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Abstract

Fall is one of the most dangerous and costly accidents that threaten health of

elderly people, and a large portion of falls occurs when a patient is trying to exit a

bed. This thesis proposes two vision-based approaches for general fall detection and

bed-exiting detection for elderly people, respectively. The Kinect sensor is chosen

as the major monitoring device.

The first approach exploits the Kinect sensor with its Windows SDK to detect

fall activities. The recorded spatial coordinates of the human body joints from

Kinect’s 3D skeletal view are processed to extract posture features. Then the prin-

ciple component analysis and k-means clustering algorithms are applied for dimen-

sionality reduction, vector quantization and feature translation. HMMs are well

known for their application in temporal pattern recognition, thus they are chosen

for this project to classify human motion which is a temporal sequence of postures.

HMMs are trained by the labelled extracted features to model and discriminate four

fall motion classes and three non-fall classes.

The second approach utilizes segmented motion history image (MHI) sequences

to extract spatiotemporal features of a moving human body. Eight Hu image mo-

ments are calculated to translate the spatiotemporal features of each frame into

vectors to describe video frames. The k-means clustering and HMM modelling are

utilized for vector quantization and classification between bed-exiting activities and

ii



rolling-on-bed activities. In addition, likelihood probability curves are generated

along the time line of all MHIs, endeavoring to predict a bed-exiting activity.

Detailed descriptions of the experiments and result evaluation are documented in

this thesis. The experimental results using human subjects verifies the feasibility and

effectiveness of the proposed approaches for general fall detection and bed-exiting

prediction.
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Chapter 1

Introduction

1.1 Motivation and background

Health care of elderly people is an eternal topic, and becomes a major issue in

human society nowadays, since population aging has become a global trend. Falls,

specially, are one of the most dangerous accidents that threaten health of elderly

people. According to [1], no less than one-third of elders aged over 65 years fall each

year, and nearly 13 million falls take place per year, among which approximately

50% are recurrent falls, and about 10% to 20% can result in serious injuries such

as fractures or head traumas, or even lead to death. Although some falls do not

cause injury, 47% of these non-injured falls brings about immovability, that the faller

cannot get up immediately without external assistance.

Along with the damages of elderly falls, indicated by [1, 2, 3], the cost of health-

care for elderly fallers is substantial and fall-related injuries account for 6% of all

medical expenditures in the USA. In 2005, direct fall injury cost is 23.6 billion

dollars, in 2010 30.4 billion dollars , and the number is still rising.

Thus, it is important for caregivers to monitor a patient’s or elders’ activities for

the purpose of providing in time assist when they fall or taking necessary measures
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to prevent a fall. For this reason, one of the most challenging and urgent requests

in geriatric healthcare is to track moving motions of an elderly person, estimate

potential motion, and further to reliably detect a dangerous movement and finally

issue an early warning to the caregivers. To address the above issue,we propose a

vision-based fall detection algorithm based on the “skeleton view” offered by the

Kinect sensor.

And among all the conditions, under which a fall is possible to occur, bed-exiting

catches our eyes. According to [4], most falls in nursing homes take place in the

residents rooms, especially during attempts to get out of a bed. Reasons of bed-

exiting related falls are mainly caused by an attack of vertigo, lack of strength, a

sudden lost of balance or twisted feet with bed sheets. In [4], the authors discuss the

effectiveness of bed-exiting alarm systems, in which they describe the accuracy of

two types of bed-exiting alarms for detecting bed-exiting body movements: pressure-

sensitive and a pressure sensitive combined with infrared beam detectors (dual sensor

system). The authors draw a conclusion that while the dual sensor bed-exit alarm

was more accurate than the pressure sensitive alarm in identifying bed-exiting, false

alarms were not eliminated altogether. Hence, besides the general fall detection

algorithm, this thesis developed another vision-based algorithm specifically for the

bed-exiting detection.

1.2 Contribution

This thesis represents two vision-based human motion analysis approaches, and

the specific fall detection and prevention applications of them. Contributions of this

work are listed below:
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1. We introduce the low-cost Kinect sensor as a data collection device in a surveil-

lance system, and make use of the data from it to build different 3D models

for motion estimation.

2. The skeletal view based approach is with largely reduced computational load

of data processing, and by selecting the same origin and x, y, z axis the skeletal

review based approach is invariant to different view angles.

3. Taking advantage of the innovative classification of motions for fall detection

application, when real-time fall prediction is realized, direction of falls can

also be predicted for facilitating possible protective methods that rely on the

prediction.

4. The segmented motion history image sequences based approach offers a fast

and uncomplicated way to extract spatiotemporal motion information not only

in lateral directions but also in the direction along the depth change. The Hu

moments for feature translation is scale and rotation invariant, which can be

applied to any videos recorded by a variety of video based applications.

1.3 Thesis outline

Chapter 2 reviews related works about human motion estimation, fall detec-

tion and bed-exiting detection. Chapter 3 narrates the entire experiment design,

methodology, and experimental results of the 3D skeletal view based fall detection

project. Chapter 4 describes how the bed-exit detection is achieved, which includes

data collection experiment design, details of the algorithm, experimental results of

activity classification and evaluation on the capability of bed-exiting prediction. At

last, Chapter 5 concludes the work presented in the thesis, and discusses potential

future work.
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Chapter 2

Literature review

2.1 Categories of fall detection approaches

Tremendous efforts have been made to build a credible in-house fall detection

system for elderly people. According to how a fall is detected, [5] summarizes and

classifies the major fall detection technologies into three categories: wearable device,

ambience device, and vision based approaches.

2.1.1 Wearable devices based approaches

The wearable device approach embeds sensors, mostly accelerometers, into gar-

ments or devices held or worn by a person to detect motion and/or posture of the

body to identify potential fall events. In [6] Clifford et al patented a human body

fall detection system, which consists of a set of accelerometers, a processor, and

a wireless transmitter. The accelerometers collect and transmit acceleration mea-

surements to the processor. The processor compares the acceleration measurements

with a value range to decide if the wearer is experiencing a fall activity. The trans-

mitter transmits to a remote receiver the signal generated by the processor when a

fall is detected. In [7] Noury et al developed a fall detection device, which collects
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three types of measurements: vertical acceleration shock obtained by a piezoelectric

accelerator, body orientation monitored by a position tilt switch, and mechanical

vibrations of body surface. These measurements are transmitted to and analyzed by

a PC to identify fall activities. T. Tamura et al in [8] developed a wearable airbag

which is inflated by acceleration and angular velocity signals in a fall-detection sys-

tem. Their fall-detection algorithm could detect signals 300 ms before the fall and

trigger the inflation of the wearable airbag. H. Ghasemzadeh et al in [9] presents a

system using inexpensive, off-the-shelf inertial sensor nodes that constructs motion

transcripts from biomedical signals and identifies movements by taking collabora-

tion between the nodes into consideration. They use motion primitives to built the

transcripts, and each primitive is labelled with a unique symbol. Representation

of a particular action is fulfilled by a sequence of such symbols, known as motion

template. And their action recognition is achieved using edit distance with respect

to motion templates.

Most wearable devices are inexpensive and easy to set up and operate, however

they are not very appealing to the wearers, and this approach is reported to have a

high rate of false alarm.

2.1.2 Ambience devices based approaches

Ambience device based approaches are to install sensors in a fixed space to collect

information of a person who is in their effective range. Pressure, vibration, acoustic

sensors and stabilometers are commonly used in this approach. [10] introduces

a vibration sensor based fall detection apparatus developed by Alwan et al. The

vibration sensor are embedded on the floor to illustrate the location at any moment.

The processor recognizes falls through analyzing the data from these location. [11]

introduces a patented bed exit detection device, which utilizes bladders or other

fluid-carrying devices cooperating with a pressure sensor so that the pressure sensor
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registers a bladder pressure in response to the person’s weight. An acoustic fall

detection system (acoustic-FADE) is introduced in [12] by Y. Li et al. The acoustic

system acoustic-FADE consists of a circular microphone array that captures sounds

in a room. When a sound is detected, acoustic-FADE locates the sound using steered

response power with phase transform technique, enhance the sound signal by the

beamforming technique and then using mel-frequency cepstral coefficient features

extracted from the enhanced signal to do fall and nonfall classification. H. Rimminen

in [13] presents a fall detection method using a floor sensor based on electric near-

field imaging. A. Sixsmith in [14] develops an intelligent fall detector based on a

low-cost array of infrared detectors.

An advantage of this approach is that the devices are inexpensive, and unlike

the wearable devices, they are not intrusive to the person being monitored. The

disadvantage is the range limitation of usage and the inaccuracy resulting from

susceptibility of the signals to environmental factors.

2.1.3 Vision based approaches

Vision based approaches generally use videos or images to analyze motion fea-

tures of a human body, and distinguish features of fall activities from those of

non-falls to realize the function of fall detection. This approach can be divided

into 3 categories based on utilized principles relating to the characteristics of fall

movements. The first category is inactivity analysis. An inactivity period on the

ground is considered as a consequent result of a fall activity. Jansen and Deklerck

in [15] identified the body area and the body’s orientation according to 3D image

recorded by a stereo camera. In certain context, a fall activity is detected once in-

activity is identified by analyzing the orientation change of a human body. Second

category is shape change analysis. Toreyin et al in [16] presents an hidden Markov

model (HMM) based algorithm. The height to width ratio of the bounding box of a
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body configuration under falling conditions and walking conditions are employed as

movement features for HMMs. In [17], Southwest Research Institute developed an

fall-prevention monitoring solution based on image sensors, with bed-exiting image

processing and pattern recognition, which is designed to alert caregivers to impend-

ing bed exits. [18] developed an awakening behavior detection system on patient

behavior, such as almost falling down from the bed and waking up on the bed.

This system uses a web camera as an imagine sensor and the captured images are

analyzed using the neural network (NN) algorithm for recognizing patient behavior

into sleeping or waking up. The effectiveness of the image and NN based system

are also discussed with experimental results in a laboratory environment. In [19],

the authors analyzed the histogram of bed-exiting images, and proved that the fluc-

tuation of brightness quantity decreases the detection capability. The bed-exiting

detection performance was improved by reducing fluctuation of brightness using his-

togram equalization. The last category is 3D head motion analysis. This category

considers that velocity of vertical movement is larger than horizontal movement in

a fall activity. Rougier in [20] uses monocular 3D head tracking to distinguish fall

activities and walking activities.

2.2 Motion history images

Motion history images (MHIs) first introduced by Bobick and Davis [21] are

widely used for analyzing dynamics of a series of moving human silhouettes. In an

MHI, each pixel value illustrates the recency of motion at that location, for which

brighter pixel corresponds to more recent motion. In a series of continuing works of

the origin developers Bobick and Davis [21, 22, 23, 24, 25], the developers combined

the motion energy images (a motion energy image is a binary image, which roughly

locates the area of motions of a given action from a given view) and motion history

images for representation and recognition of actions, further they improve the MHIs
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into timed motion history images (tMHIs) and compute the motion history gradient

to achieve motion segmentation and pose recognition. Figure 2.1 from [21] gives

an example of motion energy and motion history images. And they extend their

previous work to provide a method for calculating local motion orientation and

implement their algorithm into the Intel computer vision library (CVLib) for real-

time application. In another research work for fall detection by Rougier et al [26],

the authors combine MHIs with human shape changes and a condition, that lack

of motion generally appears after a fall event takes place to achieve the goal of fall

detection.

Figure 2.1: Example of motion energy images and motion history images.
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Chapter 3

Skeletal view based fall

detection

In this chapter, we exploit the Kinect sensor with its Windows SDK to detect

fall activities. The recorded spatial coordinates of the human body joints fromt

Kinect’s 3D skeletal view are then processed to extract posture features. Then

the principle component analysis and k-means clustering algorithms are applied for

dimensionality reduction and feature translation. HMMs are well known for their

application in temporal pattern recognition such as speech, handwriting, gesture

recognition, thus they are chosen for this project to classify human motion which is a

temporal sequence of postures. HMMs are trained by the labelled extracted features

to model and discriminate four fall motion classes and three non-fall classes. The

algorithm and data flow path of proposed elderly fall detection system is displayed

in Fig. 3.1.

9



Human 
Movements

Measurement 
Sequences

Low-dimensional 
Measurement Squences

Observation 
Sequences

Movement 
Features and 
Parameters

Feature 
Database for 
falls and ADLs

Feature and Parameters 
Matching

Movement Recognition

Movements Detection

Kinect sensor 

PCA

K-means Clustering

Train HMMs

Figure 3.1: The algorithm and data flow of proposed fall detection system.

3.1 Motion classification and experiment design

The aim of this work is to detect fall activities of elderly people, therefore

recorded videos or pictures of real elderly falls should be the best materials to train

HMMs and to form the proposed motion analysis database. However, such real

falls were rarely recorded. As a result, we collect data using laboratory simulated

falls. Although involvement of elderly people to perform simulated falls would best

serve the goal of this research work, anticipated risk for elderly people to fall is too

high for IRB to approve. For this reason, only human subjects in the age range of

18-40 are intended to be recruited in the data collection experiments. By learning

the descriptions of recorded real elderly falls in [27] , nine most commonly seen

recurrent falls are summarized and are divided into 4 classes according to different

starting positions and different movement directions. And 6 activities of daily living

(ADLs) are also classified into 3 classes based on starting positions. Scenarios of 9

laboratory simulated falls, 6 simulated ADLs and their classifications are listed in
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1. Start from a standing position, fall occurs in horizontal direction

(1) Standing then fall to the right

(2) Standing then fall to the left

2. Start from a standing position, fall occurs in vertical direction

(1) Standing then fall forward

(2) Standing then slip to fall backward

(3) Standing then sit on empty

3. Start from a sitting position, fall occurs in horizontal direction

(1) Sitting in an armchair then try to stand up

but suddenly lose strength and fall to the right

(2) Sitting in an armchair then try to stand up

but suddenly lose strength and fall to the left

4. Start from a sitting position, fall occurs in vertical direction

(1) Sitting on a stool shuffling in seat then fall off the stool

(2) Sitting in an armchair then try to stand up then fall forward

Table 3.1: Scenarios of nine simulated falls.

Table 3.1 and Table 3.2, respectively.

5. Start from a standing position,

movements take place in the horizontal direction

(1) Stand then walk forward and backward

(2) Stand then bend to pick up something on the floor

6. Start from a sitting position,

movements take place in the vertical direction

(1) Sit on a chair with various poses

(2) Sit on floor with various poses

7. Starts or ends at a lying position

(1) Lying on bed then get up and sit on the

edge of the bed then stand up and walk

(2) Stand by a bed then sit down on the

edge of the bed then lie down

Table 3.2: Scenarios of six ADLs.
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Note that unlike previous studies, which simply divide falls and non-falls, or

operates with only fall movements and walking movements, subdivision within fall

activities and ADLs are investigated in this paper. We design our experiments in this

way due to the following considerations. 1) the property of the data collection device,

which utilizes depth measurements to describe a body’s posture, such that vertical

movements can contribute a huge difference comparing with horizontal movements.

2) It is the best for a certain HMM to be trained by a group of similar sequences

in this application; therefore, criterion of movement direction is applied. This also

explains the criterion of starting position. 3) Another consideration of not combining

all falls and all ADLs is that, unlike application of HMM in speech recognition, which

at first detects presence or absence of speech, fall activities and ADLs in fact have a

lot in common. The vital decision moment might pretty short, and the interfusion

of all falls and all non-falls might lose these vital features to contrast them.

In this data collection experiment, currently, only one volunteer was recruited

to perform the designed activities. However volunteers of different ages and genders

will be recruited to ensure the diversity of training data. When fall activities were

performed, the floor was padded by an 8-inches professional gymnastic mat. Each

of the 15 activities was performed 10 times by the volunteer, and approximately

5 seconds per activity. However, this final scenario was replenished and optimized

after the first experiment, in which fall activity 4.(1) and ADL 1.(2) were not in-

cluded. Thus only 13 activities are performed, and in total 130 clips were recorded,

generating 130 measurement sequences.
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Figure 3.2: Sample picture of Skeletal Viewer .

3.2 Methodology

3.2.1 Skeletal Viewer

The Kinect sensor offers a simple and convenient way to capture and record

features of human body motion. Skeletal viewer in Kinect for Windows SDK allows

us to extract a human body skeleton in each frame, which consists of 20 joints. A

sample picture is shown below in Fig. 3.2 and Fig. 3.3 interprets name of every joint.

Skeleton parameters are utilized for human posture sequence modeling and fall

detection. Kinect for Windows SDK outputs 3 coordinates for each joint, 20 joints

for each frame, and about 30 frames per second. a position vector of one joint is

denoted as

pk,l = [xk,l yk,l zk,l]
T ,

where k is the frame index, l is the joint index, l = 1, 2, · · · , 20, and T denotes

matrix transpose.

Each frame is used as an elementary processing unit, which is denoted as a

column-vector employing the 60 variables for one frame. The 60-dimensional exper-

imental data is denoted as

pk = [pTk,1p
T
k,2 · · ·pTk,l]T .

13
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Figure 3.3: Interpretation of 20 joints of a skeleton.

And one clip of a human activity consisting of K frames is defined as a measurement

matrix

P = [p1p2 · · ·pK ].

Since the output of Kinect sensor consists of 3-D coordinates for human body

joints, by selecting the same origin and x, y, z axes the skeleton review based data

collection method is invariant to different view angles.

3.2.2 Data collection

Data collection experiments are conducted to record in total 130 clips of activities

from 7 motion classes. Definition of motion classification and details of experiment

are narrated later in this paper in Section 3.1. The sets of raw measurement matrices

are denoted as

P i = {P i,1, P i,2, · · · , P i,j , · · · , P i,J(i)},
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where i = 1, 2, · · · , 7, is the index of motion class, j is the index of the video clip,

and J(i) is the number of recorded activities in the ith motion class, J(i) = 10 if

i = 4, J(i) = 20 otherwise. Difference in value of J is not intentionally set by the

author, but the true number of activities recorded in the data collection experiment.

3.2.3 Data processing

Up to this point, we have obtained 130 raw measurement matrices P i,j . We first

apply principle component analysis to reduce data dimension. Then, we employ

the k-means clustering to prepare training data for HMMs. We train 7 HMMs

corresponding to 7 motion classes. Finally, we evaluate the ability of these HMMs

to discriminate activities among the seven motion classes, and also their capability

to distinguish fall and non-fall activities.

Principle component analysis

Principal component analysis (PCA) runs an orthogonal transformation to con-

vert P i,j to a new coordinate system that consists of linearly uncorrelated variables

such that the first variable has the largest possible variance of P i,j , and each suc-

ceeding variable in turn has the highest variance. The new variables are called

principle components. By choosing the first n (n ≤ 60) principle components, we

can reduce data dimension and preserve most of the information in P i,j . PCA is ac-

complished by algorithms narrated below. Singular value decomposition of original

measurement matrix P i,j(60×K) is

P i,j(60×K) = W i,j
(60×60)Σ

i,j
(60×K)V

i,j
(K×K),

where
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W i,j is 60× 60 matrix of eigenvectors of the covariance matrix P i,jP i,j
T

,

Σi,j is 60 ×K rectangular diagonal matrix with non-negative real numbers on the

diagonal,

V i,j is K ×K matrix of eigenvectors of P i,j
T
P i,j .

The reduced-dimensionality presentation Ri,j(n×K) of P i,j(60×K) is

Ri,j(n×K) = Ii,j(n×60)Σ
i,j

(60×K)V
i,j

(K×K),

where

n is reduced dimensionality after PCA,

Ii,j is n× 60 rectangular identity matrix.

Let wm denote the weight of eigenvalue of the mth principle component, which

is defined as ratio of the mth eigenvalue to the sum of all the eigenvalues, and

m = 1, 2, · · · , 60. Fig. 3.4 represents the relationship of wm versus m. Because the

first few principle components account for a majority of the variance of measurement

matrix P i,j , weights of from the 16th to the last principle components are too small

and are neglected, therefore they are not displayed in Fig. 3.4.

Let rn denote the percentage of the variance the first nth principle components

account, i.e. how much information of original measurement matrix can be preserved

by leaving n principle components is demonstrated in Table 3.3.

n 3 5 10 15 30 60

rn 90.67% 95.08% 98.46% 99.35% 99.92% 100.00%

Table 3.3: Relationship of rn and n.

In this work, to trade off between lowering dimensionality and preserved in-

formation, we choose n = 10. And the measurement matrices after PCA become

feature matrices
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Figure 3.4: Relationship of wm and m.

R(10×K) = [r1r2 · · · rK ],

where rk is the measurement vector at time k after PCA dimensionality reduction.

And the sets of feature matrices are generated as

Ri = {Ri,1, Ri,2, · · · , Ri,j , · · · , Ri,J(i))}.

K-means clustering

All the measurement vectors after PCA dimensionality reduction rk
i,j from all

seven motion classes are partitioned into c clusters S = {S1,S2, · · · ,Sc} by the

k-means clustering algorithm. The k-means clustering distributes vectors into c

clusters aiming at achieving minimum within-cluster sum of squares

arg min
S

c∑
q=1

∑
rki,j∈Sq

‖ rk
i,j − µq ‖2,

where

µq is the mean of points in set Sq,
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‖ rk
i,j − µq ‖2 is square of distance from rk

i,j to the mean µq.

The data collected at every frame is indexed by the number of cluster 1, 2, · · · , c, to

which it belongs. And the sets of feature matrices are converted to sets of observation

sequences as following

Ri = {Ri,1, Ri,2, · · · , Ri,j , · · · , Ri,J(i)},

⇓

Oi = {βi,1, βi,2, · · · , βi,j , · · · , βi,J(i)}.

where βi,j is the jth observation sequence in the ith motion class.

In this paper, the number of clusters c is selected to be c = 70, aiming at

discriminating particulars of a movement.

Training of hidden Markov models (HMMs)

If an event can be separated into a set of observation sequences which are asso-

ciated with a number of “invisible” states, the progress of this event can be treated

as transitions among states. Similar events generally have similar states transitions.

HMMs can model the state transitions of similar events, and describe them using a

set of parameters:

Λ =
{
π,A,B

}
,

where

π is the s× 1 initial state distribution vector,

A is the s× s hidden state-transition matrix,

B is the s× c state-dependent observation probability density matrix,

s is the number of hidden states,

c is the number of observation symbols.
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Given a set of training observation sequences O, the training process of an HMM

Λ is to optimize the model parameters so that they can best describe how the given

sequence occurs, which is

Λ = arg max
π,A,B

P (O|Λ).

An iteration algorithm with expectation-maximum (EM) named Baum-Welch algo-

rithm is applied to solve this problem.

In this paper, seven HMMs

{Λ1,Λ2, · · · ,Λ7}

are created to describe their corresponding motion classes.

Classification using hidden Markov models

Evaluation of the capability of the 7 created HMMs to discriminate different

activities from 7 motion classes is conducted by choosing testing sequences, and

calculating the probability of such testing sequences given Λ1,Λ2, · · · ,Λ7. A testing

sequence ξ is classified into the îth motion class, only when the probability given Λî

is the largest among those given the other 6 models, which is

î = arg max
i
P (ξ|Λi).

In our experiment, 10 training observation sequences from each motion classes

are randomly chosen as testing data

T i = {ξi,1, ξi,2, · · · , ξi,10},

where

ξi,j is the jth testing sequence chosen from the ith motion class,
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T i is the set of testing sequences chosen from the ith motion class.

HMM based classification results are displayed in Section 3.3 using the confusion

matrix of activity recognition of seven hidden Markov models.

3.3 Experiment results

All 130 measurement sequences are divided into 7 motion classes and used as

training data for HMMs, and 10 measurement sequences from each motion classes

are randomly chosen to act as testing data. The entire data processing procedure is

conducted in MATLAB, and takes approximately 6 seconds, and it takes approxi-

mately 0.065 seconds to classify one single activity.

Table. 3.4 demonstrates the results of classification using trained HMMs. Rows

C1, · · · , C7 represent the motion classes from which testing sequences are chosen,

and columns Λ1, · · · ,Λ7 represent the HMMs of corresponding motion classes. In-

tersection of row a and column b displays percentage of the event, that activity from

motion class a is classified into motion class b. Classification of a single activity ξ is

achieved in the following way, the likelihood probability of a certain activity given

all seven trained HMM models are calculated, and the motion class corresponding

to the model achieving the highest likelihood is recognized to be the motion class,

to which this activity belongs. And this can be summarized as

î = arg max
i
P (ξ|Λi).

Ideally, the classification rate should be 1.0 on the diagonal where a = b, which

means all the testing activities from Ci are correctly classified into Ci. Classification

rate of a certain motion class is defined as the ratio of number of the correctly

classified activities to the total number of activities for test from this motion class,
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Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7

C1 10 0 0 0 0 0 0

C2 0 8 0 2 0 0 0

C3 0 0 8 1 0 1 0

C4 0 0 1 8 0 1 0

C5 0 0 0 2 8 0 0

C6 0 1 0 1 1 7 0

C7 1 0 0 0 1 1 7

Table 3.4: Confusion matrix of activity recognition of seven HMMs.

which can be read from the diagonal of confusion matrix.

Precision and recall and the F1 score of each HMM model Λi are presented in

Table 3.5. The average F1 score reaches 0.80, and the lowest is 0.67.

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7

Precision 0.91 0.89 0.89 0.57 0.80 0.70 1.00

Recall 1.00 0.80 0.80 0.80 0.80 0.70 0.70

F1 score 0.95 0.84 0.84 0.67 0.80 0.70 0.82

Table 3.5: Precision, recall and F1 score of each HMM model.

3.4 Discussion

In this work, testing activities from all seven motion classes are generally cor-

rectly classified, the lowest recognition rate is 0.7, and average recognition rate is

0.8. Observing the results, major misclassification takes place among similar motion

classes, which shares either the same starting position (C3 and C4, or C4 and C6)

or the same movement direction (C2 and C4, or C4 and C6).

The division of falls corresponding to Λ1, · · · ,Λ4 and ADLs corresponding to

Λ5, · · · ,Λ7 indicates that regardless of subdivision within falls or ADLs, 2 out of 40
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falls are misunderstood as ADLs, and 4 out of 30 ADLs are misidentified as falls.

Therefore, recognition rate of fall activities is 95%, and 87% for ADLs. It can be

observed that falls are generally correctly recognized and distinguished from ADLs,

but ADLs are lightly confused with falls

These results are promising under the condition that neither the size of our

training data nor the size of testing data is big enough. Generally, it requires

hundreds or thousands training sequences to train a “reliable” HMM, and size of

training data should be at least five times larger than the size of testing data.

And regarding the selection of number of preserved principal component in Sec-

tion 3.2.3, since the 60 original variables in pk in our experiment data set are the

spatial coordinates of 20 human body joints of one person, they are highly corre-

lated. And this explains why only 15 out of 60 principal components can account

99% of the variance. Thus, we can foresee, that if massive data from different sub-

jects are utilized, more principal components will need to be preserved compared

to the current situation. And a threshold value on rn need to be set for selecting

proper value of n.
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Chapter 4

Bed-exiting detection based on

segmented motion history image

sequences

In this chapter, we exploit segmented motion history image (MHI) sequences to

extract spatiotemporal features of a moving human body. Eight Hu image moments

are calculated to translate the spatiotemporal features of each frame into vectors

to describe video frames. The k-means clustering and HMM modelling are utilized

for vector quantization and classification between bed-exiting activities and rolling-

on-bed activities. In addition, except activity classification, likelihood probability

curves are generated along the time line of all MHIs, endeavoring to predict a bed-

exiting activity.

The outline algorithm and data flow path of the research work described above

is demonstrated in Fig. 4.1.
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Figure 4.1: The algorithm and data flow of the proposed bed-exiting detection
system.

4.1 Data collection

4.1.1 Preliminary data collection section

Preliminary data collection experiment is directed for algorithm testing, and only

one ordinary digital camera is used to record all activities, thus only RGB videos

are collected. Fifteen human subjects over 50 years old were invited to participate

in a series of data collection experiments. These subjects are instructed by the

experimenter to perform various movements in a randomized order. Movements

performed by all the volunteers are listed in Table 4.1, and some of these movements

are performed with a bed sheet on, and the other rest are with a bed sheet off.

172 video clips/activities in total were recorded, among which 132 are bed-exiting

activities and 40 are rolling-on-bed activities. And 60 of 132 bed-exiting and 25 of 40

rolling-on-bed were performed with a bed sheet. The statistic is given in Table 4.2.
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Movement details

1. Get up then exit a bed from the right/left side

2. Lying with face down and exit a bed from the right/left side

3. Lying on the right/left side and roll to the left/right side

4. Lying with face up and roll to the left/right side

5. Lying on the left/right side and roll to face up

Table 4.1: Scenario for the preliminary bed-exiting data collection section.

Bed-exiting Rolling-on-bed

Covered 60 25

Uncovered 72 15

Table 4.2: Statistic of video clips of preliminary data collection.

4.1.2 Experimental data collection section

A second data collection section was conducted in the human dynamic laboratory

in Ritchie center at University of Denver. The experiment area was set up referring

to the dimensions of a real chamber in a nursing home. Forty human subjects from

both genders over 50 years old have participated in this section. Following the

instructions of the experiment director, all subjects performed 32 movements with

half of the movements being done with the covers on and the other half with the

covers off, and after every 8 movements, bed orientation was changed. The order of

movements were randomized to negate any effect of ordering. Figure 4.2 shows the

basic 4 conditions of the data collection section.

The 8 basic movements begin from one of three starting positions, either lying

face up or lying face left/right. And Table 4.3 offers the scenario of movements

included in this section.
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Figure 4.2: Four basic data collection conditions.

Movement details

1. Face up - roll to left

2. Face up - roll to right

3. Face up - exit right

4. Face up - exit left

5. Face right - roll to face up

6. Face left - roll to face up

7. Face right - exit right

8. Face left - exit left

Table 4.3: Scenarios of 8 basic movements for bed-exiting detection data collection.

4.2 Methodology

Raw videos of human actions are recorded by a Kinect sensor using NuiCapture

software from Cadavid Concepts, Inc. RGB videos and Depth videos are recorded

simultaneously. Let Ik(x, y) and Dk(x, y) denote a raw RGB image and the corre-

sponding depth image at frame k, respectively, k denotes the frame index. Both

Ik(x, y) and Dk(x, y) are 640×480 matrices. The pixel value of Ik(x, y) is the image

intensity, and the pixel value of Dk(x, y) is the distance from the camera. Thus one

RGB video clip of a human activity consisting of K frames is denoted as

I = {I1(x, y), I2(x, y), · · · , Ik(x, y), · · · , IK(x, y)},
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and the corresponding depth video clip is denoted as

D = {D1(x, y), D2(x, y), · · · , Dk(x, y), · · · , DK(x, y)}.

4.2.1 Segmented motion history image sequences

A general MHI for an RGB image sequence color-MHI (cMHI) at the kth frame

M c
k(x, y) is produced according to:

M c
k(x, y) =

 τ if |Ik(x, y)− Ik−1(x, y)| > δIth

max(0,M c
k−1(x, y)− 1) otherwise

where τ is the longest time window to be considered, δIth is the threshold value

for selecting wanted motions. However, unlike previous research works, which gener-

ate only one MHI for an entire action/video, we divide one action video into several

pieces with the same length α, and generate one MHI every α frames. In this way,

segmented cMHIs M c
k(x, y) in our approach are produced as

M c
k(x, y) =

 π if |Ik(x, y)− Ik−1(x, y)| > δIth

max(0,M c
k̃−1(x, y)− pc) otherwise

k̃ =

 1 if k = αn+ 1, n = 0, 1, 2, · · · , bKα c

k otherwise

where

π is the augmentation coefficient for pixels of the most recent motions,

δIth is the threshold value for selecting wanted motions,

pc is the fading coefficient for pixels of previous selected motion,

K is the total number of frames in a video clip,
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α is the number of frames in a cMHI generation cycle.

Thus the most useful cMHI is the last one in every cycle, which contains most motion

information in that cycle. And a segmented cMHI sequence representing an entire

video clip can be built as

Mc = {M̄ c
1 , M̄

c
2 , · · · , M̄ c

k̂
, · · · , M̄ c

dK
α
e},

M̄ c
k̂

=

 M c
k̂α

if k̂ < dKα e

M c
K if k̂ = dKα e

where k̂ is the frame index of effective MHI frames.

Parameter δIth is set to filter unwanted changes between two successive images.

Larger δIth can eliminate more noise in an MHI, which might be caused by changes

in illumination or slight camera trembling. But a defect of a large δIth is that it

might also eliminate subtle human posture changes of interest.

pc is the parameter that distinguishes the recency of motions in a cycle on an

MHI. The value of pc does not affect the classification capability of the proposed

algorithm, but it is restricted by the value of augmentation coefficient π and cycle

α, in the way

pc · α ≤ π,

or motions during the early time in a cycle cannot be recognized.

α is a time-related parameter. Since the proposed bed-exiting algorithm pro-

cesses an activity classification every time when an effective MHI is generated, which

is explained later in Section 4.4, the cycle of MHI generation, α, decides the density

of video segment classification, and therefore decides the time precision of a bed-

exiting early alarm. Smaller α can increase the time precision of the early alarm.

However, the smaller the α is, the less motion information is included in an effective
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MHI, therefore it will be more difficult for the training of HMMs. Considering the

original application of MHIs, which is static posture classification, larger α gener-

ally can ensure higher recognition rate. In addition, since α is time-related, moving

speed and camera frame rate can affect the selection of α. Different classification

results for two different choices of α will be displayed in Section 4.3.

Related previous works using MHIs focus only on the 2D RGB images, that

only cMHIs are produced. But in this way, only motions in the lateral directions

are recognized, and changes of range are totally lost. To represent a motion more

precisely, depth information should be taken into account. Inspired by Ni et al [28],

MHIs derived from depth images dMHIs are exploited, and they are divided into

two types: forward-dMHI (fdMHI), which indicates movement departing the camera

and backward-dMHI (bdMHI), which indicates movement approaching the camera.

Segmented fdMHIs in our approach are generated according to:

Mfd
k (x, y) =

 π if Dk(x, y)−Dk−1(x, y) > δDth

max(0,Mfd

k̃−1(x, y)− pd) otherwise

k̃ =

 1 if k = αn+ 1, n = 0, 1, 2, · · · , bKα c

k otherwise

Here δDth denotes the threshold value for depth images for selecting wanted

motions. Segmented bdMHIs are induced in a similar way to that of segmented

fdMHIs, with the thresholding condition substituted by Dk(x, y) − Dk−1(x, y) <

−δDth. Thus representation of a video clip by using segmented fdMHI and bdMHI

sequences are:

Mfd = {M̄fd
1 , M̄fd

2 , · · · , M̄fd

k̂
, · · · , M̄fd

dK
α
e},
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and

Mbd = {M̄ bd
1 , M̄

bd
2 , · · · , M̄ bd

k̂
, · · · , M̄ bd

dK
α
e},

where

M̄d
k̂

=

 Md
k̂α

if k̂ < dKα e

Md
K if k̂ = dKα e

Figure 4.3 shows an example of action representation by a series of cMHIs with

α = 10, K = 65. This example video is about a person exiting the bed. The first

line of Figure 4.3 exhibits some key raw frames in this RGB video, the second line

displays the segmented cMHI sequence. Figure 4.4 displays the corresponding key

depth images on the first line, fdMHIs and bdMHIs on the second and last line for

this sample video.

Figure 4.3: An example of representation of an action by segmented MHI sequences.

Figure 4.4: An example of representation of an action by segmented dMHI sequences.
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4.2.2 Hu moments

In order to extract features of segmented MHIs, eight statistic descriptors, the

Hu moments [29] hk̂, which are invariant to scale, translation and rotation, are

calculated for every MHI frame Mk̂(x, y), where k̂ is frame index of MHIs. Except

that the zeroth order Hu image moment refers to the area of an image, Hu moments

of other orders have no specific physical meaning, for they are merely mathematically

formulated to be invariant under translation, scale and rotation. Calculation of a

general Hu moment vector

h = [h1 h2 · · · h8]T

is elaborated as below.

The (u + v)th order raw images moments Guv for an intensity images M(x, y)

are computed by

Guv =
∑
x

∑
y

xuyvM(x, y).

Central moments are computed as

µuv =

∫ +∞

−∞

∫ +∞

−∞
(x− x̄)u(y − ȳ)vM(x, y)dxdy,

where

x̄ =
G10

G00
, ȳ =

G01

G00
.

Thus central moment of order up to 3 are:

µ00 = G00,

µ10 = 0,

µ01 = 0,

µ11 = G11 − x̄G01,
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µ20 = G20 − x̄G10,

µ02 = G02 − ȳM01,

µ21 = G21 − 2x̄G11 − ȳG20 + 2x̄2G01,

µ12 = G12 − 2ȳG11 − x̄G02 + 2ȳ2G10,

µ30 = G30 − 3x̄G20 + 2x̄2G10,

µ03 = G03 − 3ȳG02 + 2ȳ2G01.

Normalized central moments are defined as:

ηuv =
µuv

(µ00)
(1+u+v

2
)

where u+ v ≥ 2. Thus, eight Hu moments are computed as

h1 = µ20 + µ02

h2 = (µ20 − µ02)2 + 4µ211

h3 = (µ30 − 3µ12)
2 + (3µ21 − µ03)2

h4 = (µ30 + µ12)
2 + (µ21 + µ03)

2

h5 = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2]

+(3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2]

h6 = (µ20 − µ02)[(µ30 + µ12)
2 − (µ21 + µ03)

2]] + 4µ11(µ30 + µ12)(µ21 + µ03)

h7 = (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2]

−(µ30 − 3µ12)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2]

h8 = µ11[(µ30 + µ12)
2 − (µ03 + µ21)

2]− (µ20 − µ02)(µ30 + µ12)(µ03 + µ21)
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Data transformation from cMHI, dMHI to Hu moment vector can be expressed as

M c
k̂
⇒ hc

k̂
, Mfd

k̂
⇒ hfd

k̂
, M bd

k̂
⇒ hbd

k̂

For representing an ordinary RGB video:

Hc = [hc1 hc2 · · · hc
k̂
· · · hcdK

α
e],

and for representing an RGB-Depth video, Hu moment vectors for cMHI, fdMHI

and bdMHI are concatenated to form a feature vector of a single video frame

h3D
k̂

= [hc T
k̂

hfd T
k̂

hbd T
k̂

]T ,

and an RGB-Depth video with K frames are defined as feature matrix

H3D = [h3D
1 h3D

2 · · · h3D
k̂
· · · h3D

dK
α
e].

4.2.3 K-means clustering for vector quantization

Vector quantization is accomplished by k-means clustering as in Section 3.2.3.

Details of the k-means clustering algorithm are explained in Section 3.2.3. Feature

matrix of one single video is converted to observation sequence

Hc ⇒ ρc , and H3D ⇒ ρ3D.

4.2.4 HMM based activity classification

A similar HMM training and testing algorithm as in Section. 3.2.3 is applied

in this application, thus related concepts and processes are not duplicated here.

All video clips are divided into two groups, bed-exiting activities and rolling-on-
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bed activities. Further, each group is divided into two kinds, i.e. activity with or

without a bed sheet. HMM named “Ex” indicate bed-exiting, and HMM named

“Ro” indicates rolling-on-bed.

4.3 Experimental results of activity classification

Video clips collected in the preliminary data collection sections are used for eval-

uating the proposed activity classification approach, thus only cMHIs are extracted

for algorithm testing, and the cycle of cMHI generation is set to be α = 20. Single

round cross validation and leave-one-subject-out approaches are applied to evalu-

ate the capability of proposed algorithm to discriminate bed-exiting activities from

rolling-on-bed activities.

Single round cross validation

For cross validation, covered activities and uncovered activities are mixed to-

gether in both models “Ex” and “Ro”. Among each model, 75% of the given activ-

ities are randomly selected to be used as training sequences, and the rest 25% are

testing sequences, which is illustrated in Table 4.4. The test result is displayed in

Table 4.5.

Bed-exiting Rolling-on-bed

132 40

Training Testing Training Testing

99 33 30 10

Table 4.4: Selection of training and testing data

Confusion matrix shows a relatively good result, that all activities are correctly

classified, thus the recognition rate is 100%.
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Number of activities Ex Ro

Ex 33 0

Ro 0 10

Table 4.5: Confusion matrix of cross validation approach.

Leave-one-subject-out

In this approach, each time, performances of only one subject are selected as test-

ing data for HMMs, and performances of the rest 14 subjects are chosen as training

data. Here all activities are partitioned into “covered activities” and “uncovered

activities” in advance. Thus we build up 4 HMMs in total: 1) “Cov-Ex” indicates

covered bed-exiting, 2) “Cov-Ro” indicates covered rolling-on-bed, 3) “Un-Ex” in-

dicates uncovered bed-exiting, and 4) “Un-Ro” indicates uncovered rolling-on-bed.

Covered activities are trained and tested separately from the uncovered ones. This

approach was applied to every subject, hence we obtain 15 pairs of confusion ma-

trices (covered and uncovered pairs), thus all the video clips are tested/classified by

HMM. Finally we add up all confusion matrices separately for the two experiment

groups, and the result is shown in Table 4.6.

Activities Cov-Ex Cov-Ro

Cov-Ex 59 1

Cov-Ro 1 24

Activities Un-Ex Un-Ro

Un-Ex 64 8

Un-Ro 2 13

Table 4.6: Confusion matrix of leave-one-subject-out approach.

Recognition rate of bed-exiting activities with a bed sheet on is 98%, and 88.9%

with a bed sheet off. Here, an interesting phenomenon is observed, that recognition

rate with a bed sheet on is higher than that with a bed sheet off. Explanations of

this phenomenon will be discussed in Section 4.5.
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Precision and recall and the F1 score of each of the four models with α = 20 are

presented in Table 4.7. An average F1 score of 0.90 is reached with a lowest 0.72

and a highest 0.98.

Cov-Ex Cov-Ro Un-Ex Un-Ro

Precision 0.98 0.96 0.97 0.62

Recall 0.98 0.96 0.89 0.87

F1 score 0.98 0.96 0.93 0.72

Table 4.7: Precision, recall and F1 score of each model for bed-exiting with α = 20.

Effect of choice of α on activity classification

As discussed earlier in Section 4.2.1, choice of α might affect the performance

of classification. To observe this, results of activity classification with α = 5 are

demonstrated in Table 4.8 for comparison with results shown above with α = 20.

Activities Cov-Ex Cov-Ro

Cov-Ex 56 4

Cov-Ro 2 23

Activities Un-Ex Un-Ro

Un-Ex 52 20

Un-Ro 0 15

Table 4.8: Confusion matrix of the leave-one-subject-out approach.

Recognition rate of covered bed-exiting activity is 93.3%, covered rolling-on-bed

activity 92.0%, uncovered bed-exiting activity 72.2%, and uncovered rolling-on-bed

activity 100%. In general, results with α = 5 are similar to that with α = 20,

in which covered bed-exiting activities are better recognized than uncovered ones.

But recognition rate of each model (except model Un-Ro) drops with smaller α,

especially for the uncovered bed-exiting model. This result is consistent with our

inference in Section 4.2.1.
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Precision and recall and the F1 score of each of the four models with α = 5 are

presented in Table 4.9. The average F1 score is 0.82 with a lowest 0.6 and a highest

0.95. An obvious drop of F1 score compared with that with α = 20 is observed.

This also supports our inference about the effect of value of α.

Cov-Ex Cov-Ro Un-Ex Un-Ro

Precision 0.97 0.85 1.00 0.43

Recall 0.93 0.72 0.72 1.00

F1 score 0.95 0.88 0.84 0.60

Table 4.9: Precision, recall and F1 score of each model for bed-exiting with α = 5.

4.4 Experimental result of bed-exiting prediction

The classification results demonstrated above reveal the possibility of proposed

algorithm to achieve bed-exiting prediction.

4.4.1 Introduction of prediction curve

Referring to Section 4.2.4, activity classification is achieved by calculating like-

lihood probabilities of a particular observation sequence generated by given HMMs,

and selecting the HMM with the highest likelihood probability. Instead of using

the entire observation sequence, if we compute the likelihood probability of every

subset of the sequence (subsets are defined as sequences from the beginning to every

observation) to form a probability curve, and observe and compare the tendency

of curves given certain HMMs, we can achieve prediction of a bed-exiting activity,

further to issue an early alarm. An observation sequence representing a video clip

with K frames is denoted as

ρ = [ρ1 ρ2 · · · ρk̂ · · · ρdKα e]
T ,
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and the HMMs for bed-exiting and for rolling-on-bed activities are denoted as ΛEx

and ΛRo respectively. Likelihood probability curve of ρ given ΛEx and ΛRo can be

generated by;

fEx(k̂, ρ) = logP (ρ1, ρ2, · · · , ρk̂|ΛEx),

and

fRo(k̂, ρ) = logP (ρ1, ρ2, · · · , ρk̂|ΛRo),

where

k̂ = 1, 2, · · · , dK
α
e.

To identify which model a subset belongs to, we compute the “prediction curve” as:

g(k̂, ρ) = log
P (ρ1, ρ2, · · · , ρk̂|ΛEx)

P (ρ1, ρ2, · · · , ρk̂|ΛRo)

= fEx(k̂, ρ)− fRo(k̂, ρ)

If g(k̂, ρ) > 0, it means subset [ρ1 ρ2 · · · ρk̂] is classified as a bed-exiting activity,

otherwise it is classified as a normal rolling-on-bed activity. Figure 4.5 gives an ex-

ample of likelihood probability curve on the left and prediction curve on the right for

an bed-exiting activity ρEx. In the likelihood probability curve, red line represents

fEx(k̂, ρEx), and green represents fRo(k̂, ρEx). For contrasting, Figure. 4.6 gives an

example of these 2 types of curves for an rolling-on-bed activity ρRo. Frame rate

of raw video of these two samples is ω = 25 FPS, and the cycle of MHI generation

α = 5. Time interval between 2 successive MHI frames ∆t can be calculated by

∆t =
α

ω

In Figure 4.5, the prediction curve strides over zero line from negative to positive,

and keeps rising, which means that the possibility of the testing sequence being a

bed-exiting activity becomes higher with time. In contrast, in Figure 4.6 the overall
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Figure 4.5: Likelihood probability curve and prediction curve of a bed-exiting ac-
tivity.
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Figure 4.6: Likelihood probability curve and prediction curve of a rolling-on-bed
activity.

trend of the prediction curve is going down beneath the zero line, but it can be

noticed that there is a point on this curve at the beginning jumps over the zero

line. This is because at the beginning of the testing process, behaviour of testing

sequence hasn’t been fully handled by the HMM, thus the first few points in a

prediction curve cannot be used for prediction. Criterion to issue an early alarm

should be a continuous presence of N positive points on a prediction curve. And

how many positive points should be count (value of N) will depend on the timing
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requirement of prediction and the required confidence level of activity classification.

Since for the same α, larger N can increase the classification confidence level but

will shorten the early alarm time.

4.4.2 Experimental results on early alarm time evaluation

In this section, we choose N = 4 to evaluate how early a prediction can be

issued by our proposed algorithm. The early prediction duration is defined by its

start point on a prediction curve and the end point in the video, and definition of

start and end point is elaborated as below

Figure 4.7: Example of the start point for a bed-exiting prediction.
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Start point The Nth positive point of the first segment on a prediction curve,

which consists of N continuous positive points. The start point corresponds

to the MHI frame with frame index K̂S , and corresponds to the raw RGB

image with frame index KS .

End point The frame in raw video, in which the person just moves to the position

to sit on the edge of a bed. And the end point corresponds to the raw RGB

image with frame index KE .

Figure 4.8: Example the end points for a bed-exiting prediction.

The early alarm time Ta is calculated by:

Ta =
KE −KS

ω
=
KE − K̂S · α

ω
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Figure 4.9: Full prediction curve of the sample video.

Figure 4.7 and 4.8 provide an example of the start and end points for a video with

ω = 25 FPS, α = 5 and N = 4. And full prediction curve of this sample video is

shown in Figure 4.9.

The red point on Figure 4.7 represents the start point, and indicates that an

early alarm of bed-exiting can be issued at this point. And the second red point on

Figure 4.8 represents the end point, which means the bed-exiting activity ends at

this point. Full prediction curve of this sample video is shown in Figure 4.9. Early

alarm time for video in Figure 4.9 is

Ta =
115− 13× 5

25
= 2.00s.

More prediction curves for different video samples of different volunteers are

demonstrated in Figure 4.10, with Ta = 3.76s , 3.28s and 1.56s respectively. The

prediction curves for all bed-exiting activities in the preliminary data collection

section are plotted, and 107 of them provide feasible prediction, and the average

early alarm time is T̄a = 2.48 seconds.

42



Figure 4.10: Sample bed-exiting prediction curves.
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4.5 Discussion

Regarding the activity classification results with or without a bed sheet in Sec-

tion 4.3, in our original presumption, bed-exiting activities without a bed sheet

might be easier to detect, because more motion features of human trunk, legs and

arms can be recognized, and this could be great help to distinguish a bed-exiting

activity from a rolling-on-bed one. Experimental results explode the original pre-

sumption, and we come out with 3 possible explanations for this:

1. Bed-exiting activities with a bed sheet all, or at least most of them, share

a common movement, that is removal of the sheet before exiting the bed.

And the change from on-bed movements under a sheet before the removal to

movements without a sheet after the removal can be easily detected by MHIs.

Thus, movement sequences of removing a bed sheet might be a critical element

to detect a bed-exiting activity.

2. Moving tendency of uncovered body parts, head and shoulder, is strong enough

a motion feature to estimate a person’s motion, and a bed sheet helps filtering

out the unnecessary motion features of lower body.

3. Lengths of videos about activities with a bed sheet are generally longer than

that without a sheet. And this provides longer training sequences for HMM,

and longer decision time in the testing process.

Regarding the effect of different values of MHI generation cycle α, the results is

consistent with our inference in Section 4.2.1, and illustrate that choice of α need

to trade off between higher time precision in prediction and higher recognition rate

of bed-exiting activities.
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Chapter 5

Conclusion and future work

5.1 Conclusion

This thesis presents human motion analysis for fall detection and estimation

based on two different approaches. All data collections are completed by the inex-

pensive Kinect sensor, which can record human skeletal images, RGB images and

depth images.

The first approach relies on the “skeleton viewer” of Kinect sensor to obtain

human motion features. This approach is applied in a general fall detection project.

Seven HMMs corresponding to seven innovative motion classes are trained to dis-

criminate different fall activities and non-fall activities. Simulated falls in a labora-

tory environment are used for algorithm testing. Experimental results verifies the

feasibility of this approach for the general fall detection application, that an average

recognition rate of 80% is achieved among different motion classes, and a recognition

rate of 95% is achieved for fall activities.

The second approach is the segmented MHI sequence based approach, which is

applied for bed-exiting detection. Two HMMs, bed-exiting and rolling-on-bed, are

built using observation sequences derived from MHIs. We use both single round cross
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validation and leave-one-subject-out to test the capability of this approach for dis-

crimination between bed-exiting and rolling-on-bed activities, and both approaches

generate promising results. Recognition rate of bed-exiting activity is 100% for the

single round cross validation, and 98% with a bed sheet on, 88.8% with a bed sheet

off for leave-one-subject-out. To observe the effect of the cycle duration parameter

α, we compare the classification results with different values of α. Then we propse

and investigate the prediction curve to explore capability of proposed algorithm for

an early alarm of a bed-exiting activity, and evaluate how early an alarm can be

issued. Average early alarm time with α = 5 can achieve 2.48 seconds.

The proposed two motion estimation approaches are designed for real-time fall

detection and bed-exiting detection applications. The data processing and testing

mentioned in this thesis runs on a PC in MATLAB. For the fall detection application,

coordinates of human body joints are exported once they are detected, which is not

a concern for in real-time implementation. The establishment of feature database

and training of HMM models are conducted off-line before they are applied into

real-time application. The real-time implementation considerations need to address

the issues of dimensionality reduction, vector quantization and HMM test for raw

measurement data. For the bed-exiting application, generation of MHIs and compu-

tation of Hu moments require only arithmetic of addition, subtraction, comparison

and multiplication, and these algorithms are easy to realize for real-time applica-

tions. Similar to the fall detection approach, feature database and HMM models

will be prepared off-line.
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5.2 Future work

5.2.1 RGB-Depth fusion for head-shoulder tracking

Based on the discussion on value of α in Section 4.3, we notice that pure motion

features of head-shoulder movement could be a good studying material. For bed-

exiting we propose a 3D head-shoulder tracking algorithm by combining RGB and

depth images recorded by the Kinect sensor. This algorithm can plot 3D trajectory

of head-shoulder for movement tendency estimation.

Feature extraction by histogram of oriented gradients descriptors

Head-shoulder feature extraction is achieved only on RGB images by histogram

of oriented gradients descriptors which were first introduced by Dalal and Triggs

in [30]. And a head-shoulder detection model is trained by a set of positive and

negative training data. For initial algorithm testing, we use images of one bed-

exiting movement from one subject. A rectangular region containing the head and

shoulder is manually selected in every frame as positive training data, and the rest

area of each frame are used as negative training data. Then the trained model is

used to detect head-shoulder region on the training images themselves.

Head-shoulder tracking by data association

By actuating the head-shoulder detection, several regions might be detected in

a frame due to false alarms. A very basic data association procedure is applied to

associate the nearest detected region in consecutive frames and to filter out those

false alarm regions.
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RGB-D fusion

Once the head-shoulder regions in every frame are correctly detected and suc-

cessfully tracked through the entire video, center point of a detected region on the

RGB image, which corresponds the point of interest, is chosen as the point of in-

terest A(xa, ya). Azimuth angle ε(A) and altitude angle ω(A) of pixel A(xa, ya) are

roughly calculated with respect to the center point of the entire image C(xc, yc) =

C(320.5 , 240.5). Since viewing angle of a Kinect sensor is 43o vertical by 57o

horizontal, image size is 640× 480, ε(A) and ω(A) are calculated by

ε(A) = (xa − xc)
57o

640
,

ω(A) = (ya − yc)
43o

480
.

By associating point of interest A(xa, ya) on RGB image with the corresponding

point AD(xDa , y
D
a ) on the corresponding depth image, we can obtain distance from

the point of interest in real space to the Kinect sensor d(A) in millimeters. Com-

ing to this step, we obtain the rough 3D information of the point of interest as

[ε(A) ω(A) d(A)], and then by connecting all points of interest in every frame we

can achieve the moving trajectory of head-shoulder. Figure. 5.1 displays several

image results of the proposed algorithm. The image on the left side demonstrates

the head-shoulder region in the RGB images with value of [ε(A) ω(A)] on top of the

region, and image on the right side demonstrates the head-shoulder region on depth

images with value of d(A) on top of the region.

The basic object of using RGB-D images for location the head-shoulder area

has been reached in current work, which lays the foundation of future improvement,

refinement and large scale testing. Besides, once this methods is accomplished, it

can be exploited not only in head-shoulder moving tendency estimation, but also in

movement estimation of other human body parts.
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Figure 5.1: An example of head-shoulder tracking.
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5.2.2 Other future work

1. Data fusion of cMHIs and dMHIs: As introduced in Chapter 4, dMHIs can

provide information on changes in range, we hope to replenish this information

to combine with cMHIs, aiming at enhancing classification and prediction

capability.

2. Real-time implementation: As fall detection and bed-exiting prediction are

both time-critical application, the realization of real-time implementation for

proposed two approaches is another desired research topic for our future work.
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