

Fig. 4.1 Dexterous Hexrotor prototype built on a commercial frame 

The motors are mounted on in house designed and fabricated ABS plastic adapters that 

canted 20° tangentially to the edge. These plastic adapters are then mounted on the end 

of each arm.  
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Fig. 4.2 Motor mounted on a 20°ABS plastic adapter 

Standard 11.1V lithium polymer battery packs are used to power the 30A ESCs 

(electronic speed controller). Each ESC drives an 1130KV brushless DC motor with a 

three phase signal converted from the PWM command. The motors are installed with 

9"x4.7" pusher or puller propellers.  

A 2.4G Hz radio transmitter and receiver set are used for human controlled flight. Four 

main joysticks are used for roll, pitch, yaw and throttle. Two side knobs are used to set Fx 

and Fy values. 

  
Fig. 4.3 WFly09 R/C controller and receiver 

The controller we used is the RecoNode platform developed in our lab. A universal 

PCB board is used for routing signals between on board electronics, the RecoNode 

Platform, IMU, radio receiver, and ESCs. 
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Fig. 4.4 On board electronics of Dexterous Hexrotor 

 A Sparkfun 9 DoF sensor stick is used as IMU. It includes an ADXL345 

accelerometer, a HMC5883L magnetometer, and an ITG-3200 gyro. It communicates 

with CPU by I2C interface. 

 

Fig. 4.5 Sparkfun 9 DoF sensor stick 

An 8-camera Vicon MXT40 motion capture system is used as indoor real-time position 

feedback. This system contains Infrared reflective markers, MX-F40 cameras, MX 

Ultranet and a host computer. With markers on the UAV, this system can measure 

UAV’s position and even attitude. All information can be sent to the UAV through a 

WIFI module. 
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Fig. 4.6 MX-F40 Camera 

 

4.2 RecoNode 

The RecoNode is a multi-processor architecture based on the Virtex 4 FPGA with 

multiple, hardcore PowerPCs [35]. Capable of up to 1600 MIPS from four PowerPCs 

plus hundreds of additional MIPS of special-purpose coprocessing from the FPGA fabric 

itself, this computational node is very high performance compared to conventional 

wireless sensor nodes - roughly 100 times greater computational throughput. The 

RecoNodes we have built are dual-processor models running at 400 MIPS with a power 

budget of 0.9 mW/MIPS.  
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Fig. 4.7 The RecoNode stack withVirtex4 FX20 CPU and two single-width wedges 

The RecoNode we used in Dexterous Hexrotor has two base boards and two same 

wedges, from bottom to top:  DU105 power board, providing 1.2V, 2.5V, 3.3V and 5V 

for the system; DU100 CPU board, carrying a Virtex4 FX20 CPU running at 100M Hz; 

DU121 servo wedge, transferring the PWM commands from CPU to ESCs and input 

signals from radio receiver and IMU to CPU. 

 

(a)                                               (b)                                         (c) 

Fig. 4.8Wedges of RecoNode (a) DU105 power board, (b) DU100 CPU board, (c) 

DU121 servo wedge 
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Chapter Five: Experiments and Results 

 

In order to verify the functionality of the Dexterous Hexrotor and its ability to achieve 

force closure, several experiments and tests have been done.   

 

5.1 Force/Torque Test 

As force closure in 3-D space requires six controllable degrees of freedom in 

force/torque space to truly accomplish. To prove the Dexterous Hexrotor can apply 

force/torque in all six degrees of freedom or only one degree of freedom without 

affecting the others. We bolted the Dexterous Hexrotor on an ATI 6 DoF force sensor and 

tried to produce forces and torques in all three dimensions. The test setup and ATI force 

sensor software are as shown in Fig. 5.1.  

 

Fig. 5.1 Force/torque test setup: (a) The Dexterous Hexrotor bolted on an ATI 6 DoF 

force sensor. (b) ATI 6 DoF force sensor software. 
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During the test, unit forces and torques in the force/torque vector [Fx Fy Fz τx τy τz]
T 

were commanded sequentially for around five seconds each at near hover condition.  

For five seconds with a five second off after, each the script requests a force in X, then 

Y, then Z axis. Then it requests a torque about X, then Y, and then Z axis. The result of 

the test is as shown in Fig 5.2 and tabulated in table I. 

 

Fig. 5.2 Force/Torque plot recorded by an ATI 6-DOF force sensor 

In this plot, the first 5 seconds all motors are off. It is apparent from Fz that at roughly 5 

seconds, the Dexterous Hexrotor “takes off”, then the sequence begins. Data was 

recorded by an ATI 6-DOF force sensor at 10kSamp/s. Time is in milliseconds. 
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Table III. Average value of each period in the Force/Torque plot. 

 

In table II, T1 is from 5s to 10s, which shows half throttle. T2 is from 10s to 15s, when 

the Dexterous Hexrotor is generating a force in x axis. T3 is from 15s to 20s, when the 

Dexterous Hexrotor is generating a force in y axis. T4 is from 20s to 25s, when the 

Dexterous Hexrotor raises its throttle. T5 is from 25s to 30s, when the Dexterous 

Hexrotor is generating a torque around x axis. T6 is from 30s to 35s, when the Dexterous 

Hexrotor is generating a torque around y axis. T7 is from 35s to 40s, when the Dexterous 

Hexrotor is generating a torque around z axis. This data was produced by taking the time 

average of the central 3 second of each period. 

Table IV. Percentage error of each force compared to the magnitude of force vector. 

 

In this table, we compare error of each force to the magnitude of force vector we required. 

For example, during T1, we require a force vector in Z axis with a magnitude of 11.56 N. 

Fx and Fy should be zero during T1, but they are not. So we compare values of Fx and Fy 

to the magnitude of the force vector and get percentage error of 0.08/11.56 = 0.69% and 

0.04/11.56 = 0.34%. It’s same in T4, T5, T6, and T7, but different in T2 and T3. During 

T2 and T3, we require a force vector point along a direction between Z axis and X or Y 
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axis. Since we can observe error no more than 1%, it proves we can actually control force 

in each axis accurately with no coupling to the other axes. 

Table V. Percentage error of each torque compared to its peak value. 

 

We can also see error of each torque compared to its peak value. For example, Tx 

during T1 should be 0, as we are giving a force/torque command of [0 0 Fz 0 0 0]T, 

producing only a force vector in Z axis. So we compare the value of Tx during this period 

to its peak value happened in T5 and get its error 0.01/1.13 = 0.8%. Values of torques are 

much smaller than the magnitude of force vector, so their percentage error looks much 

larger. But still we can observe at most 6.6% error of torques, proving that we can 

actually control torque in each axis with no coupling to the other axes. 

With the ability of controlling force/torque in each axis with no coupling to the other 

axes, it shows full controllability over six degree of freedoms of the Dexterous Hexrotor 

and linear independence between them. 

 

5.2 PID Controller Test 

Since we need a functional attitude controller help the Dexterous Hexrotor maintaining 

stable during flight, so we use the PID controller test to decide its PID parameters while 

we are building the Dexterous Hexrotor.  

There are three double-loop PID controllers controlling roll, pitch, yaw and they share 

the same configuration only with different PID parameters. So we show pitch PID 
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controller test as an example. First we bolted the Dexterous Hexrotor on a free rolling 

stick and keep the desired angle as zero. Then we disturbed the Dexterous Hexrotor’s 

attitude by tilting it an angle by hand and release it.  

 

Fig.5.3 PID controller test set up 

As soon as we release it, the Dexterous Hexrotor would come back to horizontal under 

the control of pitch PID controller. But the response may not be good at first time. So we 

change the PID parameters to make its response better. After the adjustments, response of 

the Dexterous Hexrotor is plotted in Fig. 5.4. Data of its attitude, the pitch angle, is 

recorded every 10ms. 
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Fig. 5.4 Pitch PID controller response. 

As we can see from the plot, the Dexterous Hexrotor tilts at -22°at the beginning. 

When we release it, the hexrotor comes back to 0°with an overshoot of 0.8°within half 

second. Then it kept stable around 0°.  This would conform a good response of the 

attitude controller.  

 

5.3 Exert Forces Test 

To test the response time of the Dexterous Hexrotor corresponding to external forces, a 

staged peg-in-hole task is presented with the Dexterous Hexrotor and a normal quadrotor. 

A frame diagram as Fig. 5.5 shows the experiment's setup. The peg was held rigidly by 

the UAV. With the peg trapped half-way in a hole which is attached to the 6 DoFs ATI 

force sensor, the UAV starts to take off and increase throttle until it can carry its own 

weight. Then we command it to exert a horizontal force perpendicular to the axis of the 

peg. 
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Fig. 5.5 Peg-in-hole setup diagram, with force sensor's coordinate system indicated. 

 

Fig.5.6 Peg-in-hole setup with the Dexterous Hexrotor. 

The result is shown in Fig. 5.7 and Fig. 5.8. Changes in force sensor measurements of 

Fy are direct measurements of the force which the Dexterous Hexrotor applied on the hole. 

A positive and a negative pulse are detected around 600ms and 1600ms. At the meantime, 

attitude of the Dexterous Hexrotor was recorded and plot in the same figure. 
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Fig.5.7 The Dexterous Hexrotor measurements of Fy and roll, pitch, yaw. 

When the Dexterous Hexrotor is exerting a force in Y axis, its attitude, especially pitch 

angle, does not change more than 1°. This proves the Dexterous Hexrotor is exerting a 

force in Y axis without pitching. 

 

Fig. 5.8 The Dexterous Hexrotor and quadrotor’s measurements of Fy and pitch. 
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First two plots in Fig. 5.8 shows that Dexterous Hexrotor is exerting a force in Y axis 

without pitching. Last two plots shows when the quadrotor is trying to apply the same 

force in Y axis, it pitches about -20° and 20°. This is because a quadrotor can only 

generate a horizontal force by tilting an angle and our hexrotor can do it by simply 

changing the rotational velocity of the rotors without tilting.  

Therefore, when we need a horizontal force, it is obvious that the lag varying speeds of 

propellers of the hexrotor will be much smaller than that caused by tilting the entire body 

of a quadrotor. 

 

5.4 Flight Test 

Flight test indoor and outdoor has been done. As the result, we can easily fly the 

Dexterous Hexrotor with the help of attitude controller.  

 

Fig. 5.9 The Dexterous Hexrotor flying indoor. 
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Fig. 5.10 The Dexterous Hexrotor flying over the University of Denver campus 

Translational flight has been demonstrated. In this flight, the Dexterous Hexrotor was 

moving horizontally without pitching or rolling any angle. Translational acceleration was 

achieved by Fx and Fy forces produced.   
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Chapter Six: Conclusion 

This thesis introduces a truly holonomic aerial rotorcraft that provides force closure for 

controlled interaction with external structures. The key contribution of this thesis is to 

derive the mapping from actuator space to force/torque space based on decomposed net 

force/torque and develop a metric for the optimization of Dexterous UAV's performance 

for manipulation-based tasks. A flight-capable prototype with translational force control 

has been built and tested. 

Table VI. Difference between the Dexterous Hexrotor and typical quadrotors 

 Quadrotor Dexterous Hexrotor 

Number of Actuators 4 6 

Cant Angle of Each Actuator 0° 0°- 90° 

DoFs in Force/Torque Space 4 6 

Controllable Dofs 4 6 

Ability to Achieve Force Closure No Yes 

Mobility in 3D space Nonholonomic Holonomic 

Response of Exert Horizontal Force Slow Fast 

 

It should be noted that we claim our Dexterous Hexrotor can ``instantaneously resist 

arbitrary forces.'' This is not strictly true as the Dexterous Hexrotor can only change the 
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torque of its motors instantaneously. The required change in the thrust magnitude is not 

dependent on torque, for a propeller, but on speed. Therefore, the independent thrust 

magnitudes and the resulting net force/torque experience a lag due to the inertia of the 

thrusters. The lag due to the rotor inertia is much smaller than that due to pitching the 

entire vehicle, as for a conventional quadrotor, and we believe is smaller than the pitching 

of the variable cant angle concept of the Tumbleweed (which also has to overcome the 

gyroscopic action of the rotors). 

To achieve force closure, we cant all thrusters of the Dexterous Hexrotor at an angle 

and make all thrust vectors nonparallel and vertical. This would definitely influence the 

power efficiency of the UAV. When a typical quadrotor hovers, all its power is used to 

combat gravity. But for the  Dexterous Hexrotor, some of its power will be used to cancel 

out each rotor’s thrust. This is the main drawback of nonparallel design. 

Having functionality proved and force closure achieved, a broad range of research is 

opened up. Optimizing for tasks from manipulation to surveillance can be tested by 

varying the cant angle. To be an effective aerial mobile manipulation platform, some sort 

of gripper can be added. A design that allows for access the edge of the hexrotor, how to 

counter balance the gripper and its load must be studied. These force tests were worked 

out low speeds, the dynamic forces should be worked out. A controller has been created 

to stabilize the hexrotor for human controlled flight and allow for autonomous operation 

and feedback control over Fx and Fy. 
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