
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

11-1-2014

Fail-Safe Testing of Safety-Critical Systems Fail-Safe Testing of Safety-Critical Systems

Ahmed Gario
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gario, Ahmed, "Fail-Safe Testing of Safety-Critical Systems" (2014). Electronic Theses and Dissertations.
230.
https://digitalcommons.du.edu/etd/230

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/230?utm_source=digitalcommons.du.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Fail-Safe Testing of Safety-Critical

Systems

A Dissertation

Presented to the Faculty

of the Daniel Felix Ritchie School of Engineering and Computer

Science

University of Denver

in Partial Fulfillment

of the Requirements for the Degree

of Doctor of Philosophy

by

Ahmed Gario

November 2014

Advisor: Anneliese Andrews

c© Copyright by Ahmed Gario, 2014

All Rights Reserved

Author: Ahmed Gario
Title: Fail-Safe Testing of Safety-Critical Systems
Advisor: Anneliese Andrews
Degree Date: November 2014

Abstract

This dissertation proposes an approach for testing of safety-critical systems.

It is based on a behavioral and a fault model. The two models are analyzed for

compatibility and necessary changes are identified to make them compatible. Then

transformation rules are used to transform the fault model into the same model

type as the behavioral model. Integration rules define how to combine them. This

approach results in an integrated model which then can be used to generate tests

using a variety of testing criteria. The dissertation illustrates this general framework

using a CEFSM for the behavioral model and a Fault Tree for the fault model. We

apply the technique to a variety of applications such as a Gas burner, an Aerospace

Launch System, and a Railroad Crossing Control System. We also investigate the

scalability of the approach and compare its efficiency with integrating a state chart

and a fault tree. Construction and Analysis of Distributed Processes (CADP) has

been used as a supporting tool for this approach to generate test cases from the

integrated model and to analyze the integrated model for some properties such as

deadlock and livelock.

ii

Acknowledgements

I would like to express my deep gratitude to my adviser, Dr. Anneliese An-

drews for her unlimited precious guidance, motivation and direction throughout my

research work and in preparation for this dissertation.

I would like to thank Dr. Gareth Eaton (Department of Chemistry & Biochem-

istry) for accepting my request to be the examining committee chair and for his

valuable comments. I would like also to thank the examining committee members:

Dr. Matthew Rutherford and Dr. Rinku Dewri for their participation in the com-

mittee and for their excellent comments.

I would like to thank my friends and colleagues whom I met and worked with

during my PhD journey. Special thanks for Salwa Elakeili whom I worked with on

case studies and on the end-to-end testing methodology. I would also like to thank

Mahmoud Abdelgawad with whom I worked closely on modeling the environment

and with whom I exchanged ideas. It was a pleasure to work with Seana Hagerman

on some publications and I thank her for providing me with the description for

the launch vehicle system which I used as a case study. I would like also to thank

Andrei Roudik, our system administrator at the Department of Computer Science,

for providing the technical support whenever we asked for it. I would like to thank

NSF/SSR-RC for supporting this dissertation.

My thoughts and deepest gratitude go straight to my mother, sisters, and broth-

ers for their love, encouragement, and support throughout this journey.

Last but not least, I would like to express the most profound gratitude for my wife

for being patient, supportive, and amiable no matter what. No gratitude would be

enough for my children, Yousef, Dania, Omar, and Randa who tolerated my student

life in which they wanted me when I was not there.

iii

Contents

Acknowledgements . iii
List of Tables . vi
List of Figures . viii

1 Problem Statement 1
1.1 Introduction . 1
1.2 The Cost of Software Safety . 3
1.3 Safety Analysis . 3
1.4 Software Testing . 4
1.5 Testing Problem for Safety-Critical Systems 5
1.6 Model Based Testing (MBT) . 6
1.7 Research Questions . 8
1.8 Contribution to Team Project . 9

2 Background 13
2.1 Safety-Critical System Lifecycle (SCSL) 13
2.2 Hazard Analysis Techniques . 16
2.3 Model Based Testing (MBT) . 24

2.3.1 Unified Modeling Language (UML) 26
2.3.2 Finite State Machine (FSM) 34
2.3.3 Extended Finite State Machine (EFSM) 36
2.3.4 Communicating Extended Finite State Machine

(CEFSM) . 38
2.4 Combined Behavioral and Fault Models 42

2.4.1 Limitations . 53

3 Approach 56
3.1 Test Generation Process . 57

3.1.1 Behavioral Model: Communicating Extended Finite State Ma-
chine (CEFSM) . 58

3.1.2 Fault model: Fault Tree (FT) 59
3.1.3 Compatibility Transformation 59
3.1.4 FT́ model Transformation . 63
3.1.5 Transformation Rules . 65

iv

3.1.6 Transformation Procedure . 72
3.1.7 Integration Procedure . 73
3.1.8 Concurrent Processes . 74
3.1.9 ICEFSM Coverage Criteria . 77
3.1.10 Test Case Generation . 80

4 Validation 81
4.1 Scalability and Comparison to Sánchez et. al.’s [127] 82

4.1.1 Simulator Experiment Design 82
4.1.2 Comparison of the Number of Nodes and Transitions 82

4.2 Applicability: Case Studies . 95
4.2.1 Gas Burner System . 95
4.2.2 Application: Aerospace Launch System 110

4.3 ICEFSM as Part of an End-to-End testing Methodology 141
4.3.1 Test Generation Process . 141
4.3.2 Phase1: Generate Failures and Failure Applicability 142
4.3.3 Construction of the Applicability Matrix 144
4.3.4 Phase2: Generate Safety Mitigation Tests 146

4.4 End-To-End Case Study: Railroad Crossing Control System (RCCS) 154
4.4.1 Phase1: Generate Failures and Failure Applicability 154
4.4.2 Construction of the Applicability Matrix 171
4.4.3 Phase2: Generate Safety Mitigation Tests 173

5 Other Uses for Integrated Model 192
5.1 Additional Analysis Capabilities through Construction and Analysis

of Distributed Processes (CADP) . 192
5.1.1 CADP . 192
5.1.2 Process . 193
5.1.3 Deadlock . 196
5.1.4 Livelock . 197
5.1.5 Test Generation with Verification (TGV) 199

6 Conclusion 204

7 Future Work 209

Bibliography 212

v

List of Tables

1.1 Project Contribution Commonality Table 12

2.1 Hazard Analysis Techniques . 17
2.2 Fault Tree Gate Types [143, 40] . 18
2.3 Model Based Testing . 25
2.4 Semantic Table . 45
2.5 Comparison of the Integration Techniques 52

3.1 Failure Types Table Example . 58
3.2 Event-Gate Table for Leaf Nodes . 73

4.1 Comparison . 85
4.2 Simulation Data and Results . 86
4.3 CEFSM model for a Gas Burner System Transitions 96
4.4 BFClass . 100
4.5 Event-Gate Table . 101
4.6 ICEFSM model for a Gas Burner System Transitions 106
4.7 Gas Burner System Test Paths . 109
4.8 CEFSM Model for a Launch System Transitions 112
4.9 Event-Gate Table after Transforming FT in Figure 4.21 126
4.10 Event-Gate Table after Transforming FT in Figure 4.22 127
4.11 Event-Gate Table after Transforming FT in Figure 4.23 128
4.12 Event-Gate Table after Transforming FT in Figure 4.24 130
4.13 ICEFSM model for a launch System Transitions 134
4.14 Aerospace Launch System Test Paths 137
4.15 Applicability Matrix . 148
4.16 All Position, All Applicable Failures 148
4.17 All Unique Nodes, All Applicable Failures 149
4.18 All Tests, All Unique Nodes, All Applicable Failures 149
4.19 All Tests, All Unique Nodes, Some Failures 150
4.20 Structure of Messages . 156
4.21 Failure Types Table . 158
4.22 Failure Types Table After Compatibility Transformation Step 162

vi

4.23 Event-Gate Table . 166
4.24 Failure Types Table After Model Transformation Step 167
4.25 Failure Types Table After Model Integration Step 169
4.26 Railroad Crossing System Test Paths 170
4.27 Failure Types Table After Test Generation Step 172
4.28 Applicability Matrix . 173
4.29 Test Paths Through CEFSM Model 174
4.30 C1: All Positions, All Applicable Failures 175
4.31 C2: All Unique Nodes, All Applicable Failures 176
4.32 C3: All Tests, All Unique Nodes, All Applicable Failures 177
4.33 C4: All Tests, All Unique Nodes, Some Applicable Failures 178
4.34 Mitigation Requirement . 180
4.35 Safety Mitigation Tests for Criteria 2 181
4.36 Safety Mitigation Tests for Criteria 3 185
4.37 Safety Mitigation Tests for Criteria 4 189

5.1 Test Purpose for the Example in Figure 4.60 202
5.2 Complete Uncontrollable Test Cases 202

vii

List of Figures

1.1 Overall Approach . 6
1.2 Team Contribution . 11

2.1 Overall Safety Lifecycle[IEC 61508] 14
2.2 Statechart Example . 27
2.3 Activity Diagram Example . 29
2.4 Statechart for Microwave System . 43
2.5 FTA for Microwave Exposure . 44
2.6 Applying Transformation Rules on Exposure of Microwave 46
2.7 The Statechart Gate for Exposure of Microwave Event 46
2.8 Statechart Gate for Microwaving Event 47
2.9 Modified Statechart for the Microwave Oven 48
2.10 Fault Tree for Exposure of Microwave 49
2.11 Transformed Statechart Diagram without Information from the Orig-

inal Statechart diagram . 49
2.12 Transformed Statechart Diagram with Information 50
2.13 Fault and Behavioral Models at the V-model 53

3.1 Safety-Critical System Behavior . 56
3.2 Test Process . 57
3.3 Behavioral and Fault Classes Combination 61
3.4 Fault Tree Example . 62
3.5 Air Valve Class . 62
3.6 Gas Valve Class . 63
3.7 AND Gate Representation in FT and GCEFSM 66
3.8 XOR Gate Representation in FT and GCEFSM 68
3.9 Priority And Gate Representation in FT and GCEFSM 69
3.10 OR Gate Representation in FT and GCEFSM 70
3.11 Event Timer GCEFSM . 71
3.12 Timing Continuous Intervals GCEFSM 72
3.13 Transformation Procedure . 73
3.14 Integration Procedure . 74

viii

4.1 EFSM and CEFSM Approaches Model Growth for 13 S and 15 T BM
(Full simulation data) . 91

4.2 EFSM and CEFSM Approaches Model Growth for 13 S and 15 T
Behavioral Model (up to 8 leaves) . 91

4.3 EFSM and CEFSM Approaches Model Growth for 15 S and 19 T BM
(Full simulation data) . 92

4.4 EFSM and CEFSM Approaches Model Growth for 15 S and 19 T
Behavioral Model (up to 8 leaves) . 92

4.5 EFSM and CEFSM Approaches Model Growth for 21 S and 39 T BM
(Full simulation data) . 93

4.6 EFSM and CEFSM Approaches Model Growth for 21 S and 39 T
Behavioral Model (up to 8 leaves) . 93

4.7 EFSM and CEFSM Approaches Model Growth for 50 S and 60 T BM
(Full simulation data) . 94

4.8 EFSM and CEFSM Approaches Model Growth for 50 S and 60 T
Behavioral Model (up to 8 leaves) . 94

4.9 Gas Burner Model . 96
4.10 FT for a Fire Occurrence in a Gas Burner [40] 98
4.11 Bclass, Fclass, and BFclass for AirValve Entity 99
4.12 Bclass, Fclass, and BFclass for GasValve Entity 99
4.13 Igniter and Observation Classes . 99
4.14 Event Timing GCEFSM for Gas Leaks > 4s 100
4.15 GCEFSM for Gas Observation Interval < 30s 100
4.16 GCEFSMs for Excess Of Gas . 101
4.17 GCEFSMs for Unsafe Environment 102
4.18 GCEFSMs for Gas Explodes . 102
4.19 ICEFSM Model for a Gas Burner System 105
4.20 CEFSM Model for a Launch System 112
4.21 Initialization Fail FT . 116
4.22 Fire Occurrence FT . 117
4.23 Preflight Fail FT . 118
4.24 Launch Fail FT . 119
4.25 Network Connection Class . 122
4.26 Countdown Clock Class . 122
4.27 Hazard Lights Class . 122
4.28 LO2 Class . 122
4.29 Helium Class . 123
4.30 LH2 Class . 123
4.31 Battery Class . 123
4.32 Initiating Fueling Class . 123
4.33 Battery Switching Class . 123
4.34 Air Conditioning Initiation Class . 124

ix

4.35 Nitrogen Class . 124
4.36 Instruments Class . 124
4.37 Cryo Class . 124
4.38 Chill Down Class . 124
4.39 GCEFSM for the FT in Figure 4.21 126
4.40 GCEFSM for Fire Occurrence FT in Figure 4.22 127
4.41 GCEFSM for the Preflight Failure FT in Figure 4.23 128
4.42 GCEFSM for an OR Gate in Figure 4.24 129
4.43 GCEFSM for the Second OR Gate in Figure 4.24 129
4.44 GCEFSM for Flight Fail FT in Figure 4.24 129
4.45 ICEFSM Model for a Launch System 133
4.46 End-To-End Test Generation Process 143
4.47 Applicability Matrix Construction Procedure 145
4.48 Try Other Alternatives: Mitigation Model 151
4.49 Railroad Crossing System Model . 156
4.50 Fault Tree for Accident . 158
4.51 Train Approaching and Crossing Class 159
4.52 Train Controller Class Diagram . 160
4.53 Gate Events Class Diagram . 160
4.54 Warining Light Class Diagram . 160
4.55 An OR Gate for the Left Most Event in the FT 163
4.56 The Second Transformed Gate . 163
4.57 GCEFSM for Gate Number 3 . 164
4.58 GCEFSM for Gates 1 to 5 . 164
4.59 GCEFSMs for the Whole FT’ . 165
4.60 The ICEFSM Model of the RCCS . 168
4.61 Fix and Stop: Mitigation Model MM2 180
4.62 Fix and Proceed: Mitigation Model MM3 180
4.63 Compensate: Mitigation Model MM4 181

5.1 BitAlt Sender Protocol EFSM . 195
5.2 BitAlt Sender Protocol LTS (CADP Produced Graph) 195
5.3 CADP Deadlock Screen . 197
5.4 CADP Livelock Screen . 198
5.5 Sample Test Case (CADP Produced Graph) 203

x

Chapter 1

Problem Statement

1.1 Introduction

Systems, especially those that rely on software, have become an essential part

of our world. From an engineering point of view, software systems are ubiquitous.

These systems, where human safety depends upon their correct operation, are con-

sidered safety-critical and are part of our daily life. An obvious example of a safety

critical system is an aircraft fly-by-wire control system. In this system the pilot uses

an interface to input commands to the control computer, and the computer controls

the actual aircraft. The lives of hundreds of passengers depend upon the continued

correct operation of such a system.

Railway signaling systems must enable controllers to direct trains and prevent

trains from colliding. Like an aircraft fly-by-wire, lives depend on the correct oper-

ation of the system. However, all trains can be stopped if the safety of the system

becomes suspect, while stopping an aircraft to fix the fly-by-wire system when flying

is not possible. Software in medical systems may be directly responsible for human

life, such as information which a doctor uses to decide on medication [18].

1

Software may also be involved in providing humans with information, such as

a pacemaker device. Both types of systems can impact the safety of the patient.

A pacemaker device is a safety-critical system, since its failure may cause severe

damage to a human body or even loss of a human life. It is an electronic device

used to treat patients who suffer from slow heartbeats. The purpose of using a

pacemaker is to maintain normal heartbeats so that adequate oxygen and nutrients

can be delivered through the blood to the organs of the human body.

Civil engineers use computer software to design and test structure models. An

error in the software may result in a bridge collapsing. Aircraft, trains, ships and

cars are also designed and modeled using computers. Even something as simple as

traffic lights or a microwave oven can be viewed as safety-critical. An error giving

green lights to both directions at a cross road could result in a car accident, or a

microwave sending out waves while the oven door is open could result in human

injury. In cars, software involved in functions such as engine management, anti-lock

brakes, traction control, and a host of other functions, could potentially fail in a

way that causes a road accident.

With such systems also comes the exposure to risks because some of these sys-

tems may fail or may not work properly resulting in damage, injury, or death.

Potential system failures that result in damage, injury, or death are referred to as a

mishap risk. Therefore, safety must always be considered with respect to all system

components (the software and the computer hardware, other electronic and electri-

cal hardware, mechanical hardware, and operators or users) not just the software

element.

Hazards will always exist, but their risk must be mitigated. Therefore, safety is

a relative term that refers to the level of risk that is acceptable. System safety is

not an absolute quantity, but rather a level of risk that is bound by cost, time, and

2

performance. System safety requires the evaluation of risk to determine its level in

order to decide whether to accept or reject it. System safety is achieved through a

sequence of ordered steps applied from the initial system design, through detailed

design and testing, to the end of a system’s lifetime.

1.2 The Cost of Software Safety

The overall cost of software safety is determined by what we are willing to pay.

It includes many factors and components, and depends on whether we want to pay

to prevent the hazards from happening or we want to pay after the occurrence of

hazards. The preventive approach, the cost that we spend to produce safer software

that eliminates software defects in general, is only one proportion of the cost to

develop safety-critical software that can save human lives and properties. The other

one is the cost we pay after the occurrence of an accident or mishap [18]. The

problem is we cannot ever be certain that the system operates safely. On the other

hand, when accidents do occur, the penalties for ignoring software safety can be

very severe. Therefore, a preventive approach for safety during design is more cost-

effective than trying to implement safety into a system after the occurrence of an

accident or mishap since the cost of mishap could be exorbitant [43].

1.3 Safety Analysis

Safety analysis is the examination and evaluation of the system and subsystem

to find and categorize the existing and potential hazards and hazardous conditions

according to their severity and frequency of occurrence and to attain the proper

measures to mitigate them [43]. It increases the probability of finding possible

3

faults in safety-critical software. Some safety analysis techniques have been used to

analyze safety in safety-critical software. The outcome of this analysis is considered

when testing safety in the behavioral model.

Besides the techniques used in testing software generally, testing safety-critical

software systems requires analyzing the hazards beforehand by using analysis tech-

niques such as Fault Tree Analysis (FTA) [143], Failure Modes and Effects Analysis

(FMEA) [123], Hazard and Operability Analysis (HAZOP) [83], and Hazard and

Risk Analysis (HRA) [43, 60]. However, there is still a gap between the testing and

analysis activities which negatively impacts the effectiveness of testing. Another

difference is that when testing safety-critical software we are testing the undesired

behaviors which are not described by the system model, while when testing non-

safety critical software we are testing the desired behaviors, i.e. how the system is

supposed to behave.

1.4 Software Testing

Software testing is a very important activity in the software development life

cycle. It is the process of operating the software under a controlled condition to

verify that it behaves as specified, to detect its errors, and to validate that it is what

the customer wants. Validation checks to see if we are building the right system

and Verification checks to see if we are building the system correctly [4]. However,

the purpose of Error Detection is to find out whether things happen when they

should’t or they don’t happen when they should. Both verification and validation

are necessary, but are different components of any testing activity. According to the

ANSI/IEEE1059 standard, testing is defined as the process of analyzing software to

4

detect the differences between existing and required conditions and to evaluate the

features of the software item.

The main purpose of testing software is to find errors and problems. The point

of finding these errors and problems is to have them fixed. Testing in itself cannot

ensure the quality of software, all it can do is to give us a certain level of assurance

about the software based on given controlled conditions. In other words, testing

shows us whether the software functions as expected or not under the test cases ex-

ecuted. This level of assurance depends on the testing criteria and strategy applied,

and techniques and tools used. A well-designed test case may reveal previously

undetected software defects [145].

In well-organized projects, the mission of the testing team is not only to perform

testing, but also to help minimize the risk of product failure. Testers in the testing

team do not look only for obvious errors in the product, but also try to find potential

problems and the absence of problems [26]. They examine and report the quality of

the product based on specific criteria, so that a release decision about the software

can be made.

1.5 Testing Problem for Safety-Critical Systems

In safety-critical systems, we are concerned with the desired behavior as much

as the undesired behavior. The undesired behavior may cause injuries or loss of life

to people, or property damage. Therefore, it is essential to lower the probability

of the occurrence of the hazards as well as its severity by implementing mitigation

actions for the system. Thus, we need to:

• generate behavioral test to test the behavior of the system,

5

• generate failures at appropriate points ex. by injecting events into the system

model or by manipulating the sensor values, and

• test proper mitigation.

 p

f

b m

Figure 1.1: Overall Approach

From the test process shown in Figure 1.1, we need to know:

• What behavior (b) the model describes,

• with which failures (f) are we testing, including multiple criteria and priorities,

• at what point (p) in the behavior, and

• with which mitigation model (m).

To overcome the safety-critical system testing problems such as the gap (between

the desired and the undesired behaviors) introduced by the separation of models,

we need to integrate these models such that they can be used for testing as well as

having testing criteria for the this integrated model.

1.6 Model Based Testing (MBT)

Model-based testing (MBT) [31] is common for functional testing. Models pro-

vide a functional view of the system that can be used to produce test cases without

using the actual system implementation details because it is very difficult to cover

6

all code structures especially for complex dependable systems [140]. MBT focuses

on testing the functional or the expected behavior (also known as desired behav-

ior). Models commonly used in this context include the Unified Modeling Language

(UML) [125], Finite State Machines (FSM), Extended Finite State Machines (EF-

SMs), and Communicating Extended Finite State Machines (CEFSMs). Each type

of model has its own characteristics that makes it more suitable for one kind of

behavior than for others. For example, CEFSMs are better in modeling commu-

nication between processes than FSMs because CEFSMs have the capabilities to

handle the communication part whereas FSMs do not.

MBT is intended for testing the desired behavior that the model describes. How-

ever, safety is not described by the system models and therefore, it has to be analyzed

separately by one of the safety analysis techniques. The output of this analysis can

then be used for safety testing. To analyze safety, different models, known as fault

models, which describe the undesired behavior, are used. These models are differ-

ent from the models that describe the desired behavior. Although the output of

safety analysis techniques is used for testing, the separation of these models hinders

achieving adequate safety testing since the output of the analysis tells what events

contribute to the occurrence of the hazard but does not tell how and when the haz-

ard would occur during the system execution. That is due to the fact that these

two activities are conducted separately on different models for different goals.

This leads to the idea of model integration. The idea of model integration is to

combine fault models with behavioral models in order to know not only what causes

hazards in the system, but also when and how these hazards occur during system

execution. In this dissertation, we will use CEFSM for model integration due to

its capabilities such as the flatness of the model and the explicit interaction power.

CEFSM has also been extensively used in modeling communicating and embedded

7

systems. We propose transformation rules to transform fault trees gate by gate

into their equivalent CEFSMs. Then we integrate the CEFSM form of the fault

tree with behavioral models according to transformation rules. The output of the

integration process is an integrated model. The behavioral model and fault model

can be thought of as communicating processes where the fault process will receive

events from the behavioral process that may contribute directly to a hazard. The

integrated model can be used for safety analysis, safety testing, and testing proper

mitigation. The complexity, scalability, effectiveness, and efficiency of the proposed

approach are investigated.

1.7 Research Questions

• RQ1: Can we combine behavior models with fault models to be used for

testing software safety?

• RQ2: How can we overcome the limitations such as scalability and complexity

that the other approaches introduced?

• RQ3: Can we overcome the limitation of compatibility between the behavior

and fault model and how?

• RQ4: Can we create test cases that target hazards from the integrated model?

• RQ5: Can the integrated model be used for safety analysis as well?

• RQ6: Can we define test criteria that are suitable for the integrated model

and target safety?

• RQ7: Can the approach be used within an end-to-end testing methodology?

• RQ8: Can we generalize the integration approach so that it fits other BM

and FM?

• RQ9: Can we validate the approach?

8

• RQ10: Can the approach be applied to all types of safety critical systems?

• RQ11: Can we use this approach with tool support?

The rest of this document is organized as follows: Chapter 2 provides a back-

ground overview of hazard analysis, hazard testing, Safety-Critical System Lifecycle

(SCSL), MBT, and model integration. Our approach which includes fault model

transformation and integration rules is described in chapter 3. Chapter 4 validates

the approach. It investigates scalability and applicability. It also provides a case

study that shows using the approach as part of an end-to-end testing methodology.

Chapter 5 discusses other uses of the integrated model using CADP. We conclude

in Chapter 6. Finally, chapter 7 explores the future work.

1.8 Contribution to Team Project

This dissertation is a part of a large project to test a proper failure mitigation

and security. This project consists of the following:

• A (Ahmed Gario): This part of the project is this dissertation. It focuses

on generating failures by integrating fault trees and the behavioral model

according to a set of transformation and integration rules.

• B (Salwa Elakeili): This part of the project concentrates on testing the proper

mitigation of safety-critical system.

• C (Seana Hagerman): This part uses the attack tree to test security of the

proper mitigation.

• D (Mahmoud Abdelgawad): This portion emphasizes on testing autonomous

system.

9

• E: This part of the project interested in generating fail-safe tests for Web

application.

Figure 1.2 illustrates how these parts of the overall large project are related, and

Table 1.1 describes the overlapping areas in more details.

10

E
: F

SM
w

eb

 A
: F

ai
l-

Sa
fe

 T
es

tin
g

B
: M

iti
ga

ti
on

 T
es

t
G

en
er

at
io

n

F
ig
u
re

1
.2
:

T
ea

m
C

on
tr

ib
u

ti
on

11

T
a
b
le

1
.1
:

P
ro

je
ct

C
on

tr
ib

u
ti

on
C

om
m

on
al

it
y

T
ab

le

A
B

C
D

E

A
-

E
n
d
-t

o-
E

n
d

A
p
-

p
ro

ac
h
,

M
o
d
el

in
g

la
n
-

gu
ag

e
u
se

d
(C

E
F

S
M

),
C

as
e

S
tu

d
ie

s

A
p
p
ro

ac
h
,

C
as

e
S
tu

d
ie

s
M

o
d
el

in
g

la
n
gu

ag
e

u
se

d
(C

E
F

S
M

),
A

p
p
ro

ac
h

B
E

n
d
-t

o-
E

n
d

A
p
-

p
ro

ac
h
,

M
o
d
el

in
g

la
n
-

gu
ag

e
u
se

d
(C

E
F

S
M

),
C

as
e

S
tu

d
ie

s

-
C

as
e

S
tu

d
ie

s,
M

it
i-

ga
ti

on
M

o
d
el

in
g

la
n
gu

ag
e

u
se

d
(C

E
F

S
M

)
R

eg
re

ss
io

n
te

st
in

g,
W

ea
v
in

g
ru

le
s,

C
om

-
p
ar

is
on

C
A

p
p
ro

ac
h
,

C
as

e
S
tu

d
-

ie
s

C
as

e
S
tu

d
ie

s,
M

it
ig

a-
ti

on
-

M
o
d
el

in
g

la
n
gu

ag
e

u
se

d
(C

E
F

S
M

)

D
M

o
d
el

in
g

la
n
gu

ag
e

u
se

d
(C

E
F

S
M

),
A

p
p
ro

ac
h

M
o
d
el

in
g

la
n
gu

ag
e

u
se

d
(C

E
F

S
M

)
M

o
d
el

in
g

la
n
gu

ag
e

u
se

d
(C

E
F

S
M

)
-

E
R

eg
re

ss
io

n
te

st
in

g,
W

ea
v
in

g
ru

le
s,

C
om

-
p
ar

is
on

-

12

Chapter 2

Background

This chapter provides an overview of the Safety-Critical System Lifecycle (SCSL),

hazard analysis techniques, and model based testing. Section 2.1 explains the safety-

critical lifecycle according to [IEC 61508] and explains its phases. The most common

hazard analysis techniques such as FTA, PHA, FMEA, FMECA, HAZOP, ETA,

CED, and FHA are explained in section 2.2. Section 2.3 elucidates model based

testing techniques. The combined fault and behavioral models are discussed and

illustrated with an example in section 2.4. The limitations of these approaches are

explained in section 2.4.1.

2.1 Safety-Critical System Lifecycle (SCSL)

“Safety lifecycle models are considered to form an adequate framework to iden-

tify, allocate, structure, and control safety-related requirements” [IEC 61508]. This

model is standardized in IEC 61508 to cover the complete safety lifecycle. It consists

of sixteen phases as can be seen in Figure 2.1.

1. Concept.

2. Overall scope definition.

13

Back to appropriate overall
safety lifecycle phase

Safety-related
systems:
E/E/PES

Realization
 (see E/E/PES

safety lifecycle)

9 11
External
reduction
facilities

Realization

Safety-related
systems:

other
 technology
Realization

10

Overall installation & commissioning 12

Safety requirements allocation 5

Overall safety requirements 4

Hazard and risk analysis 3

Overall scope definition 2

Concept 1

Overall
operation &
maintenance

planning

Overall
safety

validation
planning

7

Overall planning
Overall

installation &
commissioning

planning

8

6

Overall modification &
retrofit

15

Decommissioning or disposal 16

Overall operation, maintenance & repair 14

Overall safety validation 13

Figure 2.1: Overall Safety Lifecycle[IEC 61508]

3. Hazard and risk analysis.

4. Overall safety requirements.

5. Safety requirements allocation.

6. Overall planning: overall operations and maintenance planning.

7. Overall planning: overall safety validation planning.

8. Overall planning: overall installation and commissioning planning.

9. Safety-related systems (SRSs): Realization of Electrical, Electronic and Pro-

grammable Electronic systems (E/E/PE) SRSs.

10. Safety-related systems (SRSs): Realization of “other technology” SRSs.

11. Safety-related systems (SRSs): Realization of “external risk reduction facili-

ties”.

12. Overall installation and commissioning.

14

13. Overall safety validation.

14. Overall operation, maintenance and repair.

15. Overall modification and retrofit.

16. Decommissioning or disposal.

The safety lifecycle model is divided into three parts each of which contain some

phases that address safety related issues. The first state contains the phases from

phase 1 to phase 5, the second part contains the phase from phase 6 to phase 11 and

the last part contains phases from 12 to 16. Every part is concerned with a step in

the development of the safety related system lifecycle.

The first part of the lifecycle, phases 1, 2, 3, 4, and 5, concerns the risk analysis

during which the potential hazardous situations are determined, their impact and

consequences are established and the probability of occurrence estimated. Conse-

quently, the need for additional risk reduction measures is determined and the safety

requirements are specified and allocated to safety related systems.

The second part of the lifecycle, phases 6, 7, 8, 9, 10, and 11, concern the techni-

cal specification, development and implementation of the safety-related systems. As

can be seen from the overall safety lifecycle model, phases 6, 7 and 8 are concerned

with the overall planning. Their position emphasizes the importance of their overall

status, even though in the standard they are defined as applying only to Electri-

cal/Electronic/Programmable Electronic (E/E/PE) systems. Phases 9, 10 and 11

are concerned with the realization of the SRS, which may take the form of E/E/PE

systems, other technology systems, or external facilities.

The third part, phases 12 to 16 concern the utilization of the SRS. During this

part, requirements are defined concerning commissioning, operation, maintenance,

periodic tests, eventual modifications and decommissioning of the SRS. These phases

15

demonstrate that the standard is not restricted to the development of systems,

but that it covers the management of functional safety throughout a system’s life.

Many of the standard’s requirements are indeed technical, but it is effective safety

management rather than merely technical activities which in the long run must be

relied on for the achievement of safe systems. Parts 2 and 3 of the standard address

hardware and software development respectively for E/E/PE systems.

2.2 Hazard Analysis Techniques

The Hazard Analysis falls into the first part of the SCSL lifecycle. This part, at

the early stages of the life-cycle, deals with the analysis of the hazards so that they

can be considered in the coming stages. In this phase, preliminary Hazards and

Operability (HAZOP) analysis [83] is performed along with Layers of Protection

Analysis (LOPA) [130] and Criticality Analysis to know what the kinds of hazards

are, how severe they would be, and how likely they may occur. This analysis allows

for better understanding of the hazards to take the required actions in consideration

in the coming stages of the lifecycle [43]. Table 2.1 contains the most common

hazard analysis techniques, where they can be used in the development life-cycle,

and whether they are quantitative or qualitative techniques. A complete list of these

techniques can be found in [43].

• Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) [143] is a safety analysis technique that is com-

monly used to analyze the safety of systems that are under development or are

existing systems. It was originally designed by Bell Telephone Laboratories in

1962 for the US Air Force as a technique for the safety analysis of electrome-

chanical devices and later used in analyzing safety-critical software [91]. It is

16

T
a
b
le

2
.1
:

H
az

ar
d

A
n

al
y
si

s
T

ec
h

n
iq

u
es

T
ec

h
n
iq

u
e

R
ef

er
en

ce
s

S
y
st

em
L

if
e-

cy
cl

e
P

h
as

e
Q

u
an

ti
ta

ti
ve

/
Q

u
al

it
at

iv
e

F
au

lt
T

re
e

A
n
al

y
si

s
(F

T
A

)
[9

1,
38

,
77

,
75

,
76

,
99

,
32

,
28

,
13

1,
13

6,
12

4]

P
re

li
m

in
ar

y
D

es
ig

n
&

D
et

ai
le

d
D

es
ig

n
Q

u
an

ti
ta

ti
ve

/
Q

u
al

it
at

iv
e

P
re

li
m

in
ar

y
H

az
ar

d
A

n
al

y
si

s
(P

H
A

)
[4

3,
58

]
C

on
ce

p
tu

al
&

P
re

li
m

-
in

ar
y

D
es

ig
n

Q
u
al

it
at

iv
e

F
ai

lu
re

M
o
d
es

an
d

E
ff

ec
ts

A
n
al

y
si

s
(F

M
E

A
)

[1
23

,
56

,
11

4,
66

]
P

re
li
m

in
ar

y
D

es
ig

n
&

D
et

ai
le

d
D

es
ig

n
Q

u
al

it
at

iv
e

F
ai

lu
re

M
o
d
e,

E
ff

ec
ts

an
d

C
ri

ti
ca

l-
it

y
A

n
al

y
si

s
(F

M
E

C
A

)
[1

9,
14

6,
11

,
23

]
P

re
li
m

in
ar

y
D

es
ig

n
&

D
et

ai
le

d
D

es
ig

n
Q

u
an

ti
ta

ti
ve

/
Q

u
al

it
at

iv
e

H
A

Z
ar

d
an

d
O

P
er

ab
il
it

y
(H

A
Z

O
P

)
[8

3,
39

,
11

6,
30

,
73

]
P

re
li
m

in
ar

y
D

es
ig

n
&

D
et

ai
le

d
D

es
ig

n
Q

u
an

ti
ta

ti
ve

E
ve

n
t

T
re

e
A

n
al

y
si

s
(E

T
A

)
[9

,
79

,
63

]
P

re
li
m

in
ar

y
D

es
ig

n
&

D
et

ai
le

d
D

es
ig

n
Q

u
an

ti
ta

ti
ve

/
Q

u
al

it
at

iv
e

C
au

se
an

d
E

ff
ec

t
D

ia
gr

am
s

(C
E

D
)

[8
1,

59
,

42
]

P
re

li
m

in
ar

y
D

es
ig

n
,

D
et

ai
le

d
D

es
ig

n
Q

u
an

ti
ta

ti
ve

F
u
n
ct

io
n
al

H
az

ar
d

A
n
al

y
si

s
(F

H
A

)
[1

49
,

43
]

C
on

ce
p
tu

al
D

es
ig

n
,

P
re

li
m

in
ar

y
D

es
ig

n
,

an
d

D
et

ai
le

d
D

es
ig

n

Q
u
an

ti
ta

ti
ve

17

a top-down safety analysis technique in which an undesired state of a system

is analyzed using logical operations to combine a series of lower-level events.

A FT is composed of nodes, edges, and gates. Gates are logical connectors

of events, while nodes represent events, and edges connect nodes to gates.

When FT is used to model faults, every major hazard is represented by a

separate fault tree.

Table 2.2: Fault Tree Gate Types [143, 40]

Symbol Gate Meaning

∧ AND The gate occurs only when all its in-
puts occur.

Z PRIORTY AND The gate occurs only when all its in-
puts occur in a specified order.

∨ OR The gate occurs when at least one of
its inputs occurs.

7 INHIBIT The gate occurs only when the input
occurs and the enabling condition is
true.

⊕ XOR The gate occurs only when the XOR
of the inputs is true.

Single event gate TIMING GATES These gates occur only when an event
occurs and the time-out is triggered.

Table 2.2 lists the gate types we consider here. A fault tree provides qual-

itative and quantitative measures of the likelihood of the occurrence of haz-

ards [143]. Quantitative analysis is done by computing the probability of the

occurrence of the root node from the probabilities of the lower level nodes,

while Qualitative analysis shows the set of events that, if happen together,

contribute to cause the hazard. Qualitative analysis is applicable when inte-

grating faults into the system model because the analysis is performed on the

18

actual occurrence of the set of possible faults rather than on their probability

of occurrence.

Kaiser et al. [77, 75] propose a compositional extension of the FTA tech-

nique. Each technical component in the system is represented by an extended

Fault Tree that has, besides its basic events and gates, input and output ports.

These components can be developed independently and can be integrated into

a higher-level model by connecting these ports. Both qualitative and quanti-

tative analysis can be applied on this FTA.

FTA [143] describes how the combination of behaviors of system compo-

nents result in a hazard or a failure of a system. Although it is one of the

most used techniques, it may not be suitable for software safety analysis be-

cause it is a static model that describes the overall cause of a hazard and

cannot answer the questions why, when, and how the hazard occurs during

the software execution. However, some work has been done to use FTA in

testing safety-critical software. Miguel et al. [32] incorporate safety require-

ments in software architecture based on safety objectives, and evaluate these

software architectures based on safety analysis methods such as FTA. The re-

sults of this incorporation are used to evaluate the architectures and to detect

inconsistencies of software architectures and safety requirements.

Chen et al. [28] used FTA to evaluate the reliability of the railway power

systems and investigates the impact of the maintenance in the reliability. A

binary decision diagram (BDD) algorithm is used to evaluate the FT. Sun

et al. [131] integrated FTA with Architecture Analysis and Design Language

(AADL) to support the consistent reuse of FTA across the systems to re-

duce the effort of maintaining traceability between the safety analysis and the

architectural models. Others such as Tracey et al. [136] integrate safety anal-

19

ysis with the automatic test-data generation to be used for software safety

verification.

• Preliminary Hazard Analysis (PHA)

It is a comprehensive, structured, and logical technique for identifying

and evaluating risk in complex technological systems that produces detailed

identification and assessment of accident scenarios [58]. PHA is an activity

that takes place while developing the system design to identify software-related

hazards. Therefore, these hazards or its consequences can then be removed

[43].

PHA helps ensure that the system is safe and makes the system modifi-

cations less expensive and easier to implement in the earlier stages of design.

Moreover, it decreases design time by reducing the number of surprises and

unexpected outcomes. On the other hand, in PHA hazards must be foreseen

by the analysts so they can deal with them. However, foreseeing hazards may

not be an easy task since the effects of interactions between hazards are not

easily recognized.

• Failure Modes and Effects Analysis (FMEA)

FMEA is a fault analysis technique that aims to identify hazards in require-

ments that have a potential failure [123, 56]. It is a bottom-up technique that

can be applied during the analysis and design phases. It is used to identify

critical functions based on the applicable specification. The severity and the

likelihood of a mishap will be used to define the criticality level of the function

and thus it will be considered more deeply in a later criticality analysis [114].

Processing FMEA manually can be an error-pron, costly, and hard to repeat

20

process. To avoid these drawbacks, Hecht et al. in [66] automate the major

steps in generating a software FMEA.

The FMEA technique has the capability to identify and eliminate potential

failure modes early and thus reduces the cost associated with late changes. It

also reduces the possibility of the occurrence of the same failure in the future.

On the other hand, this technique may only identify major failure modes in a

system and is limited by the analyst’s experience of previous failures.

• Failure Mode, Effects and Criticality Analysis (FMECA)

FMECA extends FMEA by including a criticality analysis. It charts the

probability of failure modes against the severity of their consequences. The

FMECA process should be initiated as a part of the early design process and

should be updated to reflect design changes as FMECA is a major consider-

ation at Design Review [146]. Due to the nature of the design process, the

FMECA must also be iterative. The purpose of a FMECA is to provide a

systematic, critical examination of potential failure modes and their causes,

assess the safety of systems or components, analyze the effect of each failure

mode, and identify corrective action. It has been used in analyzing safety

in safety-critical systems with software systems in the aerospace [23, 11] and

automobile domains[19].

FMECA is a systematic comprehensive technique that establishes rela-

tionships between failure causes and effects. It has the ability to point out

individual failure modes for corrective action in design. However, due to its

comprehensiveness, a large number of trivial cases will be considered which

requires extensive work. FMECA is unable to deal with multiple-failure sce-

narios or unplanned cross-system effects such as sneak circuits (conditions

21

which are present but not always active, and they do not depend on compo-

nent failure [69]).

• HAZard and OPerability (HAZOP)

HAZOP is an analysis technique that assumes the deviations from the

design or operating intentions cause accidents. Therefore, it puts in consid-

eration all possible ways that the hazards or operating problems may arise if

the system is operated under a different mode than the intended operating

conditions. The concept of a HAZOP study first appeared with the aim of

identifying possible hazards present in facilities that manage highly hazardous

materials [83]. The purpose was to eliminate any cause of major accidents,

such as toxic releases, explosions, and fires. Because of its success in iden-

tifying hazards and operational problems, HAZOP’s application extended to

other types of facilities. Therefore, it was adopted for computer-based systems

such as medical diagnostic systems [30, 39] and in railway systems [116, 73].

• Event Tree Analysis (ETA)

ETA is a technique used to explore responses to an initiating event and

enables assessment of the probabilities of outcomes [9]. It is a bottom-up ap-

proach used to define potential accident sequences associated with a particular

event or set of events. It was first applied in risk assessments for the nuclear

industry and then later was adapted by others such as chemical processing,

offshore oil and gas production, transportation, and safety critical software.

The Event-Tree can be used as a quantitative and qualitative analysis tech-

nique. Quantification of the event-tree diagram allows the frequency of each

of the outcomes to be predicted.

22

ETA is structural, rigorous and, a large portion of it can be computer-

ized. It models complex systems relationship in an understandable manner

and can be performed on many levels of design detail. Moreover, it com-

bines hardware, software, environment, and human interaction and it permits

probability assessment. On the other hand, ETA can not distinguish between

partial successes and failures. It also requires an analyst with some training

and practical experience and can only have one initiating event. In addition,

when modeling an event, subtle system dependencies can be overlooked.

• Cause and Effect Diagrams (CED)

CED [81], also known as Ishikawa Analysis, is a quantitative analysis that

graphically represents the relationships between a problem and its possible

causes. The advantage of this analysis technique is that it is very simple,

visual and easy to understand by the analysts. The drawbacks of CEDs are:

(1) there is a lack of distinction between necessary conditions and sufficient

conditions and (2) not all the logical possibilities of the occurrence of the causes

are taken into account [59]. The cause in this analysis technique is broken

down into other causes and these can also be broken down into other causes.

Therefore, it is difficult to understand what the word ’cause’ exactly means.

Does it mean a necessary condition, a sufficient condition, or a necessary and

sufficient condition [42].

• Functional Hazard Analysis (FHA)

FHA is defined as one of the preliminary activities in the safety assessment

process [149]. It is a quantitative analysis technique for identifying all the

hazards that can affect the outcome of the principal functional activities that

need to be carried out to accomplish a given task [149]. The purpose of

23

FHA is to identify system hazards by the analysis of functions. Functions

are the means by which a system operates to accomplish its tasks. System

hazards are identified by evaluating the safety effects of a function failing to

operate, operating incorrectly, or operating at the wrong time. They may

consist of a loss of critical function, inadvertent activation of the function,

outside influences on the performance of the function, or some combination of

them. When a failure of a function is determined, the cause factor should be

investigated in more detail.

The advantages of this technique are: (1) this technique works best for

functions that are entirely independent; (2) it helps to better understand the

effect of a failure. The drawbacks of FHA are: (1) It is hard to identify

functions at the right level of abstraction from the available requirements, (2)

determining the effect of function failure of lower level function can be difficult,

and (3) it is hard to apply FHA for dependent functions.

There are many safety analysis techniques that have been in use for many years.

These techniques are used during the development stage of the system lifecycle.

Some of these techniques are used at the system level to analyze the system haz-

ards, while others are used at the subsystem levels to define the hazards related

to components and their interaction. The results of hazard identification help the

designers and the developers eliminate and mitigate these hazards.

2.3 Model Based Testing (MBT)

Model-based Testing uses behavioral models of the software produced from the

functional requirements to carry out the software testing activity. FSM, UML,

EFSM, and CEFSM are common modeling techniques used in modeling software

24

systems. They have been used for testing activities such as test case generation as

well. Many coverage criteria such as edge, node, edge-pair, prime path, and W-

method were imposed on one or more of these models and each of these criteria

satisfies one or more test requirements. Table 2.3 shows the models and the types of

systems for which they were used. The rows contain the modeling techniques such

as UML activity diagram, UML statechart diagram, and FSM, while the columns

consist of some types of the systems such as non-embedded, embedded, automotive,

and aerospace.

Table 2.3: Model Based Testing

Model Not embedded Embedded Automotive Aerospace

UML

Activity [27] [94]

Statechart [109, 110, 21] [103, 96,
147]

collaboration [2]

Sequence [25] [128, 92,
104]

class [122]

use case [133, 102]

combination [64, 13, 12, 14,
97]

[150] [106, 45,
37, 65, 84]

[153, 35,
115]

FSM [29, 7, 72, 70,
3, 89]

[107, 47,
100]

[113]

EFSM [118, 34, 44,
61, 62, 139,
141]

[134] [152] [78]

25

2.3.1 Unified Modeling Language (UML)

UML [125] is the de facto standard language for specifying, modeling, analyzing,

and documenting software [117]. It is also used in modeling hardware, in business

contexts as well as in modeling systems. Its graphical notations makes it easier to

express and understand the design of software systems. It has also been used in

testing system implementations against their design artifact [22, 21, 55, 87], or used

to test the design of the system itself [57, 120, 36, 121]. In this section, we will

discuss the work used UML in testing.

The Statechart diagram is one of the UML diagrams that is expressive, repre-

sentative, and easy to use by the modeler. It consists of States which allow for

hierarchy to support the scalability of the representation. Thus states can contain

other states which can be represented as AND, or OR states. This means that a

state can have an orthogonal decomposition, OR decomposition, or have no child

states. In addition to States, a statechart contains Events that represent the oc-

currence of happenings that may trigger a Transition which shows what the next

state will be. Parameters of an event are global variables that can be used to con-

vey quantitative information regarding that occurrence and can be used by Guard

conditions to enable actions or transitions only when they evaluate to true. Figure

2.2 shows a small example of a statechart that contains two states, (Start and Par-

tialDail), an event (digit), a parameter (n), a transition is the arrow between the

states, and a guard ([Number.isValid()]).

UML statechart diagram has been used for testing the system as a whole or as

components or functions for non-embedded as well as embedded software systems.

Offutt et al. in [109] present a technique to generate test cases from UML stat-

echarts. This technique adapts the state-based specification test data generation

26

 Dialing

Start

Entry/start dial tone

Exit/ stop dial tone

PartialDial

Entry/number.append(n)

digit(n)

digit(n)

[Number.isValid()]

Figure 2.2: Statechart Example

criteria presented in [108]. Offutt et al. in [110] present general criteria for gen-

erating test inputs from the state-based specifications proposed in [109] which are

transition coverage criterion, full predicate coverage criterion, transition-pair cov-

erage criterion and complete sequence criterion. It is possible to apply all these

criteria or to choose any one of them based on a cost/benefit tradeoff.

Many statechart based testing strategies require flattening the statechart to spec-

ify a set of paths to be executed. These techniques can be automated. From the

flattened statechart, we can take each path and produce a test case. Briand et al.

[21] propose a methodology to automate the procedure of generating test case from

a statechart using coverage criteria such as all transitions, all transition pairs, full

predicate, and all round-trip paths. This methodology assumes that a test case to

be in the form of a feasible sequence of transitions. The procedure is to take each

test path separately and derive test data. This requires identifying the system state

involved for each event/transition that is part of the path to be tested and the input

parameter values for all events and actions associated with the transitions. They

introduce a number of algorithms to generate test constraints automatically.

Leftcaru et al. [89] use genetic algorithms (GA) to generate test data for chosen

paths in the state machine, so that the input parameters provided to the methods

trigger the specified transitions. The GA searches for the input parameters which

27

satisfy the specified requirements. After this technique obtains some paths according

to some coverage criteria, it then finds, for each path, the input parameter values

that trigger the methods in that path. Murthy et al. [103] introduce Test-Ready

UML statechart models to be used for testing. This model is obtained by annotating

the statechart model with events, guards, conditions, tasks and test statements

along the transitions. They also made the test generation automatic from a UML

statechart by identifying the required annotations for the UML statecharts. The

test path generation algorithm they used is based on depth-first traversal of the

model.

Lochau et al. [96] generate test cases that aim at feature interaction analysis

by using a UML statechart diagram. In order to automatically generate test cases,

they defined the components’ dynamic behavior via UML statecharts, specified the

interactions amongst these components, and annotated the test requirements. Test

cases are then derived from these annotated statecharts. Weibleder et al. [147]

compare several approaches for generating test cases from a UML statechart based

on a set of quality goals or metrics that are used to determine when to stop testing,

instead of testing until the available resources are exhausted.

The Activity diagram is another UML diagram. It describes dynamic aspects of

the system. It is a flow chart that represents the flow from one activity to another.

It consists of four basic elements: (1) rounded rectangles represent Actions that are

part of an activity diagram, (2) a black circle represents the start initial state of the

workflow, (3) diamonds represent decisions, (4) bars represent the start split or end

join of concurrent activities, and an encircled black circle represents the end final

state. Figure 2.3 illustrates a simple example of an activity diagram. The UML

activity diagram has also been used as a testing model. The work of Linzhang et

al. [94] generates test cases directly from a UML activity diagram using a gray-box

28

Figure 2.3: Activity Diagram Example

method. A gray-box method is a combination of white-box and Black-box methods.

A Gray-box method generates test cases by parsing the activity diagram to derive

the set of test scenarios that satisfies the path coverage criteria by applying depth

first search on the activity diagram. Input and output parameters are then extracted

from each test scenario. Test cases are then obtained from the input and output

sequences, guards and constrains.

Mingsong et al. [27] also used UML activity diagrams as design specifications

to generate test cases. The approach randomly generates numerous test cases for a

program under test. Then, they execute the program with the generated test cases

to obtain the corresponding outputs. After that, they compare these outputs with

the given activity diagram according to the specific coverage criteria to obtain a

reduced test case set that meets the test adequacy criteria.

29

Collaboration diagrams describe a collection of objects that interact to imple-

ment some behavior within the context of the system. They illustrate the rules of the

objects in a system and how they communicate to perform a specific task according

to a use case. The basic elements of collaboration are ClassifierRoles which describe

how objects behave, AssociationRoles that describe how an association will behave

in a particular situation, and Interactions which represent operations/methods that

the receiving object’s class implements. A message defines a particular communica-

tion between instances that is specified in an interaction. Messages in a collaboration

diagram are numbered in the order of the execution.

Collaboration diagrams were used in testing by Abdurazik et al. [2] with test

criteria. Test cases are generated from the collaboration diagrams according to

these criteria. Each collaboration diagram represents a sequence of messages that

corresponds to a use case. These criteria allow formal integration tests to be based

on high level design notations.

Sequence diagrams model the cooperation of objects relying on a time sequence.

They are known as event diagrams, event scenarios, or timing diagrams [1, 46]. They

show how objects interact with one another in a particular scenario of a use case.

Sequence diagrams capture the invocation and the occurrence order of methods

from each object. A sequence diagram consists of: (1) Object which is the a pri-

mary element involved in the diagram and represented by a rectangle, (2) Message

is the interactions between different objects in a sequence diagram and. A message

is denoted by a directed arrow and the notation differs depending on the message

type. A complete arrow is used for check and assignment statements, identifying

the nature of the operation as a comment, while a normal arrow is used instead for

the activation of an operation.

30

Cartaxo et al. [25] generate test cases from UML sequence diagrams based on

the derivation of Labeled Transition System (LTS). The LTS [80] provides a global

monolithic description of the set of all possible behaviors of the system. A path on

the LTS can be taken as a test sequence. The Depth First Search technique (DFS) is

used to obtain a path by traversing an LTS starting from the initial state. They use

state and transition coverage criteria to generate test cases. The transformation from

UML sequence diagram to LTS is done by Unified Modeling Language All pUrposes

Transformer (UMLAUT) tool and the test case generation by Test Generation with

Verification technology (TGV) tool. The procedure is targeted to feature testing of

mobile phone applications whose requirements are specified by sequence diagrams,

including loops and alternative flows.

Sarma et al. [128] introduce a method of generating test cases from a UML

sequence diagram by transforming a UML sequence diagram into a graph called

the Sequence Diagram Graph (SDG). Each node in the SDG stores information

necessary for test case generation. This information is collected from the use case

template, class diagrams, and data dictionary represented in the form of object

constrained language (OCL), that ware associated with the use case for which the

sequence diagram is considered. The SDG is traversed and test cases are gener-

ated using all message path sequence coverage criteria. They generate test cases

that satisfy the criteria by first enumerate all possible paths from the initial node

to the final node in the SDG. Each path then would be visited to generate test cases.

Bao-Lin et al. [92] introduce a test cases generation approach which relies on

UML sequence diagrams and Object Constraint Language (OCL). They represent

sequence diagrams as tree by constructing a scenario tree (ST), and obtain the

scenario path from ST. Then, they use the message path coverage and constraint

31

attribute coverage to generate test cases. They iteratively select all messages from

SD and use OCL to describe the pre and post conditions.

Nayak et al. [104] introduce an approach of synthesizing test data from the in-

formation embedded in model elements like class diagrams, sequence diagrams and

OCL constraints. They develop a sequence diagram with attribute and constraint

information derived from the class diagram and OCL constraints and map it onto a

Structured Composite Graph (SCG). Test paths are then generated from SCG using

all message criteria. They generate test data for each test path by following a con-

straint solving system. The proposed approach assume that initially all test paths

are feasible unless it cannot be exercised by any set of input data and then the path

becomes infeasible. Many works have used more than one UML diagram for testing

as well. Bertolino et al. in [14] develop a framework for test derivation and execu-

tion in a component-based development environment by integrating some existing

tools and methodologies. The UML components methodology is used to define the

diagrams necessary to apply the Cow Suite tool (Cow Suite is a UML-based test

environment for test-suite planning and derivation). Then the tests are composed

and executed within the Component Deployment Testing CDT framework.

Many UML diagrams such as interaction diagrams, statechart diagrams, and

component diagrams, have been used to characterize the behavior of components in

various aspects, so that they can be used to test component-based systems. Bertolino

et al. [13] combines sequence and state diagrams in order to produce a more infor-

mative testing model. The resulting model is used to identify more accurate test

cases. In case that the sequence model is conformant with the state model, the state

model will be used as a reference model in order to generate further test cases. This

work is meant to improve the work proposed in [14]. Their goal is produce from

32

the incomplete diagrams a more complete model to extract test cases from without

requiring extra modeling effort.

Zoughbi et al. [153] propose an UML profile to improve the communication

between safety engineers and software engineers. A UML profile will allow software

engineers to model safety related concepts and properties in UML. Safety-related

concepts are extracted from RTCA DO-178B (the airworthiness standard is the

software standard for commercial and military aerospace programs). Then, the UML

profile is presented to enable modeling these safety-related concepts. Supakkul et

al.[132], Mayer et al. [102], and Donini et al. [37] propose different approaches to

generate test cases from UML sequence and activity diagrams by first transforming

these diagrams into a graph, generating test scenarios from the constructed graph

and then extracting the necessary information for test case generation.

Swain et al. [133] integrate UML sequence and activity diagrams to generate

test cases. This is done by transforming these UML diagrams into a graph. An

algorithm to generate test scenarios from the constructed graph is then applied.

Next, the necessary information for test case generation, such as method-activity

sequence, associated objects, and constraints and conditions are extracted from the

test scenario. This approach is meant to reduce the number of test cases while

achieving adequate test coverage. Wu et al. in [150] defines some UML-based test

adequacy criteria that can be used to test component based software.

Hartmann et al. in [64] models components with their interactions and derived

test cases are from these component models and then execute them to verify their

conformant behavior. Prasanna et al. in [122] derive test cases by analyzing the

dynamic behavior of the object diagrams (a detailed state of the system at a point

of time) taken from the UML model of the system. This diagram is mapped to a

tree. Genetic algorithm’s crossover technique is then applied to this tree to generate

33

a new generation of trees. Each tree is then converted into a binary tree and a depth

first search technique is applied on these binary trees to produce test cases.

UML techniques have also been used in testing automotive and aerospace sys-

tems. Flamini et al. in [45] present a methodology to automatically perform an

’abstract testing’ of a large control systems. The abstract testing can be defined

as a configuration-independent and auto-instantiating approach for large computer-

based control systems. It is specified from system functional requirements and covers

many system configurations. It can be instantiated to cover any number of control

entities (sensors, actuators and logic processes). The configuration of the system is

used as an input to the transformation algorithm from abstract to specific tests that

are suitable for this configuration. The algorithm executes the test cases one by until

a failure is found or the test suite is set is empty. This approach saves a considerable

time effort required for this process when it is performed by hand. In the same field

Nicola et al. in [106] describe the Ansaldo Segnalamento Ferroviario (ASF) func-

tional testing methodology, based on a grey-box approach to generate and reduce

an extensive set of influence variables and test-cases. An influence variables is a

variable that effects the behavior of the system under test.

2.3.2 Finite State Machine (FSM)

FSM has a long and rich history as a modeling and testing language [4]. It

has been used for testing activities such as test case generation [4]. Many coverage

criteria such as edge, node, edge-pair, prime path, and W-method were imposed on

the FSM model and each of these criteria satisfies one or more test requirements. A

FSM is defined as: [88]

M is a quintuple M =(I, O, S, σ, λ) where

34

• I is a finite and nonempty set of input symbols,

• O is a finite and nonempty set of output symbols,

• S is a set of states,

• δ: S× I → S is the state transition function, and

• λ: S× I → O is the output function.

When the machine is in a current state s ∈ S and receives an input i ∈ I it

moves to next state specified by δ(s, i) and produces an output given by λ(s, o

where o ∈ O.

Chow [29] proposed a testing strategy known as “automata theory” or “W-

method”. It verifies the correctness of control structures that can be modeled by

FSM. This strategy showed that it can find transition errors, state errors, and op-

eration errors. Therefore, it can be applied to software testing and the test results

derived from the design are evaluated against the specification. Fujiwara et al. [48]

presented a new method called partial W-method (Wp). This method is a variation

of that proposed in [29] that provides shorter test sequences than the W-method.

Luo et al. [98] studied the issue of test selection for open distributed processing

with several distributed interfaces that was modeled in FSM. They also developed

a test generation method to generate test sequences based on the idea of synchro-

nizable test sequences. Tsai et al. [138] presented an approach to automatically

generate test cases for an object oriented class. These test cases are generated

based on the test case tree which is built based on an implementation state machine

which in turn is built up from the design state machine and the implemented class.

Friedman et al. [47] generate tests based on FSM models of a specification.

They describe a set of coverage criteria and testing constraints that compromise

between state and transition coverage criteria, and input domain coverage criteria.

35

The transition and state coverage often lead to large suite of test cases while the

input domain requires big engineering efforts.

2.3.3 Extended Finite State Machine (EFSM)

EFSM is an extension of the original FSM. The expressiveness power of EFSM

makes it capable of modeling system specification that include variables and oper-

ations based on variable values. In an FSM, the transition is associated with a set

of inputs and a set of output functions, whereas in an EFSM model, the transition

will be fired if the predicate conditions are all satisfied, moving the machine from

the current state to the next state and performing the specified data operations.

An EFSM is 5-tuple = (S, I, O, T, V), such that:

• S is a finite set of states,

• I is a set of inputs symbols,

• O is a set of output symbols,

• T is a set of transitions,

• V is a set of variables, and

State changes: The transition t in the set T is a 6-tuple:

t = T(st, śt, it, ot, Pt, At) where,

• st is the current state,

• śt is the next state,

• it is the input,

• ot is the output,

• Pt(~v) is predicates on the current variable values, and

• At(~v) is the action on variable values.

36

EFSM has also been used for software testing. Tahat et al. in [134] automatically

generates a system model from the requirement information. This model is then

used to automatically generate test cases related to individual requirements. This

approach is extended to generate regression tests that are related to the requirement

changes. Derderian et al. in [34] use a genetic algorithm to create an input sequence

that triggers a given path within an EFSM. Fantinato et al. in [44] extend the FSMs

to provide data flow modeling mechanisms to be used as a basis to define a set of

functional testing criteria.

Kalaji et al. [78] developed an approach to optimize the testing from EFSM.

The aim of this approach is to overcome the path feasibility and path test data

generation problems. A path is said to be infeasible if there is no input data that

can trigger such path. This is due to the fact that the transition in a EFSM model

includes predicates and operations that there does not exist data can trigger such

path. However, finding such a set of input data for the feasible path is difficult task

since the input domain is usually large and the required values is a small subset of

this domain. A fitness metric is used to estimate the likelihood of the feasibility

of a given path. EFSM transitions and their input parameters can be considered

as functions and their input parameters. The fitness function is used to guide the

search for a suitable set of inputs.

Guglielmo et al. in [61] use the extended finite state machine (EFSM) model

to generate test sequences. The same author et al. in [62] propose a functional

deterministic automatic test pattern generation (ATPG) approach that uses EFSMs

for functional verification.

37

2.3.4 Communicating Extended Finite State Machine

(CEFSM)

CEFSM is an extended type of the traditional EFSM that provides data flow

modeling and communications channels. CEFSM F is a tuple 〈EF ,CF 〉, where EF

is an EFSM and CF is a set of input/output communication channels used in this

CEFSM. CEFSM has been used in modeling and testing distributed systems and

network protocols. The strength of CEFSM is that it can model orthogonal states

of a system in a flat manner and does not need to compose the whole system in

one state as in statecharts. which would makes them more complicated and harder

to analyze and/or test. Communicating EFSMs can be defined as a finite set of

consistent and completely specified EFSMs along with two disjoint sets of input and

output messages[88]:

CEFSM = (S, s0, E, P, T, M, V, A, C), such that:

• S is a finite set of states,

• s0 is the initial state,

• E is a set of events,

• P is a set of boolean predicates,

• T is a set of transition functions such that T: S×P×E→S× A×M,

• M is a set of communicating messages,

• V is a set of variables,

• A is the set of actions, and

• C is the set of input/output communication channels used in this CEFSM.

38

State changes (action language): The function T returns a next state, a set of

output signals, and action list for each combination of a current state, an input

signal, and a predicate. It is defined as:

T(si, pi, get(mi))/(sj, A, send(mj1,..., mjk)) where,

• si is the current state,

• sj is the next state,

• pi is the predicate that must be true in order to execute the transition,

• ei is the event that when combined with a predicate trigger the transition

function,

• mi1,..., mik are the messages, and

The communicating message mi is defined as:

(mId, ej, mDestination) where,

• mId is the message identifier, and

• mDestination is the CEFSM the message is sent to.

An event ei is defined as: (eId, eOccurrence, eStatus) where,

• eId is the event identifier that uniquely identifies it, and

• eOccurrence is set to false as long as the event has not occurred for the first

time and to true otherwise, and

• eStatus is set to true when the event occurs and to false when it no longer

applies. Note that eStatus allows reoccurring events to happen multiple times

(loops in the model).

CEFSMs communicate by exchanging messages through communication chan-

nels C that connect the outputs of one CEFSM to the input to other CEFSMs. Let

39

C denote the set {〈name, SYNC|ASYNC〉| for all the channels in the system} where

name is the name of the communication channel and SYNC and ASYNC indicate

that the channel is synchronous or asynchronous. A same communication channel

can be used differently according to different transitions. A channel c ∈ C can be

represented as 〈name, t, get()/send()〉 where,

• name is the name of the channel,

• t ∈ T refers to the transition linked to this use of the channel, and

• get()/send() indicates whether this channel is an input or an output channel.

The action ai may include an assignment and mathematical operations on the

variables. The predicate is a condition that must be met prior to the execution

of the function. For example, T(S0, e0, total = 4)/(S1, {m0, m1}, (total = 0;

increment(i))) describes that if a CEFSM is in a state S0 receives an event e0 and

the value of variable total, which is the predicate, is four at that time, it will move

to the next state S1 and outputs m0 and m1 after setting the total to zero and

performing increment(i). For full formal semantics see [20].

2.3.4.1 Test Case Generation from CEFSM model

CEFSM-based test generation methodology proposed by Li et al. in [93] uses

FSMs to model behavior and events. The extension of events with variables is used

to model data while the events’ interaction channels are used to model commu-

nication. The tests are generated based on a combination of behavior, data, and

communication specifications. This method addresses branching coverage for data-

related decision coverage and behavioral transition coverage. It applies priority and

dominator analysis to generate efficient test cases to increase the branching cover-

age as much as possible with as few tests as possible. During the generation of test

40

cases, the priority of each branch is calculated by sorting them in decreasing order

of additional branching coverage, while a dominator means that a node A is said to

be a dominator of a node B if covering of B implies the covering of A. A branch can

be a data-related decision or an event alternative, i.e., each branch is defined as a

unique transition from a state to another state.

Hessel et al. [68] present an algorithm for generating test suites that cover all

feasible coverage criteria. The algorithm is inspired by reachability analysis. The

algorithm, at any given point, uses the information about the total coverage of

the currently generated state space to avoid unnecessary state space exploration

and to improve the performance of the algorithm. Derderian et al. [33] outlined

the problem of observing local transitions of individual CEFSMs within a global

transition (the interconnected transitions within the set of CEFSMs) using genetic

algorithms without the use of a product machine. A product machine is a FSM that

results from converting a set of CEFSMs.

The easiest approach to testing CEFSMs is to compose them as one machine

at once, using reachability analysis, and then generate test cases for the product

machine. However, this approach is impractical due to the state explosion prob-

lem and the presence of variables and conditional statements. Bourhfir et al. [16]

propose generating test cases for systems modeled by CEFSM. Test cases can be

generated for the global system by performing a complete reachability analysis, i.e.,

taking all transitions of all CEFSMs into consideration to generate test cases for

the whole produced graph. CEFTG can also be used to generate test cases for each

CEFSM individually. The algorithm terminates when the coverage achieved by the

generated test cases is satisfactory or after the generation of the test cases for the

partial products of all CEFSMs.

41

Kovács et al. in [86] methods and mutation operators are designed to enable the

automation of test selection in a CEFSM model. These mutation operators do not

simulate the typical errors of the specification or the implementation, rather they

create erroneous specifications that provide the basis for test case selection.

2.4 Combined Behavioral and Fault Models

Testing safety-critical software differs from testing non-safety-critical software in

many ways. Before testing safety-critical software systems, we need to conduct a

safety analysis for the system to find possible safety breaches and what may cause

them. The result of such an analysis is then used during testing. Another difference

is that in safety-critical software we are testing for safety breaches, which is undesired

behavior, in addition to the desired behavior. However, recent model-based testing

techniques do not adequately consider the information derived from the safety anal-

ysis like Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FTA)

[85]. Hence, people realized that there is a considerable gap between the safety

analysis models and the behavioral models that needed to be bridged. Therefore,

different approaches to integrate the fault analysis and system models were proposed

and used in safety analysis and testing.

Al-Ariss et al. in [41, 40] integrate fault-tree-based safety analysis into a func-

tional model. They use systematic transformation steps from Fault Tree to a stat-

echart model. The integration results in an integrated functional and safety spec-

ification (IFSS) model that preserves the semantics of both the fault tree and the

statechart. It also shows how the system behaves when a failure condition occurs.

42

Thus, it is used as a model that ensures safety through requirement validation. Ex-

ample 2.4.1 illustrates a model of a microwave oven which will be applied for the

next integration techniques.

Example 2.4.1. Microwave System: Figure 2.4 shows the behavioral model of

the microwave system. The statechart model consists of the Timer, the Door, the

Switch, and the Control as orthogonal regions. The door can be in one of the states

open, opening, closing, or closed. The Switch is either switched on or off and the

timer is either timing or idle, and the microwave can be in one the states, off, idle,

or microwaving.

off

on

t10:switchOn t11:switchOff

Switch

off

idle

microwaving
t13:switchOn t14:switchOff

t16:switchOn/closed;startTimer

t12:switchOff

t15:Cancel/doorOpen;stopTimer

Control

closed

open

t7:open

t6: [sensor=close]/closed

Door

closing opening

t9: [sensor=open]
/opened

t8: [sensor=close]
/open_failed

t4: close

t5: [sensor=open]
/close_failed

idle

timing

Timer

t1:startTimer t2:stopTimer

t3:keepTiming

Figure 2.4: Statechart for Microwave System

Figure 2.5 illustrates the fault model for the exposure of microwave. This FTA

shows the events that contribute in the top event exposure of microwave. For sim-

plicity, we assume that the microwave oven is already switched on and the Control

region is in the idle state. We used this small FTA that contains only three primary

events which are Timing, Door sensor failure, and Door open. All these events are

connected with the logical AND gate, which means all these events must occur in

order for the top event to occur.

43

Door open Microwaving

Door sensor failure Timing

Exposure of
microwave

Figure 2.5: FTA for Microwave Exposure

The top event of the FTA is the event exposure of microwaving. This event

is considered a mishap and composed of a combination of events. It occurs when

the microwave oven door is open and the microwave is operational. This will ex-

pose the user to microwaves. The microwave is not supposed to operate when the

door is open, however, this may happen if the door sensor gives a wrong signal or

information to the controller.

We apply this technique [40] on Example 2.4.1. The transformation starts with

deducing the safety requirements from the FTA and that will give the following

formula:

Exposure of microwave = (∧, (∧, (Timing,Door Sensor Failure),DoorOpen))

First, we need to check whether the leaf nodes are simple or composed. In this

example, all the leaf nodes are simple, therefore, the formula will not change. The

next step is to deduce the library of semantics from 2.5 and 2.4, which is shown in

table 2.4

44

Table 2.4: Semantic Table

Simple definition Statechart
component

Equivalent transition

Timing Timer
(Timer.idle, t1, Timer.timing)

(Timer.timing, t2, Timer.idle)

Door sensor Failure Door

(Door.opening, t8, Door.closed)

(Door.opening, t9, Door.opened)

(Door.closing, t5, Door.opened)

(Door.closing, t6, Door.closed)

Door open Door
(Door.closed, t7-t9, Door.opened)

(Door.opened, t4-t6, Door.closed)

After the semantic table is constructed, the transformation of FTA gates, gate

by gate, starts from the top event to the leaves. At the beginning, we have two

inputs from the top AND gate and they are A1 and A2 as shown in figure 2.6.

The formula for A1 and A2 is

Exposure of microwave = (∧, (microwaving, Door Open).

Exposure of microwave = (∧, (A1, A2).

The equivalent statechart is shown in figure 2.7.

The formula is Microwaving = (∧, (Switched on, Door sensor failure)) which is

the same as Microwaving = (∧, (A1.1, A1.2)). See figure 2.8.

After the transformation of all the FTA gates, these gates will be integrated into

the statechart of the behavioral model. The control region will be modified so that

it includes the top event of the FTA. The IFSS model is shown in Figure 2.9. This

model integrating approach has integrated a statechart and a fault tree according to

some transformation and integration steps. The IFSS model can be used for safety

analysis only. Our goal in this dissertation is to integrated behavioral model with

45

Door open Microwaving

Door sensor failure Timing

Exposure of
microwave

A1

A2

A1.1 A1.2

Figure 2.6: Applying Transformation Rules on Exposure of Microwave

A1 A2

Microwaving Door Open
Exposure of

microwave

A

A.Incr A.Incr

A.Decr A.Decr

Figure 2.7: The Statechart Gate for Exposure of Microwave Event

46

A1.1 A1.2

Timing

Door sensor

failure

Ent:A1.inc

Exi:A1.dec

Microwaving

Ent:A1.inc

Exi:A1.dec
A1

A1.Incr A1.Incr

A1.Dec A1.Dec

Figure 2.8: Statechart Gate for Microwaving Event

failure models to be used for safety testing. Kim et al. in [82] develop an algorithm

to transform hazards of a Fault Tree (FT) into a UML statechart diagram in order

to perform safety analysis. In this approach, the authors assume that the behavior

of the system is modeled in a state machine notation. Therefore, the hazards have

to be transformed to a statechart diagram. Their transformation of hazards is done

according to the following steps:

• Identifying the types of primary events in the fault tree related to the behav-

ioral model of the system. These types are categorized into four groups: (1)

state and entry and doActivity of a state, (2) exit of state, (3) transitions,

events, guard conditions and actions, and (4) data comparatives. Elements in

the same category have the same transformation rules.

• developing the rules to represent the primary events and gates in a UML

statechart notation, and

• extracting the information that deals with the hierarchy and the orthogonality

from the original behavioral model. The output of these steps is also a state

machine diagram that can be used for safety analysis.

47

closed

open

t7:open

t6: [sensor=close]
/closed/A.decr

Door

closing opening

t9: [sensor=open]
/opened/A.incr

t8: [sensor=close]
/open_failed/A1.incr

t4: close

t5: [sensor=open]
/close_failed/A1.incr

Off

On

t10:SwitchOn
/A1.incr

t11:switchOff/
A1.decr

Switch

Control

t17:Release
Microwave ExposureOf

Microwave

Off

Idle

Microwaving

t13:SwitchOn
t14:SwitchOff

t16:SwitchOn/closed;StartTimer

t12:SwitchOff

t15:Cancel/doorOpen;stopTimer

Microwaving Door Open
ExposureOfMicro

Entry: release

Microwave A

A.Incr A.Incr

A.Decr A.Decr

Timing
Door sensor

failure

Ent:A.inc
Exi:A1.dec

Microwaving
Ent:A1.inc
Ext:A1.dec A1

A1.Incr A1.Incr

A1.Dec A1.Dec

idle

timing

Timer

t1:StartTimer t2:StopTimer

t3:keep
Timing

Figure 2.9: Modified Statechart for the Microwave Oven

We will use Example 2.4.1 to illustrate this technique. The first step is to identify

the types of primary events in fault tree and to match them to one of doactivity in

the state machine. Figure 2.10 illustrates the FTA for the microwave. This FTA is

then transformed to a statechart according to the transformation rules. The AND

gate in a FTA is represented as an orthogonal region in the statechart. That means

both events have to happen in order for the gate to occur. Figure 2.11 shows the

statechart equivalent of Figure 2.10.

After the transformation of the FTA is completed, the transition information

is retrieved. Figure 2.12 shows the transformed statechart with information. This

approach integrates a fault tree into a statechart model according to a set of trans-

formation and integration rules. However, the integrated model can be used for

safety analysis only. Our goal is to integrate a behavioral and fault models for

safety testing.

48

p4:s<Door>open p3:s<control>microwaving

p2:d<Door sensor> failed p1:s<Timer>timing

p5:Exposure of
microwave

Figure 2.10: Fault Tree for Exposure of Microwave

Exposure of
Microwave

Microwaving

Door closed Door open

Incoming(Open)

outgoing(Open)

Sensor operational Sensor failed

Incoming(failed)

outgoing(failed)

Timer timing Timer idle

Incoming(on)

outgoing(on)

Figure 2.11: Transformed Statechart Diagram without Information from the Original
Statechart diagram

49

Exposure of
Microwave

Microwaving

Timer timing Timer idle

t10,t13,t16

t11,t14,t15

Sensor operational Sensor failed

t5;t8

t6,t9

Door closed Door open

t7, t9, t16

t4, t6, t15

Figure 2.12: Transformed Statechart Diagram with Information

Because, usually, the system specification does not thoroughly describe the un-

desired behavior, Sánchez et al. in [127, 126] propose generating test cases based

on a fault-based approach. This approach is meant to overcome the limitations of

specification-based approaches that derive from the incompleteness of the specifica-

tion with respect to undesirable behavior, and from the focus of specifications on

the desired behavior, rather than potential faults. FTA is used to determine how

undesirable states can occur in a system. The results of the analysis expressed in

terms of Duration Calculus are integrated with statechart based specifications. The

statechart diagram is then transformed to Extended Finite State Machines (EF-

SMs) to flatten the hierarchical and concurrent structure of states and to eliminate

broadcast communication. Control flow is then identified in terms of the paths in

the EFSMs.

Again, Example 2.4.1 will be used to illustrate this technique. The step is to

find the set of basic events that can contribute to a failure. From the given FTA,

the cut set for the event “Exposure of microwave” is

c = dtiming ∧Door sensor failure ∧Door opene

50

The FTA node “Exposure of microwave” refers to the statechart component

“control” and the sub-tree rooted “Door open” refers to the Door component, “tim-

ing” refers to the “Timer” component, and “Door sensor failure” refers to hardware

component sensor. The formula denotes that the microwave is switched on, and

microwave oven door is open, and the door sensors failed to operate properly. Ac-

cording to the transformation rules, the formula will be as follows:

c = dtiminge ∧ dDoor sensor failuree ∧ dDoor opene

According to rule I2 c i in [127] that says if the failure event or state is already

represented in the behavioral model, do nothing. Hence, the state “Switched on”,

the event “Door sensor failure” and the “Door open” state already exist in the

behavioral model, there is nothing to be done.

All the aforementioned integrating techniques integrate Fault Trees with Stat-

echarts. However, these approaches used different integration rules. We compare

these techniques based on the models integrated, the use for the integrated model,

and the number of states and transition in the resulting model as seen in Table

2.5. The use of these approaches is mainly safety analysis, however, the approach in

Sánchez et al. [127] is used for safety testing after translating the integrated model,

which is a statechart, into an EFSM.

Ortmeier et al. [112] present a systematic approach to formally model failure

modes. The approach is combined with most formal safety analysis. They provide

construction rules that ensure preserving that the initial functional behavior. They

apply their method to a radio-based railroad crossing modeled using statechart.

After they construct the model of the intended behavior of the system, they extend

it to capture failure modes. During the extension, they split the failures into models

of occurrence patterns and of direct effects modes. This allows to uniformly model

a large class of occurrence patterns of failure modes (like transient, persistent etc).

51

The occurrence pattern of a failure mode describes under what situations a failure

mode occurs. Two common patterns are transient which can appear and disappears

and persistent patterns failure which when it occurs it stays forever. Deductive

cause-consequence analysis (DCCA) is integrated into the presented failure model

to find the minimal critical sets if failure modes.

Kaiser et al. [76] proposed a combination of fault trees with an explicit State/Event

semantics, using a graphical notation called State/Event Fault Trees (SEFTs). This

model uses the fault tree to represent the faults which are connected to the state or

event in the state/event model that describes the system behavior. However, this

model is used for safety analysis. Furthermore, identifying the events for an FT

and connecting them to state or event is done manually which makes the process

of constructing SEFT very difficult, time consuming, and error-prone especially for

large and complicated systems.

Similarly, Nazier et al.[105] transform fault tree events into elements of a stat-

echart behavior model. The resulting risk-based test model is used for automated

test case generation by building Timed Computation Tree Logic (TCTL) queries to

verify the system correctness and criticality using model checker. However, it is not

clear how any coverage criteria can be imposed for interactions between orthogonal

regions of the cut sets.

Table 2.5: Comparison of the Integration Techniques

Technique FM BM Use
Example 2.4.1 Microwave System

States Transitions

[41, 40] FT Statechart Analysis 19 25

[82] FT Statechart Analysis 22 28

[127] FT Statechart Testing 11 16

52

2.4.1 Limitations

• The limitation introduced by the gap between the models: Combining

a behavioral model and a safety model is doable in case both models are

compatible. By compatible we mean that both models are described at the

same level of detail, the same events in both models have the same names

and attributes, and both models are dynamic. To describe the same level

of detail, both models have to be at the same level of abstraction. Figure

2.13 shows where the behavioral models and fault models are used in the v-

model. Although most of the models fall into the design phases of the v-model,

Subsystem

Design

Detailed

Design

Requirements

Analysis
Acceptance

Test

Architecture

Design

Module Test

Implementation

Integration

Test

System Test

Information for

Test Design

Unit Test

FTA, PHA,

FMEA,

FMECA,

HAZOP,

ETA, CED,

FHA, ETA

PHA, FHA

UML

Statechart,

Activity,

Collaboration,

Sequence, Class

Diagrams

 Output

 Verification

Figure 2.13: Fault and Behavioral Models at the V-model

they can be at different levels of these phases and describe different levels of

abstractions, so that they cannot be compatible. Therefore, the output of

the safety analysis techniques at one level will not be useful for testing at a

different level. Besides that, these models can be integrated together to be

53

used for testing. For example, an FTA at the Architecture design level cannot

be combined with a statechart at the detailed design level.

In other cases where the behavioral model describes the same level of detail

as the fault model, both models have to describe the same function, compo-

nent, or system (from a desired and undesired behaviors view) and both models

have to have the same event names and attributes. However, in case they do

not, we need to transform one model to a form that is compatible with the

other. In other words, we may model safety using a modeling language that

is used for modeling behavior. Doing so, we can easily integrate them in one

model that considers safety aspects of the system besides the behavioral ones.

• Scalability: Some of the proposed model integration approaches have scal-

ability and complexity limitations. Using a UML statechart to model fault

tree gates may not be suitable because of the state explosion problem. FTA

may contain hundreds of gates which means there will be hundreds of orthog-

onal regions since each gate is represented as an independent region inside the

statechart that represents the system under test.

• Complexity: The transformed fault tree falls into the lowest level of the

composed statechart that makes it difficult to manually or formally analyze

the diagram for safety because of the indirect paths to causes of hazards [82].

These indirect paths make it difficult to generate test paths from the statechart

model and make it impossible to inject faults into the system, i.e. to simulate

the environment, during requirement validation.

• No explicit mitigation models: All hazard mitigations are implicit within

the behavioral models of safety-critical systems. There are no explicit miti-

gation models in the form of exception handling patterns, such as emergency

54

stop, return to a safe state, insert an additional behavior, or try an alternative

behavior.

In our approach, we will overcome these limitation by using CEFSM to model

both behavioral and failure processes and how they interact. CEFSM is scalable

since we can use it to model bigger systems. As for the complexity, the system

modeled with a statechart may be composed of many levels of hierarchy. The

hierarchical diagram can have indirect paths to causes of the hazards due to its

depth (i.e., a composite state can own its sub-states) and orthogonality (i.e., regions

in a state are independent of each other). Therefore, we chose to use CEFSM as

a modeling language because we can keep the model flat to get rid of the system

composition that is the source of complexity.

55

Chapter 3

Approach

In this approach, we propose an integration of the behavioral model with a fault

model to take advantage of the two in the analysis and testing activities. From the

testing point of view we need to:

• generate behavioral tests to test the system behavior,

• generate failures at appropriate points e.g. by injecting events into the test

model [144], and

• test proper mitigation.

We also need to define coverage criteria for all three.

p

f

b m

Figure 3.1: Safety-Critical System Behavior

56

3.1 Test Generation Process

The test generation process shown in Figure 3.2 uses the behavioral model and

a FT to generate test cases. It starts with the compatibility transformation step.

The FT́ produced from this step is transformed to gate CEFSMs (GCEFSMs) ac-

cording to the transformation rules. Then, the model integration step integrates the

GCEFSM with the behavioral model (BM) according to the integration rules. The

resultant model is the Integrated Communicating Extended Finite State Machine

(ICEFSM). Test case generation methods can use this model to generate test cases

Compatibility

Transformation

BM

(CEFSM)

FT

Test Cases IC

Transformation

Rules

BM

FTʹ

Integration

Rules

Models

Integration

FT model

Transformation

Generate

Tests

GCEFSM

ICEFSM

Figure 3.2: Test Process

based on test criteria (IC). Because we consider both behavior and failure occurrence

to be parallel, communicating processes (cf.Figure 3.1), we use a communicating ex-

57

tended finite state machine to model their interaction. The following subsections

explain each step in more detail.

At the analysis stage of the system, safety analysts will have a list of every

possible failure and its ID. This list will be filled into the Failure Types Table shown

in Table 3.1 at the analysis stage. This table will be used to connect phase1 (our

approach) to phase2 (Generate Safety Mitigation Tests approach) of the end-to-end

testing methodology. At the beginning of phase1, the first two columns contain

Failure ID and Failure Type for every possible failure in the system. The following

columns, Node in FT́, Event ID, Gate ID, and Message ID will be filled in during

the various steps of phase1. That is, Node in the FT́ column is filled in during

the compatibility transformation step (section 3.1.3), Event IDs and Gate IDs are

filled in during the transformation procedure (section 3.1.6), Message IDs are filled

in during the integration procedure (section 3.1.7), and Path IDs is filled in during

test generation step (section 3.1.10).

Table 3.1: Failure Types Table Example

Failure
ID

Failure
Type

Node in FT́ Event
ID

Gate
ID

Message
ID

Path
ID

ex. f1 Gas leak FBGasLeak.BFEventCond e1 G1 m1 r1

3.1.1 Behavioral Model: Communicating Extended Finite

State Machine (CEFSM)

In principle, finite state machines can appropriately model control portions of

communicating components of a system. However, practically, the usual specifi-

cations of these components include operations based on variable values; ordinary

FSMs do not have the capabilities to model such systems in a concise way [88]. They

58

cannot model the manipulation of variables conveniently or model the exchange of

arbitrary values between components.

To solve the variable manipulation problem, FSMs were extended by adding

other elements used for data flow representation such as predicates, variables, and

instructions, to a more advanced model called an Extended Finite State Machine

(EFSM). The transfer of values between components is handled by adding commu-

nication capabilities to the EFSMs. CEFSM has been used in modeling and testing

distributed systems and network protocols [15]. The strength of CEFSM is that

it can model orthogonal states of a system in a flat manner and does not need to

compose the whole system in one state as in statecharts which would make it more

complicated and harder to analyze and/or test. The communication capabilities of

the CEFSM make it suitable for modeling communicating processes.

3.1.2 Fault model: Fault Tree (FT)

Many safety analysis technique has been used to analyze. These techniques aid

in the detection of the safety flaws and the design error. From these techniques, we

select the fault tree to be used as our fault model to be integrated in the behavioral

model in order to be used for safety testing. Fault tree is an analysis model that

describes how events and failures contribute in a hazard. This is very important for

our integrating approach because we need to know when and how that events and

failures of the system combine to cause a hazard at the system execution.

3.1.3 Compatibility Transformation

The basic events in fault trees (leaf nodes) depend on the scope, resolution and

the ground rules [143]. The scope of the FT indicates which failure will be included

59

and which will not, the resolution is the level of detail at which these basic events

will be developed, and the ground rules include the procedure and terminology used

to name these events. Often, the basic events in fault trees are informally described,

i.e. in a natural language. If the resolution or the event naming does not match

that of the behavioral model, which is often the case, we say these models are not

compatible. Therefore, we need to make these models compatible in order to be

able to integrate them. Behavioral and Fault models are said to be compatible if

they describe the same level of abstraction and the same events in both models have

the same meaning.

The compatibility transformation procedure takes the BM and the FT as inputs

and produces a FT́ that is compatible with the BM. The attributes of entities in

FT (each leaf) and behavioral model are formalized by creating a class diagram.

1. Identify entities that have capability of failure or contributing to a failure (leaf

nodes). An entity could be a state or an event.

2. For each such entity, create a Bclass with behavioral attributes and Fclass

with attributes related to failure and failure condition.

3. Express entity.failure condition in terms of attributes of Fclass.

4. Combine both Bclass and Fclass by identifying attributes common to both

diagrams such that, if values in Fclass and Bclass are the same, we combine

the attributes, otherwise we create Battribute and Fattribute.

Figure 3.3 shows a BClass, a FClass, and a BFClass. The BClass contains

either a state BS (a state at the behavioral model) or an event BE (an event at

the behavioral model) from the behavioral model that contributes to a failure at

the fault model. These events are carried in the communicating messages from

the behavioral to the fault models when these models are integrated. The FClass

60

(a) (b) (c) (d)

-BAttr: BS | BE
-FAttr: FS | FE
-Fcondition: FC
-BFCondition:BAttr&
 Fcondition

BFClass

-Attr: BS | BE
BClass

-Attr: BS | BE
-Condition: FC
-BFCondition:
 Fcondition

BFClass

-Attr: FS | FE
-condition: FC

FClass

Figure 3.3: Behavioral and Fault Classes Combination

contains a state FS (a state at the failure model) or an event FE (an event at the

failure model) as described in a leaf node of a FT along with their conditions FC (if

any). The BFClass contains either a combination of BClass and FClass attributes

if these attributes are the same as shown in Figure 3.3 (c) or separate Battributes

and Fattributes are created as shown in Figure 3.3 (d). At this step, the column

Node in FT́ in the Failure Type Table is filled in with the related leaf node from the

FT́ for every Failure ID.

For example, the fault tree (∧,Air Present, Gas leaks > 4 sec) depicted in Figure

3.4 contains two events that contribute to an unsafe environment. These events need

to be made compatible with the events that have the same meaning in the behavioral

model. Let us assume that the entities that have capability of failure or contributing

to a failure in the behavioral model are “Air Valve” and “Gas Valve”. Therefore,

BClass, BAirValve, will be created for the entity “Air Valve”. The attribute of

this class is of type BS and its values are “Open” or “Closed”. The FClass, FAir-

Valve, will be created for the leaf node “Air present”. The name of the attribute

is “AirPresent”, its type is FS, its values are “yes” or “no”, and the condition of

this attribute AirPresent = yes. Since the names of these entities are not the same

although they have the same meaning, we create a BFAirValve class that contains

61

separate attributes of both BAirV alve and FAirV alve as described in Figure 3.3

(d). The BFAirValve attributes are BState:Open, Closed, FState:Airpresent:yes, no

and BFEventCondition:AirPresent= yes (Figure. 3.5). Also, the Bclass, BGas-

Valve, will be created for the entity “Gas Valve”. The attribute of this class is

of type BS and its values are “Open” or “Closed”. The FClass, FGasValve, will

also be created for the leaf node “Gas leaks > 4 sec”. The name of the attribute

is “Leaks”, its type is FS, its values are “yes” or “no”, and the condition of this

attribute Leaks & TimeInState > 4 sec. We create a BFGasValve class that con-

tains separate attributes of both BGasV alve and FGasV alve. The BFGasValve

attributes are BState:Open, Closed, FState:Leaks:yes, no, FTimeInState:4 sec, and

BFEventCondition:Leaks & FTimeInState > 4 sec (cf. Figure 3.6).

 Unsafe Environment

Air Present Gas leaks > 4 sec

Figure 3.4: Fault Tree Example

-State: AirPresent: yes,no
-EventCond: AirPresent
 = yes

FAirValve
-State:Open, Closed

BAirValve
-BState: Open, Closed
-FState: AirPresent: yes, no
-BFEventCond:FState=
 AirPresent

BFAirValve

Figure 3.5: Air Valve Class

At this point, the conditions are aggregated from the leaves of the FT to the

root. The compatibility transformation is an essential step to solve the ambiguity

62

State:Open,Closed
BGasValve

 -State: Leaks:yes, no
-TimeInState: 4s
-EventCond: State= Leaks
 & TimeInState >4s

FGasValve
 -BState: Open, Closed

-FState: Leaks:yes, no
-FTimeInState: 4s
-BFEventCond:FState=
 Leaks &FTimeInState>4s

BFGasValve

Figure 3.6: Gas Valve Class

between the events in the behavioral model and fault model. The output of this

step is a FT́ which is described in terms of BFClass.BFEventCondition combined

with logical operators. The compatible fault tree for this example will be: FT́ =

(∧,BFAirValve.BFEventCond, BFGasValve.BFEventCond)

3.1.4 FT́ model Transformation

Events can be classified as either “transient” or “persistent” [111]. A transient

event is an event that is reversible i.e. it can appear and disappear completely,

while the persistent event once it occurs, stays. An ordinary fault tree, which

statically describes hazard, does not consider this distinction between events because

this distinction would not make a difference for a static model. However, it is

essential to consider the event type attribute when making a fault tree dynamic.

The event type determines if the status of the event can be “not-occurred” after

it had already “occurred”. The change of the event status makes the integrated

fault tree react according to the status of the event in the behavioral model. Note

that our transformation rules allow for modeling transient events unlike the classical

fault trees where all the events are persistent.

However, the FT́ is a static model that describes the hazard as a specific com-

bination of events. In order for the FT́ to be integrated into a behavioral model it

63

has to be dynamic and understands the behavioral model’s events. To accomplish

that, we have to transform the FT́ to a CEFSM format. Every gate in the FT́

is represented as a GCEFSM. The whole model forms a tree-like structure. The

ICEFSM consists of a collection of CEFSMs that represent the behavioral model

and GCEFSMs (the transformed FT) model.

The communication between the behavioral model and FT́ model is achieved by

sending and receiving messages between the models. The behavioral model sends

messages to the Fault related GCEFSMs, but they do not send any message back

to the behavioral model. Upon receiving those messages, the GCEFSMs at the

lower level of the tree sends messages that carry “the event occurred” or “has not

occurred” to the upper level GCEFSMs and so on. The output message from one

GCEFSM is taken as a parameter to a generic event in the receiving GCEFSM, e.g.

event(param) = get(mi).

To make the FT́ to GCEFSM transformation automatic, the representation of

the FT events and gates in GCEFSM is standardized. Each gate must be given an

identifier that uniquely identifies it. The output of the gate, which is an input to

another gate, should carry the same identification number as the gate that outputs it.

If the gate event has occurred, a message mi is sent to the receiving gate indicating

that the event has occurred. The output of each gate is an input to another gate.

The GCEFSM may be in one of three conditions; it has not received any input

messages so far, it received a message that says the gate event has occurred, or

received a message that says the gate event has not occurred.

64

3.1.5 Transformation Rules

The transformation rules use the notation for e,m introduced for CEFSM in

section 3.1.1. Every gate in the FT́ is converted to an equivalent representation in

CEFSM i.e. Gate CEFSM (GCEFSM). Every GCEFSM is identified by a unique

identifier Gi that uniquely identifies the gate. The set of variables V are:

• TotalNoOfEvents is the total number of input events to the gate.

• NoOfOccurredEvents is the number of occurred events that the gate received

so far.

• NoOfPositiveEvents is the number of occurred events whose eStatus is true.

Each GCEFSM consists of states and transitions that perform the same boolean

function as the gates in an FT. The difference is that in the original FT, a gate

produces a single output when all the input events satisfy the gate conditions. Oth-

erwise, no output would be produced. However, in the transformed FT, a gate has

two kinds of outputs. One output is defined as the “Gate occurred” and the other

is defined as “Gate not occurred” such that:

mi =



Gate Occurred if Gi(e1, e2, ...ek) = true,

Gate not Occurred if Gi(e1, e2, ...ek) = false

and eOccurrence = true

∀ei, i = 1 to k

For example, an AND gate = true if GAND(e1 ∩ e2... ∩ ek) = true. Each structure

and behavior of each GCEFSM is predefined and for this matter we will present

each gate as follows:

65

Input
messages

 mj

Output
message
 mi

T1
T3

T0 T2

Gate Id Gi

S0 S1

i1
i2

.

.
in

Gate
occurred

Figure 3.7: AND Gate Representation in FT and GCEFSM

3.1.5.1 AND Gate

When combining some events with an AND gate, the output occurs when all

the events occur. Otherwise, no output would occur. An AND gate is represented

as shown in Figure 3.7. It consists of two states and four transitions. State S0 is

the initial state and S1 is the “gate occurred” state. The transition T2 will never be

taken unless its predicate NoOfOccurredEvents=TotalNoOfEvents & ei.eOccurrence

=true & ei.eStatus = true is true which means all the inputs are received and their

status is true. When T2 is taken the message “gate occurred” is sent to a GCEFSM

that is supposed to receive it. The transition T0 is as follows:

T0:(S0, [ej.eOccurrence = true & ej.eStatus = true & NoOfOccurredEvents < To-

talNoOfEvents], get(mj))/ (S0, update(events),-) Where,

1. The event get(mj) obtains input messages from the environment or from an-

other CEFSM. mi contains an event that could be ”gate occurred” or ”gate

not occurred”.

2. update(events) is an action performed upon the executing of this transition.

It updates the number of occurred events and their status based on the last

input message received.

3. The predicate “[ej.eOccurrence = true & ej.eStatus = true & NoOfOccurre-

dEvents < TotalNoOfEvents]” ensures that the event has occurred and the

66

number of inputs received so far is less than the total number of inputs

and the input status is true. Note that “gate not occurred” implies that

eOccurrence=true&eStatus=false, while “gate occurred” implies that eOccur-

rence=true&eStatus=true.

If all the messages to this GCEFSM are received and all the events have occurred,

the transition T2 will be taken.

T2:(S0,[NoOfPositiveEvents=TotalNoOfEvents & ej.eOccurrence=true &

ej.eStatus = true], get(mj))/(S1, update(events), Send(Gate Occurred))

When this transition is taken based on the input and the predicate, it moves to

state S1, increments the number of inputs, and send an output message saying that

the gate has occurred.

T1: (S0,[ej.eOccurrence = true & ej.eStatus = false], get(mj))/(S0, update

(events),-), where “-” means no output produced.

When on state S0 and the input message implies that the event has changed its

status, the transition T1 is taken. T1 decrements the number of inputs, and updates

the status of the event from occurred to not occurred.

T3:(S1, [ej.eStatus = false],get(mj))/(S0, update(events), Send(Gate not Occurred))

At the state S1, Transition T3 is taken when the coming input status is false. When

this transition is taken it decrements NoOfOccurredEvents and NoOfPositiveEvents,

updates the status of the input from occurred to not occurred and sends “gate not

occurred” message to the receiving gate.

3.1.5.2 INHIBIT Gate

INHIBIT is similar to the AND gate. They have the same states and transitions.

The only difference is that the predicate for the transitions T2 and T3 should include

67

Gate

occurred i1

i2
XOR

Input
messages
 mj

Output
message
 mi

Gate Id Gi

T1 T3

T2

T0

S0 S1

Figure 3.8: XOR Gate Representation in FT and GCEFSM

the enabling condition. We do not need to have a separate gate representation for

NOT gate since we can express it in any predicate. If we want to negate any event

we can use the NOT logical operator inside the gate that the negated event is one

of its inputs.

3.1.5.3 XOR Gate

This gate is slightly different from the AND gate although it has the same struc-

ture and same number of transitions and states. At this gate, it is necessary to

distinguish between the event that has not occurred in the first place and the one

whose status is false. The representation of GCEFSM XOR gate is shown in Figure

3.8. T0 to T3 are the possible transitions that may be taken based on their predi-

cates.

T0:(S0,[NoOfOccurredEvents=0&ej.eOccurrence=true], get(mj))/(S0, update

(events))

T1:(S0,[NoOfOccurredEvents=1 & ej.eOccurrence= true & xor(events)=false],

get(mj))/(S0,update(events),-)

T2:(S0,[NoOfOccurredEvents=1&ej.eOccurrence=true & xor(events)=true],

get(mj))/(S1,update(events),Send(gate occurred))

T3:(S1,[inputStatusChanged(ej)=true],get(mj))/(S0, update(events),Send(gate not oc-

curred))

68

3.1.5.4 Priority AND Gate

As seen in Figure 3.9, the priority AND gate is very similar to the AND gate

in the overall structure and transitions. It differs from the AND gate in that the

events have to happen in predetermined order. This difference is taken care of by

manipulating the predicate condition in such a way that it considers the order of

occurrence of the events. For example, if the events are ordered E0 then E1, they

have to happen in this order so that the gate can occur. Otherwise the gate will not

occur. T0 to T3 are the transitions that control the priority AND gate.

T0:(S0,[NoOfPositiveEvents<TotalNoOfEvents & ei.eStatus= true],get(mi))

/(S0,update(events),-)

T1:(S0,[ej.eStatus = false & ej.eOccurrence = true], get(mj))/(S0,

update(events),-)

T2:(S0,[NoOfPositiveEvents = TotalNoOfEvents & ordered(ej) = true &

ej.eStatus = true],get(mj))/(S1,update(events), Send(Gate Occurred))

The predicate ordered() returns true of the input event in the message mi is received

in its predefined order and returns false otherwise.

T3:(S1, [ei.eStatus = false], get(mi))/(S0,update(events), Send(Gate Not Occurred))

FTA CEFSM

i2

i1
Input

messages

 mj

Output

message

 mi

T1 T3

T0 T2
Gate Id Gi

S0 S1

Gate

occurred e2

en

e1

Figure 3.9: Priority And Gate Representation in FT and GCEFSM

69

3.1.5.5 OR Gate

The OR gate occurs if at least one event occurs. This gate, as seen in Figure 3.10,

consists of two states and four transitions. When in S0 and the input message carries

an event whose eOccurrence and eStatus are true (i.e. the event has occurred), T0

is taken and the OR gate occurs. In state S1 and if the events in the input messages

have not occurred (i.e. their eStatus is false) and there was only one input so far,

which means this input has changed its status, then a “Gate not occurred” message

is sent. Otherwise, no message is sent out of this gate and only update(events)

actions take place.

FTA CEFSM

i2

i1
Input

messages

 mj

Output

message

 mi

T2 T1
T3 T0

Gate id Gi

S0 S1

Gate

occurre

d
e2

en

e1

OR

Figure 3.10: OR Gate Representation in FT and GCEFSM

T0:(S0,[ej.eStatus=true],get(mj))/(S1,update(inputs), Send(Gate Occurred))

T1:(S1,[ej.eStatus = false & NoOfPositiveEvents = 0], get(mj))/(S1, update

(inputs), Send(Gate not Occurred))

T2:(S1,[ej.eStatus= true],get(mj))/(S1,update(events),-)

T3:(S1,[ej.eStatus= false],get(mj))/(S1,update(events),-)

3.1.5.6 Timing an Event Gate

FT gates such as AND, OR, INHIBIT, etc. are well defined and can be syntacti-

cally represented. Events in FT can be simple or composed. A composed event can

be decomposed further to simple events or a timed simple event. A timed simple

70

 Output message
 mi

Input message
 mj

T3

T1 T0
T2 Gate id Gi

S0 S1 S2

Figure 3.11: Event Timer GCEFSM

event is the simple event that should occur for a specific period of time to con-

tribute to a hazard. However, FT has no timing gates. Therefore, we need to have

a representation that can handle the timing issue (either a minimum or maximum

timing).

Thus, we introduce this gate that can time an event and the gate in the subsec-

tion 3.1.5 that deals with the timing intervals. This gate works as follows. Upon

receiving a message that indicates the occurrence of the event, the transition T0

takes place which starts the timer. When the time expires and no further “gate not

occurred” message was received that indicates that the event is no longer happening,

the transition T 2 is taken and sends a “gate occurred” message. Otherwise the gate

does not occur. T 2 is taken when the event status ei.eStatus changes to false.

T0:(S0,[ej.eStatus=true],get(mj))/(S1,setTimer(v,Timeri),-)

T1:(S1,timeout)/(S2,-,Send(GateOccurred))

T2:(S1,ej.eStatus= false],get(mj))/(S0,reset(Timeri);updat e(events))

T3:(S2,ei.eStatus= false],get(mi))/(S0,reset(Timeri);update(events),Send

(GateNotOccurred))

71

3.1.5.7 Timing an Event for Continuous Intervals Gate

Some event may need to be timed for continuous intervals. For example, we

may need to observe an occurrence of an event every consecutive 5 sec as long as

the system is operational. Figure 3.12 shows that as long as the transition T0 is

fired and T2 was not, the event will be timed for fixed consecutive amount of time

and it keeps timing until the status of the event ei.eStatus changes to false. Upon

receiving this event change, the transition T3 to the state S1 is fired sending out a

“gate not occurred” message.

FTA CEFSM

i2

i1
Output message

 mi
Input message

 mj T0

T3

T1
T2 Gate Id Gi

S0 S1 S2

Figure 3.12: Timing Continuous Intervals GCEFSM

T0:(S0,[ej.eStatus = true], get(mj))/(S1, setTimer(v, Timeri), Send(Gate Occurred))

T1:(S1,timeout)/(S2,-, Send(Gate not Occurred))

T2:(S1,[ej.eStatus = false],get(mj))/(S0,reset(Timeri), Send(Gate not Occurred))

T3:(S2,setTimer(v,Timeri))/(S1,-,Send(Gate Occurred))

3.1.6 Transformation Procedure

As mentioned above, the transformed GCEFSMs form a tree-like structure and

each GCEFSM gate is denoted by a unique identifier Gi that uniquely identifies the

gate. The transformation procedure shown in Figure 3.13 takes an FT as an input

and produces GCEFSMs according to a postorder tree traversal. Event-gate table is

used for the integration of GCEFSMs model with the behavioral model. It contains

72

Procedure FT_TO_GCEFSM (T : Tree)

{

 if (T is null) then return;

 for each child C of T from left to right do

 FT_TO_GCEFSM(C);

 Construct GCEFSM gate; // Create a gate with its variables,

 // output messages, and its ID.

 if (leaf node)

 then insert event name, event ID & Gate ID into Event-Gate table.

}

Figure 3.13: Transformation Procedure

the entries for all leaf nodes of the FT and is defined as shown in Table 3.2. This

table is constructed during the transformation of FT to GCEFSM. The leaf node

event name and identifier are inserted into the table entry along with the identifier

of the gate that receives this event. At this step, the columns Event ID and Gate

ID in the Failure Type Table are also filled in with the event id and the gate id for

every Failure ID.

Table 3.2: Event-Gate Table for Leaf Nodes

Event name & at-
tribute

Event ID Gate ID

event name as indi-
cated in the FT́

ei, where (i = 1, ..., n) and ei is
leaf connected to Gj

Gj

Ex. temp > 10 ◦C e1 G1

3.1.7 Integration Procedure

Before integrating the models, all the messages from the behavioral model to the

fault model have the form of equation (3.1.1). At that time the event id contains

73

the events name and attribute and the receiving gate id of that event is not known

yet. During the integration of both models, the event name in each message in

the behavioral model is looked up in the event-gate table. If the event name and

attribute in the behavioral model match those in the event-gate table, the message

is modified such that it contains the event id ei and gate id Gj as stated in equation

(3.1.2) according to the procedure in Figure 3.14.

Procedure ModelsIntegration(BM,Event-Gate Table){

 For every mBk Do

 For every Event-Gate entries Do

 If(mBk. EventNameAndAttribute == Event-Gate.EventNameAndAttribute) then

 mBk.EventID = Event-Gate.ei

 mBk.mDestination = Event-Gate.Gi

}

Figure 3.14: Integration Procedure

Let mBk = (mId,EventNameAndAttribute,)

be a message from the BM (3.1.1)

mBk will be modified to (mId, ej, Gi) (3.1.2)

The column message ID in the Failure Type Table is filled in with the message

id that carries the event id for every Failure ID.

3.1.8 Concurrent Processes

Our integrated model consists of communicating behavioral and failure processes.

These processes have their internal paths that exhibit the execution of task paths

74

for each individual CEFSMi and the communicating messages that show the global

paths that represent the communications between the CEFSMs during their execu-

tions. The behavior varies according to the change of the synchronized condition

among the concurrent processes. Therefore, we need to consider the concurrent

paths of the model. The concurrent path is generated by the Cartesian product

of CEFSMs paths. Each produced concurrent path is an arbitrary combination of

CEFSMs paths and not always a real concurrent path. Thus, a huge number of paths

is produced and therefore, different concurrent path representation approaches were

introduced. Weiss [148] serializes the concurrent program as a set of sequential pro-

grams to produce test paths. However, this approach was criticized by Yang et al.

in [151] as generating serialization for a concurrent programs is difficult and tedious

task especially for a large number of lengthy processes. Another approach proposed

by Liu et al. [95] uses reachability analysis to identify the concurrent paths from the

whole production of the candidate concurrent test paths. However, their approach

requires a large memory space and a long verification time for the concurrent paths.

Therefore, for our model, it is more suitable to use the concurrent path representa-

tion used in [71, 151]. They represent the concurrent paths as ordered paths of the

processes involved in the execution of a specific task and they defined the concurrent

paths as follows:

Let P be a set of concurrent CEFSMs that consists of CEFSM1, CEFSM2,

. . . ,CEFSMn where n is the number of the processes in P.

A test path is a sequence of nodes, n0n1n2...nm, where n0 is the starting node,

nm is the ending node and for each 0 ≤ j < m, (nj, nj+i) ∈ Ei, Ei is the set if edges

in CEFSMi. A path represents one possible execution sequence of a CEFSMi.

In the execution of P, each test case will traverse a path through one or more

CEFSMs. Therefore, the execution can be seen as involving a set of paths of con-

75

current processes. A concurrent path is an n-tuple (P1, P2, ..., Pn) where, for each i,

Pi is a test path.

A feasible concurrent path is a path (P1, P2, . . . , Pn) where at least one input x

causes Pi to be traversed during the execution of the system with x. The concurrent

path may be infeasible due to data or communication (rendezvous) dependencies,

or could be a result of the arbitrary production of paths, that is, paths that are not

related.

Let pi be the number of paths of CEFSMi. Then the possible number of con-

current paths |CP | of the system P is
n∏

i=1

(pi + 1)− 1 [151].

Let P be a concurrent system, LG=(LG1, LG2, . . . , LGn) the local view or the

internal graph of the system and GG=(GG1, GG2, . . . , GGn) the global view or the

rendezvous graph of P.

The length of the test suite for the whole integrated ICEFSM model is len(CP)

states.

Let L be the set of paths of LG, and L0 ⊂ L be a subset of LG. Let G be the

set of paths of GG, and G0 ⊂ G be a subset of GG.

3.1.8.1 Rendezvous Graph

To define a concurrent coverage criteria, we need to define the rendezvous graph.

According to Yang et al. in [151], A rendezvous graph for a task Ti, RGi = (REi,

RNi) is obtained from the task graph of Task Ti according to the following rules:

1. Delete all nodes that do not send or receive messages except the start and the

end node. An edge between ni and nj exists if there is a path from ni to nj

where there is no rendezvous node between ni and nj.

76

2. If a node na which is involved in the communication sends or receives mes-

sages k tasks, the node is replaced by nodes (ns,n1,n2,..,nk) such that each

node sends or receives one communication message and communicate with

one other task from other task graph. That is, each node represents that Ti

rendezvous with one of the k tasks. The edge (ns, nj) ∈ RNi for each 1 ≤

j≤k, For each edge (nx, na) ∈ Ei, there is an edges (nx, ns) ∈ RNi and for

each edge (na,ny) ∈ Ei, there is k edge (nj,nj) ∈ RNi, 1 ≤ j≤k.

3.1.9 ICEFSM Coverage Criteria

Exhaustive testing of all possible behaviors of a system is costly and may not be

feasible. Therefore, an adequate subset of the complete testing behavior has to be

selected and used in the testing process. This subset is produced according to some

coverage criteria and often used to control the test generation process or to measure

the quality of the test suite. A coverage criterion is usually defined regardless of any

specific test model. Defining coverage criteria for the CEFSM model should consider

the local view which deals with the internal states and transitions of every individual

CEFSMi, and the global view which considers the behavior of the whole system.

Every individual CEFSM’s behavior is, in fact, sequential, and therefore, coverage

criteria defined for sequential programs, such as node and edge coverage can be used.

The Integrated CEFSM (ICEFSM) model is a collection of concurrent processes.

Each process is modeled as a CEFSMi that can be represented as a directed graph

Gi = (Ni, Ei) where Ni is a set of nodes and Ei is a set of edges and is considered

as a conventional graph where it is treated sequentially [151]. These CEFSMs com-

77

municate via the exchange of messages. It is clear that we have two different kinds

of paths that represent the execution behavior of the concurrent systems.

3.1.9.1 Internal Coverage Criteria

The internal paths that describe the internal execution of the process that can be

characterized by the input and the sequence of the states involved in the execution.

This can be described as a static structure. The static structure, however, is not

really applicable for modeling concurrent programs because the behavior of the

concurrent system can not be determined by an input and a sequence of states of

each individual process involved in the execution [135].

The first class of coverage criteria is the same as the graph coverage criteria de-

fined in [4]. These coverage criteria are suitable for the internal structure of CEFSM

since each CEFSM is described as a directed graph that behaves sequentially. Cri-

teria such as Structural Coverage (Node Coverage, Edge Coverage, Edge-Pair Cov-

erage, Prime Path Coverage, . . .) or Data Flow (All-Defs Coverage, All-Uses Cov-

erage, All-du-Paths Coverage, . . .) can be used.

3.1.9.2 Concurrent Coverage Criteria

The second class of coverage criteria is defined on the global view (rendezvous)

graph GG in which we consider every CEFSMi as one node without getting into

the internal details. These criteria work for the global view of the integrated model,

especially for the GCEFSM part, where the GCEFSM accepts more than one input

to produce output. The internal details is already covered by the first criteria.

Another criteria is defined for the global view of the integrated model. This crite-

ria is defined for the test coverage of whole ICEFSM’s execution behavior, especially

for the fault tree (GCEFSMs) where we already know their internal behavior and

78

since we are concerned with whether the events meet at a GCEFSM and whether

an output from that GCEFSM is produced. Therefore, we consider each CEFSMi

as a rendezvous state without going into its internal details. Based on our inte-

grated model, we define the following two classes of coverage criteria for concurrent

processes testing.

1. CEFSM coverage (CC) - Each CEFSM in the rendezvous graph is visited at

least once. G0 satisfies CC iff for each CEFSM c0 ∈ GG there exists a path

G ∈ G0 visits that c0. The rendezvous node at the fault tree part of the model

mean a GCEFSM.

2. Message edge coverage (EC) - Each message edge should be tested at least

once. L0 satisfies EC iff for each edge(c1, c2) ∈ GG there exists a path G ∈ G0

such that (c1, c2) is passed by a path along G. The message edge means every

message comes in or out of a CEFSMi.

3. Message path coverage (PC) - All paths of each individual test path should

be visited at least once. G0 satisfies PC iff for each syntactic path SP ∈ GG

there exists a semantic path G ∈ G0 such that SP is passed by G.

4. Concurrent path coverage (CP) - Each concurrent path of rendezvous graph

should be visited at least once. G0 satisfies CP iff for each syntactic concurrent

path P ∈ GG there exists a semantic path G ∈ G0 such that SP is passed by G.

This criterion is meant to cover the fault tree FT part of the model’s minimum

cut sets.

5. GCEFSM leaves coverage (GL) - Each leaf GCEFSM at the fault model part

in the rendezvous graph is visited at least once. G0 satisfies GL iff for each

GCEFSM c0 ∈ GG there exists a path G ∈ G0 visits that c0. The rendezvous

node at the fault tree part of the model mean a GCEFSM.

79

3.1.10 Test Case Generation

A number of existing test generation methods for CEFSMs can be used. One

approach to testing CEFSMs is to compose them all into one machine at once, using

reachability analysis to generate test cases. However, this approach is impractical

due to the state explosion problem and the presence of variables and conditional

statements. Some work has been done in testing the behavior of concurrent sys-

tems and network protocols that were modeled using CEFSM. Hessel et al. [68] and

Bourhfir et al. [17, 16]. They use reachability analysis to generate test cases from

systems modeled in CEFSMs, while Kovas et al. [86] design methods and mutation

operators to enable the automation of test selection in a CEFSM model. Henniger

et al. [67] generate test purpose description of the behavior of a system of asyn-

chronously CEFSMs. [86] use mutation to enable the automation of test selection

in a CEFSM model. [15] combines specification and fault coverages to generate test

cases in CEFSM models. Li et al. [93] proposes a methodology to generate test cases

from CEFSM-based models. At this step, the column Path ID in the Failure Type

Table is filled in with the path number that contains the failure for every Failure

ID.

80

Chapter 4

Validation

In this chapter, we validate our approach by investigating scalability in section

section 4.1 and applicability in section 4.2. To investigate scalability, we built a sim-

ulator that calculates the size of the integrated models (number of states and tran-

sitions) of our approach and estimates the sizes of the integrated models of Sánchez

et al.’s [127]. We compared the result of the two approaches because Sánchez et

al.’s approach [127] is the only approach that models integration for the purpose of

test case generation and found that our approach scales better than Sánchez et al.’s.

We varied the behavioral model and the fault model sizes to show how scalable our

approach is.

To show applicability, we applied our approach on case studies from different

application domains (cf sections 4.2.1, 4.2.2, and 4.4) hence our approach is not

domain specific. Generally, we expect that it can be used for systems modeled using

CEFSMs. We also used case studies that reflect different model sizes and integrated

multiple fault trees to show that this approach can be used as described in chapter

3.

Applicability also means that our approach fits into an end-to-end testing method-

ology. Section 4.3 describes how our approach fits in an end-to-end testing method-

81

ology. We apply it to a case study. This work was done jointly with Salwa Elakeili.

Validating the effectiveness is limited by the existing test generation techniques such

as [68, 16, 86] that are being used for test generation with CEFSMs.

4.1 Scalability and Comparison to Sánchez et. al.’s

[127]

4.1.1 Simulator Experiment Design

The simulator is intended to calculate the number of states and the transitions

of the integrated behavioral and fault models according to our approach’s trans-

formation rules (CEFSMs with FTs) and Sánchez et al.’s approach (EFSM from

statecharts and FTs) [127]. We fed the simulator with input date of different ranges

of BM and FM. The behavioral models vary from 13 states and 15 transitions to 50

states and 60 transitions while the fault trees that vary from 5 leaves to 19 leaves as

shown in Table 4.2. We assume that every behavioral model is integrated with every

fault model. Therefore, The simulator calculates the size (states and transitions) of

the integrated model of every behavioral model with every fault model as inputs.

4.1.2 Comparison of the Number of Nodes and Transitions

We developed a tool to calculate the number of states and transitions of the

integrated behavioral and fault models according to the approach’s transformation

rules (CEFSMs with FTs) and to estimate the number of nodes and transitions

according to Sánchez et al.’s approach (EFSM from statecharts and FTs) [127].

82

4.1.2.1 In CEFSM

The tool calculates the number of nodes and transition of the integrated model

by adding the number of the nodes and transitions of the behavioral model to the

number of the states and transitions of the GCEFSM part of the model. As we have

seen in section 3 the FT gates are transformed into a collection of GCEFSMs. Every

GCEFSM has a specific number of nodes and transitions. Thus, the tool calculates

the number of nodes and transitions of the ICEFSM based on the number and type

of gates.

4.1.2.2 For EFSM in [127]

The tool estimates the number of nodes and transitions of the integrated model

according to the approach’s transformation rules. The integration rules of the the

approach by Sánchez et al. [127] use the minimum cut set of the leaf node events.

For every member of the cut set they create an independent region, add a state to

the behavioral model, or do nothing. This depends on whether the event already

existed in the behavioral model, or may need human intervention to decide whether

to model the cut as an independent region or to add it to the behavioral model as a

single state and transition. Therefore, we calculated the size of the integrated model

based on these options repeatedly and computed an average. Each time we change

the percentage of creating an independent region. We run the tool 10 times for

each input data varying the probability of creating an independent region between

50% and 60%. Then we calculated the confidence interval with a confidence level of

95%, alpha = 0.05%, for each run to show that we have taken into account the non-

determinism of the estimation of the number of the states and transitions introduced

83

by the EFSM approach of Sánchez et al. [127]. Therefore, we can say that there is

a 95% chance that this confidence interval contains the true population mean.

4.1.2.3 Comparison of Case Studies

We compare the number of nodes and transitions between the model integration

approach presented here and Sánchez et al.’s approach (EFSM from statecharts and

FTs) [127]. First, we compare the number of nodes of three case studies:

1. The railroad crossing control system presented here (RRCCS) in [6],

2. The gas burner example (GB) of [52], and

3. The launch vehicle (LV) in [54].

Table 4.1 shows this comparison. The left column identifies the case study. The

column labeled BM reports the number of states (S) and transitions (T) in the

behavioral model, respectively. The column labeled FM reports the number of

leaves in the fault tree, and how many gates of various types are in the FT. The

columns marked CEFSMs and EFSMs report the number of states and transitions

in our approach vs. Sánchez et al.’s approach [127]. Note that our approach roughly

increases states and transitions as a proportion of the number of leaves in the Fault

Tree, while Sánchez et al.’s shows an exponential increase. Clearly, our approach

looks more scalable. To investigate this further, we used our tool as a simulator

with a range of model and fault tree sizes.

4.1.2.4 Simulation With Increasing Size

We fed the tool with input data of different size ranges of BM and FM. The

behavioral models vary from 13 states and 15 transitions to 50 states and 60 tran-

sitions while the fault trees vary from 5 leaves to 19 leaves as shown in Table 4.2.

84

Table 4.1: Comparison

System
BM FM CEFSMs EFSMs

S T leaves AND OR XOR Timing S T Avg(S) Avg(T)

GB 13 15 5 3 1 0 2 27 55 79 162

RRC 14 19 8 2 5 0 0 28 70 303 514

LV 21 39 14 0 10 0 0 41 117 4316 8335

S= State, T=Transition, Timing= Timing gates, Avg(S) = The average of the number
of states and Avg(T) = The average of the number of transitions of 10 runs.

The fault tree is constructed of leaves which denote the number of input events to

the fault tree and different types and numbers of gates, AND (0-6) gates, OR (1-10)

gates, XOR (0-6) gates, and Timing gates (0-4) gates. The AND gate includes AND

gate, Priority AND gate, and Inhibit gate.

We assume that the behavioral model is connected and no part of is isolated,

therefore, the number of transitions must not be less than the number of states minus

1. We also assumed that the fault tree is a binary tree where the number of gates

equals the number of leaf nodes minus 1. The timing gates, however, are excluded

from this calculation because they take only one event and they appear only at the

leaf nodes. However, we need to consider them to calculate the number of states and

transitions of our integrated model, the ICEFSM. We assume that every behavioral

model is integrated with every fault model. Therefore, the simulator calculates the

size (states and transitions) of the integrated model of every behavioral model with

every fault model as inputs.

We started with the relatively small behavioral model (GB) with 13 states and

15 transitions. This model is integrated with different fault trees as shown in Table

4.2. We can see that the number of states and transitions of the integrated model

of the EFSM approach grows exponentially. The number of the states produced by

85

our integration approach grows from 21 to 59 and the number of transitions grows

from 41 to 137, whereas the number of states produced by the EFSM integration

approach grows on average from 79 to 70245 and transitions from 162 to 85330. It

is very clear that the numbers of the states and transitions of both approaches are

quite different.

Table 4.2: Simulation Data and Results

BM FM CEFSMs EFSMs

S T Leaves AND OR XOR Timing S T Avg(S) Avg(T)

13 15 5 3 1 0 2 27 55 79 162

13 15 7 3 2 1 1 28 64 178 304

13 15 8 2 5 0 0 27 66 263 416

13 15 14 0 10 0 0 33 93 2672 3280

13 15 19 6 5 6 4 59 158 18264 21342

13 17 5 3 1 0 2 27 57 79 174

13 17 7 3 2 1 1 28 66 178 332

13 17 8 2 5 0 0 27 68 263 456

13 17 14 0 10 0 0 33 95 2672 3691

Continued on next page

86

Continued from previous page

BM FM CEFSMs EFSMs

S T Leaves AND OR XOR Timing S T Avg(S) Avg(T)

13 17 19 6 5 6 4 59 160 18264 24152

15 19 5 3 1 0 2 29 59 92 197

15 19 7 3 2 1 1 30 68 206 374

15 19 8 2 5 0 0 29 70 303 514

15 19 14 0 10 0 0 35 97 3083 41335

15 19 19 6 5 6 4 61 162 21074 27003

17 18 5 3 1 0 2 31 58 104 202

17 18 7 3 2 1 1 32 67 233 376

17 18 8 2 5 0 0 31 69 343 5115

17 18 14 0 10 0 0 37 96 3494 3958

17 18 19 6 5 6 4 63 161 23883 25640

19 19 5 3 1 0 2 33 59 116 219

Continued on next page

87

Continued from previous page

BM FM CEFSMs EFSMs

S T Leaves AND OR XOR Timing S T Avg(S) Avg(T)

19 19 7 3 2 1 1 34 68 260 405

19 19 8 2 5 0 0 33 70 384 549

19 19 14 0 10 0 0 39 97 3905 4194

19 19 19 6 5 6 4 65 162 26693 27086

21 39 5 3 1 0 2 35 79 128 352

21 39 7 3 2 1 1 36 88 288 694

21 39 8 2 5 0 0 35 90 424 971

21 39 14 0 10 0 0 41 117 4316 8335

21 39 19 6 5 6 4 67 182 29503 55225

30 40 5 3 1 0 2 44 80 183 408

30 40 7 3 2 1 1 45 89 411 777

30 40 8 2 5 0 0 44 91 606 1069

Continued on next page

88

Continued from previous page

BM FM CEFSMs EFSMs

S T Leaves AND OR XOR Timing S T Avg(S) Avg(T)

30 40 14 0 10 0 0 50 118 6165 8677

30 40 19 6 5 6 4 76 183 42147 56817

40 45 5 3 1 0 2 54 85 244 493

40 45 7 3 2 1 1 55 94 548 921

40 45 8 2 5 0 0 54 96 808 1257

40 45 14 0 10 0 0 60 123 8220 9858

40 45 19 6 5 6 4 86 188 56196 64049

50 60 5 3 1 0 2 64 100 305 639

50 60 7 3 2 1 1 65 109 685 1204

50 60 8 2 5 0 0 64 111 1010 1648

50 60 14 0 10 0 0 70 138 10275 13093

50 60 19 6 5 6 4 96 203 70245 85330

S= State, T=Transition, Timing= Timing gates, Avg(S) = The average of the number

of states and Avg(T) = The average of the number of transitions of 10 runs.

Table 4.2 shows that even for the larger BMs and larger Fault Trees with more

89

leaves, our approach produces integrated models of efficient sizes while the approach

by Sánchez et al. very quickly reaches scalability limits. Figures 4.1-4.8 show the

growth of the integrated models as a function of the number of leaves in the Fault

Tree. While Sánchez et al.’s approach is highly affected by the number of leaves in

the Fault Tree, our approach is not. As Figure 4.1, Figure 4.3, Figure 4.5, and 4.7

illustrate, CEFSM states and CEFSM transitions curves are invisible when we used

the full simulation data because the numbers are so much smaller. Therefore, we

represent these figures in Figure 4.2, Figure 4.4, Figure 4.6, and Figure 4.8 using

only a part of the simulation data (no more than 8 leaf nodes for the failure model for

every integrated model) in order to show the CEFSM states and CEFSM transitions

for every simulation result.

Figure 4.8 represents the (50 state 60 transition) model. We can clearly notice

that the trend of the curves in Figure 4.2 and Figure 4.8 are the same. The only

difference is the number of states and transitions which depends on the size of the

behavioral and the fault models.

90

-2000

3000

8000

13000

18000

23000

28000

5 7 8 14 19

EFSM Trans

EFSM States

CEFSM Trans

CEFSM States

of leaves

Model growth for 13 states and 15 transitions

Figure 4.1: EFSM and CEFSM Approaches Model Growth for 13 S and 15 T BM (Full
simulation data)

0

50

100

150

200

250

300

350

400

5 6 7 8

EFSM Trans

EFSM States

CEFSM Trans

CEFSM States

of leaves

Model growth for 13 states and 15

Figure 4.2: EFSM and CEFSM Approaches Model Growth for 13 S and 15 T Behavioral
Model (up to 8 leaves)

91

-2000

3000

8000

13000

18000

23000

28000

33000

5 7 8 14 19

EFSM Trans

EFSM States

CEFSM Trans

CEFSM States

Model growth for 15 states and 19 transitions BM

of leaves

Figure 4.3: EFSM and CEFSM Approaches Model Growth for 15 S and 19 T BM (Full
simulation data)

0

100

200

300

400

500

5 6 7 8

EFSM Trans

EFSM States

CEFSM Trans

CEFSM States

Model growth for 15 states and 19 transitions BM

of leaves

Figure 4.4: EFSM and CEFSM Approaches Model Growth for 15 S and 19 T Behavioral
Model (up to 8 leaves)

92

-2000

8000

18000

28000

38000

48000

58000

68000

5 7 8 14 19

EFSM Trans

EFSM States

CEFSM Trans

CEFSM States

Model growth for 21 states and 39 transitions BM

of leaves

Figure 4.5: EFSM and CEFSM Approaches Model Growth for 21 S and 39 T BM (Full
simulation data)

0

100

200

300

400

500

600

700

800

900

1000

5 7 8

EFSM Trans

EFSM States

CEFSM Trans

CEFSM States

Model growth for 21 states and 39 transitions BM

of leaves

Figure 4.6: EFSM and CEFSM Approaches Model Growth for 21 S and 39 T Behavioral
Model (up to 8 leaves)

93

-2000

18000

38000

58000

78000

98000

5 7 8 14 19

EFSM Trans

EFSM States

CEFSM Trans

CEFSM States

Model growth for 50 states and 60 transitions BM

of leaves

Figure 4.7: EFSM and CEFSM Approaches Model Growth for 50 S and 60 T BM (Full
simulation data)

0

300

600

900

1200

1500

5 7 8

EFSM Trans

EFSM States

CEFSM Trans

CEFSM States

Model growth for 50 states and 60 transitions BM

of leaves

Figure 4.8: EFSM and CEFSM Approaches Model Growth for 50 S and 60 T Behavioral
Model (up to 8 leaves)

94

4.2 Applicability: Case Studies

In this section, we apply our approach to three case studies of different sizes: a

Gas Burner system [52], a Railroad Crossing Control System (RCCS) [53], and an

Aerospace Launch System [54]. Seana Hagerman provided the functional description

of the Launch system, the types of failures, and required mitigation. The variation

of sizes, fault trees and mitigation requirements as well as using varying domains

show the applicability of our approach. The Gas Burner System [52] is relatively a

small system. It consists of five CEFSMs with a total of 13 states, 15 transitions,

and 4 CEFSM communication channels. This behavioral model is integrated with

a 4-gate-5-leaf fire occurrence fault tree. The RCCS [53] is another model from

different application domain. It consists of four CEFSMs with a total of 14 states,

18 transitions, and 3 CEFSM communicating messages. This model is integrated

with a 7-gate-8-leaf accident occurrence fault tree. The third model is the launch

system. This system contains 5 CEFSMs with a total of 21 states, 34 transitions,

and 5 CEFSM communication channels. This model is integrated with 4 fault trees

altogether. These fault trees contain a total of 6 gates and 14 leaf nodes.

4.2.1 Gas Burner System

4.2.1.1 Description of Gas Burner System

We adapted the gas burner model of the example from [40] to explain how the

transformed model will look like in CEFSM. Figure 4.9 shows the model of the gas

burner system and Figure 4.10 shows the FT for the fire occurrence. The purpose

of a gas burner is to produce heat by consuming gas. The model of the system

consists of a controller component that controls the heat process and monitors a

95

gas valve (responsible for gas supply), an air valve (responsible for air supply), an

igniter (responsible for the ignition), and flame detector (monitors the state of the

flame) components.

mI4

mI3

mI2

mI1
T2

T1

Idle Igniting

Ignited

Burning
Not

Burning

T3

T4

T5

T6

T7
T12

Gas Valve

Closed
T13

Open

T11

T10

Air Valve

Closed Open

T14

T15 Igniter

Off On

Flame Detector

T8

T9

Absent Present

Figure 4.9: Gas Burner Model

Table 4.3: CEFSM model for a Gas Burner System Transitions

•T1:(Idle,[NoheatReg=t],-)/(Idle,-,-)

•T2:(Idle,HeatReg)/(Igniting,-,send(AirOn,GasOn,IgniteOn))

•T3:(Igniting,-,-)/(Ignited,-,-)

•T4:(Ignited,-,-)/(Burning,-,Send(IgniteOff))

•T5:(Burning,[HeatReg=t&FlameOn=t])/(Burning,-,-)

•T6:(Burning,[NoHeatReq=t |NoFlame=t],SetTimer(t,1))/(NotBurning,-,-)

•T7:(NotBurning,TimeOut)/(Idle,-,Send(GasOff))

•T8:(Absent,FlameOn)/(Present,-,Send(FlameOn))

Continued on next page

96

Continued from previous page

•T9:(Present,FlameOff)/(Absent,-,Send(FlameOff))

•T10:(Closed,AirOn)/(Open,-,Send(mf1”AirOn”))

•T11:(Open,AirOff)/(Closed,-,Send(mf1”AirOff”))

•T12:(Closed,GasOn)/(Open,-,Send(mf2”GasOn”,mf3”GasOn”))

•T13:(Open,GasOff)/(Closed,-,Send(mf2”GasOff”,mf3”GasOff”))

•T14:(Off,IgniteOn)/(On,-,Send(mf4”IgniteOn”))

•T15:(On,IgniteOff)/(Off,-,Send(mf4”IgniteOff”))

4.2.1.2 Gas Burner Failure

The fault model shown in Figure 4.10 describes fire occurrence and the events

that contribute to fire occurrence when they occur. If the gas leaks for more than

4 seconds during an interval window of less than 30 seconds, it means that there

is an excess of gas which, if combined with the presence of gas, causes an unsafe

environment. If an ignition is attempted when there is an unsafe environment, a

fire will occur.

4.2.1.3 Compatibility Transformation Step

The first step is the compatibility transformation. At this step we create Bclass

and Fclass for the failure related entities GasValve, AirValve, and Igniter and com-

bine the related classes according to the compatibility transformation procedure

3.1.3. These classes are shown in Figure 4.11, Figure 4.12, and Figure 4.13. Table

4.4 shows the composition of the FT́ from these classes at each gate. The events in

the FT are substituted with the combined attributes from the BF classes that are

97

 Fire

Electrical short in cables

Gas Explodes

Unsafe Environment

Ignition Attempted

Air Present

Excess of gas

Gas leaks > 4 sec

Observation Interval <30 Sec

Figure 4.10: FT for a Fire Occurrence in a Gas Burner [40]

equivalent to these events. For example, the event Air present in the FT is equiva-

lent to BFAirValve.FeventCond in FT́. The attributes of BAirValve and FAirValve

are combined in BFAirValve. As we can see in Fig 4.11, the attribute BState be-

longs to the class BAirValve at the behavioral model and FState belongs to the

FAirValve at the fault model. For example, the event Gas leaks > 4 sec in the FT

is equivalent to BFGasValve.FeventCond and the event Observation Interval < 30

sec is equivalent to BFObservation.FEventCond.

98

-State: AirPresent: yes,no
-EventCond: AirPresent
 = yes

FAirValve
-State:Open, Closed

BAirValve
-BState: Open, Closed
-FState: AirPresent: yes, no
-BFEventCond:FState=
 AirPresent

BFAirValve

Figure 4.11: Bclass, Fclass, and BFclass for AirValve Entity

State:Open,Closed
BGasValve

 -State: Leaks:yes, no
-TimeInState: 4s
-EventCond: State= Leaks
 & TimeInState >4s

FGasValve
 -BState: Open, Closed

-FState: Leaks:yes, no
-FTimeInState: 4s
-BFEventCond:FState=
 Leaks &FTimeInState>4s

BFGasValve

Figure 4.12: Bclass, Fclass, and BFclass for GasValve Entity

 -State: On
BFIgniter

 -State: Off, On
BIgniter

-State: On
FIgniter

-BState: Open, Closed
-FTimeInState: 30 sec
-BFEventCond: BState= Open
 & TimeInState<30sec

BFObservation

Figure 4.13: Igniter and Observation Classes

After the compatibility transformation procedure is finished, the complete FT́

will be: (∨,(Z,(∧,BFAirValve.FEventCond, (∧,BFGasValve.FeventCond, BFObser-

vation.FeventCond)),BFIgniter.State),ElectricalShortInCable).

4.2.1.4 Fault Tree Transformation

The fault CEFSM is constructed according to a tree postorder traversal. The

FT is read gate by gate starting from the root node until we reach the leftmost leaf

99

Table 4.4: BFClass

Name Formula GCEFSM

Excess of gas =BFGasValve.FeventCond ∧ BFObser-
vation. FeventCond

Figure 4.16

Unsafe Envi-
ronment

=BFAirValve.FEventCond ∧ Excess of
gas

Figure 4.17

Gas Explodes =Unsafe Environment Z BFIg-
niter.State

Figure 4.18

Fire =Gas Explodes ∨ Electrical short in ca-
ble

Figure 4.19

node. The transformation starts with the leftmost leaf of the FT which is in this

example “air present”. The event is described in terms of class diagram as shown

in Figure 4.11.

BFGasValve
m1

T2 T3

T0
1

T1
Gas leaks >4s

S0 S1 S2

Figure 4.14: Event Timing GCEFSM for Gas Leaks > 4s

 m2
BFObservation

T2 T3

2
T0 T1

S0 S1 S2

Interval <30 s

Figure 4.15: GCEFSM for Gas Observation Interval < 30s

Next we look for the right sibling of this gate which turns to be an AND gate

between two events. The left child of this node is an event but it is not simple. It

is composed of a timed event. In this case we need to use the “event timer” gate

we presented in the transformation rules after configuring the value of the timer

100

and the outgoing message number. The message id should carry the same number

as the gate. In this case the gate is given number one since it is the first gate to

transform. The numbering of the internal transition is not important since each gate

is an independent entity and no confusion will occur. The gate is shown in Figure

4.14. The right child also is a composed event. It is an event timed for continuous

time intervals, in which we use the timing continuous interval gate, give it a number

(number 2 since it is the second gate transformed), and create the input and output

messages. Table 4.5 shows the event-gate table at this point. The gate is shown in

Figure 4.15.

Excess of gas

Gas leaks >
4 sec

Observation
Interval < 30

sec

m1

m2

mB1

m3

mB1

3

1

2
Interval <30 s

T0

T2

T3

T1

S0 S1 S2

T3

T0

T1

T2

AND Gate

S0 S1

T3

T0
T2 T1

Gas leaks >4s

S0 S1 S2

Figure 4.16: GCEFSMs for Excess Of Gas

Table 4.5: Event-Gate Table

Event name & attribute Event ID Gate ID

BFGasValve.BFEventCond eB1 G1

BFObservation.BFEventCond eB2 G2

BFAirValve.FEventCond eB3 G4

BFIgniter.State eB4 G5

101

1

Air Present

Excess of gas

Gas leaks
> 4 s

Observation
Interval <30 s

Unsafe Environment

mB2

mB1

m2

m1
mB3

m4
3

m3
4

2

T3

Interval <30 s

T0
T2

T1
S0 S1 S2

T3

T0

T1

T2

AND Gate

S0 S1

AND Gate

T3

T0

T1

T2
S0 S1

T3

T0
T2

T1

Gas leaks>4s

S0 S1 S2

Figure 4.17: GCEFSMs for Unsafe Environment

GAS EXPLODES

Ignition
Attempted

Air
Present

Excess
of Gas

Gas leaks
> 4 s

Observation
Interval<30s

Unsafe
Environment

m2

m1

m5

mB1

mB2

mB4

mB3

m4 m3
5

1

2

3 4
AND Gate

T3

T0

T1

T2
S0 S1

AND Gate

T3

T0

T1

T2
S0 S1

PAND Gate
T0

T3 T1

T2
S0 S1

T0
T2

T3

T1
S0 S1 S2

Interval <30s

T3

Gas leaks >4s

T0
T2 T1
S0 S1 S2

Figure 4.18: GCEFSMs for Gas Explodes

At this point the Event-Gate table contains the entries of the leaf nodes that

were found so far as shown in Table 4.5. Since there are no other children for this

AND gate, we transform the gate itself. We use the predefined representation for

AND gate from the transformation rules. Figure 4.16 shows the part of the fault

tree that has been transformed, the AND gate and its inputs and output. The trans-

formed AND gate is a right child of another AND gate, that is the gate between

“Air present” and “Excess of gas” events. “Air present” is a simple event from the

behavioral model while the “Excess of gas” event, which is represented as “m3”, is

the output message of this AND gate. The next step is to transform the AND gate

that combines “Air present AND Excess of gas”. The same transformation steps

are followed and this gate is given number 4. The inputs of this gate are mB3 and

102

m3 messages which are equivalent to “Air present” and “Excess of gas” respectively.

Figure 4.17 shows the transformed gates. The next gate to be transformed is the

Priority AND gate which combines the “Unsafe Environment” and “Ignition At-

tempted” events. For this gate the order in which these events occur is important

and defined as left to right order.

In this FT example, The left event, “Unsafe Environment”, should occur be-

fore the event “Ignition Attempted”. Therefore, this order is considered in the

GCEFSM PAND gate. Figure 4.18 illustrates the GCEFSM after the PAND gate

is transformed. The event mB4 represents the event “Ignition Attempted” in the

FT, which is a message received directly from the behavioral model by this gate

indicating that the igniter is on or off. This algorithm continues until the whole FT

is transformed.

4.2.1.5 Model Integration

After the fault tree is transformed to GCEFSMs, we start integrating it into the

behavioral model. At this point, every message in the BM contains an event name

that is related to an event in one of the leaf nods of the fault tree. We check the class

diagram and the Event-Gate table to find the event ID and the gate ID for the event.

These event ID and gate ID are inserted into the message at the BM. The event

Gas leak > 4 sec is represented in the class diagram as BFGasValve.FeventCond.

This event is looked up inside the the event-gate table to get its event ID (eB1) and

the gate ID (G1) the message is sent to. The message in the BM is modified as

(mB1, eB1, G1). Then, the event Observation Interval < 30 Sec which is represented

in the class diagram as BFObservation.BFEventCond is looked up inside the the

event-gate table to get its event ID (eB2) and the gate ID (G2) the message is sent

to. The message in the BM is modified as (mB2, eB2, G2). Next, the event Air

103

Present which is represented in the class diagram as BFAirValve.FEventCond is

looked up to get its event ID (eB3) and the gate ID (G4) the message is sent to.

The message in the BM is modified as (mB3, eB3, G4). Finally, the event Ignition

Attempted which is represented in the class diagram as BFIgniter.State is looked up

to get its event ID (eB4) and the gate ID (G5) the message is sent to. The message

in the BM is modified as (mB4, eB4, G5).

Figure 4.19 illustrates the gas burner system transformed to an CEFSM model

integrated with a transformed FT (GCEFSMs). There are two connected models,

the behavioral model and the FT model. The red arrows represent the communicat-

ing messages between the CEFSMs. The transformed system shown in Figure 4.19

forms a graph to which suitable coverage criteria can be applied. The FT gates that

are directly connected to the behavioral model receive messages from the behavioral

model and acts accordingly. The messages m1 to m5 represent the global transitions

between the GCEFSMs for the FT part, while mI1 to mI4 represent the messages

between the components of the behavioral model and mB1 to mB5 represent the

communicating messages between the BM and FT. If we apply the algorithm in [68]

on the graph in Figure 4.19 by imposing the edge coverage criteria on the global

transitions of the ICEFSM, we will get the test paths shown in Table 4.7.

104

S 0

T 3
2 T 3

3
5

T 3
5 T 3

4

PA
ND

 G
at

e S 1
 Fi

re
 o

cc
ur

re
d

m
6

m
4

Fa
ul

t t
re

e f
or

 fi
re

 o
cc

ur
re

nc
e

Be
ha

vi
or

al
m

od
el

fo
r G

as
 b

ur
ne

r s
ys

tem

El
ec

tri
ca

l s
ho

rt
in

 ca
bl

es

T 2

T 1

T 3

T 4

T 5

T 6

T 7
 Id
le

Ig
ni

tin
g Ig

ni
ted

Bu
rn

in
g

No
t

Bu
rn

in
g

m
B4

m
5

m
B2

m
B1

m

1

m
2

m
I4

m
I3

m
I2

m
I1

m

B3

m
B5

m
3

4

T 3
1

T 2
8 T 2
9 T 3

0
AN

D
Ga

te

S 0

S 1

Ga
s V

al
ve

 T 1
3

T 1
2

Cl
os

ed

Op
en

T 1
1

T 1
0

Ai
r V

al
ve

Cl
os

ed

Op
en

Fl
am

e D
ete

cto
r T 8

 T 9

Ab
se

nt

Pr
es

en
t

T 1
4 T 1
5

Ig
ni

ter

Of
f

On

T 3
6

6 OR
 G

at
e T 3

9

T 3
8

T 3
7

S 0

S 1

3
T 2

4

T 2
7

T 2
5 T 2

6
AN

D
Ga

te

S 0

S 1

T 2
1 T 2
3

2
T 2

0 T 2
2

S 0

S 1

S 2

In
ter

va
l <

30
 s

T 1
8

T 1
9 1

T 1
6

T 1
7

Ga
s l

ea
ks

 >
4s

S 0

S 1

S 2

F
ig
u
re

4
.1
9
:

IC
E

F
S

M
M

o
d

el
fo

r
a

G
as

B
u

rn
er

S
y
st

em

105

Table 4.6: ICEFSM model for a Gas Burner System Transitions

•T1:(Idle,[NoheatReg=true],-)/(Idle,-,-)

•T2:(Idle,HeatReg)/(Igniting, -, send(AirOn,GasOn,IgniteOn))

•T3:(Igniting,-,-)/(Ignited,-,-)

•T4:(Ignited,-,-)/(Burning, -, Send(IgniteOff))

•T5:(Burning,[HeatReg =true&FlameOn = true])/(Burning, -, -)

•T6:(Burning,[NoHeatReq =true|NoFlame = true],SetTimer(t,1))/

(NotBurning,-,-)

•T7:(NotBurning, TimeOut)/(Idle, -, Send(GasOff))

•T8:(Absent, FlameOn)/(Present, -, Send(FlameOn))

•T9:(Present, FlameOff)/(Absent, -, Send(FlameOff))

•T10:(Closed, AirOn)/(Open, -, Send(mB3))

•T11:(Open, AirOff)/(Closed, -, Send(mB3))

•T12:(Closed, GasOn)/(Open, -, Send(mB1,mB2))

•T13:(Open, GasOff)/(Closed, -, Send(mB1,mB2))

•T14:(Off, IgniteOn)/(On, -, Send(mB4))

Continued on next page

106

Continued from previous page

•T15:(On, IgniteOff)/(Off, -, Send(mB4))

•T16:(S0,setTimer(v,4s))/(S1, -, -)

•T17:(S1,timeout)/(S2, -, Send(GasleakingMSG))

•T18:(S1, [ei.eId = “GasNotLeaking”], get(mB1))/ (S0, reset(Timer),

Send(GateNotOccured))

•T19:(S2, ei.eStatus = false], get(mB1))/ (S0, reset(Timer);

update(events),Send(GateNotOccurred))

•T20:(S0, get(mB2)/(S1, setTimer(v,30), Send(GateOccurred))

•T21:(S1, timeout)/(S2, -, Send(GateNotOccurred))

•T22:(S1,[ei.eId = “GasOff”], get(mB2))/(S0, reset(v,30s),

Send(GateNotOccurred))

•T23:(S2, setTimer(v,30s))/(S1, -, Send(GateOccurred))

•T24:(S0,[NoOfPositiveEvents < 2 & ei.eStatus = true], get(mi))/(S0,

update(events),-)

•T25:(S0,[NoOfPositiveEvents > 0 & ei.eStatus = false], get(mi))/(S0,

update(events),-)

•T26:(S0,[NoOfPositiveEvents = 2 & ei.eStatus = true],get(mi))/(S1,

update(events),Send(GateOccurred))

Continued on next page

107

Continued from previous page

•T27:(S1,[ei.eStatus = t], get(mi))/(S0,update(events),Send(Gate

NotOccurred))

•T28:(S0,[NoOfPositiveEvents < 2 & ei.eStatus = true],get(mi))/(S0,

update(events),-)

•T29:(S0,[NoOf PositiveEvents > 0 & ei.eStatus = false], get(mi))/(S0,

update(events),-)

•T30:(S0,[NoOfPositiveEvents = 2 & ei.eStatus = true],get(mi))/(S1,

update(events),Send(GateOccurred))

•T31:(S1,[ei.eStatus = false], get(mi))/(S0,update(events),Send(GateNot

Occurred))

•T32:(S0,[ordered(input);notLast(input)], get(mi))/(S0,update(event),-)

•T33:(S0, [ei.eId = “GateNotOccurred”|ei.eId = “igniteOff”],get(mi))/

(S0,update(event),-)

•T34:(S0,last(input), get(mi))/(S1, update(events), Send(GateOccurred))

•T35:(S1,[ei.eId = “GateNotoccurred”|ei.eId=“igniteOff”],get(input))/

(S0, update(events), Send(GateNotOccurred))

•T36:(S0,[ei.eId = ”GateOccurred”|ei.eId=“ElectricalShortInCables”],

get(mi))/(S1,-,Send(GateOccurred))

•T37:(S1,[ei.eStatus = false & NoOfPositiveEvents = 0],get(mi))/(S1,-,

Send(GateNot Occurred))

Continued on next page

108

Continued from previous page

•T38:(S1, [NoOfPositiveEvents = 2 & ei.eStatus = true],get(mi))/(S1,

update(events),-)

•T39:(S1, [ei.eStatus = false], get(mi))/(S1,update(events),-)

• mB1:(mB1,e1, G1) • mB2:(mB2,e2, G2)

• mB3:(mB3,eB3, G4) • mB4:(mB4,eB4, G5)

Table 4.7: Gas Burner System Test Paths

• Idle
T 1−→Idle

• Idle
T 2−→Igniting

T 3−→Ignited
T 4−→Burning

T 5−→Burning
T 6−→NotBurning

T 7−→Idle

• Idle
mI3−−→Igniter[Off

T 14−−→On]
mB4−−→5

m5−→6

• Idle
T 2−→Igniting

T 3−→Ignited
mI3−−→Igniter[On

T 15−−→Off]
mB4−−→5

m5−→6

• Idle
mI1−−→AirValve[Closed

T 10−−→Open]
mB3−−→4

m4−→5
m5−→6

• Idle
mI2−−→GasValve[Closed

T 12−−→Open]
mB2−−→2

m2−→3
m3−→4

m4−→5
m5−→6

• Idle
mI2−−→GasValve[closed

T 12−−→Open]
mB1−−→1

m1−→3
m3−→4

m4−→5
m5−→6

• Idle
T 2−→Igniting

T 3−→Ignited
T 4−→Burning

T 5−→Burning
T 6−→NotBurning

mI2−−→GasValve[Open
T 13−−→Closed]

mB1−−→1
m1−→3

m3−→4
m4−→5

m5−→6

• Idle
T 2−→Igniting

T 3−→Ignited
T 4−→Burning

T 5−→Burning
T 6−→NotBurning

mI2−−→
GasValve[Open

T 13−−→Closed]
mB2−−→2

m2−→3
m3−→4

m4−→5
m5−→6

The difference between our approach and those that use statecharts such as [127,

40, 82] is that our approach is used to explicitly model systems (with communication

edges) where the behavior process and the failure process intersect. Therefore,

paths can be produced. It is also possible to manipulate sensor values and create

109

events during system testing. This model can also be used as a simulation test

bed. Moreover, in our approach, different levels of details can be used for different

testing purposes. For example, if we want to test the system, we can look at every

GCEFSM as a whole and we do not have to worry about the GCEFSMs’ internal

details (transitions and states) since we know how they behave. When we compared

the number of states and transitions produced by our integration approach with

those of [127] on this Gas burner example, we found that the ICEFSM contains 27

states and 41 transitions whereas the EFSM model of [127] will contain at least 84

states and 168 transitions. The slicing algorithm used in [127] will not be useful in

partitioning the model here because the FT has two minimum cuts one of which

contains all the leaf nodes except for the external event “Electrical short in cables”.

4.2.2 Application: Aerospace Launch System

4.2.2.1 Description of Launch System

In this section we demonstrate our approach with a launch system example to

show the integration of multiple fault trees 1 into CEFSMs. A launch system consists

of a launch conductor, ground system, launch pad, mobile launch platform and a

launch vehicle which is comprised of a booster, upper stage and a payload. The

booster and upper stage are fueled by cryogenic fuels which can only be liquefied

at extremely low temperatures. Cryogenic fuels are chosen because they generate

a high specific impulse, which defines their efficiency of fuel relative to the amount

consumed. A medium lift vehicle is capable of lofting a payload weighing between

4000 and 40,000 lbs. into low earth orbit. The launch controller is responsible for

initiating the launch sequence and verifying the safety and security of the launch

1Seana Hagerman contributed to this case study

110

control system throughout the launch. The launch conductor communicates to the

vehicle through the ground system. The ground system is physically connected to

the launch vehicle via Ethernet cables, serial cables, 1553 data cables and fuel lines.

The sequence begins about 24 hours before a launch when the launch conductor

initiates the countdown clock. The launch conductor then clears the area of non-

essential personnel using a public announcement system. The mobile launch pad

is prepared for jacking. The launch conductor initiates environmental control sys-

tem (ECS) on the launch pad, solicits a weather briefing, and turns on both search

lights and amber warning lights. The MLP and vehicle are moved to the launch

pad. Cryogenic tanking begins on the launch vehicle and an instrumentation check

is performed. A test to detect hazard gas is performed. The launch vehicle’s Liquid

Oxygen LO2 is verified as well as the upper stage’s Liquid Hydrogen LH2. The

launch conductor periodically conducts polls of the stakeholders to obtain concur-

rence to continue the sequence. When concurrence is received, the launch conductor

initiates the chill down procedures and flight pressures. The safe arm device (SAD)

is initiated. The SAD is used to terminate the flight, should there be a problem after

launch. The launch conductor commands the launch vehicle to switch to internal

power and the vehicle lifts off the launch pad. Figure 4.20 shows the CEFSM model

of the launch system including transitions, variables, events, and messages.

111

 ECSInitialization

NitrogenPurge Air
Conditioning

T10 T8

T11

mI2

T12

Idle

T9

PreFlight

InitiateFueling BatteryChk ChillDown

CryoTesting InstrumentChk
T22 T24

T26 T28

Idle
T20

T21 T23

T25 T27 T29 T30 m4

 Initialization

Network
Connection

HazardLights
On

Countdown Clock
Reset

Idle
T1

T3 T5
T2

mI1

T4

T6 T7

m5

Flight

IntBattery FlightCommand
T33

Idle

T32
T34

Success
T31

m3

FuelCheck

LH2Chk HeliumChk LO2Chk
T15 T17

Idle
T13

T14 T16 T18 T19

Figure 4.20: CEFSM Model for a Launch System

Table 4.8: CEFSM Model for a Launch System Transitions

• T1:(Idle,[startSequence=True],startConnection)/(NetworkConnection,-)

• T2:(NetworkConnection,[ConnectionConfirmed=false|timeout>= 30000

])/(NetworkConnection,-,send(mf2“NetworkConnectionfail”))

• T3:(NetworkConnection,[ConnectionConfirmed=True],TurnLightsOn)/

(HazardLightsOn,-,-)

• T4:(HazardsightsOn,[AllHazardLighsOn=false],)/(HazardLightsOn,-,

send(mf4“HazardLightsfail”))

• T5:(HazardLightsOn,[AllHazardLighsOn=true],ResetClock)/(Count

DownClockReset,-,-)

• T6:(CountDownclockRwset,[ClkError=true],)/(CountDownclockReset

, -,send(mI1”startAC”))

• T7:(CountDownclocLReset,[ClkError=false],)/(CountDownclockReset

,-,send(mf7“CLKFail”))

Continued on next page

112

Continued from previous page

• T8:(Idle,get(startAC))/(AirConditioning,-,-)

• T9:(AirConditioning,[ACError=true],purge)/(AirConditioning,-,send

(mf9”ACError”))

• T10:(AirConditioning,[ACError=false],purge)/(NitrogenPurge,-,-)

• T11:(NitrogenPurge, [ECSError = false])/(NitrogenPurge,-,send(mf11
”fuelcheckFail”))

• T12:(NitrogenPurge, [ECSError = ture])/ (NitrogenPurge, -, send(mfI2
“LH 2Chk”))

• T13:(Idle,,get(m2”fuelcheck”)/(LO2Chk,-,-)

• T14:(LO2Chk,[LO2leak=true|LO2PressureOk=flase])/(LO2Chk,-,send(

mf14”LO2fail”))

• T15:(LO2Chk,[LO2leak=false&LO2PressureOK=true])/(HeliumChk,-,-)

• T16:(HeliumChk,[Heliumleak=true|HeliumPressureOK=false])/(Helium

Chk,-,send(mf16”Heliumfail”))

• T17:(HeliumChk,[Heliumleak=false&HeliumPressureOK=true])/

(LH2Chk,-,-)

• T18:(LH2Chk,[LH2leak=true|LH2PressureOk=false])/(LH2Chk,-,

send(mf18”Heliumfail”))

• T19:(LH2Chk,[LH2leak=false&LH2PressureOK=true])/(LH2Chk,-,

send(mI3 ”PreFlight”))

• T20:(Idle,,get(m3”PreFlight”)/(INSTChk,-,-)

• T21:(INSTChk,[ChkcksumOK=false|LaunchConductCommOk =false])/

(INSTChk,-,send(mf21”Instrufail”))

Continued on next page

113

Continued from previous page

• T22:(INSTChk,[ChecksumOk=true&LaunchConductCommOk=true])/

(CryoTesting,-,-)

• T23:(CryoTesting,[IntTempOK=false|IntPressureOk=false])/

(CryoTesting,-,send(mf23”INSTfail”))

• T24:(CryoTesting,[IntTempOK=true&IntPressureOk=true]) /

(ChillDown,-,-)

• T25:(ChillDown,[IntTempOK=false|InterPssurOK=false])/ (ChillDown

,-,send(mf25”ChillDownfail”))

• T26:(ChillDown,[IntTemIOK=true&IntPressurOK=true])/

(BatteryChk,-,-)

• T27:(BatteryChk,[BatteryPresent = false|PowerLevelOK = false |
BatteryLifeOK = false])/(BatteryChk,-,send(mf27”Batteryfail”))

• T28:(BatteryChk,[BatteryPresent = true&PowerLevelOK = true &

BatteryLifeOK = true])/(InitiatFueling,-,-)

• T29:(InitiateFueling,[TankPressureOK=false|FuelLevelOK=false |
TankTempOK = false])/(InitiatFueling,-,send(mf29”Fuelingfail”))

• T30:(InitiateFueling,[TankPressureOK = true&FuelLevelOK = true &

TankTempOK = true])/(InitiateFueling,-,send(mI4”Flight”))

• T31:(Idle,,get(m4” Flight”)/(InternalBattery,-,-)

• T32:(InternalBattery,[SwitchToBatteryOK=false|PowerLevelOK=false])/

(InternalBattery,-,send(mf32”InternalBatteryfail”))

• T33:(InternalBattery,[SwitchToBattOK=true&PowerLevelOK=true])/

(FlightCommand,-,-)

• T34:(FlightCommand,[StartFlight=true],StartFlight)/(Success,-,send(m5))

114

4.2.2.2 Launch System Failure

The Aerospace launch system fault trees include initialization, fire, preflight,

and launch fail. Initialization fail is the first fault that can occur in the system,

these faults are less extreme. The initialization sequence includes connection fail,

countdown clock fail and hazard lights fail. Any of these can be mitigated with a

retry before an abort command is issued. The fire fault tree sequence contains the

most critical failures that could result in explosion of the system. These failures are

LO2, helium and LH2 fail. Preflight fail are the faults that can occur before a launch

command is issued. Preflight fail includes battery check, initialize fuel and battery

switch fail. Launch is the final set of faults that can occur after the launch command

has been issued. It includes environmental control system ECS and preflight fail.

ECS includes the air conditioning failures and Nitro Purge failures. Preflight fail

includes the Instrument, cryotesting and chill down failures. The fire, prelaunch

and launch faults must be mitigated with an abort to protect the payload.

Four launch failure occurrences are described as four FTs, one FT for each fail-

ure. The FT in Figure 4.21 shows what causes the initialization failure of the launch

vehicle, the FT in Figure 4.22 shows what can cause a fire and possible explosion.

The pre-flight failure is illustrated by the FT in the Figure 4.23, and the launch fail-

ure is shown in Figure 4.24. These FTs will be integrated in the behavioral model

shown in Figure 4.20. The mitigation actions for this system is to abort. Therefore,

mitigations are not applicable.

Initialization fail FT and the event description are as follows:

• Connection fail: The first step in the launch sequence requires that a connec-

tion is made between the launch vehicle, upper stage, launch platform and

115

ground system. This connection consists of Ethernet cable to establish the

ground network and 1553 cables for commanding and getting status from the

launch vehicle. Failure for one of the networks to communicate would result

in the launch being canceled or delayed. A retry action could be taken to

attempt to establish the connection.

• CountDownClk fail:The launch vehicle and the ground system heavily rely on

the countdown clock to synchronize time between them. If the countdown

clock fails to start, pause or stop the result could fail to synchronize and cause

a tank to be over/under filled and an explosion. If the fault were caught early

on, the ground operator could retry to sync them or abort the launch.

• HazardLight fail: Hazard Lights are used for safety around a launch vehicle.

They consist of flashing or strobe lights to warn people in the area to keep

away. The launch should not be conducted with a failure in the safety light

mechanism.

 Initialization fail

Connection fail CountDownCLK fail HazardLights fail

Figure 4.21: Initialization Fail FT

Fire fail FT and the event description are as follows:

• LO2 fail: Liquid oxygen is cryogenic liquid oxidizer propellant for a launch

vehicle. It creates a high specific impulse. The launch vehicle tank is made

of thin material which is filled with L02 to pressurize it. However, LO2 will

116

Fire

LO2 fail Helium fail LH2 fail

Figure 4.22: Fire Occurrence FT

boil off and must be replenished before launch. Liquid Oxygen is fed into the

engine using valves. Faults associated with LO2 include: failure to pressurize,

failure to top off tank, stuck valve, or defective structural integrity of the tank.

The faults if not mitigated in time would result in a fire or explosion.

• Helium fail: Helium is used by the upper stage to purge fuel and pre-cool liquid

hydrogen. A failure from helium would result in liquid oxygen overheating and

an explosion of the system.

• LH2 fail: Liquid Hydrogen is the upper stage cryogenic rocket propellant. It

has the lowest molecular weight of any substance and burns with extreme

intensity. Liquid hydrogen creates the highest specific impulse. The faults

associated with Liquid Hydrogen include, exposure to heat and leaking out of

tank weld seams which would cause an explosion.

Pre-flight fail FT and the event description are as follows:

• BAChk fail: Battery checks are performed on the launch vehicle by the ground

system. Batteries are tested for condition, state of charge is measured in volts,

cell resistance is measured ohms, and a percent of life expectancy is evaluated.

Faults include: bad condition, low voltage, low cell resistance and low life

expectancy.

117

PreFlight Fail

BAChk fail InitFuel fail BASwitch fail

Figure 4.23: Preflight Fail FT

• InitFuel fail: Fuel Initialization is the process of preparing the booster LO2

system and the upper stage LH2 system. The fuel systems are prepared by

locking the valves and measuring gas pressure. Faults include low fuel pres-

sures or bad valves.

• BASwitch fail: Prior to launching, the ground system must switch the launch

vehicle from external power to internal power. This is accomplished by switch-

ing the power to the internal batteries. Internal battery failures include failure

to switch, bad battery condition, low voltage, low cell resistance and low life

expectancy.

Launch fail FT and the event description are as follows:

• ACInit fail: Launch pad environmental control system air conditioning is ini-

tialized. The system fails when the air conditioning unit fails to power, or

temperature is not within an acceptable range.

• NitroPurge fail: Launch pad environmental control system performs a nitrogen

purge of the tanks prior to launch. Nitrogen is used to clean the tanks of

impurities. It will also displace oxygen and reduce the risk of fire or oxidation.

Faults that could occur are low nitrogen pressure or stuck valve.

118

 Launch fail

ECSInit Internal fail

ACInit fail NetroPurge fail Instrument fail ChillDown fail

CryoTesting fail

Figure 4.24: Launch Fail FT

• Instrument fail: Prior to launch, the vehicle’s instrumentation is verified by

running a self or BIT (built in test) Test, the self-test verifies the instrumenta-

tion is running properly and performs a check sum to ensure that the proper

version of software is loaded. Instrumentation faults include self-test failure,

checksum error or telemetry data error.

• ChillDown fail: The chilldown procedure is used to condition fuel lines to

handle the extreme cold temperatures of the cryogenic fuel. Small amounts

of fuel are released from the storage tanks into the lines the feed the vehicle.

Failures include: low chilldown pressure or ruptured fuel line.

• CryoTesting fail: Cryotesting is used to determine if the vehicle will operate

under extreme temperatures. This demonstration fills and drains the tanks

several times. Failures include: failure to pressurize tanks and valve failure.

119

4.2.2.3 Compatibility Transformation Step

At this step we create Bclass and Fclass for failure related entities and combine

the related classes according to the compatibility transformation procedure. At this

step we create Bclass and Fclass. In this example, four FTs will be integrated to

the behavioral model. We start with the left most leaf node of the FT in Figure

4.21. The leaf node Connection fail of the fault tree in Figure 4.21 is related to

the entity Network Connection. Therefore, according to the compatibility transfor-

mation rules, since the attribute of the Bclass BNetworkConnection and the Fclass

FConnection are the same, they are combined in the BFclass BFConnection.

Next, we take its sibling, the CountDownCLK fail which is represented as

FCountDownCLK class. This Fclass is related to the entity Countdown Clock at

the behavioral model which is represented as BCountDownClock. Therefore, they

are combined into BFCountDownCLK class. The third leaf node in this FT is the

HazardLights fail. This leaf node event is related to the HazardLights On. Therefore,

we combine their related Bclass and Fclass into BFHazardLights. Notice that, here

the values of the attributes are different, therefore, we need to include a BAttribute

(Bstate) from the BhazardLights and FAttribute from the FHazardLights into the

BFHazardLights.

Next, we do the compatibility transformation for the second FT Figure 4.22. We

start with the left most leaf node which is the event LO2 fail that is represented

as FLO2Chk. This event is related to the entity LO2Chk which is represented as

BLO2Chk. Since the attributes of these classes are the same, we combine them into

BFLO2 as shown in Figure 4.28. The next event to transform is the Helium fail. It

is related to the HeliumChk entity and both have the same attributes. Therefore,

they are combined into BFHelium (Figure 4.29.) The next event in this FT is the

120

leaf node LH2 fail. It is related to the LH2Chk entity at the behavioral model. The

LH2Chk and LH2 fail are represented as BLH2Chk and FLH2 respectively. Since

these events have the same attributes, they are combined in BFLH2.

Having finished all leaf node events in the FT in Figure 4.22, we start with the

left most leaf node event of the PreFlight fail FT (Figure 4.23), which is BAChk

fail that is represented as FBAChk. It is related to the entity BatteryChk which

is represented as BBatteryChk class. These classes are combined in BFBatteryChk

class (cf Figure 4.31.) InitiFuel fail, represented as FInitFuel, is related to Initiate-

Fueling entity which is represented as BInitiateFueling. As shown in Figure 4.32,

these two classes are combined in BFInitFuel. Figure 4.33 shows the combination

of the event BASwitch fail and IntBattery. These two events are represented in

BInternalBattery and FBSwitch classes respectively.

Next we analyze the fault tree for launch fail (Figure 4.24) starts with the left

most leaf node event which is ACInit fail. This event is represented as FACIni-

tion class and is related to the entity Air Conditioning which is also represented as

BAirCondition. The attributes of these classes are the same so they are combined

in BFACInitiation class as shown in Figure 4.34. The next leaf node event is Ni-

troPurge fail which is related to the entity NitrogenPurge at the behavioral model.

The NetroPurge fail is represented as FNitrogenPurge class and the BNitrogenPurge

is represented as NitrogenPurge class. These two classes are combined in BFNitro-

genPurge as shown in Figure 4.35. Next, we take the event Instrument fail. This

event is related to the INSTChk entity. They are represented as FInstrument and

BINSTChk respectively and combined into BFInstrument as illustrated in Figure

4.36.

The event CryoTesting fail is transformed next. This event is represented in

FCryoTesting and is related to the CryoTesting entity which is also represented as

121

BCryoTesting class. The combination of these two classes is the BFCryoTesting

class can be seen in Figure 4.37. Finally, we transform the event ChillDown fail to

be compatible with the entity ChillDown. They are represented as FChilldown class

and BChilldown class and are combined in BFChilldown class as Figure 4.38 shows.

-FState: connected, fail
-FCond: Fstate= fail

FConnection

-Bstate:connected, fail
BNetworkConnection

-BFState:connected, fail
-BFCond:FState =fail

BFConnection

Figure 4.25: Network Connection Class

-FState: reset, fail
-FCond:FState =fail

FCountDownCLK

-BFState: reset, fail
-BFCond:FState=fail

BFCountDownCLK

-Bstate: reset,
 not reset

BCountDownClock

Figure 4.26: Countdown Clock Class

-BState: On, Off
-FState: On, fail
-BFCond:FState=fail

BFHazardLights

-Bstate: On, Off
BHazardLights

-FState: On, fail
-FCond: FState=fail

FHazardLights

Figure 4.27: Hazard Lights Class

-BFState: Pass, fail
-BFCond:FState=fail

BFLO2

 -Bstate: Pass,
 fail

BLO2Chk
-FState: Pass, fail
-FCond: FState=fail

FLO2

Figure 4.28: LO2 Class

122

-BFState: Pass, fail
-BFCond:FState=fail

BFHelium

-FState: Pass, fail
-FCond:FState=fail

FHelium

-Bstate: Pass,
 fail

BHeliumChk

Figure 4.29: Helium Class

-BFState: Pass, fail
-BFCond:FState=fail

BFLH2

-FState: Pass, fail
-FCond: FState = fail

FLH2

-Bstate: Pass,
 fail

BLH2Chk

Figure 4.30: LH2 Class

-BFState: Pass, fail
-BFCond:FState=fail

BFBatteryChk

 -FState: Pass, fail
-FCond: FState = fail

FBAChk

-Bstate: Pass,
 fail

BBatteryChk

Figure 4.31: Battery Class

-BFState:Pass, fail
-BFCond:FState=fail

BFInitFuel
-Bstate:Pass,fail
BInitiateFueling

-FState: Pass, fail
-FCond:FState=fail

FInitFuel

Figure 4.32: Initiating Fueling Class

-BFState: Pass, fail
-BFCond:FState=fail

BFIntBatSwitch

 -FState: Pass, fail
-FCond:FState=fail

FBASwitch

-Bstate: Pass, fail
BInternalBattery

Figure 4.33: Battery Switching Class

123

-BFState: Pass, fail
-BFCond:FState=fail

BFACInitiation

-Bstate: Pass,
 fail

BAirCondition
-FState: Pass, fail
-FCond:FState=fail

FACInition

Figure 4.34: Air Conditioning Initiation Class

-BFState: Pass, fail
-BFCond:FState=fail

BFNitrogenPurge

-Bstate: Pass,
 fail

BNitrogenPurge
-FState: Pass, fail
-FCond:FState=fail

FNitrogenPurge

Figure 4.35: Nitrogen Class

-BFState: Pass, fail
-BFCond:FState=fail

BFInstrument
-FState: Pass, fail
-FCond: FState=fail

FInstrument
-Bstate: Pass,
 fail

BINSTChk

Figure 4.36: Instruments Class

-BFState: Pass, fail
-BFCond:FState=fail

BFCryoTesting

-FState: Pass, fail
-FCond:FState=fail

FCryoTesting

-Bstate: Pass,
 fail

BCryoTesting

Figure 4.37: Cryo Class

-BFState: Pass, fail
-BFCond:FState=fail

BFChilldown

-FState: Pass, fail
-FCond: FState=fail

FChilldown

-Bstate: Pass,
 fail

BChilldown

Figure 4.38: Chill Down Class

124

After the compatibility transformation procedure is finished, the fault tree of the

initialization failure Figure (4.21) is represented as: FT́ =

(∨,(BFConnection.BFCond,BFCountDownCLK.BFCond,BFHazardLight. BFCond)).

The FT in Figure 4.22 is presented as: FT́ =

(∨,(BFLO2.BFCond,BFHeluim.BFCond,LH2.BFCond))

The FT in Figure 4.23 is presented as: FT́ =

(∨,(BFBatteryChk.BFCond,BFInitFuel.BFCond,BFIntBatSwitch.BFCond))

The FT in Figure 4.24 is presented as: FT́ =

(∨,(∨,BFACInitiation.BFCond,BFNitrogenPurge.BFCond),(∨,(BFInstrument

.BFCond,BFCryoTesting.BFCond,BFChilldown.BFCond)))

4.2.2.4 Fault Tree Transformation

The fault CEFSM is constructed according to a tree postorder traversal. Each

FT is read gate by gate starting from the root node until we reach the leftmost leaf

node. The transformation starts with the leftmost leaf of the FT. The events are

described in terms of class diagram states and events as shown in the compatibility

transformation step. We start with the Initialization fail FT of Figure 4.21. We

traverse this FT from the root to the left most leaf node, the connection fail. Since

this is a leaf node, we give it an Event ID and the Gate ID, and insert it in the

Event-Gate table. Each event and the Gate ID are assigned a unique sequential ID

according to their appearance in the table. The next event is the CountDownCLK

fail as expressed in the condition determined by the compatibility step and the third

125

is HazardLights fail. These events are shown in Table 4.9. This FT contains only

one gate and its GCEFSM can be seen in Figure 4.39.

Table 4.9: Event-Gate Table after Transforming FT in Figure 4.21

Event name & attribute Event ID Gate ID

BFConnection.BFCond eB1 G1

BFCountDownCLK.BFCond eB2 G1

BFHazardLight.BFCond eB3 G1

m1

 BFConnection.BFCond

mB1

 BFHazardLight.BFCond

 mB3

1

BFCountDownCLK.BFCond

 mB2

T3

T0

T2 T1

OR Gate

S0 S1

Figure 4.39: GCEFSM for the FT in Figure 4.21

The next FT to transform into GCEFSM is the fire occurrence FT, Figure 4.22.

We start with the left most leaf node which is LO2 fail. Since it is a leaf node, we

give it an Event ID and the Gate ID, and insert it in the Event-Gate table. Then

we take its siblings from left to right. The next sibling is the Helium fail event, give

it and event ID and insert it in the Event-Gate table and then take the last sibling

and do the same thing. At this point, all the leaf nodes of the this FT are processed,

we create the gate and give it a gate ID. Figure 4.40 shows the GCEFSM for this

FT and Table 4.10 shows the Event-Gate table after the transformation of this FT.

The pre-flight fail FT in Figure 4.23 is then transformed following the same

procedure. The first leaf node is BAChk fail. We give this event an event ID and

inset it into the Event-Gate table with the gate ID that this event is linked to. We

126

m2

BFLO2.BFCond

mB4

LH2.BFCond
mB6

2

BFHeluim.BFCond
mB5

T3

T0

T2 T1

OR Gate

S0 S1

Figure 4.40: GCEFSM for Fire Occurrence FT in Figure 4.22

Table 4.10: Event-Gate Table after Transforming FT in Figure 4.22

Event name & attribute Event ID Gate ID

BFConnection.BFCond eB1 G1

BFCountDownCLK.BFCond eB2 G1

BFHazardLight.BFCond eB3 G1

BFLO2.BFCond eB4 G2

BFHeluim.BFCond eB5 G2

LH2.BFCond eB6 G2

take its sibling, InitFuel fail and we give it an event ID and inset it into the Event-

Gate table. We do the same thing with the last event in this FT is the BASwitch

fail and then we create the gate. The GCEFSM of this FT is shown in Figure 4.41

and the Event-Gate table is shown in Table 4.11.

The Launch fail FT is then transformed to an equivalent GCEFSM. The leaf

node ACInit fail is read first, given an event ID and inserted into the table. Second,

the event NitroPurge fail is read and given an Event ID and inserted into the Event-

Gate table. Then the GCEFSM OR gate is created. This step is shown in Figure

4.42.

Next, we take the leaf node Instrument fail, CryoTesting fail, and ChillDown

fail one after another and we take the same action for each one. At this point, all

127

Table 4.11: Event-Gate Table after Transforming FT in Figure 4.23

Event name & attribute Event ID Gate ID

BFConnection.BFCond eB1 G1

BFCountDownCLK.BFCond eB2 G1

BFHazardLight.BFCond eB3 G1

BFLO2.BFCond eB4 G2

BFHeluim.BFCond eB5 G2

LH2.BFCond eB6 G2

BFBatteryChk.BFCond eB7 G3

BFInitFuel.BFCond eB8 G3

BFIntBatSwitch.BFCond eB9 G3

m3

BFBatteryChk.BFCond

mB7

BFIntBatSwitch.BFCond
mB9

3

BFInitFuel.BFCond
mB8

T3

T0

T2 T1

OR Gate

S0 S1

Figure 4.41: GCEFSM for the Preflight Failure FT in Figure 4.23

the leaf nodes of this FT are read and all the related gates are transformed into

GCEFSMs. Figure 4.43 shows the GCEFSM for this gate and Table 4.12 shows the

contents of the Event-Gate table at this point. Next the gate is transformed into

GCEFSM.

128

m4

BFACInitiation.BFCond

mB10

BFNitrogenPurge.BFCond

mB11

4 T3

T0

T2 T1

OR Gate

S0 S1

Figure 4.42: GCEFSM for an OR Gate in Figure 4.24

m5

BFInstrument.BFCond

mB12

BFChilldown.BFCond
mB14

5

BFCryoTesting.BFCond
mB13

T3

T0

T2 T1

OR Gate

S0 S1

Figure 4.43: GCEFSM for the Second OR Gate in Figure 4.24

Then we take the gate at the upper level of this FT. This gate is an OR gate.

We transform it and assign the events from the lower level gates. Figure 4.44 shows

the whole flight fail GCEFSM.

m6

6 T3

T0

T2 T1

OR Gate

S0 S1

m4

BFACInitiation.BFCond

mB10

BFNitrogenPurge.BFCond

mB11

4 T3

T0

T2 T1

OR Gate

S0 S1

m5 BFInstrument.BFCond

mB12

BFChilldown.BFCond
mB14

5

BFCryoTesting.BFCond
mB13

T3

T0

T2 T1

OR Gate

S0 S1

Figure 4.44: GCEFSM for Flight Fail FT in Figure 4.24

129

Table 4.12: Event-Gate Table after Transforming FT in Figure 4.24

Event name & attribute Event ID Gate ID

BFConnection.BFCond eB1 G1

BFCountDownCLK.BFCond eB2 G1

BFHazardLight.BFCond eB3 G1

BFLO2.BFCond eB4 G2

BFHeluim.BFCond eB5 G2

LH2.BFCond eB6 G2

BFBatteryChk.BFCond eB7 G3

BFInitFuel.BFCond eB8 G3

BFIntBatSwitch.BFCond eB9 G3

BFACInitiation.BFCond eB10 G4

BFNitrogenPurge.BFCond eB11 G4

BFInstrument.BFCond eB12 G5

BFCryoTesting.BFCond eB13 G5

BFChilldown.BFCond eB14 G5

4.2.2.5 Model Integration

After all fault trees are transformed to GCEFSMs, we start integrating them

into the behavioral model. At this point, every message in the BM contains an

event name that is related to an event in one of the fault trees. We check the class

diagram and the Event-Gate table to find the event ID and the gate ID for the event.

These event ID and gate ID are inserted into the message at the BM. The event

“NetworkConnection fail” in the message mf 2 is represented in the class diagram as

BFConnection.BFCond. This event is looked up inside the the event-gate table to

obtain its event ID (eB1) and the gate ID (G1) the message is sent to. The message

is modified as (mB1, eB1, G1).

130

The event HazardLights fail in the message next message mf 2 is represented as

BFCountDownCLK.BFCond in the class diagram. This event is looked up in the

event-gate table to obtain its event ID and the gate ID for the gate that receives

this event. They are eB2 and G1 respectively. The message is modified as (mB2,

eB2, G1). The next message to be modified is the message that carries the event

“CountDownCLK fail”. This event is represented as BFCountDownCLK.BFCond.

The event ID and the gate ID for this event are eB3 and G1 respectively. The

modified message will look like (mB3, eB3, G1). These events happen to be for the

same FT and this FT has only these three events as leaf nodes which means that

the first FT is integrated.

The next event to check is ”ACError” in the message mf 9. This event is repre-

sented in the class diagram as BFACInitiation.BFCond. This event is looked up in

the event-gate table to obtain its event ID and the gate ID this event is an input

to which are eB10 and G4. The message will be (mB10, eB10, G4). The next event

from the BM is ”fuelcheck Fail” in the message mf 12. This event is represented as

BFNitrogenPurge.BFCond. Its event ID and gate ID are looked up in the event-gate

table. This message will be modified as (mB11, eB11, G4).

The event ”LO2 fail” in the message mf14 which is represented as BFLO2.

BFCond is looked up in the event-gate table for the event ID and the gate ID. the

message will be modified to be (mB4, eB4,G2). The ”Helium fail” in the message

mf16 is looked up in the event-gate table to obtain its ID and the gate ID for the

gate this event is an input to. This event is represented as BFHelium.BFCond. The

message is modified to be (mB5,eB5,G2). The event ”LH2fail” in the message mf18 at

the behavioral model is taken next. According to the compatibility transformation,

this event is represented as LH2.BFCond and from the event-gate table its ID is eB6

and the gate ID this event is sent to is G2. Therefore, the message is modified as

131

(mB6, eB6, G2). The next event from the begavioral model to check is “Instrufail” in

the message mf21. This event is represented as BFInstrument.BFCond. Its event ID

and gate ID are looked up in the event-gate table and they are eB12, G5. Therefore

the message is modified as (mB12, eB12, G5).

The integration procedure continues for all remaining messages from the behav-

ioral model. These messages are: the message mf23 carrying the event “cryoTesting-

fail” becomes (mB13, eB13, G5), the message mf25 carrying the event “ChillDownfail”

becomes (mB14, eB14, G5), the message mf27 carrying the event “Batteryfail” be-

comes (mB7, eB7, G3), the message mf29 carrying the event “initiateFueling fail”

becomes (mB8, eB8, G3), and the message mf32 carrying the event InternalBattery-

fail becomes (mB9, eB9, G3). Ones all the messages are assigned to their GCEFSMs

destinations, The behavioral model and the fault trees are integrated. Figure 4.45

shows the integrated model ICEFSM.

132

E
C

S
In

it
ia

li
za

ti
on

N
it

ro
ge

nP
ur

ge

A
ir

C

on
di

tio
ni

ng

T
10

T

8

T
11

m
I2

T
12

Id
le

T
9

m
4

m
B

10

m
B

11

4
T

3

T
0

T
2

T
1

O
R

 G
at

e

S
0

S
1

m
5

m
B

12

m
B

14

5

m
B

13

T
3

T
0

T
2

T
1

O
R

 G
at

e

S
0

S
1

 I
ni

ti
al

iz
at

io
n

N
et

w
or

k
C

on
ne

ct
io

n
H

az
ar

dL
ig

ht
s

O
n

C
ou

nt
do

w
n

C
lo

ck

R
es

et

Id
le

T

1

T
3

T
5

T
2

m
I1

T
4

T
6

T
7

m
B

4

m

B
6

m
B

5

m
2

(F
ir

e
oc

cu
rr

en
ce

)

2
T

3

T
0

T
2

T
1

O
R

 G
at

e

S
0

S
1

m
B

8
m

3
(P

re
fl

ig
ht

 fa
il

)

m
B

7
m

B
9

3
T

3

T
0

T
2

T
1

O
R

 G
at

e

S
0

S
1

T
33

m
I5

Fl
ig

ht

In
tB

at
te

ry

Fl
ig

ht
C

om
m

an
d

Id
le

T
32

T

34
 Su

cc
es

s
T

31

Pr
eF

lig
ht

In
it

ia
te

Fu
el

in
g

B
at

te
ry

C
hk

C

hi
llD

ow
n

C
ry

oT
es

tin
g

In
st

ru
m

en
tC

hk

T
22

T

24

T
26

T

28

Id
le

T

20

T
21

T

23

T
25

T

27

T
29

T

30

m
I4

m
I3

Fu

el
C

he
ck

L
H

2C
hk

H

el
iu

m
C

hk

L
O

2C
hk

T

15

T
17

Id

le

T
13

T

14

T
16

T

18

T
19

 m
B

2

m
1

(I
ni

tia
li

za
ti

on
 F

ai
lu

re
)

m
B

1

 m
B

3

1

T
3

T
0

T
2

T
1

O
R

 G
at

e

S
0

S
1

m
6

(F
lig

ht
 F

ai
l)

6

T
3

T
0

T
2

T
1

O
R

 G
at

e

S
0

S
1

F
ig
u
re

4
.4
5
:

IC
E

F
S

M
M

o
d

el
fo

r
a

L
au

n
ch

S
y
st

em

133

Table 4.13: ICEFSM model for a launch System Transitions

•T1:(Idle,[startSequence=True],startConnection)/(NetworkConnection,-)

•T2:(NetworkConnection,[ConnectionConfirmed=false|timeout>= 30000

])/(NetworkConnection,-,send(mB1))

•T3:(NetworkConnection,[ConnectionConfirmed=True],TurnLightsOn)

/(HozardLightsOn,-,-)

•T4:(HazardsightsOn, [AllHazardLighsOn = false],)/(HazardLightsOn,-,

send(mB2))

•T5:(nazardLightsOn, [AllHazardLighsOn = true], ResetClock)/(Count

DownClockReset ,-,-)

•T6:(CountDoenclockRwset, [ClkError = true],)/(CountDownclock

Reset,-,send(mI1))

•T7:(CountDownclocLReset, [ClkError = false],)/(CountDownclock

Reset, -, send(mB3))

•T8:(Idle,get(mI1))/(AirConditioning,-,-)

•T9:(AirConditioning,[ACError=true],purge)/(AirConditioning,-,

send(mB10))

•T10:(AirConditioning,[ACError=false],purge)/(NitrogenPurge,-,-)

•T11:(NitrogenPurge,[ECSError=false])/(NitrogenPurge,-,send(mB11))

•T12:(NitrogenPurge,[ECSError=ture])/(NitrogenPurge,-,send(mI2))

•T13:(Idle,,get(m2”fuelcheck”)/(LO2Chk,-,-)

•T14:(LO2Chk,[LO2leak=true|LO2PressureOk=flase])/(LO2Chk,

send(mB4))

•T15:(LO2Chk, [LO2leak = false & LO2PressureOK = true])/

Continued on next page

134

Continued from previous page

(HeliumChk,-,-)

•T16:(HeliumChk,[Helkimleak = true|HeliumPressureOK = false])/

(HeliumChk, -, send(mB5))

•T17:(HeliumChk,[Heliumleak = false&HeliumPressureOK = true])/

(LH2Chk,-,-)

•T18:(LH2Chk,[LH2leak = true|LH2PressureOk != false])/(LH2Chk,

send(mB6))

•T19:(LH2Chk,[LH2leak = false & LH2PressureOK = true])/(LH2Chk

,-,send(mI3))

•T20:(Idle,,get(m3”PreFlight”)/(INSTChk,-,-)

•T21:(INSTChk,[ChkcksumOK = false | LaunchConductCommOk =

false])/(INSTChk,send(mB12))

•T22:(INSTChk,[ChecksumOk = true & LaunchConductCommOk =

true])/(CryoTesting, -,-)

•T23:(CryoTesting, [IntTempOK = false | IntPressureOk = false]) /

(CryoTesting, send(mB13))

•T24:(CryoTesting, [IntTempOK = true & IntPressureOk = true])/

(ChillDown,-,-)

•T25:(ChillDown,[IntTempOK = false | InterPssurOK = false])/

(ChillDown,-, send(mB14)

•T26:(ChillDown,[IntTemIOK = true & IntPressurOK = true])/

(BatteryChk,-,-)

•T27:(BatteryChk,[BatBeryPresent = false | PowerLevelOK = false |
BatteryLifeOK = false])/(BatteryChk,-,send(mB7))

•T28:(BatteryChk, [BatteryPresent = true & PowerLevelOK = true &

Continued on next page

135

Continued from previous page

ButteryLifeOK = true])/(InitiateFueling,-,-)

•T29:(InitiateFueling, [TankPressureOK = false | FuelLevelOK = false |
TankTempOK = false])/(InitiateFueling,send(mB8))

•T30:(InitiateFueling, [TankPressureOK = true & FuelLevelOK = true

& TankTempOK = true])/(InitiateFueling, send(mI4)

•T31:(Idle,,gyt(m4” Flight”)/(InternalBattery,-,-)

•T32:(InternalBattery,[SwitchToBatteryOK=false|PowerLevelOK =

false])/(InternaeBattery,send(mB9)

•T33:(InternalBattery,[SwitchToBatteryOK=true&PowerLevel OK=

true])/(FlightCommand,-,-)

•T34:(FlightCommand,[StartFlight=true],StartFlight)/(Success,-,

send(mI5))

•mB1:(mB1, eB1, G1) •mB2:(mB2, eB2, G1) •mB3:(mB3, eB3, G1)

•mB4:(mB4, eB4, G2) •mB5:(mB5, eB5, G2) •mB6:(mB6, eB6, G2)

•mB7:(mB7, eB7, G3) •mB8:(mB8, eB8, G3) •mB9:(mB9, eB9, G3)

•mB10:(mB10, eB10, G4) •mB11:(mB11, eB11, G4)

•mB12:(mB12, eB12, G5) •mB13:(mB13, eB13, G5)

•mB14:(mB14, eB14, G5)

136

Table 4.14: Aerospace Launch System Test Paths

• Initialization[Idle
T 1−→NetworkConnection

T 3−→HazardLightsOn
T 5−→Count

DownClockReset]

• ECSInitialization[idle
T 8−→AirConditioning

T 10−−→NitrogenPurge
T 11−−→Nitrogen

Purge]

• FuelCheck[Idle
T 13−−→LO2Chk

T 15−−→HeliumChk
T 17−−→LH2Chk

T 18−−→LH2Chk]

• PreFlight[Idle
m20−−→InstrumentChk]

mb12−−→ S9
m5−→ S11

T 51−−→ S12

• PreFlight[Idle
m20−−→InstrumentChk

T 22−−→CryoTesting
T 24−−→ChillDown

T 26−−→
BatteryChk

T 28−−→InitiaFueling
T 29−−→InitiateFueling]

• PreFlight[Idle
m20−−→InstrumentChk

T 22−−→CryoTesting
T 24−−→ChillDown

T 26−−→
BatteryChk]

mB8−−→ S5
T 39−−→ S6

• Initialization[Idle
T 1−→NetworkConnection

T 2−→NetworkConnection]
mB1−−→

S0
T 31−−→ S1

• Initialization[Idle
T 1−→NetworkConnection

T 3−→HazardLightsOn]
mB2−−→

S0
T 31−−→ S1

• Initialization[Idle
T 1−→NetworkConnection

T 3−→HazardLightsOn
T 5−→Count

DownClockReset]
mB2−−→ S0

T 31−−→ S1

• Initialization[Idle
T 1−→NetworkConnection

T 3−→HazardLightsOn
T 4−→Hazard

LightsOn
T 5−→CountDown Clock Reset]

• Initialization[Idle
T 1−→NetworkConnection

T 3−→HazardLightsOn
T 5−→Count

Continued on next page

137

Continued from previous page

DownClockReset]
m1−→ECSInitialization[Idle

T 8−→ AirConditioning
T 10−−→

NitrogenPurge]

• ECSInitialization[Idle
T 8−→AirConditioning

T 9−→Air conditioning
T 10−−→

NitrogenPurge]

• ECSInitialization[Idle
T 8−→AirConditioning

T 10−−→NitrogenPurge]
mB11−−−→ S7

m4−→ S11
T 51−−→ S12

• ECSInitialization[Idle
T 8−→AirConditioning

T 10−−→NitrogenPurge]
m2−→

FuelChk[idle
T 13−−→LO2Chk

m15−−→HeliumChk]
mB5−−→ S3

• FuelChk[Idle
T 13−−→LO2Chk

T 14−−→LO2Chk
T 15−−→HeliumChk]

mB5−−→ S4

• FuelChk[Idle
T 13−−→LO2Chk

T 15−−→HeliumChk
T 16−−→HeliumChk]

mB5−−→ S4

• FuelChk[Idle
m13−−→LO2Chk

T 15−−→HeliumChk
T 17−−→LH2Chk]

mI3−−→PreFlight[Idle
T 20−−→InstrumentChk]

mB12−−−→ S9
m5−→ S11

T 51−−→ S12

• PreFlight[Idle
T 20−−→InstrumentChk

T 22−−→CryoTesting]
mB13−−−→S9

m5−→S11
T 51−−→S12

• PreFlight[Idle
T 20−−→InstrumentChk

T 22−−→CryoTesting
T 24−−→ChillDown]

mB14−−−→
S9

m5−→ S11
T 51−−→ S12

• PreFlight[Idle
m20−−→InstrumentChk

T 22−−→CryoTesting
T 23−−→CryoTesting

T 24−−→
ChillDown

T 26−−→BatteryChk
T 28−−→InitiaFueling]

• PreFlight[Idle
m20−−→InstrumentChk

T 22−−→CryoTesting
T 24−−→ChillDown

T 25−−→
ChillDown

T 26−−→BatteryChk
T 28−−→InitiaFueling]

Continued on next page

138

Continued from previous page

• PreFlight[Idle
m20−−→InstrumentChk

T 22−−→CryoTesting
T 24−−→ChillDown

T 26−−→
BatteryChk

T 27−−→BatteryChk
T 28−−→InitiaFueling]

• PreFlight[Idle
m20−−→InstrumentChk

T 22−−→CryoTesting
T 24−−→ChillDown

T 26−−→
BatteryChk

T 28−−→InitiaFueling]
mB8−−→ S5

T 39−−→ S6

• PreFlight[Idle
m20−−→InstrumentChk

T 22−−→CryoTesting
T 24−−→ChillDown

T 26−−→
BatteryChk

T 28−−→InitiaFueling]
m4−→Flight[idle

T 31−−→IntBattery
T 33−−→

FlightCommand
T 34−−→Success]

•Flight[Idle
T 31−−→IntBattery

T 32−−→IntBattery
T 33−−→FlightCommand

T 34−−→Success]

The transformed system shown in Figure 4.45 forms a graph to which suitable

coverage criteria can be applied. The FT gates that are directly connected to the

behavioral model receive messages from the behavioral model and act accordingly.

The messages m1 to m5 represent the global transitions between the GCEFSMs for

the FTs, while mI1 to mI5 represent the messages between the components of the

behavioral model and mB1 to mB14 represent the communicating messages between

the behavioral and fault models. If we apply the algorithm in [68] to the graph in

Figure 4.45 by imposing the edge coverage criteria, we obtain the test paths shown

in Table 4.14. Note that this approach forces a proper prioritization if the tests are

executed in order, i.e. there is no need for extra test prioritization rules.

The difference between our approach and those that use statecharts such as [127,

40, 82] is that our approach is used to explicitly model systems (with communication

edges) where the behavior process and the failure process intersect. Therefore, paths

can be produced. These paths can be used for feasibility testing and planning for

mitigation actions, and mitigation testing. It is also possible to manipulate sensor

139

values and create failure events during system testing. Moreover, in our approach,

different levels of details can be used for different testing purposes. For example, if

we want to test the system, we can look at every GCEFSM as a unit and not worry

about the GCEFSMs’ internal details (transitions and states) since we know how

they behave.

When we compared the number of states and transitions produced by our inte-

grated approach with those of [127] on this aerospace launch system example, we

found that our ICEFSM contains 41 states and 117 transitions whereas the EFSM

model of [127] will contain at least 4316 states and 8335 transitions.

140

4.3 ICEFSM as Part of an End-to-End testing

Methodology

The End-to-End testing2 [6] methodology shown in Figure 4.46 consists of two

phases. The first phase integrates the behavioral and fault model to produce test

cases. The second phase construct the safety mitigation tests based on the weaving

rules and some coverage criteria.

4.3.1 Test Generation Process

The test generation process is shown in Figure 4.46. It uses the behavioral

model (BM) and a FT to generate test cases. The approach consists of two phases.

The first phase generates failures and determines in which behavioral states spe-

cific failures may occur (failure applicability). Phase 1 starts with a compatibility

transformation step for the Fault Tree wrt the behavioral model. The FT produced

from this step is transformed into gate CEFSMs (GCEFSMs) according to transfor-

mation rules. Then, the model integration step integrates the GCEFSM with the

behavioral model (BM) according to the integration rules. The resultant model is

the integrated communicating extended finite state machine (ICEFSM). Any of a

number of existing test case generation methods can use this model to generate test

cases based on test criteria (IC). This is the approach described in Section 3 of this

dissertation.

The second phase generates safety mitigation tests. We construct the behavioral

test suite (BT) from the behavioral model (BM) using behavioral test criteria (BC).

From the test paths generated from the integrated model ICEFSM, we construct

2This portion of the work is done jointly with Mrs. Salwa Elakeili.

141

the applicability matrix. Then, we apply test coverage criteria (the paper suggests

C1-C4) to the behavioral test suite and failure types. Based on the applicability

of failures in specific behavioral states, we select states in existing test paths repre-

senting behavioral tests (positions in a test path) and combine them with applicable

failures(e) to systematically create failure situations for which we test proper miti-

gation. The mitigation tests are generated from the mitigation model (MM) based

on mitigation coverage criteria (MC). After that, we construct the safety mitigation

tests (SMTs) by combining the mitigation tests (MTs) with the behavioral tests at

the failure position (p) according to weaving rules (WRs). We describe each phase

in more detail in the following subsections.

4.3.2 Phase1: Generate Failures and Failure Applicability

In this phase, we propose an integration of the behavioral model with a fault

model to take advantage of the two for testing. The test generation process in Figure

4.46 uses the behavioral model and a FT to generate test cases. It starts with the

compatibility transformation step. The FT́ produced from this step is transformed

into gate CEFSMs (GCEFSMs) according to the transformation rules. Then, the

model integration step integrates the GCEFSM with the behavioral model (BM)

according to the integration rules. The resultant model is the Integrated Communi-

cating Extended Finite State Machine ICEFSM. Test case generation methods can

use this model to generate test cases based on test criteria (IC) that lead to failure.

A shorter version of the technique described here was originally developed in [52].

In [52, 54, 53] it was applied to multiple fault trees related to an aerospace launch

system. However, it did not consider test generation for proper failure mitigation.

142

Phase 1

Phase 2

IC

Compatibility
Transformation

BM
(CEFSM)

FT

Transformation
Rules

BM

FT

Integration
Rules

Models
Integration

FT model
Transformation

Generate
Tests

GCEFSM

ICEFSM

Mitigation Model

MC

Safety Mitigation Tests (SMT)

Weaving Rules
Generate Safety
Mitigation Tests

BC
Apply Test Criteria
(C1, C2, C3, C4)

Behavioral
Test (BT)

Generate
Applicability Matrix

Generate Mitigation
Tests (MT)

Mitigation Tests

(p , e)

Figure 4.46: End-To-End Test Generation Process

143

4.3.3 Construction of the Applicability Matrix

The applicability matrix is a two dimensional array. Each column represents a

specific behavioral state s ∈ S and each row is a specific failure type e (1 ≤ e ≤ |E|

).

A(i, j) =


1 if failure type j can occur in state si,

0 if otherwise

Phase 1 determines whether a failure of type j can occur in state si or not. The

applicability matrix is then constructed from the test paths obtained from phase 1

according to the construction procedure shown in Figure 4.47

144

Procedure ConstructionOfApplicabilityMatrix()
Inputs:

- Set of test paths (R) from ICEFSM.
- Failure types table (Q).

Output:
- Applicability Matrix AM(i,j).

Begin
 For all the paths r i in R take r i one-by-one {
 If (path r i  R contribute to failure)

 Then {
 Obtain failure name (Wi) from Q
 Check Wi in Q
 If (found) //it mean that it is a failure not an event
 then{
 For every behavior state si  r i

 Assign “1” to AM (fj , si)
 Check the reminder test paths r’j  R that don’t
 contribute to failure
 If (s0  r i == s’0  r’j)
 then
 For all s’i  r’i
 Assign “1” to AM (f j, s’I)
 }
 else
 // this is a normal event
 }

 }
 And assign “0” to the reminder of AM
End

Figure 4.47: Applicability Matrix Construction Procedure

145

4.3.4 Phase2: Generate Safety Mitigation Tests

Our goal in this phase is to provide an MBT approach to test proper mitigation

of safety failures in SCSs. Andrews et al. [8] describe this approach for generating

a safety mitigation test suite. However, they use an EFSM instead of a CEFSM

and these are not able to model the interaction of the failure process and the be-

havioral process and merely assume that a particular failure can be generated when

the system is in a given behavioral state. However the process described below

is substantially Mrs. Elakeili’s work and described here to demonstrate how the

end-to-end process works.

Mitigation models describe mitigation patterns associated with a fault. Mitiga-

tion test criteria describe required coverage. Mitigation test paths are then gener-

ated and woven into the behavioral test similar to aspect oriented modeling [129].

Weaving rules describe how a mitigation test path is woven into the original behav-

ioral test. Phase 2 in figure 4.46 summaries how to construct safety mitigation tests

(SMTs). The safety critical testing process has the following steps:

• Construct a behavioral test suite BT from the behavior model BM, using

behavior test criteria BC.

• Construct mitigation test suites MT from mitigation models MM, using miti-

gation coverage criteria MC.

• Select positions of failure (p) in a test suite (BT), and type of failure (e)

(failure scenarios). Select (p,e) using failure coverage criteria FC.

• Construct a safety mitigation test suite SMT using the behavioral test suite

(BT), point of failure (p), type of failure (e) and mitigation test suite (MT)

according to weaving rules (WR).

146

Next we need failure coverage criteria for failure scenarios. These are based on

where in our behavioral test suites failure can occur and need to be tested. In other

words, which positions p in the test suite need to be tested with which failure e?

The test criteria specify coverage rules for selecting such (p,e) pairs.

Criteria 1: All combinations, i.e. all positions p, all applicable failure types e

(test everything). This is clearly infeasible for all but the smallest models. It would

require |I| × |F | pairs if A contains all ”1”s.

Criteria 2: All unique nodes, all applicable failures. This only requires
∑k

j=1

∑|S|
i=1

(A(i,j)=1) combinations i.e. the number of one entries in the applicability matrix.

When some nodes occur many times in a test suite only one needs to be selected by

some scheme. This could lead to not testing failure recovery in all tests. A stronger

test criterion is to require covering each test as well.

Criteria 3: All tests, all unique nodes, all applicable failures. Here we simply

require that when unique nodes need to be covered they are selected from tests that

have not been covered.

A weaker criterion is not to require covering all applicable failures for each selected

position.

Criteria 4: All tests, all unique nodes, some failures (only one failure per position,

but covering all failures). Some failure means that collectively all failures must be

paired with a position at least once, but not with each selected position as in Criteria

3.

Example: This example shows the differences between the four types of coverage

criteria for all combinations (p, e). Suppose we have a test suite that has three test

paths T= {t1,t2,t3} where each test path contains a path.

t1 = {s1, s2, s3, s4}, t2 = {s1, s2, s1, s3, s1, s4}, t3 = {s2, s4, s3, s2, s3, s4}.

CT= t1 ◦ t2 . . . tl = {s1, s2, s3, s4, s1, s2, s1, s3, s1, s4, s2, s4, s3, s2, s3, s4}. I= [1,16].

147

Assume we have four failures F= {f1, f2, f3, f4}. |F | =4 failures and we have four

failure types E=[1,4]. The applicability matrix is shown in Table 4.15. Tables 4.16-

4.19 show (p, e) pairs marked with ”1” that, if selected, would collectively meet test

criteria C1-C4 respectively.

Table 4.15: Applicability Matrix

F/S s1 s2 s3 s4

f1 1 1 1 1

f2 1 0 0 1

f3 1 1 1 0

f4 1 1 1 1

Table 4.16: All Position, All Applicable Failures

F/CT s1 s2 s3 s4 s1 s2 s1 s3 s1 s4 s2 s4 s3 s2 s3 s4

f1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

f2 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1

f3 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0

f4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4.16 shows required combinations for criteria 1. This would need |I| ×

|F | minus the zeros entries (not applicable) in Table 4.16 (16 × 4 - 12 =64-12=52

pairs). For a tiny model with only 4 nodes and 4 failure types this is clearly too

much.

For Criteria 2 consider Table 4.17. The options selected (marked 1) provide

the desired coverage, but only test t1 is used to fulfill this coverage. A total of 13

pairs is needed. According to Table 4.17 the following position-failure pairs (p,e) are

148

selected:{(1,1),(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,2),(4,4)}. A

large portion of the test suite is unused. Random selection of nodes in I can improve

this somewhat.

Criteria 3 requires using all tests. Table 4.18 shows an example of a set of position-

Table 4.17: All Unique Nodes, All Applicable Failures

F/CT s1 s2 s3 s4 s1 s2 s1 s3 s1 s4 s2 s4 s3 s2 s3 s4

f1 1 1 1 1

f2 1 0 0 1

f3 1 1 1 0

f4 1 1 1 1

failure pairs (p, e) that fulfills this criterion {(1,1),(1,2),(1,3),(1,4),(6,1),(6,3),(6,4),

(10,1),(10,2),(10,4),(13,1),(13,3),(13,4)}. As before, 13 pairs are needed, but the

selection of unique nodes is spread over all three tests. Criteria 4 does not require

Table 4.18: All Tests, All Unique Nodes, All Applicable Failures

F/CT t1 t2 t3

s1 s2 s3 s4 s1 s2 s1 s3 s1 s4 s2 s4 s3 s2 s3 s4

f1 1 1 1 1

f2 1 1

f3 1 1 1

f4 1 1 1 1

that all failures be applied at every selected position although each failure must

be selected at least once. Table 4.19 shows an example of selecting position-failure

pairs (p, e). This is the weakest criterion, since it only requires selecting each failure

at least once and each unique node at least once. The four position-failure pairs in

Table 4.19 that fulfill this criterion are {(1,1),(6,3),(10,2),(13,4)}.

149

Table 4.19: All Tests, All Unique Nodes, Some Failures

F/CT t1 t2 t3

s1 s2 s3 s4 s1 s2 s1 s3 s1 s4 s2 s4 s3 s2 s3 s4

f1 1

f2 1

f3 1

f4 1

4.3.4.1 Generate Mitigation Test (MT)

Safety critical systems (SCSs) require mitigation of failures to prevent adverse

effects. This can take a variety of actions. Mitigation patterns have been defined in

[10][90] as follows:

1. Rollback brings the system back to a previous state before the failure oc-

curred. A mitigation action may occur and the system may stop or proceed

to re-execute the remainder of the test.

2. Rollforward mitigates the failure, fixes and proceeds.

3. Try other alternatives deals with decisions about which of several alterna-

tives to pursue.

4. Immediate(partial) fixing when a failure is noted, an action is taken to

deal with the problem that caused this failure prior to continuing with the

remainder of the test.

5. Deferred (partial) fixing when a failure is noted, an action must be per-

formed to record the situation and deal with the failure either partially or

temporarily because handling the failure completely is not possible.

150

6. Retry when a failure is detected immediately after the execution of the activ-

ity causing the problem, an action is performed to solve the failure and then

the activity that caused the problem is tried again.

7. Compensate means the system contains enough redundancy to allow a failure

to be masked.

8. Go to fail-safe state a system is transferred into a mitigation state to avoid

dangerous effects and stops.

These mitigation patterns can be expressed in the form of mitigation models. For

example, try other alternatives is shown in Figure 4.48. Each failure fi is associated

Figure 4.48: Try Other Alternatives: Mitigation Model

with a corresponding mitigation model MMi where i = 1, . . . , k. We assume that

the models are of the same type as the behavioral model BM (e.g. an EFSM).

Graph-based [5], mitigation criteria MCi can be used to generate mitigation test

paths MTi = {mti1 , . . . , mtiki} for failure fi. Figure 4.48 shows an example of a

mitigation model of type ”Try alternatives”. Assuming MC as ”edge coverage”, the

following three mitigation test paths fulfill MC: MT={mt1,mt2,mt3} where

mt1 ={n1, n2, n5}, mt2 ={n1, n3, n5}, mt3 ={n1, n4, n5}

Mitigation models can be very small for some failures and the mitigation can be an

”empty action”. For example, if there is a rollback to state sb with immediate stop,

151

the mitigation action only consists of adding a transition from sb to sf , the final

state. Hence, mt={sb, sf}. The weaving rule would specify what node to rollback

to, in this case sb. On the other hand, some mitigation models may consists of a full

set of alternative behaviors that completely replace the remainder of the original

test. We will illustrate this in the next section.

4.3.4.2 Generate Safety Mitigation Tests using Weaving Rules

Assume we have t ∈ BT , p ∈ I, e ∈ E and mt ∈ MTe. We now build a safety

mitigation test smt ∈ SMT using this information and the weaving rules wre ∈ WR

as follows:

• keep path represented by t until failure position p.

• apply failure of type e (fe) in p.

• select appropriate mt ∈MTe.

• apply weaving rule wre to construct smt.

We now explain weaving rules more formally for each type of mitigation. Let t=

{s1 . . . sb . . . node(p). . . sf . . . sk}

1. Fix

(a) Compensate ((Partial) Fix and proceed) mitigates a failure and

continues with the remainder of the behavioral test. So,

smt=s1 . . .node(p)mtnode(p). . . sk.

mt may be zero, if mitigation does not require user involvement (inputs).

See rule 4.

152

(b) Go to fail-safe state (Fix and stop) mitigates a failure and ignores

the remainder of t: smt=s1 . . .node(p)mt.

2. Rollforward

(a) Rollforward mitigates the failure, and proceeds.

smt =s1 . . .node(p)mtsf . . . sk where sf is the node in t to which we

rollforward. If only rollforward and no other actions are required mt is

empty and smt=s1 . . .node(p)sf . . . sk.

(b) Deferred fixing.

If the failure can only be fixed after reaching the rollforward node sf then

smt becomes:

smt = s1 . . .node(p)sfmtsf+1 . . . sk.

Note that further variants of this weaving rule can exist, like a state sdf

between sf and sk at which the failure mitigation mt is inserted.

t = s1 . . . sb . . .node(p). . . sf . . . sdf . . . sk.

smt= s1 . . .node(p)sf . . . sdfmt. . . sk.

3. Rollbackward

(a) Rollbackward.

Apply mitigation path mt from point of failure and rollback to node

before the failure occurred and continue with remainder of behavioral

test.

smt=s1 . . .node(p)mtsb . . . sk where sb is a node before node (p).

(b) Rollbackward and stop.

smt=s1 . . .node(p)mtsb.

4. Internal compensate (no user action required). Test immediate system

fix. For example, this can happen if a system switches to backup/redundant

153

sensors. To test this merely requires applying the failure and continuing to

execute the original test t. In this case, we do not have to modify the original

test at all (note that the assumption is that the system deals with the failure

internally without any change in black-box behavior).

While weaving rules in this section are representative, they are not meant to be

comprehensive. We expect that, over time, we may find some more or find that some

are more common than others. The result of this step is the full safety mitigation

test suite SMT.

4.4 End-To-End Case Study: Railroad Crossing

Control System (RCCS)

In this section, we use the Railroad Crossing Control System (RCCS) to illustrate

the whole End-to-End testing methodology.

4.4.1 Phase1: Generate Failures and Failure Applicability

4.4.1.1 Description of Railroad System

RCCS encompasses the following main components: train, railway track, sen-

sors, gates, controller, and signal lights as shown in Figure 4.49. A depiction of each

element is given below [101].

Train: A train is powered by a power supply. When the power is switched on, the

train starts moving along the track when the metallic wheels of the train receive

power. The train comes to a stop at the position where the power to the tracks is

switched off.

154

Controller: The software that controls the general operation of the RCCS is stored

in the memory of the controller. The controller continuously monitors the sensors

and controls the gate actuators, track change lever, and the signal lights.

Sensors: Are used to detect the location of the train on the tracks. Two pairs of

sensors detect the train position before and after the gates.

Gate: RCCS has two sets of gates on either side of the track layout. The gate

receives signals from the controller. When it receives the command to lower the

gate, the gate moves down and closes. When it receives the command to raise the

gate, it moves up allowing the traffic to pass through.

Signal Lights: RCCS contains a warning light at the crossing area to indicate that

the train is approaching when the light is on and there is no train otherwise.

A railroad crossing is an intersection where a railroad crosses a road or a path

at the same level. Because of the safety concerns at the intersection, this system

is intended to prevent normal traffic and people from using the intersection when a

train approaches and crosses. Figure 4.49 depicts the behavioral model of a Rail-

road Crossing Control System (RCCS) as a Communicating Extended Finite State

Machine (CEFSM) with one train and one track. The model specifies that gates

are to be closed and warning lights are to be turned on when a train approaches,

that they are to stay that way until the train is leaving. When the train is leaving,

the gates are opened and the lights switched off. Gates stay open and lights are off

while no train is approaching. The structure of the messages (Msg) in CEFSM is

shown as in Table 4.20 (Msgid, Event, CEFSM(MsgDestination))

155

Table 4.20: Structure of Messages

Msgid Event CEFSM

Msg1 Approaching=True Controller ” activated”

Msg2 Crossing=True Controller ”monitor”

Msg3 Leaving=False Controller ” deactivated”’

Msg4 Activate=True Gate ”lower gate”

Msg5 Monitor=False Gate ”raise gate”

Msg6 Activate=True Light ”on”

Msg7 Monitor=False Light ”off”

mI1

mI2 mI3

Gate
T13= ([lower gate = true])/()

 T15= ([raise gate =true]) /()

Open (S9)

Closed (S11)

Closing (S10)

T14= ([gate down =true])/()

T16= ([gate open =true])/()

Opening (S12)

Light

On(S14)

T17= ([light on = true]) /()

T18= ([light on = false]) /()

Off(S13)

T5= ([crossing =false]) /

Train

T6= ([leaving =true)/ ()

T0=([approaching=false]]/() T2=([approaching=true])/()

T1= ([approaching =true])/

T4=([crossing =true])/()

Idle(S1)

Crossing(S3)

Approaching(S2)

T7= ([leaving =false)/

T3= ([crossing=true]]/

Leaving(S4)

Controller
 T8=([activate =true])/

T10= ([monitor =true])/()

T11=([monitor=false])/

Idle (S5)

Deactivate (S8) Monitor (S7)

Activate (S6)

T12=([deactivate =true)/()
T9=([monitor =true])/()

Figure 4.49: Railroad Crossing System Model

156

4.4.1.2 Railroad Crossing System Failure

Basic events description:

• Raise Gate is an action from the controller component to the gate component

to open.

• Gate Opening means that the gate is in the opening state.

• Gate Open means that the gate is in the open state.

• Controller Fail means the controller has not received any message from the

train (means sensor failed to detect the train) component and therefore it has

not sent any message to the light to switch on or the gate to close.

• Controller Deactivated means that the controller has stopped monitoring the

system as it received a message saying that a train has left the crossing area.

• Train Approaching indicates that a train is approaching when it hits a sensor.

• Train Crossing indicates that a train is in the crossing area when it hits a

sensor.

This railroad crossing system example has one fault tree that describes a possible

accident. This fault tree shows how some events or faults can cause an accident when

they happen as the fault tree describes. For example, if the event Train Approaching

is true and the event Controller Fail is true, the top event accident will be true,

which means the hazard occurs. The fault tree shown in Figure 4.50 is described by

Accident = (∧,(∨,(∨,(∨, Raise Gate, Gate Opening),∧,(Gate Open, Warning

Light Off)),∨,(Controller Fail, Controller Deactivate)), (∨,(Train Approaching, Train

Crossing)))

Some events such as the Train Crossing and Train Approaching of the leaf nodes

in the fault tree are normal events but they contribute to the accident when some

157

Raise
Gate

Gate
Opening

Gate
Open

Controller
Fail

Controller
Deactivated

Train
Approaching

Train
Crossing

Warning
Light off

Accident

Figure 4.50: Fault Tree for Accident

other faults occur. For example, if the gate is open when the train is approaching,

an accident may occur. At this point, the Failure Types Table shown in figure 4.21

contains only the Failure IDs and Failure Types.

Table 4.21: Failure Types Table

Failure
ID

Failure Type Node in
FT́

Event
ID

Gate
ID

Message
ID

Path
ID

f1 Controller Fail

f2 Warning Light Fail

f3 Gate Stuck Open

f4 Controller deactivated

158

4.4.1.3 Compatibility Transformation Step

The first step is the compatibility transformation. At this step we create Bclass

and Fclass for the failure related entities BTrain, BController,BGate and BWarn-

ingLight and combine the related classes according to the compatibility transforma-

tion procedure 3.1.3. These classes are shown in Figure 4.51, Figure 4.52, Figure

4.53,and Figure 4.54. The events in the FT are substituted with the combined at-

tributes from the BF classes that are equivalent to these events. For example, the

event Raise Gate in the FT is equivalent to BFRaiseGate.BFEventCond in FT́. The

attributes of BGate and FRaisGate are combined in BFRaisGate. As we can see in

Fig 4.53, the attribute BState belongs to the class BGate at the behavioral model

and FState belongs to the BFRaisGate at the fault model.

State: Idle, Approaching,
 Crossing, Leaving

BTrain

-State: Crossing: True, False
-EventCond: Crossing= True

FTrainCrossing

-State: Approaching:
 True,False
-EventCond: Approaching
 =True

FTrainApproaching

-BState: Idle,Approaching,
 Crossing, Leaving
-FState: Approaching:True,False
-BFEventCond:FState=Approaching

BFTrainApproaching
 -BState: Idle, Approaching,

 Crossing,Leaving
State: Crossing: True, False
-BFEventCond:FState=Crossing

BFTrainCrossing

Figure 4.51: Train Approaching and Crossing Class

After the compatibility transformation procedure is finished, the complete fault

tree Accident is represented as:

FT́= (∧, (∨, (∨, (∨, BFRaiseGate.BFEventCond, BFGateOpening.BF EventCond)

,∧,(BFGateOpen.BFEventCond, BFWarning.BFEventCond)), ∨, (BFControllerFail.

159

-State: Deactivate:Yes, No
-EventCond:Deactivate=Yes

FControllerDeactivate

State: Idle, Monitor,
 Activate, deactivate

BController
-State: Idle:Yes, No
-EventCond:Idle=Yes

FControllerIFail

-BState: Idle, Monitor,
 Activate, Deactivate
-State: Deactivate:Yes, No
-BFEventCond:FState= Yes

BFControllerDeactivate

-BState: Idle, Monitor,
 Activate, Deactivate
-FState: Idle:Yes, No
-BFEventCond:FState= Idle

BFControllerIFail

Figure 4.52: Train Controller Class Diagram

State: Open, Closed,
 Opening,Closing

BGate
-State:Opening: yes, no
-EventCond: Opening:yes

FGateOpening

-State:Open:yes, no
-EventCond:Open:yes

FGateOpen

-State:Rais:yes, no
-EventCond:Raise=yes

FRaisGate

-BState: Open, Closed,
 Opening, Closing
-FState: Opening: yes, no
-BFEventCond: FState=Opening

BFGateOpening

-BState: Opening, Closing,
 Open, Closed
-FState: Raising:yes, no
-BFEventCond:FState= Raise

BFRaisGate

-BState: Open, Closed,
 Opening, Closing
-FState: Open: yes, no
-BFEventCond: FState= Open

BFGateOpen

Figure 4.53: Gate Events Class Diagram

-State:On, Off
-EventCond: State= Off

FWarningLight
 State: On, Off

BWarningLight
-BState: On, Off
-FEventCond:State=Off
-BFEventCond:FState=Off

BFWarningLight

Figure 4.54: Warining Light Class Diagram

160

BFEventCond, BFControllerDeactivate.BFEventCond)), (∨, BFTrainApproaching.

BFEventCond, BFTrainCrossing.BFEventCond))

At this step, the third column of the Failure Types Table is updated with the

nodes in FT́ for every failure type. This is shown in Table 4.22.

4.4.1.4 Fault Tree Transformation

The fault CEFSM is constructed according to a tree postorder traversal. The

FT is read gate by gate starting from the root node until we reach the leftmost leaf

node. The transformation starts with the leftmost leaf of the FT which is in this

example Raise Gate. The event is described in terms of class diagram as shown

in Figure 4.53. The sibling of this event is Gate Opening which is also an event

from the BM. The gate is constructed and given a number one because it is the

first gate to construct in this FT. The message id should carry the same number

as the gate. In this case the gate is given number one since it is the first gate to

transform. The numbering of the internal transition is not important since each

gate is an independent entity and no confusion will occur.

Next, we look for the right sibling of this gate which turns out to be an AND

gate between two events. Gate Open and Warning Light Off The gate is shown in

Figure 4.56. This gate is given number 2 since it is the second gate transformed.

The next step it to transform the gate that combines these two gates and we give

it number 3. The inputs to this gate are the output messages m1 from gate 1 and

message m2 from gate 2. This gate is shown in Figure 4.57.

The next step is to transform gate number 4 and then gate number 5 which is

the root for this subtree as shown in Figure 4.58. The next gate to transform is

the sibling of gate number 5 which is given number 6 and then the root of these to

subtrees is transformed which is given number 7. This step is shown in Figure 4.59

161

T
a
b
le

4
.2
2
:

F
ai

lu
re

T
y
p

es
T

ab
le

A
ft

er
C

om
p

at
ib

il
it

y
T

ra
n

sf
o
rm

at
io

n
S

te
p

F
ai

lu
re

ID
F

ai
lu

re
T

y
p

e
N

o
d
e

in
F

T́
E

ve
n
t

ID
G

at
e

ID
M

es
sa

ge
ID

P
at

h
ID

f 1
C

on
tr

ol
le

r
F

ai
l

B
F
C
on
ro
ll
er
F
a
il
.B
F
E
v
en
tC
on
d

f 2
W

ar
n

in
g

L
ig

ht
F

ai
l

B
F
W
a
rn
in
g
.B
F
E
v
en
tC
on
d

f 3
G

at
e

S
tu

ck
O

pe
n

B
F
G
a
te
O
pe
n
.B
F
E
v
en
tC
on
d

f 4
C

on
tr

ol
le

r
de

ac
ti

va
te

d
B
F
C
on
ro
ll
er
D
ea
v
ti
v
a
te
d
.B
F
E
v
en
tC
on
d

162

BFRaiseGate.BFEventCond BFGateOpening.BFEventCond

m1

T2 T1

T3 T0
1 OR gate

S0 S1

Figure 4.55: An OR Gate for the Left Most Event in the FT

BFGateOpen.BFEventCond BFWarning.BFEventCond

m2

T1
T3

T0 T2

2 AND gate

S15 S16

Figure 4.56: The Second Transformed Gate

163

T2 T1
T3 T0

1 OR gate

S0 S1
T1

T3
T0 T2

2 AND gate

S15 S16

T2 T1
T3 T0

3 OR gate

S0 S1

mB2 mB1 mB3 mB4

m2 m1

m3

Figure 4.57: GCEFSM for Gate Number 3

T2 T1
T3 T0

4 OR gate

S0 S1

T2 T1
T3 T0

5 OR gate

S0 S1

T2 T1
T3 T0

1 OR gate

S0 S1

T2 T1
T3 T0

3 OR gate

S0 S1

T1
T3

T0 T2
2 AND gate

S15 S16

m4

m5

m3

m1 m2

mB1 mB2 mB3 mB4

mB5 mB6

Figure 4.58: GCEFSM for Gates 1 to 5

164

m4

m5

m3

m1 m2

mB1 mB2 mB3 mB4

mB5 mB6

m6

m7

mB5 mB6

T2 T1
T3 T0

6 OR gate

S0 S1

T2 T1
T3 T0

4 OR gate

S0 S1

T2 T1
T3 T0

1 OR gate

S0 S1

T2 T1
T3 T0

3 OR gate

S0 S1

T1
T3

T0 T2
2 AND gate

S15 S16

T2 T1
T3 T0

5 OR gate

S0 S1

T1
T3

T0 T2
7 AND gate

S15 S16

Figure 4.59: GCEFSMs for the Whole FT’

The event-gate table after the whole FT is transformed is shown in Figure 4.23. At

this step, the forth and fifth columns of the Failure Types Table are updated with

the Event ID and Gate ID for every failure type. This is shown in Table 4.24.

4.4.1.5 Model Integration

After the fault tree is transformed into GCEFSMs, we start integrating them

into the behavioral model. At this point, every message in the BM contains an

event name that is related to an event in one of the leaf nodes of the fault tree.

We check the class diagram and the Event-Gate table to find the event ID and

the gate ID for the event. These event IDs and gate IDs are inserted into the

message at the BM. The event Raise Gate is represented in the class diagram as

BFRaiseGate.BFEventCond. This event is looked up in the event-gate table to

obtain its event ID (eB1) and the gate ID (G1) the message is sent to. The message in

165

Table 4.23: Event-Gate Table

Event name & attribute Event ID Gate ID

BFRaiseGate.BFEventCond eB1 G1

BFGateOpening.BFEventCond eB2 G1

BFGateOpen.BFEventCond eB3 G2

BFWarning.BFEventCond eB4 G3

BFControllerFail.BFEventCond eB5 G4

BFControllerDeactivate.BFEventCond eB6 G4

BFTrainApproaching.BFEventCond eB7 G6

BFTrainCrossing.BFEventCond eB8 G6

the BM is modified as (mB1, eB1, G1). This procedure continues till all the messages

in the BM are linked to the FM. At this step, the sixth column of the Failure Types

Table is updated with the Message ID that carries the failure to the fault part of

the model. This is shown in Table 4.25.

Figure 4.60 illustrates the RCCS transformed into an ICEFSM model. There

are two connected models, the behavioral model and the FT model. The arrows

between the CEFSMs represent the communicating messages between them. The

transformed system shown in Figure 4.60 forms a graph to which suitable coverage

criteria can be applied. The FT gates that are directly connected to the behav-

ioral model receive messages from the behavioral model and act accordingly. The

messages m1 to m7 represent the global transitions between the GCEFSMs for the

FT part, while mI1 to mI3 represent the messages between the components of the

behavioral model and mB1 to mB8 represent the communicating messages between

the BM and FM.

166

T
a
b
le

4
.2
4
:

F
ai

lu
re

T
y
p

es
T

ab
le

A
ft

er
M

o
d

el
T

ra
n

sf
or

m
at

io
n

S
te

p

F
ai

lu
re

ID
F

ai
lu

re
T

y
p

e
N

o
d
e

in
F

T́
E

ve
n
t

ID
G

at
e

ID
M

es
sa

ge
ID

P
at

h
ID

f 1
C

on
tr

ol
le

r
F

ai
l

B
F
C
on
ro
ll
er
F
a
il
.B
F
E
v
en
tC
on
d

e 5
G

4

f 2
W

ar
n

in
g

L
ig

ht
F

ai
l

B
F
W
a
rn
in
g
.B
F
E
v
en
tC
on
d

e 4
G

2

f 3
G

at
e

S
tu

ck
O

pe
n

B
F
G
a
te
O
pe
n
.B
F
E
v
en
tC
on
d

e 3
G

2

f 4
C

on
tr

ol
le

r
de

ac
ti

va
te

d
B
F
C
on
ro
ll
er
D
ea
v
ti
v
a
te
d
.B
F
E
v
en
tC
on
d

e 6
G

4

167

m
I2

m
5

m
7

m
4

m
3

m
1

m
2

m
6

m
I3

m
I1

m
B

1

m
B

2

m
B

3

m
B

4

m
B

5

m
B

6

m
B

7

m
B

8

T
2
6

T
2
4

T
2
5

T
2
3

1
 O

R
 g

at
e

S
1
7

S
1
8

T
4
4

T
4
6

T
4
3

T
4
5

7
 A

N
D

 g
at

e

S
2
7

S
2
8

T
3
4

T
3
2

T
3
3

T
3
1

 3
 O

R
 g

at
e

S
1
9

S
2
0

T
3
0

T
2
8

T
2
9

T
2
7

4
 O

R
 g

at
e

S
2
1

S
2
2

T
4
2

T
4
0

T
4
1

T
3
9

5
 O

R
 g

at
e

S
2
3

S
2
4

T
3
7

T
3
6

T
3
8

T
3
5

6
 O

R
 g

at
e

S
2
5

S
2
6

T
2
0

T
2
2

T
1
9

T
2
1

2
 A

N
D

 g
at

e

S
1
5

S
1
6

G
a

te

T
1
3
=

 (
[C

lo
se

 g
at

e
=

 t
ru

e]
)/

(m
B

1
(f

))

 T
1
5
=

([
O

p
en

 g
at

e=
tr

u
e]

)/
(m

B
1
(t

))

O
p

en
 (

S
9
)

C
lo

se
d

 (
S

1
1
)

C
lo

si
n

g
 (

S
1
0
)

T
1
4
=

 (
[g

at
e

cl
o

se
d
 =

tr
u

e]
)/

(
m

B
3
(f

))

T
1
6
=

 (
[G

at
e

o
p

en
=

tr
u

e]
)/

(m
B

3
(t

))

O
p

en
in

g
 (

S
1
2
)

T
3
=

 (
[c

ro
ss

in
g
=

tr
u

e]
]/

(m
I1

(“
m

o
n

it
o

r”
),

 m
B

7
(f

),
 m

B
8
(t

))

T
5
=

 (
[c

ro
ss

in
g
 =

fa
ls

e]
)

/

(m
I1

(“
 m

o
n

it
o

r
=

fa
ls

e”
),

m

B
8
(f

))

T
ra

in

T
6
=

 (
[l

ea
v
in

g
 =

tr
u

e)
/

()

T
0
=

([
ap

p
ro

ac
h
in

g
=

fa
ls

e]
]/

()

T
2
=

([
ap

p
ro

ac
h
in

g
=

tr
u
e]

)/
()

T
1
=

 (
[a

p
p
ro

ac
h
in

g
 =

tr
u
e]

)/

(
m

I1
(“

ac
ti

v
at

e”
),

 m
B

7
(t

))

T
4
=

([
cr

o
ss

in
g
 =

tr
u

e]
)/

()

Id
le

(S
1
)

C
ro

ss
in

g
(S

3
)

A
p

p
ro

ac
h

in
g
(S

2
)

T
7
=

 (
[l

ea
v
in

g
 =

fa
ls

e)
/

(m
I1

(“
d

ea
ct

iv
at

e”
))

L
ea

v
in

g
(S

4
)

C
o

n
tr

o
ll

er

T
1
1
=

([
m

o
n
it

o
r=

fa
ls

e]
)/

(m
I2

(“
O

p
en

 g
a
te

”)
,

m
I3

(

“l
ig

h
t

o
ff

”)
,m

B
2
(t

),
 m

B
6
(t

))

T
8
=

([
ac

ti
v
at

e
=

tr
u
e]

)/
(m

I2
(

“C
lo

se
 g

at
e”

),

m
I3

(“
li

g
h
t

o
n
”)

,m
B

2
(f

)
,

m
B

6
(f

),
 m

B
5
(f

))

T
1
0
=

 (
[m

o
n
it

o
r

=
tr

u
e]

)/
()

Id
le

 (
S

5
)

D
ea

ct
iv

at
ed

 (
S

8
)

M
o

n
it

o
r

(S
7
)

A
ct

iv
at

e
(S

6
)

T
1
2
=

([
d

ea
ct

iv
at

e
=

tr
u
e]

)/
(

m
B

5
(t

))
 T

9
=

([
m

o
n
it

o
r

=
tr

u
e]

)/
()

L
ig

h
t

O

n
(S

1
4
)

T 1
7
=

([
li

g
h

t
o

n
 =

 t
ru

e]
)

/(
 m

B
4
(f

))

T
1
8
=

 (
[l

ig
h

t
o
n

 =
 f

al
se

])
 /

(m
B

4
(t

))

O
ff

(S
1
3
)

F
ig
u
re

4
.6
0
:

T
h

e
IC

E
F

S
M

M
o
d

el
of

th
e

R
C

C
S

168

T
a
b
le

4
.2
5
:

F
ai

lu
re

T
y
p

es
T

ab
le

A
ft

er
M

o
d

el
In

te
gr

a
ti

on
S

te
p

F
ai

lu
re

ID
F

ai
lu

re
T

y
p

e
N

o
d
e

in
F

T́
E

ve
n
t

ID
G

at
e

ID
M

es
sa

ge
ID

P
at

h
ID

f 1
C

on
tr

ol
le

r
F

ai
l

B
F
C
on
ro
ll
er
F
a
il
.B
F
E
v
en
tC
on
d

e 5
G

4
M

B
5

f 2
W

ar
n

in
g

L
ig

ht
F

ai
l

B
F
W
a
rn
in
g
.B
F
E
v
en
tC
on
d

e 4
G

2
M

B
4

f 3
G

at
e

S
tu

ck
O

pe
n

B
F
G
a
te
O
pe
n
.B
F
E
v
en
tC
on
d

e 3
G

2
M

B
3

f 4
C

on
tr

ol
le

r
de

ac
ti

va
te

d
B
F
C
on
ro
ll
er
D
ea
v
ti
v
a
te
d
.B
F
E
v
en
tC
on
d

e 6
G

6
M

B
6

169

Table 4.26: Railroad Crossing System Test Paths

• r1: Train[S1
T2−→S2]

MI1−−→Controller[S6
T9−→S7

T10−−→S8]
MB5−−→[4]

M4−−→[5]
M5−−→[7]

M7−−→

• r2: Controller[S5
T8−→S6

T9−→S7
T11−−→S8]

MB6−−→[4]
M4−−→[5]

M5−−→[7]
M7−−→

• r3: Gate[S9
T13−−→S10

T14−−→S11
T15−−→S12]

MB3−−→[2]
M3−−→[5]

M5−−→[7]
M7−−→

• r4: Controller[S5
T8−→S6

T9−→S7]
MB2−−→[1]

M1−−→[3]
M3−−→[5]

M5−−→[7]
M7−−→

• r5: Controller[S5
T8−→S6

T9−→S7
T11−−→S8]

MI3−−→Light[S14
T18−−→S13]

• r6: Controller[S5]
MI3−−→Light[S13

T17−−→S14]
MB4−−→[2]

M2−−→[3]
M3−−→[5]

M5−−→[7]
M7−−→

• r7: Train[S1
T1−→S2

T3−→S3
T5−→S4

T6−→S4]
MI1−−→Controller[S8

T12−−→S5]
MI2−−→Gate[

S9
T13−−→S10

T14−−→S11]
MB1−−→[1]

M1−−→[3]
M3−−→[5]

M5−−→[7]
M7−−→

• r8: Train[S1
T1−→S2

T3−→S3]
MI1−−→Controller[S7

T10−−→S7
T11−−→S8]

MI2−−→Gate[S11
T15−−→S12

T16−−→S9]

• r9: Gate[S9
T13−−→S10

T14−−→S11
T15−−→S12]

MB3−−→[2]
M2−−→[3]

M3−−→[5]
M5−−→[7]

M7−−→

• r10: Controller[S5]
MI2−−→Gate[S9

T13−−→S10
T14−−→S11

T15−−→S12]

• r11: Train[S1
T1−→S2]

MB8−−→[6]
M6−−→[7]

M7−−→

• r12: Train[S1]
MI1−−→Controller[S5

T8−→S6
T9−→S7]

MI3−−→Light[S14
T18−−→S13]

• r13: Train[S1]
MB7−−→[6]

M6−−→[7]
M7−−→

• r14: Train[S1
T1−→S2

T3−→S3
T5−→S4

T 7−→S1
T1−→S2

T3−→S3
T4−→S3

T5−→S4
T 7−→S1]

170

4.4.1.6 Test Case Generation from CEFSM Model

If we apply the algorithm in [68] to the graph in Figure 4.60 by imposing edge

coverage criteria on the global transitions of the ICEFSM, we will obtain the test

paths shown in Table 4.26. By using reachability analysis, we find that these paths

are feasible since there are no conflicts between predicates in transitions. Note that

we do not need to go into the details of the GCEFSMs and there for we represent

each of them as one node. e.x. the GCEFSM 1 that represents the first AND gate

is represented as “[1]” and the test path that reaches the root node of the FT,

GCEFSM 7, end with a message not a node to indicate that a hazard has occurred.

At this step, the last column of the Failure Types Table is updated with the Test

Path that covers the failure. This is shown in Table 4.27.

4.4.2 Construction of the Applicability Matrix

In addition to test paths r1-r14 in Table 4.26, phase1 produces Table 4.27 that

contains failure ID, Failure Type, Failure name in FT́, Event ID that carries the

failure, Gate ID that takes the failure as an input, and the Message ID of the message

that carries the failure. This information is used to map between the failures in the

test paths produced in phase1 and the failures that need to be mitigated in phase2.

The applicability matrix is build based on the information in this table.

From Table 4.26, we take the test paths through the ICEFSM one by one. We

start with r1. From Table 4.27, we find that r1 reaches the fault model via MB5.

From Table 4.27, we know that MB5 is in path r1 and it carries e5 which has

the failure ID f1. In the applicability matrix, we assign 1 to the positions indexed

(f1, s1),(f1, s2),(f1, s6),(f1, s7), and (f1, s8). These positions are taken from test path

r1. Next, we look for the behavioral state s1 which is the starting state of r1 in other

171

T
a
b
le

4
.2
7
:

F
ai

lu
re

T
y
p

es
T

ab
le

A
ft

er
T

es
t

G
en

er
at

io
n

S
te

p

F
ai

lu
re

ID
F

ai
lu

re
T

y
p

e
N

o
d
e

in
F

T́
E

ve
n
t

ID
G

at
e

ID
M

es
sa

ge
ID

T
es

t
P

at
h

f 1
C

on
tr

ol
le

r
F

ai
l

B
F
C
on
ro
ll
er
F
a
il
.B
F
E
v
en
tC
on
d

e 5
G

4
M

B
5

r 1

f 2
W

ar
n
in

g
L

ig
h
t

F
ai

l
B
F
W
a
rn
in
g
.B
F
E
v
en
tC
on
d

e 4
G

2
M

B
4

r 6

f 3
G

at
e

S
tu

ck
O

p
en

B
F
G
a
te
O
pe
n
.B
F
E
v
en
tC
on
d

e 3
G

2
M

B
3

r 9

f 4
C

on
tr

ol
le

r
d
ea

ct
iv

at
ed

B
F
C
on
ro
ll
er
D
ea
v
ti
v
a
te
d
.B
F
E
v
en
tC
on
d

e 6
G

4
M

B
6

r 2

172

Table 4.28: Applicability Matrix

F/S s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

f1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

f2 0 0 0 0 1 1 1 1 0 0 0 0 1 1

f3 0 0 0 0 0 0 0 0 1 1 1 1 0 0

f4 0 0 0 0 1 1 1 1 1 1 1 1 1 1

paths that don’t contribute to the failure, r5, r8, r10, r12, and r14. We assign 1 to the

position indexed (f1, s5), (f1, s6), (f1, s7), (f1, s14), (f1, s13),(f1, s3), (f1, s9), (f1, s10),

(f1, s11), (f1, s12), and (f1, s4) in the applicability matrix shown in table 4.28.

We apply the same steps to the remainder of test paths that contribute to a failure,

r6, r9, and r2 that are present in the Failure Types table 4.27.

4.4.3 Phase2: Generate Safety Mitigation Tests

4.4.3.1 Behavioral Model (BM), Test Criteria (BC), and Test Suite

(BT)

Figure 4.49 depicts the behavioral model of a Railroad Crossing Control System

(RCCS) in Communicating Extended Finite State Machine (CEFSM) format with

one train and one track. The model contains 14 states, = {s1, s2, s3, s4, s5, s6, s7, s8, s9,

s10, s11, s12, s13, s14} where the initial states are s1,s5,s9,s13 and the final states are

s1,s5,s9,s13. There are 19 transitions T={T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11,

T12, T13, T14, T15, T16, T17, T18}. Assuming edge coverage is required, the test paths

in Table 4.29 fulfill this requirement.

Let r1-r14 be the test paths through ICEFSM in Figure 4.60 obtained from exe-

cuting phase 1. Let t1-t11 be the paths through the CEFSM shown in Table 4.29.

173

Table 4.29: Test Paths Through CEFSM Model

Test Paths sequence

t1 s1
T0−→ s1

T1−→ s2
T2−→ s2

T3−→ s3
T4−→ s3

T5−→ s4
T6−→ s4

T7−→ s1

t2 s5
T8−→ s6

T9−→ s7
T10−−→ s7

T11−−→ s8
T12−−→ s5

t3 s9
T13−−→ s10

T14−−→ s11
T15−−→ s12

T16−−→ s9

t4 s13
T17−−→ s14

T18−−→ s13

t5 s1
T1−→ s2

MI1−−→ s5

t6 s1
T1−→ s2

T3−→ s3
T5−→ s4

MI1−−→ s7
T11−−→ s8

T12−−→ s5

t7 s1
T1−→ s2

T3−→ s3
MI1−−→ s7

T11−−→ s8
T12−−→ s5

t8 s5
T8−→ s6

MI2−−→ s9

t9 s5
T8−→ s6

MI3−−→ s14
T18−−→ s13

t10 s5
T8−→ s6

T9−→ s7
T11−−→ s8

MI2−−→ s11
T15−−→ s12

T16−−→ s9

t11 s5
T8−→ s6

T9−→ s7
T11−−→ s8

MI3−−→ s13

4.4.3.2 Failure Coverage Criteria (FC)

There are
∑|CT |

i=1 len(t) positions p to select for failure. Concatenating the tests

results in CT = CT= t1 ◦ t2 . . . ◦t11 = {s1, s1, s2, s2, s3, s3, s4, s4, s1, s5, s6, s7, s7, s8,

s5, s9, s10, s11, s12, s9, s13, s14, s13, s1, s2, s5, s1, s2, s3, s4, s7, s8, s5, s1, s2, s3, s7, s8, s5,

s5, s6, s9, s5, s6, s14, s13, s5, s6, s7, s8, s11, s12, s9, s5, s6, s7, s8, s13}. There are 58 posi-

tions.

We now apply coverage criteria for positions of failure (1 ≤ p ≤ 58) and type

of failure (1 ≤ e ≤ 4).

Coverage Criteria 1: all positions, all applicable failures. The required (p,e)

combinations are shown in Table 4.30 as ”1” entries. 138 tests are required. This is

clearly a very large number of tests for a model with only 14 states.

174

T
a
b
le

4
.3
0
:

C
1:

A
ll

P
os

it
io

n
s,

A
ll

A
p

p
li

ca
b

le
F

ai
lu

re
s

t 1
t 2

t 3
t 4

t 5
t 6

F
\S

s 1
s 1

s 2
s 2

s 3
s 3

s 4
s 4

s 1
s 5

s 6
s 7

s 7
s 8

s 5
s 9

s 1
0
s 1

1
s 1

2
s 9

s 1
3
s 1

4
s 1

3
s 1

s 2
s 5

s 1
s 2

s 3
s 4

s 7
s 8

s 5

f 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

f 2
1

1
1

1
1

1
1

1
1

1
1

1
1

f 3
1

1
1

1
1

f 4
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

t 7
t 8

t 9
t 1

0
t 1

1

F
\S

s 1
s 2

s 3
s 7

s 8
s 5

s 5
s 6

s 9
s 5

s 6
s 1

4
s 1

3
s 5

s 6
s 7

s 8
s 1

1
s 1

2
s 9

s 5
s 6

s 7
s 8

s 1
3

f 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

f 2
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

f 3
1

1
1

1

f 4
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

175

T
a
b
le

4
.3
1
:

C
2:

A
ll

U
n

iq
u

e
N

o
d

es
,

A
ll

A
p

p
li

ca
b

le
F

a
il

u
re

s

t 1
t 2

t 3
t 4

t 5
t 6

F
\S

s 1
s 1

s 2
s 2

s 3
s 3

s 4
s 4

s 1
s 5

s 6
s 7

s 7
s 8

s 5
s 9

s 1
0
s 1

1
s 1

2
s 9

s 1
3
s 1

4
s 1

3
s 1

s 2
s 5

s 1
s 2

s 3
s 4

s 7
s 8

s 5

f 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

f 1
1

1
1

1
1

1

f 3
1

1
1

1

f 4
1

1
1

1
1

1
1

1
1

1

t 7
t 8

t 9
t 1

0
t 1

1

F
\S

s 1
s 2

s 3
s 7

s 8
s 5

s 5
s 6

s 9
s 5

s 6
s 1

4
s 1

3
s 5

s 6
s 7

s 8
s 1

1
s 1

2
s 9

s 5
s 6

s 7
s 8

s 1
3

f 1 f 2 f 3 f 4

176

T
a
b
le

4
.3
2
:

C
3:

A
ll

T
es

ts
,

A
ll

U
n

iq
u

e
N

o
d

es
,

A
ll

A
p

p
li

ca
b

le
F

a
il

u
re

s

t 1
t 2

t 3
t 4

t 5
t 6

F
\S

s 1
s 1

s 2
s 2

s 3
s 3

s 4
s 4

s 1
s 5

s 6
s 7

s 7
s 8

s 5
s 9

s 1
0
s 1

1
s 1

2
s 9

s 1
3
s 1

4
s 1

3
s 1

s 2
s 5

s 1
s 2

s 3
s 4

s 7
s 8

s 5

f 1
1

1
1

1
1

1
1

1
1

f 2
1

1

f 3
1

1
1

f 4
1

1
1

1
1

t 7
t 8

t 9
t 1

0
t 1

1

F
\S

s 1
s 2

s 3
s 7

s 8
s 5

s 5
s 6

s 9
s 5

s 6
s 1

4
s 1

3
s 5

s 6
s 7

s 8
s 1

1
s 1

2
s 9

s 5
s 6

s 7
s 8

s 1
3

f 1
1

1
1

1
1

f 2
1

1
1

1

f 3
1

f 4
1

1
1

1
1

177

T
a
b
le

4
.3
3
:

C
4:

A
ll

T
es

ts
,

A
ll

U
n

iq
u

e
N

o
d

es
,

S
om

e
A

p
p

li
ca

b
le

F
a
il

u
re

s

t 1
t 2

t 3
t 4

t 5
t 6

F
\S

s 1
s 1

s 2
s 2

s 3
s 3

s 4
s 4

s 1
s 5

s 6
s 7

s 7
s 8

s 5
s 9

s 1
0
s 1

1
s 1

2
s 9

s 1
3
s 1

4
s 1

3
s 1

s 2
s 5

s 1
s 2

s 3
s 4

s 7
s 8

s 5

f 1
1

1
1

1
1

1

f 2
1

f 3
1

1

f 4

t 7
t 8

t 9
t 1

0
t 1

1

F
\S

s 1
s 2

s 3
s 7

s 8
s 5

s 5
s 6

s 9
s 5

s 6
s 1

4
s 1

3
s 5

s 6
s 7

s 8
s 1

1
s 1

2
s 9

s 5
s 6

s 7
s 8

s 1
3

f 1
1

f 2
1

1
1

f 3 f 4
1

178

Coverage Criteria 2: all unique nodes, all applicable failures. The required

position-failure pairs (p,e) are shown in Table 4.31 as ”1” entries. This required

34 tests. Note that behavioral test paths t5 − t11 are not used. This criterion leads

to not testing failure recovery in all tests. A stronger test criterion is to require

covering each test as well. The (p,e) pairs are also stated in the second column in

Table 4.35.

Coverage Criteria 3: all test, all unique nodes, all applicable failures. Here

we simply require that when unique nodes need to be covered they are selected from

tests that have not been covered. Table 4.32 shows the set of position-failure pairs

(p, e) that fulfills this criteria. As with criteria 2, this required 34 pairs. The (p, e)

pairs are stated in the second column in Table 4.36.

Coverage Criteria 4: all tests, all unique nodes, some failures. The required (p,e)

pairs are shown in Table 4.33 as ”1” entries. This requires 14 tests. The (p,e) pairs

are also stated in the second column in Table 4.37 to indicate the associated safety

mitigation tests.

4.4.3.3 Mitigation Requirements, Mitigation Models, and Safety Miti-

gation Tests

The mitigation requirements are summarized in Table 4.34. Table 4.34 specifies

the corresponding mitigation models and associated weaving rules. Figures 4.61-

4.63 show the mitigation models for failures f2 − f4. Note that f1 does not need a

model, since it is an implicit fix that does not use additional test inputs (category 4

under weaving rules). Again, assuming edge coverage, the mitigation tests listed in

figures 4.61- 4.63 fulfill this coverage. Note also, that only failure f4 has more than

one mitigation test path.

179

Table 4.34: Mitigation Requirement

MM Explanation Mitigation
Model

WR

MM1 compensate; switch to backup
sensor (internal action); send
alarm

none(internal
compensate);

4 in 4.3.4.2

MM2 fix and stop; close gate; send
alarm; stop

cf. Figure 4.61 1b in 4.3.4.2

MM3 fix and proceed; turn warning
light on; send alarm

cf. Figure 4.62 1a in 4.3.4.2

MM4 Try other alternatives: compen-
sate; switch to back up and close
gates or turn warning light on;
send maintenance request

cf. Figure 4.63 1a in 4.3.4.2

[Close

gate=t]

[Send

alarm=t]
[stop=t]

mt21 ={n21, n22, n23, n24}

n21 n22 n23 n24

Figure 4.61: Fix and Stop: Mitigation Model MM2

[Turn lights

on=t]

[Send

alarm=t]

mt31 ={n31, n32, n33}

n31 n32 n33

Figure 4.62: Fix and Proceed: Mitigation Model MM3

180

n41

n42

n43

n44

[Close

gate=t]

[Turn

light

on=t]

[Send
maintenance

request=t]

[Send

maintenance

request=t]

MT4={mt41, mt42}

mt41= { n41, n42, n44 }

mt42= { n41, n43, n44}

Figure 4.63: Compensate: Mitigation Model MM4

Construct Safety Mitigation Tests: Due to the large number of tests for

C1, we will only show tests for criteria C2-C4. Table 4.35 indicates tests for the

44 position-failure pairs that fulfill coverage criteria 2. Note that because f4 has

two mitigation paths required, these are two test paths for each position failure pair

(i, 4) (i ∈ 10− 12, 14, 16− 19, 21− 22).

Table 4.35: Safety Mitigation Tests for Criteria 2

SMT Covers Explanation BT used

smt1 (1,1) t1 (no MT added to it) t1

smt2 (3,1) t1 (no MT added to it) t1

smt3 (5,1) t1 (no MT added to it) t1

smt4 (7,1) t1 (no MT added to it) t1

Continued on next page

181

Continued from previous page

SMT Covers Explanation BT used

smt5 (10,1) t2 (no MT added to it) t2

smt6 (11,1) t2 (no MT added to it) t2

smt7 (12,1) t2 (no MT added to it) t2

smt8 (14,1) t2 (no MT added to it) t2

smt9 (16,1) t3 (no MT added to it) t3

smt10 (17,1) t3 (no MT added to it) t3

smt11 (18,1) t3 (no MT added to it) t3

smt12 (19,1) t3 (no MT added to it) t3

smt13 (21,1) t4 (no MT added to it) t4

smt14 (22,1) t4 (no MT added to it) t4

smt15 (10,2) s5, n21, n22, n23, n24 t2

smt16 (11,2) s5, s6, n21, n22, n23, n24 t2

smt17 (12,2) s5, s6, s7, n21, n22, n23, n24 t2

Continued on next page

182

Continued from previous page

SMT Covers Explanation BT used

smt18 (14,2) s5, s6, s7, s7, s8, n21, n22, n23, n24 t2

smt19 (21,2) s13, n21, n22, n23, n24 t4

smt20 (22,2) s13, s14, n21, n22, n23, n24 t4

smt21 (16,3) s9, n31, n32, n33, s9, s10, s11, s12, s9 t3

smt22 (17,3) s9, s10, n31, n32, n33, s10, s11, s12, s9 t3

smt23 (18,3) s9, s10, s11, n31, n32, n33, s11, s12, s9 t3

smt24 (19,3) s9, s10, s11, s12, n31, n32, n33, s12, s9 t3

smt25 (10,4) s5, n41, n42, n44, s5, s6, s7, s7, s8, s5 t2

smt26 (10,4) s5, n41, n43, n44, s5, s6, s7, s7, s8, s5 t2

smt27 (11,4) s5, s6, n41, n42, n44, s6, s7, s7, s8, s5 t2

smt28 (11,4) s5, s6, n41, n43, n44, s6, s7, s7, s8, s5 t2

smt29 (12,4) s5, s6, s7, n41, n42, n44, s7, s7, s8, s5 t2

smt30 (12,4) s5, s6, s7, n41, n43, n44, s7, s7, s8, s5 t2

Continued on next page

183

Continued from previous page

SMT Covers Explanation BT used

smt31 (14,4) s5, s6, s7, s7, s8, n41, n42, n44, s8, s5 t2

smt32 (14,4) s5, s6, s7, s7, s8, n41, n43, n44, s8, s5 t2

smt33 (16,4) s9, n41, n42, n44, s9, s10, s11, s12, s9 t3

smt34 (16,4) s9, n41, n43, n44, s9, s10, s11, s12, s9 t3

smt35 (17,4) s9, s10, n41, n42, n44, s10, s11, s12, s9 t3

smt36 (17,4) s9, s10, n41, n43, n44, s10, s11, s12, s9 t3

smt37 (18,4) s9, s10s11, n41, n42, n44, s11, s12, s9 t3

smt38 (18,4) s9, s10, s11, n41, n43, n44, s11, s12, s9 t3

smt39 (19,4) s9, s10, s11, s12, n41, n42, n44, s12, s9 t3

smt40 (19,4) s9, s10, s11, s12, n41, n43, n44, s12, s9 t3

smt41 (21,4) s13, n41, n42, n44, s13, s14, s13 t4

smt42 (21,4) s13, n41, n43, n44, s13, s14, s13 t4

smt43 (22,4) s13, s14, n41, n42, n44, s14, s13 t4

Continued on next page

184

Continued from previous page

SMT Covers Explanation BT used

smt44 (22,4) s13, s14, n41, n43, n44, s14, s13 t4

Table 4.36 lists safety mitigation tests for the 44 position-failure pairs that fulfill

coverage criteria 3.

Table 4.36: Safety Mitigation Tests for Criteria 3

SMT Covers Explanation BT used

smt1 (1,1) t1 (no MT added to it) t1

smt2 (7,1) t1 (no MT added to it) t1

smt3 (10,1) t2 (no MT added to it) t2

smt4 (17,1) t3 (no MT added to it) t3

smt5 (19,1) t3 (no MT added to it) t3

smt6 (20,1) t3 (no MT added to it) t3

smt7 (22,1) t4 (no MT added to it) t4

smt8 (25,1) t5 (no MT added to it) t5

Continued on next page

185

Continued from previous page

SMT Covers Explanation BT used

smt9 (29,1) t6 (no MT added to it) t6

smt10 (37,1) t7 (no MT added to it) t7

smt11 (41,1) t8 (no MT added to it) t8

smt12 (46,1) t9 (no MT added to it) t9

smt13 (51,1) t10 (no MT added to it) t10

smt14 (57,1) t11 (no MT added to it) t11

smt15 (10,2) s5, n21, n22, n23, n24 t2

smt16 (22,2) s13, s14, n21, n22, n23, n24 t4

smt17 (37,2) s1, s2, s3, s7, n21, n22, n23, n24 t7

smt18 (41,2) s5, s6, n21, n22, n23, n24 t8

smt19 (46,2) s5, s6, s14, s13, n21, n22, n23, n24 t9

smt20 (57,2) s5, s6, s7, s8, n21, n22, n23, n24 t11

smt21 (17,3) s9, s10, n31, n32, n33, s10, s11, s12, s9 t3

Continued on next page

186

Continued from previous page

SMT Covers Explanation BT used

smt22 (19,3) s9, s10, s11, s12, n31, n32, n33, s12, s9 t3

smt23 (20,3) s9, s10, s11, s12, s9, n31, n32, n33, s9 t3

smt24 (51,3) s5, s6, s7, s8, s11, n31, n32, n33, s11, s12, s9 t10

smt25 (10,4) s5, n41, n42, n44, s5, s6, s7, s7, s8, s5, t2

smt26 (10,4) s5, n41, n43, n44, s5, s6, s7, s7, s8, s5, t2

smt27 (17,4) s9, s10, n41, n42, n44, s10, s11, s12, s9 t3

smt28 (17,4) s9, s10, n41, n43, n44, s10, s11, s12, s9 t3

smt29 (19,4) s9, s10, s11, s12, n41, n42, n44, s12, s9 t3

smt30 (19,4) s9, s10, s11, s12, n41, n43, n44, s12, s9 t3

smt31 (20,4) s9, s10, s11, s12, s9, n41, n42, n44, s9 t3

smt32 (20,4) s9, s10, s11, s12, s9, n41, n43, n44, s9 t3

smt33 (22,4) s13, n41, n42, n44, s14, s13 t4

smt34 (22,4) s13, n41, n43, n44, s14, s13 t4

Continued on next page

187

Continued from previous page

SMT Covers Explanation BT used

smt35 (37,4) s1, s2, s3, s7, n41, n42, n44, s7, s8, s5 t7

smt36 (37,4) s1, s2, s3, s7, n41, n43, n44, s7, s8, s5 t7

smt37 (41,4) s5, s6, n41, n42, n44, s6, s9 t8

smt38 (41,4) s5, s6, n41, n43, n44, s6, s9 t8

smt39 (46,4) s5, s6, s14, s13, n41, n42, n44, s13 t9

smt40 (46,4) s5, s6, s14, s13, n41, n43, n44, s13 t9

smt41 (51,4) s5, s6, s7, s8, s11, n41, n42, n44, s11, s12, s9 t10

smt42 (51,4) s5, s6, s7, s8, s11, n41, n43, n44, s11, s12, s9 t10

smt43 (57,4) s5, s6, s7, s8, n41, n42, n44, s8, s13 t11

smt44 (57,4) s5, s6, s7, s8, n41, n43, n44, s8, s13 t11

Table 4.37 indicates tests for the 15 position-failure pairs that fulfill coverage

criteria 4.

188

Table 4.37: Safety Mitigation Tests for Criteria 4

SMT Covers Explanation BT used

smt1 (1,1) t1 (no MT added to it) t1

smt2 (7,1) t1 (no MT added to it) t1

smt3 (19,1) t3 (no MT added to it) t3

smt4 (22,1) t4 (no MT added to it) t4

smt5 (25,1) t5 (no MT added to it) t5

smt6 (29,1) t6 (no MT added to it) t6

smt7 (51,1) t10 (no MT added to it) t10

smt8 (10,2) s5, n21, n22, n23, n24 t2

smt9 (37,2) s1, s2, s3, s7, n21, n22, n23, n24 t7

smt10 (46,2) s5, s6, s14, s13, n21, n22, n23, n24 t9

smt11 (57,2) s5, s6, s7, s8, n21, n22, n23, n24 t11

smt12 (16,3) s9, n31, n32, n33, s9, s10, s11, s12, s9 t3

smt13 (17,3) s9, s10, n31, n32, n33, s10, s11, s12, s9 t3

Continued on next page

189

Continued from previous page

SMT Covers Explanation BT used

smt14 (41,4) s5, s6, n41, n42, n44, s5, s6, s9 t8

smt15 (41,4) s5, s6, n41, n43, n44, s5, s6, s9 t8

Continued on next page

Criteria 1 would need |I| × |F | minus the zeros entries (not applicable) in Table

4.30. This requires 58 × 4 − 98 = 134 tests which is clearly not desirable. Criteria

2 and 3 have 34 + 10 = 44 tests and Criteria 4 have 15 tests. When deciding which

criteria to use, some other factors might need to be considered:

1. The likelihood that dependencies (that are not transparent in black-box test-

ing) between behavioral states and failure types could expose mitigation de-

fects in some states, but not others (this would require criteria 2 or 3).

2. The likelihood that specific execution history until the point the failure is

applied impacts the probability of uncovering a mitigation defect (this would

require criteria 3).

3. The cost of testing and the risk of missing a mitigation defect. This could

result in applying C1 to some failure types, but not to all. In other words, the

testing criteria are flexible enough to consider them each individually.

Either of those renders criteria 4 inadequate. It would probably also be wise

to consider the severity of a failure not being properly mitigated and using this

knowledge to prioritize tests. However, with FT as a model used in qualitative,

190

rather than quantitative analysis, this information is not included in a FT. One

would have to switch to a more quantitative failure “model” such as the information

available in FMECA [119].

End-to-End methodology consists of two phases. In phase 1, we integrated the

behavioral and fault models to produce test cases from the integrated model. This

phase starts with the compatibility transformation step, in which we transformed

the fault trees to become compatible with the behavioral model, followed by model

transformation step. In this step, the fault tree was transformed into GCEFSM

according to the transformation rules. In the model integration step where we

integrate the GCEFSM with the behavioral model according to the integration rules

to produce the ICEFSM model which is then used to produce 14 test paths Table

4.26. This phase also produced the failure type table (Table 4.27) which was used

by the applicability matrix construction procedure (Figure 4.47) along with the test

paths in (Table 4.26) to construct the applicability matrix (Table 4.28). This table

contains 4 failure types with the information that shows which test path the failure

is feasible in. The applicability matrix is taken as an input to phase 2.

In phase 2, our aim is to provide an MBT approach to test proper mitigation

of safety failures in SCSs. We used the applicability matrix to build test criteria

from which we select the position and the type of the failure. The number of the

behavior test paths (without mitigation tests) produced from the behavioral model

is 11 paths and the total number of mitigation tests (MT) that we have is 4. Some

failures require more than one mitigation test paths (2 test paths), such as (f4)

which caused the number of safety mitigation tests (SMTs) to increase. From these

path, we generated SMTs for each criteria. The safety mitigation tests (SMTs) are

44 for criteria 2 and criteria 3. For criteria 4, we have 15 SMTs. The increase of the

number of the test paths with mitigation tests (SMTs) can be considered reasonable.

191

Chapter 5

Other Uses for Integrated Model

5.1 Additional Analysis Capabilities through Con-

struction and Analysis of Distributed Processes

(CADP)

5.1.1 Construction and Analysis of Distributed Processes

(CADP)

CADP [142], formerly known as “CAESAR/ALDEBARAN Development Pack-

age”, is a toolbox for communication systems engineering. CADP’s development

started in 1986 by the VASY team of INRIA and the Verimag laboratory with con-

tributions of the PAMPA team of the Institute for Research in IT and Random

Systems (IRISA) and the Formal Methods and Tools (FMT) group at the Univer-

sity of Twente. CADP is a tool for verifying asynchronous concurrent systems. It

consists of 45 tools that offer a set of functionalities that cover the design cycle of

asynchronous systems such as specification, interactive simulation, rapid prototyp-

ing, verification, testing, and performance evaluation [50].

192

CADP can be seen as a rich set of powerful, interoperating software components.

All tools are integrated for interactive use via a graphical user-interface (i.e. Euca-

lyptus) and for batch use via a user-friendly scripting language (SVL). CADP can

manage as large as 1010 explicit states and much larger state spaces can be handled

by employing compositional verification techniques on individual processes [50]. Be-

cause the textual file format that was used in the early 90s by most verification tools

is adequate for small graphs, CADP was equipped in 1994 with binary-coded graphs

(BCG), a portable file format for sorting labeled transition systems (LTSs). BCG

is capable of handling large state spaces (up to 108 states and transitions initially,

this limit was raised to 1013 in CADP 2011 for 64-bit machines) [50].

Garavel et al. [51] Explored the distributed state spaces of a large-scale grid

involving several clusters by the distributed verification tools recently added to the

CADP toolbox. These experiments were intended to push the PBG machinery to

its limits to study how this influences performance and scalability. They found

that CADP can handle about 289,130,000 states and 542,000,000 transitions for

a Dijkstra protocol of 4 processes. Compositional verification techniques offered

by CADP is applied by Garavel et. al. [49] a graph of 155,377,200 states and

371,146,000 transitions.

5.1.2 Process

To be able to use CADP to generate test cases, we can enter the ICEFSM

description directly into CADP, converting it to LOTOS or LOTOS NT. This, how-

ever, does not automate the integration process. Hence, we are in the process of

implementing a front-end tool1 that converts the fault tree into GCEFSM in the

1This front-end tool is a collaboration work between the University of Denver and the University
of North Dakota. It is being implemented by Amro Hassan and Mitchell Wright.

193

LOTOS format. We are also implementing a tool that takes a CEFSM behavioral

model and converts it into LOTOS format. After the conversion is done, we will be

integrating the models as we described in section 3.1.7. The result of the front-end

component which is an integrated CEFSM (ICEFSM) written in LOTOS is taken

by CADP and transformed into an Labeled Transition System (LTS).

5.1.2.1 Modeling with Labeled Transition Systems (LTSs)

LTSs [80] have been used to precisely represent the semantics of behavioral spec-

ifications. LTSs are used to reason about processes, such as specification, implemen-

tations, and tests. In general, an LTS provides a global monolithic description of

the set of all possible behaviors of the system. It differentiates between internal and

external actions. LTSs are represented by graphs of states and edges. The states

represent configurations of systems, and the edges represent the moves between these

configurations on the occurrence of actions. A labeled transition system (LTS) is a

tuple M = (Q, A, T, q0) where

• Q 6= 0 is a set of states,

• A is a set of actions (machine alphabet),

• T ⊆ Q × A × Q is a transition relation between two states q, q́ ∈ Q, connected

by an action (a label) a ∈ A, denoted (q, a, q́) ∈ T or q
a−→ q́ ∈ T, and

• q0 ∈ Q is the initial state.

The elements a ∈ A are the actions of the LTS. They are also referred to as labels.

However, except for the most trivial systems, a visual representation by means

of a tree or a graph is not feasible. Realistic systems would normally have billions

of LTS states, therefore drawing them is not an option [137]. Figure 5.2 shows the

LTS representation of the 2-state-3-transition EFSM model shown in Figure 5.1.

194

NS:
Bool

NS:
Bool

SND(NS)

RCV(NS)

SND(Not(NS))

WaitAck Idle

Figure 5.1: BitAlt Sender Protocol EFSM

Figure 5.2: BitAlt Sender Protocol LTS (CADP Produced Graph)

195

5.1.3 Deadlock

A deadlock for (parallel compositions of) LTSs, or any other systems on which

we can perform reachability analysis is a global state v in the reachability graph

such that there is no transition going out of the state v. Deadlocks are a common

problem in distributed systems. In a communicating processes or a message passing

system, deadlocks might occur due to processes indefinitely waiting for messages

from one another. Since our integrated model ICEFM is a collection of communi-

cating processes, it is necessary to evaluate it for deadlock in order to know that

the system is communicating as it should and no process is waiting for any commu-

nicating message that will never arrive. The deadlock evaluation is done during the

compilation of the model from the LOTOS to LTS and it can be separately on the

LTS model.

In addition to evaluating the whole mode for deadlock, we can use deadlock to

evaluate safety. This property can be used to analyze safety in our integrated model

ICEFSM, i.e. the deadlock state is the state that can not lead to any hazardous

state in the integrated model. In other words, if deadlock occurs in any state at the

fault side of the model, this means that the hazard state cannot be reached from this

state and that indicates that the events lead to this state will not cause a hazard.

Indeed, CADP offers checking this property by exploring a random sequence in the

model until a non-Markovian transition or a deadlock state is found, or it reaches

the maximum values specified by the user, or the simulation is halted by the user.

We used CADP to find whether there is a deadlock state in the example in Figure

5.2, the result was no deadlock states were found (cf Figure 5.3).

196

Figure 5.3: CADP Deadlock Screen

5.1.4 Livelock

A livelock property (also called divergence) is when one or more processes enter

an infinite cycle where no progress occurs. It is similar to deadlock, except that

the involved processes exchange messages and change states with regard to one

another while no “useful work” is being done. As for an LTS, a livelock exists

in a state s of an LTS L, if s situated in a loop of internal actions, although it

possibly has other outgoing transitions. Brzeziński et al. define livelock property

for communicating processes as follows: Let C1, C2, ..., Cn be directed cycles in

entities ent1, ent2, ..., ent2 of protocol Pr, respectively. The tuple (C1, C2, ..., Cn)

is called livelock in protocol Pr, iff there exisits a sequence (s1, s2, ..., sr) of reachable

states of protocls Pr such that the following conditions hold:

• For i =1,..., r+1, state si−1 follows si over an edge e1 in ent1, or ent2,..., or

entn. Also states s1 follows sr over an edge er in ent1, or ent2,...., or entn.

• The set of edges {e1, e2,, er} constitutes of cycles C1, C2, ..., Cn.

197

• the sequence (s1,..., sr) is unacceptable.

A livelock corresponds to a cycle of internal transitions reachable from s us-

ing only internal transitions. It can be considered as a loop of internal actions.

Similar to the deadlocks, livelocks are often considered a faulty behavior. CADP

analyzes livelocks consisting of loops due to internal (unobservable) actions causing

the system to loop forever. This implies that the external observer will not see any

progress in the system. This property can be used to verify whether a GCEFSM (a

gate CEFSM in the fault tree part of the model) receives a message that triggers an

output message (“gate occurred” or “gate not occurred”) or not. If that GCEFSM

has not sent a message, this implies that either it has not received any message or

it has received messages in an order that does not trigger the gate to occur which

implies that the input events to that gate may not contribute in a failure.

Figure 5.4 shows the livelock screen produced by CADP from the example in

Figure 5.2 .

Figure 5.4: CADP Livelock Screen

198

5.1.5 Test Generation with Verification (TGV)

The test generator TGV is part of CADP. It is available as command line and as

part of CADP’s graphical environment Eucalyptus. TGV uses the simulation API

provided by the CAESAR compiler of the CADP toolbox. It produces test cases

from the deterministic input-output labeled transition system (IOLTS) behavioral

model. Since the produced IOLTS model is normally big for a reasonable system

[137], we need to describe what can be called a test selection directive. Test selection

directives may be in the form of random test selection, selection based on some kind

of coverage criteria, selection described by test purposes, or mixture of these. The

test selection directives are a description of a targeted behavior that one needs to

test.

IOLTS is a tuple M = (Q, A, T, q0). The difference to LTSs is the distinction

of the actions. IOLTS divides the actions into three subsets, input (visible actions)

AI , output (visible actions) AO , internal (invisible actions) I.

TGV generates abstract test cases that describe the behavior of the system in

terms of input/output interaction between the tester and the implementation under

test (IUT) and the verdicts associated with these behaviors [74]. The produced

test cases are in the form of a graph such as Tree and Tabular Combined Notation

(TTCN) or in one of the graph formats (.aut and .bcg) of the CADP. The algorithm

of TGV can be described as:

1. TGV takes a specification (S) and a test purpose (TP) as inputs.

2. TGV performs a synchronous product (SP) between S and TP, marking the

S ’s behavior accepted or refused by TP. The synchronous product S × TP is

an IOLTS , equipped with two disjoint sets of states AcceptSP and RefuseSP ,

and defined as follows:

199

GivenMS = (QS,AS,T S,qS0), MTP = (QTP ,ATP ,T TP ,qTP
0), their synchronous

product is an IOLTS MS×TP = (QS×TP ,AS×TP ,T S×TP ,qS×TP
0) such that :[24]

• qS×TP
0 = (qS0 , q

TP
0),

• QS×TP = QS ×QTP ,

• AS×TP =AS
⋂
ATP ,

• (qS, qTP)
a−→ (q́ S, q́ TP) ∈ T S×TP ↔ qS

a−→ q́ S ∈ T S
∧
qTP a−→ q́ TP ∈ T TP .

• AcceptSP and RefuseTP are defined as follows:

AcceptSP = QSP
⋂

(QS × AcceptTP),

RefuseSP = QSP
⋂

(QS ×RefuseTP),

The synchronous product marks behaviors of S by Accept and Refuse, and

possibly unfold S, i.e. accepted behaviors of SP are exactly those behaviors of

S which are accepted by TP.

3. The visible behavior is built from SP and then a Complete Test Graph (CTG)

is built by extracting the accepted behaviors. Since IOLTSs differentiate be-

tween the input and output actions, TGV use this differentiation as controlla-

bility options to produce controllable or uncontrollable (complete) test cases.

To be successful, the test cases must be controllable [24]. A test case is said

to be controllable if at any state no choice need to be made between several

outputs or output and inputs. These controllability options are:

• Produce the complete test case: When this option is chosen, TGV pro-

duces the complete test graph without selecting a single test case from

it. Possibly, this test case is not controllable. RGV defines some priority

settings upon which a test case can be generated. The default priority

of TGV is laid on input actions and on actions of the specification with

200

the possibility to give priority to test purpose actions or give priority to

output actions. In fact, we wanted to know if there is an effect on the size

of generated test case. We analyzed the effect of changing the priority

settings in an experiment based on the RCCS case study illustrated in

Figure 4.60 using the same combination of specification, test purpose,

and input and output action and just varying the priority setting. Our

experiment has the results for the number of states and transitions in the

generated test cases shown in Table 5.2. From this table, we can induce

that setting the priority only effects the selection of single test cases and

has no effect on the generation of the complete test graph.

• Produce a controllable test case with loops: When this option is chosen,

a single test case possibly containing loops will be generated. We used

the test purpose in Table 5.1 to produce a test case from the example in

Figure 4.60 using this option we obtain the test case shown in Figure 5.5.

• Produce a controllable test case without loops: When this option is cho-

sen, TGV produces a single test case without loops. We used the test

purpose in Table 5.1 also to produce a test case from the example in

Figure 4.60 using this option. We happened to obtain the same test case

as in the previous option test case shown in Figure 5.5.

201

des (0, 13, 10)

(0, ”E1 !TRUE !TRUE”, 2)

(2, ”E1 !TRUE !TRUE”, 3)

(3, ”E1 !TRUE !TRUE”, 1)

(0, ”E1 !TRUE !TRUE”, 4)

(4, ”E1 !TRUE !TRUE”, 1)

(2, ”E2 !TRUE !TRUE”, 5)

(5, ”E2 !TRUE !TRUE”, 6)

(6, ”E2 !TRUE !TRUE”, 1)

(2, ”E3 !TRUE !TRUE”, 7)

(7, ”E2 !TRUE !TRUE”, 8)

(8, ”E3 !TRUE !TRUE”, 9)

(9, ”E2 !TRUE !TRUE”, 1)

(1, ”ACCEPT”, 1)

Table 5.1: Test Purpose for the Example in Figure 4.60

Table 5.2: Complete Uncontrollable Test Cases

Priority Setting on Number of states Number of Transitions

specification/input 2851 6168

test purpose/input 2851 6168

specification/output 2851 6168

test purpose/output 2851 6168

202

Figure 5.5: Sample Test Case (CADP Produced Graph)

203

Chapter 6

Conclusion

This dissertation proposed an approach for testing of safety-critical systems. It

is based on integrating behavioral (CEFSMs are used to model a system behavior)

and fault models (Fault tree is used to describe a failure). While one might be

tempted to skip FTA and include the fault information ad hoc in the CEFSM

directly, this is unsystematic and error prone. It also fails to provide a proper FTA,

an important part of developing safety-critical systems. Since the behavioral models

are normally designed by software engineer teams and the fault models are designed

by safety engineer teams, some compatibility issues will most likely arise because of

each team’s perspective of the system. Examples of these compatibility issues are

the naming differences of the events, or conditions for event occurrence. The two

models are analyzed for compatibility and necessary changes are identified to make

them compatible.

Due to these compatibility issues, it is necessary to perform a compatibility

transformation to link the events at the behavioral model that contribute to a failure

to those events at the fault tree that have the same meaning although they may have

different naming methodologies. This is done by creating a class diagram for each

entity or event that contributes to the failure. The output of this step is an FT́ ,

204

the original FT expressed in terms of the compatible events and their conditions if

any, i.e. BFClass.BFEventCondition.

After the compatibility transformation step is completed, we transform the gates

of the fault tree into what we call gate CEFSM (GCEFSM) according to a set of

transformation rules. We defined a GCEFSM for each fault tree gate such as: AND

gate and OR gate,. . . etc. The fault tree is traversed and transformed gate by gate.

At the end of this step, we obtain a transformed FT in a form of CEFSMs called

GCEFSMs. The complete GCEFSMs is a collection of connected GCEFSMs that is

equivalent to the original fault tree. We do this transformation to be able to integrate

it with the behavioral model which is also in a CEFSM model. The integration is

done by mapping the events from the behavioral model to those have the same

meaning at the fault model. The resultant model is an integrated Communicating

extended finite state machines ICEFSMs that is composed of the the MB and FM.

Several coverage criteria besides those for the conventional graph where it is treated

sequentially [4], are proposed for the integrated model. These criteria are meant

to deal with the so-called rendezvous graph [151] of communicating processes. The

rendezvous graph is the graph that contains the nodes involved in the communication

between the communicating processes. These criteria focus on the global view of

the integrated model.

Integrating mitigation models into ICEFSM in order to be used for testing proper

mitigation is impractical. Clearly, it is hard to determine in which state the system

is when the failure occurs. In other words, an event at state si may contribute in a

failure, but the failure shows up when the system is in another state Sj. For that

reason, we found that integrating mitigation models in every suspected state would

produce a very large and complex system and hence we proposed using our approach

as the first phase of an End-to-End safety-critical system testing methodology [6]

205

in which we can test proper safety mitigations. The first phase which is part of this

dissertation, produces test cases from the integrated model that are then used to

construct the applicability matrix. The applicability matrix is a two dimensional

array where each row is a different failure type and each column is a behavioral

state of the system. When a failure fi occurs or is applicable in a state sj, we put

1 in the position (fi, sj) and the rest of the matrix is filled with zeros. The second

phase, which is part of the dissertation of Mrs. Salwa Elakeili, uses the applicability

matrix to generate test cases for proper mitigation of failure according to several

coverage criteria.

Model scalability is also investigated. To this end we developed a tool that es-

timates the number of states and transitions both for our approach and Sánchez

et al.’s approach [127]. This tool integrates different behavioral model sizes with

different fault trees sizes. We fed the tool with a variety of behavioral and fault

models from relatively small models to big ones and let the tool compute the size of

the integrated models. We then compared model sizes and investigated scalability.

The variation of the model size gave us a clear idea of the growth of the integrated

models for both approaches. We clearly showed that our approach is more scalable

for all model sizes.

In this dissertation, we conducted three case studies with different sizes and

from different application domains. The rationale behind choosing different model

sizes from different domain is to show the applicability of our approach. We used a

gas burner system (GBS), a relatively small example. The railroad crossing control

system (RCCS) case study, a reasonably sized system, is also used. The third

case study is a launch vehicle system (LVS) in which we integrated multiple fault

trees. In these case studies we illustrated our approach step by step including the

206

compatibility transformation, model transformation, model integration, and test

case generation.

CADP, a collection of analysis and testing tools, is used to analyze the integrated

model. The integrated model is transformed into LOTOS format to be used as an

input for CADP. Another tool was implemented to transform the integrated model

into LOTOS. The tool transforms the behavioral model into LOTOS, transforms the

fault tree into LOTOS and then integrates the two LOTOS models. The integrated

LOTOS model is then given to CADP. CADP transforms the LOTOS into labeled

transition systems (LTSs). Test generation with verification technology (TGV),

a tool integrated to CADP, is used to generate test cases based on test purpose,

coverage criteria, or mixture of both from the LTSs. The test cases can be presented

in a form of a complete test graph (CTG). However, due to the huge number of the

produced test cases in a reasonable system, displaying the CTG may not be feasible.

CADP uses reachability analysis to find deadlock and live lock states in the model.

Deadlock and livelock properties can be used to analyze the model.

The advantages of the proposed approach over those that deal with model inte-

gration are:

• This approach is capable of integrating more than one fault model with a

behavioral model that contains a collection of processes.

• This approach is systematic as opposed to ad hoc.

• This approach is automated since it is algorithmic. We can build a tool that

takes the behavioral model and fault models and does the integration. More-

over, the integrated model can be given to a tool to produce test cases.

• The integrated model is very concise compared to the EFSM approach [127]

(cf section 4.1.1).

207

• Unlike the EFSM approach [127], this approach has the ability to model the

whole model at once and does not need the minimum cut set.

• It uses explicit communicating edges, which makes it suitable for testing.

Other approaches [41, 40, 82, 111] use implicit communication edges which

makes them suitable for analysis not testing.

In summary we successfully provided a novel approach to test failures in safety

critical systems that

• allows for systematic modeling and analysis for both functional and safety

critical aspects of a system,

• fits into existing life cycles for developing SCSs,

• handles multiple Fault Trees,

• can be used as part of an end-to-end testing methodology,

• can be used with all existing test generation approach for CEFSMs, including

[16, 86, 33, 68]

• can be used for model checking including deadlock and livelock,

• compares favorably to existing approaches whose scalability is limited, and

• applies to multiple application domains.

208

Chapter 7

Future Work

This work can be extended in a variety of ways:

• Generalizability to other types of behavioral models:

We will investigate applying the integration approach for some other be-

havioral models that have the ability to describe communicating processes.

Examples of such models are UML sequence and activity diagrams, Petri Nets.

We think that integrating such models with failure models is straightforward

since we have already defined the compatibility transformation between the

behavioral and fault models in this approach and since these targeted mod-

els have the capability of modeling communicating processes. Generalizing

this approach to other modeling languages will be of a great benefits since

these modeling languages are used in other application domains, e. g. medical

systems, robotic devices, and flight control systems.

• Generalizability to other types of fault models:

In this approach we used fault trees as our fault model. However, using

some other models that are used to model failure such as Event Tree Analysis

(ET), Fault Hazard Analysis (FHA), and Failure Mode, Effects and Criticality

209

Analysis (FMECA) will be investigated. Some of these models can be used to

determine the faults while other can be used for test case prioritization.

• Application of the methodology to complex intelligent agents like

unmanned vehicles and robots:

In this dissertation, we have shown that this approach works well for inte-

grating communicating processes. We would like to apply this methodology in

more complex intelligent agents where multiple independent agents are com-

municating to perform a certain task. The applications of intelligent agents

have been used in safety-critical systems such as unmanned vehicle, unmanned

planes, and robots in rescue missions in which the failure of the cooperation

between a collection of robots may be catastrophic. Therefore, testing safety-

critical behavior for such systems is essential. A failure that results from agent

or communication malfunction can be described by a fault tree. Applying this

approach for unmanned vehicle and multi-agent systems will give us more con-

fidence that our approach is not only capable of handling complex systems,

but it also shows further generalizability of the approach. For the unmanned

vehicle, this research group is working towards modeling the environment and

testing this system using CEFSMs1. Therefore, integrating fault models into

such systems in order to test safety will be an important step to make these

systems safer.

• Experimental evaluation of the effectiveness of this approach: At this

point, our approach can be used to generate tests with a variety of existing

test generation techniques such as [68, 16, 86] since the integrated models

that our approach produces are CEFSMs that these techniques are capable of

1The Ph.D. dissertation of Mr. Mahmoud Abdelgawad.

210

testing. Hence, it is as effective as these techniques are. The effectiveness of

this approach can be evaluated by producing concrete test cases from a model

and execute them. Experiments can be designed to be used the proposed

coverage criteria especially those that target the fault part of the model to see

how effective our approach is.

Input space partitioning criteria [4] can also be used in conjunction with

the proposed criteria for the existing testing techniques. The idea of fault

injection can also be used to inject events as well as manipulating sensor

values in order to target safety breaches. The test suite size, the percentage

of failures captured, the time of the execution of the test suite are some of

possible evaluation metrics.

211

Bibliography

[1] C. Abbaneo, F. Flammini, A. Lazzaro, P. Marmo, N. Mazzocca, and A. Sanse-

viero. UML Based Reverse Engineering for the Verification of Railway Control

Logics. In Dependability of Computer Systems, 2006. DepCos-RELCOMEX

’06. International Conference on, pages 3 –10, may 2006.

[2] A. Abdurazik and J. Offutt. Using UML Collaboration Diagrams for Static

Checking and Test Generation. In Andy Evans, Stuart Kent, and Bran Selic,

editors, UML 2000 The Unified Modeling Language, volume 1939 of Lecture

Notes in Computer Science, pages 383–395. Springer Berlin / Heidelberg, 2000.

[3] P. Ammann, W. Ding, and D. Xu. Using a Model Checker to Test Safety

Properties. In Proceedings of the 7th International Conference on Engineering

of Complex Computer Systems, pages 212–221, Skövde, Sweden, 2001. IEEE.

[4] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge

University Press, New York, NY, USA, 1 edition, 2008.

[5] Paul Ammann and Jeff Offutt. Introduction To Software Testing. Cambridge

University Press, 32 Avenue of the Americas, New York, NY 10013, USA, first

edition, 2008.

[6] A. Andrews, A. Gario, and S. Elakeili. A Testing Methodology for Safety

Critical Systems. Software Testing, Verification and Reliability, 2014, (Sub-

mitted).

[7] A.A. Andrews, J. Offutt, and R.T. Alexander. Testing Web Applications by

Modeling with FSMs. Software and Systems Modeling, 4:326–345, 2005.

[8] Anneliese Andrews, Salwa Elakeili, and Salah Boukhris. Fail-safe test gen-

eration in safety critical systems. In High-Assurance Systems Engineering

(HASE), 2014 IEEE 15th International Symposium on, pages 49–56. IEEE,

212

2014.

[9] J.D. Andrews and S.J. Dunnett. Event-Tree Analysis Using Binary Decision

Diagrams. IEEE Transactions on Reliability, 49(2):230–238, Jun. 2000.

[10] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic

Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans-

actions on Dependable and Secure Computing,, 1(1):11–33, 2004.

[11] J.C. Becker and G. Flick. A Practical Approach to Failure Mode, Effects and

Criticality Analysis (FMECA) for Computing Systems. In High-Assurance

Systems Engineering Workshop, 1996. Proceedings., IEEE, pages 228 –236,

Oct. 1996.

[12] B. Berenbach and T. Wolf. A Unified Requirements Model: Integrating Fea-

tures, Use Cases, Requirements, Requirements Analysis and Hazard Analysis.

In Second IEEE International Conference on Global Software Engineering,

2007. ICGSE 2007, pages 197–203, Aug. 2007.

[13] A. Bertolino, E. Marchetti, and H. Muccini. Introducing a Reasonably Com-

plete and Coherent Approach for Model-based Testing. Electronic Notes in

Theoretical Computer Science, 116(0):85–97, 2005.

[14] A. Bertolino, E. Marchetti, and A. Polini. Integration of Components to

Test Software Components. Electronic Notes in Theoretical Computer Science,

82(6):44–54, 2003.

[15] S. Boroday, A. Petrenko, R. Groz, and Y.M. Quemener. Test Generation for

CEFSM Combining Specification and Fault Coverage. In Proceedings of the

IFIP 14th International Conference on Testing Communicating Systems XIV,

TestCom ’02, pages 355–372, Deventer, The Netherlands, The Netherlands,

2002. Kluwer, B.V.

[16] C. Bourhfir, E. Aboulhamid, R. Dssouli, and N. Rico. A Test Case Generation

213

Approach for Conformance Testing of SDL Systems. Comp. Commun., 24(3-

4):319–333, 2001.

[17] C. Bourhfir, R. Dssouli, E.M. Aboulhamid, and N. Rico. A Guided Incre-

mental Test Case Generation Procedure for Conformance Testing for CEFSM

Specified Protocols. In Proceedings of the IFIP TC6 11th International Work-

shop on Testing Communicating Systems, IWTCS, pages 275–290, Deventer,

The Netherlands, The Netherlands, 1998. Kluwer, B.V.

[18] J. Bowen and V. Stavridou. Safety-Critical Systems, Formal Methods and

Standards. Software Engineering Journal, 8(4):189–209, July 1993.

[19] J.B. Bowles. An Assessment of RPN Prioritization in a Failure Modes Effects

and Criticality Analysis. In Annual Reliability and Maintainability Sympo-

sium, 2003, pages 380–386, 2003.

[20] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. J.

ACM, 30(2):323–342, April 1983.

[21] L. C. Briand, J. Cui, and Y. Labiche. Towards Automated Support for De-

riving Test Data from UML Statecharts. In UML, pages 249–264, 2003.

[22] L.C. Briand and Y. Labiche. A UML-Based Approach to System Testing. In

UML, pages 194–208, 2001.

[23] R.C. Bromley and E. Bottomley. Failure Modes, Effects and Criticality Anal-

ysis (FMECA). In IEEE Colloquium on Masterclass in Systems Engineering

- Part Two, pages 1–7, 1994.

[24] J.R. Calamé. Specification-based test generation with tgv, 2005.

[25] E.G. Cartaxo, F.G.O. Neto, and P.D.L. Machado. Test case generation by

means of UML sequence diagrams and labeled transition systems. In Systems,

Man and Cybernetics, 2007. ISIC. IEEE International Conference on, pages

1292–1297, 2007.

214

[26] A. Causevic, D. Sundmark, and S. Punnekkat. An Industrial Survey on Con-

temporary Aspects of Software Testing. In Third International Conference on

Software Testing, Verification and Validation (ICST 2010), pages 393–401,

April 2010.

[27] M. Chen, X. Qiu, and X. Li. Automatic Test Case Generation for UML

Activity Diagrams. In AST, pages 2–8, 2006.

[28] S.K. Chen, T.K. Ho, and B.H. Mao. Reliability Evaluations of Railway Power

Supplies by Fault-Tree Analysis. IET Electric Power Applications, 1(2):161–

172, March 2007.

[29] T.S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE

Transactions on Software Engineering, SE-4(3):178–187, May 1978.

[30] M.F. Chudleigh. Hazard Analysis of a Computer Based Medical Diagnostic

System. Computer Methods and Programs in Biomedicine, 44(1):45–54, 1994.

[31] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton,

and B.M. Horowitz. Model-Based Testing in Practice. In ICSE, pages 285–294,

1999.

[32] M.A. de Miguel, J.F. Briones, J.P. Silva, and A. Alonso. Integration of Safety

Analysis in Model-Driven Software Development. IET Software, 2(3):260–280,

June 2008.

[33] K. Dederian, R.M. Hierons, M. Harman, and Q. Guo. Input Sequence Gen-

eration for Testing of Communicating Finite State Machines (CFSMs). In

Proceedings of the 2004 Conference on Genetic and Evolutionary Computa-

tion (GECCO ’04), pages 1429–1430, Seattle, Washington, USA, 26-30 June

2004.

[34] K. Derderian, R. Hierons, M. Harman, and Q. Guo. Estimating the Feasibility

of Transition Paths in Extended Finite State Machines. Automated Software

215

Engineering, 17:33–56, 2010.

[35] G. Despotou, R. Alexander, and T. Kelly. Addressing Challenges of Hazard

Analysis in Systems of Systems. In 2009 3rd Annual IEEE Systems Confer-

ence, pages 167–172, March 2009.

[36] T. Dinh-Trong, N. Kawane, S. Ghosh, R. France, and A.A. Andrews. A tool-

supported approach to testing UML design models. In Proceedings of the

10th IEEE International Conference on Engineering of Complex Computer

Systems, 2005. ICECCS 2005, pages 519–528, 2005.

[37] R. Donini, S. Marrone, N. Mazzocca, A. Orazzo, D. Papa, and S. Venticinque.

Testing Complex Safety-Critical Systems in SOA Context. In International

Conference on Complex, Intelligent and Software Intensive Systems, 2008.

CISIS 2008., pages 87–93, Los Alamitos, CA, USA, Mar. 2008.

[38] J.B. Dugan, K.J. Sullivan, and D. Coppit. Developing a Low-Cost High-

Quality Software Tool for Dynamic Fault-Tree Analysis. IEEE Transactions

on Reliability, 49(1):49–59, Mar. 2000.

[39] J. Dunjó, V. Fthenakis, J.A. Vlchez, and J. Arnaldos. Hazard and Operability

(HAZOP) Analysis. A literature Review. Journal of Hazardous Materials,

173(13):19–32, 2010.

[40] O. El Ariss, D. Xu, and W.E. Wong. Integrating Safety Analysis With Func-

tional Modeling. IEEE Transactions on Systems, Man and Cybernetics, Part

A: Systems and Humans, 41(4):610 –624, July 2011.

[41] O. El Ariss, D. Xu, W.E. Wong, Y. Chen, and Y. Lee. A Systematic Approach

for Integrating Fault Trees into System Statecharts. In 32nd Annual IEEE

International on Computer Software and Applications, 2008. COMPSAC ’08.,

pages 120–123, Turku, Finland, Aug. 2008.

[42] S.L.R. Ellison and V.J. Barwick. Estimating Measurement Uncertainty: Rec-

216

onciliation Using a Cause and Effect Approach. Accreditation and Quality

Assurance: Journal for Quality, Comparability and Reliability in Chemical

Measurement, 3:101–105, 1998.

[43] C.A. Ericson. Hazard Analysis Techniques for System Safety. Wiley-

Interscience, 2005.

[44] M. Fantinato and M. Jino. Applying Extended Finite State Machines in Soft-

ware Testing of Interactive Systems. In Joaquim Jorge, Nuno Jardim Nunes,

and João Falcão e Cunha, editors, Interactive Systems. Design, Specification,

and Verification, volume 2844 of Lecture Notes in Computer Science, pages

109–131. Springer Berlin / Heidelberg, 2003.

[45] Francesco Flammini, Nicola Mazzocca, and Antonio Orazzo. Automatic In-

stantiation of Abstract Tests on Specific Configurations for Large Critical

Control Systems. Software Testing, Verification & Reliability, 19:91–110, June

2009.

[46] Martin Fowler. UML Distilled. Pearson Addison Wesley, 501 Boylston St.,

Suite 900, Boston, Massachusetts 02116, USA, third edition, 2004.

[47] G. Friedman, A. Hartman, K. Nagin, and T. Shiran. Projected State Ma-

chine Coverage for Software Testing. SIGSOFT Software Engineering Notes,

27(4):134–143, Jul. 2002.

[48] S. Fujiwara, G. von Bochmann, F.Khendek, M. Amalou, and A. Ghedamsi.

Test Selection Based on Finite State Models. IEEE Transactions on Software

Engineering, SE-17(6):591–603, June 1991.

[49] Hubert Garavel, Claude Helmstetter, Olivier Ponsini, and Wendelin Serwe.

Verification of an industrial systemc/tlm model using lotos and cadp. In

MEMOCODE, pages 46–55, 2009.

[50] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. Cadp

217

2011: a toolbox for the construction and analysis of distributed processes.

The International Journal on Software Tools for Technology Transfer (STTT),

15(2):89–107, 2013.

[51] Hubert Garavel, Radu Mateescu, and Wendelin Serwe. Large-scale Distributed

Verification Using CADP: Beyond Clusters to Grids. Electronic Notes Theory

Computer Science, 296:145–161, 2013.

[52] A. Gario and A. Andrews. Fail-Safe Testing of Safety-Critical Systems. In

Software Engineering Conference (ASWEC), 2014 23rd Australian, pages 190–

199. IEEE, 2014.

[53] A. Gario and A. Andrews. Fail-Safe Testing of Safety-Critical Systems:A Case

Study and Efficiency Analysis. Software Quality Journal, 2014, (Submitted).

[54] A. Gario, A. Andrews, and S. Hagerman. Testing of safety-critical systems:

An aerospace launch application. In Aerospace Conference, 2014 IEEE, pages

1–17. IEEE, 2014.

[55] S. Gnesi, D. Latella, and M. Massink. Formal Test-Case Generation for UML

Statecharts. In ICECCS, pages 75–84, 2004.

[56] P.L. Goddard. Validating the Safety of Embedded Real-Time Control Systems

Using FMEA. In Reliability and Maintainability Symposium, 1993. Proceed-

ings., Annual, pages 227 –230, Jan. 1993.

[57] M. Gogolla, J. Bohling, and M. Richters. Validation of UML and OCL Models

by Automatic Snapshot Generation. In UML, pages 265–279, 2003.

[58] L.D. Gowen, J.S. Collofello, and F.W. Calliss. Preliminary Hazard Analy-

sis for Safety-Critical Software Systems. In Eleventh Annual International

Phoenix Conference on Computers and Communications, 1992. Conference

Proceedings., pages 501–508, Apr. 1992.

[59] F. Gregory. Cause, Effect, Efficiency and Soft Systems Models. The Journal

218

of the Operational Research Society, 44(4):pp. 333–344, Apr. 1993.

[60] J. Groβmann, P. Makedonski, H.W. Wiesbrock, J. Svacina, I. Schieferdecker,

and J. Grabowski. Model-Based X-in-the-Loop Testing. In Model-Based Test-

ing for Embedded Systems, pages 299–335. CRC Press, 2011.

[61] G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli. A Pseudo-

Deterministic Functional ATPG based on EFSM Traversing. In Sixth Inter-

national Workshop on Microprocessor Test and Verification, 2005. MTV ’05.,

pages 70–75, Nov. 2005.

[62] G.D. Guglielmo, L.D. Guglielmo, F. Fummi, and G. Pravadelli. Efficient Gen-

eration of Stimuli for Functional Verification by Backjumping Across Extended

FSMs. Journal of Electronic Testing, 27:137–162, April 2011.

[63] F. Hadipriono, C. Lim, and K. Wong. Event Tree Analysis to Prevent Failures

in Temporary Structures. Journal of Construction Engineering and Manage-

ment, 112(4):500–513, 1986.

[64] J. Hartmann, C. Imoberdorf, and M. Meisinger. UML-Based Integration Test-

ing. SIGSOFT Software Engineering Notes, 25(5):60–70, Aug. 2000.

[65] M. Hause, A. Stuart, D. Richards, and J. Holt. Testing Safety Critical Sys-

tems with SysML/UML. In 2010 15th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS)., pages 325–330, Mar.

2010.

[66] H. Hecht, X. An, and M. Hecht. Computer Aided Software FMEA for Unified

Modeling Language Based Software. In Reliability and Maintainability, 2004

Annual Symposium - RAMS, pages 243–248, 2004.

[67] O. Henniger, M. Lu, and H. Ural. Automatic Generation of Test Purposes

for Testing Distributed Systems. In Alexandre Petrenko and Andreas Ulrich,

editors, Formal Approaches to Software Testing, volume 2931 of Lecture Notes

219

in Computer Science, pages 1105–1105. Springer Berlin/Heidelberg, 2004.

[68] A. Hessel and P. Pettersson. A Global Algorithm for Model-Based Test Suite

Generation. Electronic Notes in Theoretical Computer Science, 190(2):47–59,

2007.

[69] E.J. Hill and L.J. Bose. Sneak Circuit Analysis of Military Systems. In

Proceedings of the Second International System Safety Conference, pages 351–

372, July 1975.

[70] W.E. Howden. Methodology for the Generation of Program Test Data. IEEE

Transactions on Computers, C-24(5):554–560, May 1975.

[71] Su-Yu Hsu and Chyan-Goei Chung. A heuristic approach to path selection

problem in concurrent program testing. In Proceedings of the Third Workshop

on Future Trends of Distributed Computing Systems, 1992, pages 86–92, Apr

1992.

[72] J.C. Huang. An Approach to Program Testing. ACM Comput. Surv., 7(3):113–

128, Sep. 1975.

[73] J. Hwang, H. Jo, and D. Kim. Hazard Analysis of Train Control System

Using HAZOP-KR Methods. In 2010 International Conference on Electrical

Machines and Systems (ICEMS 2010), pages 1971–1975, Oct. 2010.

[74] Claude Jard and Thierry Jéron. TGV: Theory, Principles and Algorithms:

A Tool for the Automatic Synthesis of Conformance Test Cases for Non-

deterministic Reactive Systems. International Journal on Software Tools Tech-

nology Transfer, 7(4):297–315, August 2005.

[75] B. Kaiser. A Fault-Tree Semantics to Model Software-Controlled Systems.

Softwaretechnik-Trends, 23(3):33–39, 2003.

[76] B. Kaiser. Extending the Expressive Power of Fault Trees. In Proceedings on

Reliability and Maintainability Symposium, 2005, pages 468–474, Alexandria,

220

Virginia, USA, 2005.

[77] B. Kaiser, P. Liggesmeyer, and O. Mäckel. A New Component Concept for

Fault trees. In Proceedings of the 8th Australian Workshop on Safety Criti-

cal Systems and Software, volume 33 of SCS ’03, pages 37–46, Darlinghurst,

Australia, Australia, 2003. Australian Computer Society, Inc.

[78] A. Kalaji, R.M. Hierons, and S. Swift. A Search-Based Approach for Au-

tomatic Test Generation from Extended Finite State Machine (EFSM). In

Testing: Academic and Industrial Conference - Practice and Research Tech-

niques, 2009. TAIC PART ’09., pages 131–132, Sept. 2009.

[79] S. Kaplan. Matrix Theory Formalism for Event Tree Analysis: Application to

Nuclear-Risk Analysis. Risk Analysis, 2(1):9–18, 1982.

[80] R.M. Keller. Formal Verification of Parallel Programs. Communications of

the ACM, 19(7):371–384, 1976.

[81] R.S. Kenett. Cause-and-Effect Diagrams, chapter 3. John Wiley & Sons, Ltd,

2008.

[82] H. Kim, W.E. Wong, V. Debroy, and D. Bae. Bridging the Gap between Fault

Trees and UML State Machine Diagrams for Safety Analysis. In 17th Asia

Pacific Software Engineering Conference (APSEC), pages 196–205, 30-Dec.

2010.

[83] T.A. Kletz. Hazop and Hazan. IChemE, 2006.

[84] J. Kloos and R. Eschbach. A Systematic Approach to Construct Composi-

tional Behaviour Models for Network-structured Safety-critical Systems. Elec-

tronic Notes Theoretical Computer Science, 263:145–160, June 2010.

[85] J. Kloos, T. Hussain, and R. Eschbach. Risk-Based Testing of Safety-

Critical Embedded Systems Driven by Fault Tree Analysis. In IEEE Interna-

tional Conference on Software Testing Verification and Validation Workshop

221

(ICSTW 2011), volume 0, pages 26–33, Los Alamitos, CA, USA, Mar. 2011.

IEEE Computer Society.

[86] G. Kovács, Z. Pap, and G. Csopaki. Automatic Test Selection Based on

CEFSM Specifications. Acta Cybern., 15(4):583–599, Dec. 2002.

[87] D. Latella and M. Massink. A formal testing framework for UML statechart

diagrams behaviors: from theory to automatic verification. In Sixth IEEE

International Symposium on High Assurance Systems Engineering, pages 11–

22, 2001.

[88] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State

Machines- A Survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[89] R. Lefticaru and F. Ipate. Automatic State-Based Test Generation Using

Genetic Algorithms. In International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, 2007. SYNASC., pages 188–195, Sept.

2007.

[90] Barbara Staudt Lerner, Stefan Christov, Leon J. Osterweil, Reda Bendraou,

Udo Kannengiesser, and Alexander Wise. Exception Handling Patterns for

Process Modeling. IEEE Transactions on Software Engineering, 36(2):162–

183, 2010.

[91] N.G. Leveson and P.R. Harvey. Analyzing Software Safety. IEEE Transactions

on Software Engineering, SE-9(5):569–579, Sept. 1983.

[92] Bao-Lin Li, Zhi-shu Li, Li Qing, and Yan-Hong Chen. Test Case Automate

Generation from UML Sequence Diagram and OCL Expression. In Proceedings

of the 2007 International Conference on Computational Intelligence and Secu-

rity, CIS ’07, pages 1048–1052, Washington, DC, USA, 2007. IEEE Computer

Society.

[93] J.J. Li and W.E. Wong. Automatic Test Generation From Communicating

222

Extended Finite State Machine (CEFSM)-Based Models. In Fifth IEEE In-

ternational Symposium on Object-Oriented Real-Time Distributed Computing,

2002. (ISORC 2002). Proceedings, pages 181–185, 2002.

[94] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guo-

liang. Generating Test Cases from UML Activity Diagram Based on Gray-

Box Method. In Proceedings of the 11th Asia-Pacific Software Engineering

Conference, APSEC ’04, pages 284–291, Washington, DC, USA, 2004. IEEE

Computer Society.

[95] W.-C. Liu and C.-G. Chung. Symbolic Path-based Protocol Verification. In-

formation & Software Technology, 42(4):245–255, 2000.

[96] M. Lochau and U. Goltz. Feature Interaction Aware Test Case Generation

for Embedded Control Systems. Electron. Theory Computer Science Notes,

264:37–52, Dec. 2010.

[97] L. Lucio, L. Pedro, and D. Buchs. A Methodology and a Framework for

Model-Based Testing. In Nicolas Guelfi, editor, Rapid Integration of Software

Engineering Techniques, volume 3475 of Lecture Notes in Computer Science,

pages 619–619. Springer Berlin/Heidelberg, 2005.

[98] G. Luo, R. Dssouli, G. von Bochmann, P. Venkataram, and A. Ghedamsi.

Generating Synchronizable Test Sequences Based on Finite State Machine

with Distributed Ports. In Protocol Test Systems, pages 139–153, 1993.

[99] R. Manian, J.B. Dugan, D. Coppit, and K.J. Sullivan. Combining Various

Solution Techniques for Dynamic Fault Tree Analysis of Computer Systems.

In Proceedings of the Third IEEE International High-Assurance Systems En-

gineering Symposium, 1998, pages 21–28, Nov. 1998.

[100] D.A. Mathaikutty, S. Ahuja, A. Dingankar, and S. Shukla. Model-Driven Test

Generation for System Level Validation. In IEEE International on High Level

223

Design Validation and Test Workshop, 2007. (HLVDT 2007), pages 83–90,

Nov. 2007.

[101] Ben Swarup Medikonda and P. Seetha Ramaiah. Integrated safety analysis of

software-controlled critical systems. SIGSOFT Softw. Eng. Notes, 35(1):1–7,

January 2010.

[102] Sandfoss R. Meyer S. Applying Use-Case Methodology to SRE and System

Testing. In STAR West Conference, SWC ’98, 1998.

[103] P.V.R. Murthy, P.C. Anitha, M. Mahesh, and R. Subramanyan. Test Ready

UML Statechart Models. In Proceedings of the 2006 International Workshop

on Scenarios and State Machines: Models, Algorithms, and Tools, SCESM

’06, pages 75–82, New York, NY, USA, 2006. ACM.

[104] Ashalatha Nayak and Debasis Samanta. Automatic Test Data Synthesis using

UML Sequence Diagrams. Journal of Object Technology, pages 115–144, 2010.

[105] R. Nazier and T. Bauer. Automated Risk-Based Testing by Integrating Safety

Analysis Information into System Behavior Models. In IEEE 23rd Interna-

tional Symposium on Software Reliability Engineering Workshops (ISSREW),

2012, pages 213–218, 2012.

[106] G. De Nicola, P. di Tommaso, E. Rosaria, F. Francesco, M. Pietro, and O. An-

tonio. A Grey-Box Approach to the Functional Testing of Complex Automatic

Train Protection Systems. In Mario Dal Cin, Mohamed Kaniche, and Andros

Pataricza, editors, Dependable Computing - EDCC 2005, volume 3463 of Lec-

ture Notes in Computer Science, pages 305–317. Springer Berlin / Heidelberg,

2005.

[107] B. Nielsen and A. Skou. Automated Test Generation from Timed Automata.

In Proceedings of the 7th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, TACAS 2001, pages 343–357,

224

London, UK, 2001. Springer-Verlag.

[108] A.J. Offutt, Y. Xiong, and S. Liu. Criteria for Generating Specification-based

Tests. In Fifth IEEE International Conference on Engineering of Complex

Computer Systems, 1999. ICECCS ’99, pages 119–129, 1999.

[109] J. Offutt and A. Abdurazik. Generating Tests from UML Specifications. In

Robert France and Bernhard Rumpe, editors, UML99 The Unified Modeling

Language, volume 1723 of Lecture Notes in Computer Science, pages 76–76.

Springer Berlin / Heidelberg, 1999.

[110] J. Offutt, S. Liu, A. Abdurazik, and P Ammann. Generating Test Data

from State-Based Specifications. Software Testing, Verification & Reliability,

13(1):2553, 2003.

[111] F. Ortmeier, M. Güdemann, and R. Wolfgang. Formal Failure Models. In

Proceedings of the 1st IFAC Workshop on Dependable Control of Discrete

Systems (DCDS 07). Elsevier, 2007.

[112] F. Ortmeier and G. Schellhorn. Formal Fault Tree Analysis - Practical Expe-

riences. Electronic Notes in Theoretical Computer Science, 185:139–151, Jul.

2007.

[113] F. Ouabdesselam and I. Parissis. Testing Synchronous Critical Software. In

Proceedings of the 5th International Symposium on Software Reliability Engi-

neering, 1994, pages 239–248, Monterey, California, Nov. 1994.

[114] N. Ozarin. Failure Modes and Effects Analysis During Design of Com-

puter Software. In Reliability and Maintainability, 2004 Annual Symposium -

RAMS, pages 201–206, 2004.

[115] C.S. Pasareanu, J. Schumann, P. Mehlitz, M. Lowry, G. Karsai, H. Nine, and

S. Neema. Model Based Analysis and Test Generation for Flight Software.

In Proceedings of the Third IEEE International Conference on Space Mission

225

Challenges for Information Technology, pages 83–90, Washington, DC, USA,

2009. IEEE Computer Society.

[116] T. Pasquale, E. Rosaria, M. Pietro, O. Antonio, and A.S. Ferroviario. Hazard

Analysis of Complex Distributed Railway Systems. In Proceedings of the 22nd

International Symposium on Reliable Distributed Systems, 2003, pages 283–

292, Florence, Italy, Oct. 2003.

[117] T. Pender. UML Bible. John Wiley & Sons, Inc., New York, NY, USA, 1

edition, 2003.

[118] A. Petrenko, S. Boroday, and R. Groz. Confirming Configurations in EFSM

Testing. IEEE Transactions on Software Engineering, 30(1):29–42, Jan. 2004.

[119] Antonella Petrillo, Roberta Fusco, Vincenza Granata, Salvatore Filice, Nicola

Raiano, Daniela Maria Amato, Maria Zirpoli, Alessandro di Finizio, Mario

Sansone, Anna Russo, et al. Risk Management in Magnetic Resonance: Failure

Mode, Effects, and Criticality Analysis. BioMed research international, 2013,

2013.

[120] O. Pilskalns, A. A. Andrews, S. Ghosh, and R. B. France. Rigorous Testing

by Merging Structural and Behavioral UML Representations. In UML, pages

234–248, 2003.

[121] O. Pilskalns, G. Uyan, and A. Andrews. Regression Testing UML Designs. In

22nd IEEE International Conference on Software Maintenance, 2006. ICSM

’06., pages 254–264, 2006.

[122] M. Prǎsǎnna and K.R. Chandran. Automatic Test Case Generation for UML

Object Diagrams Using Genetic Algorithm. International Journal of Soft

Computing Applications, 1(1):19–32, July 2009.

[123] D.J. Reifer. Software Failure Modes and Effects Analysis. IEEE Transactions

on Reliability, R-28(3):247–249, Aug. 1979.

226

[124] H. Reza, S. Buettner, and V. Krishna. A Method to Test Component Off-

the-Shelf (COTS) Used in Safety Critical Systems. In Fifth International

Conference on Information Technology: New Generations, 2008. ITNG 2008.,

pages 189–194, Las Vegas, Nevada, USA, Apr. 2008.

[125] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language

Reference Manual. Addison-Wesley, Boston, MA, 2005.

[126] M. Sánchez, J.C. Augusto, and M. Felder. Fault-based Testing of E-Commerce

Applications. In Proceedings of the 2nd International Workshop on Verifica-

tion and Validation of Enterprise Information Systems, pages 66–72, 2004.

[127] M. Sánchez and M. Felder. A Systematic Approach to Generate Test Cases

based on Faults. In Argentine Symposium in Software Engineering, Buenos

Aires, Argentina, 2003.

[128] Monalisa Sarma, P. V. R. Murthy, Sylvia Jell, and Andreas Ulrich. Model-

based testing in industry: a case study with two MBT tools. In Proceedings

of the 5th Workshop on Automation of Software Test, AST ’10, pages 87–90,

New York, NY, USA, 2010. ACM.

[129] Devon Simmonds, Arnor Solberg, Raghu Reddy, Robert France, and Sudipto

Ghosh. An Aspect Oriented Model Driven Framework. In EDOC Enterprise

Computing Conference, 2005 Ninth IEEE International, pages 119–130. IEEE,

2005.

[130] A.E. Summers. Introduction to Layers of Protection Analysis. Journal of

Hazardous Materials, 104(13):163–168, 2003.

[131] H. Sun, M. Hauptman, and R. Lutz. Integrating Product-Line Fault Tree

Analysis into AADL Models. In High Assurance Systems Engineering Sympo-

sium, 2007. HASE ’07. 10th IEEE, pages 15–22, Nov. 2007.

[132] S. Supakkul and L. Chung. Applying a Goal-Oriented Method for Hazard

227

Analysis: A Case Study. In Fourth International Conference on Software En-

gineering Research, Management and Applications, 2006., pages 22–30, Aug.

2006.

[133] S.K. Swain and D.P. Mohapatra. Test Case Generation from Behavioral UML

Models. International Journal of Computer Applications, 6(8):080000–11, Sep.

2010.

[134] L.H. Tahat, B. Vaysburg, B. Korel, and A.J. Bader. Requirement-Based Au-

tomated Black-Box Test Generation. In Computer Software and Applications

Conference, 2001. COMPSAC 2001. 25th Annual International, pages 489–

495, 2001.

[135] Richard N. Taylor. A General-Purpose Algorithm for Analyzing Concurrent

Programs. Commun. ACM, 26(5):361–376, May 1983.

[136] N. Tracey, J. Clark, J. Mcdermid, and K. Mander. Integrating Safety Anal-

ysis with Automatic Test-Data Generation for Software Safety Verification.

In Proceedings of 17th International System Safety Conference (ISSC 1999),

pages 128–137, Orlando, FL, USA, 1999. System Safety Society.

[137] Jan Tretmans. Model Based Testing with Labeled Transition Systems. In

Formal Methods and Testing, pages 1–38, 2008.

[138] B-Y. Tsai, S. Stobart, N. Parrington, and I. Mitchell. An Automatic Test

Case Generator Derived from State-based Testing. In Software Engineering

Conference, 1998. Proceedings, pages 270–277, 1998.

[139] M. Utting. How to Design Extended Finite State Machine Test Models in

Java. In Model-Based Testing for Embedded Systems, pages 147–169. CRC

Press, 2011.

[140] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-based

Testing Approaches. Software Testing, Verification and Reliability, 22(5):297–

228

312, 2012.

[141] J. Vain, A. Kull, M. Kaaramees, M. Markvardt, and K. Raiend. Reactive

Testing of Nondeterministic Systems by Test Purpose-Directed Tester. In

Model-Based Testing for Embedded Systems, pages 425–452. CRC Press, 2011.

[142] VASY. CADP (Caesar/Aldebaran Development Package). http://cadp.inria.

fr/.

[143] W. Vesely, J. Dugan, J. Fragola, Minarick, and J. Railsback. Fault Tree

Handbook with Aerospace Applications. Handbook, National Aeronautics

and Space Administration, Washington, DC, 1981.

[144] J.M. Voas and G. McGraw. Software Fault Injection: Inoculating Programs

Against Errors. John Wiley & Sons, Inc., New York, NY, USA, 1997.

[145] L. Wang and K.C. Tan. Software Testing for Safety Critical Applications.

Instrumentation Measurement Magazine, IEEE, 8(2):38–47, June 2005.

[146] B.C. Wei. A Unified Approach to Failure Mode, Effects and Criticality Anal-

ysis (FMECA). In Reliability and Maintainability Symposium, 1991. Proceed-

ings., Annual, pages 260–271, Jan. 1991.

[147] S. Weiβleder and H. Schlingloff. Automatic Model-Based Test Generation

from UML State Machines. In Model-Based Testing for Embedded Systems,

pages 77–109. CRC Press, 2011.

[148] S.N. Weiss. A Formal Framework for the Study of Concurrent Program Test-

ing. In Proceedings of the Second Workshop on Software Testing, Verification,

and Analysis, 1988, pages 106–113, Jul 1988.

[149] P.J. Wilkinson and T.P. Kelly. Functional Hazard Analysis for Highly Inte-

grated Aerospace Systems. In Certification of Ground/Air Systems Seminar

(Ref. No. 1998/255), IEE, pages 4/1 –4/6, Feb. 1998.

[150] Y. Wu, M.H. Chen, and J. Offutt. UML-Based Integration Testing for

229

Component-Based Software. In Hakan Erdogmus and Tao Weng, editors,

COTS-Based Software Systems, volume 2580 of Lecture Notes in Computer

Science, pages 251–260. Springer Berlin/Heidelberg, 2003.

[151] R.-D. Yang and Chyan-Goei Chung. A Path Analysis Approach to Concur-

rent Program Testing. In Ninth Annual International Phoenix Conference on

Computers and Communications, 1990. Conference Proceedings, pages 425–

432, Mar 1990.

[152] M. Zheng, V. Alagar, and O. Ormandjieva. Automated Generation of Test

Sites from Formal Specifications of Real-Time Reactive Systems. The Journal

of System and Software, 81:286–304, Feb. 2008.

[153] G. Zoughbi, L. Briand, and Y. Labiche. A UML Profile for Developing

Airworthiness-Compliant (RTCA DO-178B), Safety-Critical Software. In Gre-

gor Engels, Bill Opdyke, Douglas Schmidt, and Frank Weil, editors, Model

Driven Engineering Languages and Systems, volume 4735 of Lecture Notes in

Computer Science, pages 574–588. Springer Berlin / Heidelberg, 2007.

230

	Fail-Safe Testing of Safety-Critical Systems
	Recommended Citation

	tmp.1443197526.pdf.pOTOZ

