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Abstract

Human action recognition from visual data has remained a challenging problem

in the field of computer vision and pattern recognition. This dissertation introduces

a new methodology for human action recognition using motion features extracted

from kinematic structure and shape features extracted from surface representation

of the human body. Motion features are used to provide sufficient information

about human movement, whereas shape features are used to describe the struc-

ture of silhouette. These features are fused at the kernel level using Multikernel

Learning (MKL) technique to enhance the overall performance of human action

recognition. In fact, there are advantages in using multiple types of features for hu-

man action recognition, especially if the features are complementary to each other

(e.g. kinematic/motion features and shape features). For instance, challenging

problems such as inter-class similarity among actions and performance variation,

which cannot be resolved easily by using a single type of feature, can be handled

by fusing multiple types of features.

This dissertation presents a new method for representing the human body sur-

face provided by depth map (3-D) using spherical harmonics representation. The

advantage of using the spherical harmonics representation is to represent the whole
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body surface into a finite series of spherical harmonics coefficients. Furthermore,

these series can be used to describe the pose of the body using the phase informa-

tion encoded inside the coefficients. Another method for detecting/tracking distal

limb segments using the kinematic structure is developed. The advantage of us-

ing the distal limb segments is to extract discriminative features that can provide

sufficient and compact information to recognize human actions. Our experimental

results show that the aforementioned methods for human action description are

complementary to each other. Hence, combining both features can enhance the

robustness of action recognition. In this context, a framework to fuse multiple fea-

tures using the MKL technique is developed. The experimental results show that

this framework is promising in incorporating multiple features in different domains

for automated recognition of human actions.
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Chapter 1

Introduction

Human action recognition from visual data has been an active research topic in

computer vision and pattern recognition. Particularly, automated recognition of

human activities from sequence of images has been one of the most active research

areas in this field. There are many promising applications such as automated

visual surveillance, human-robot interaction, video retrieval, and motion-based

human identification for automated human action recognition.

In the past decades, significant amount of research has been done in the area of

human action recognition using either shape features or motion features extracted

from sequence of 2-D images. According to the survey of Moeslund et al. [8],

human movement can be divided into three categories: limb action, whole-body

action, and activity. The limb action is a movement that can be described at the

limb level. The whole-body action consists of a set of human limbs movement that

can be described at the whole-body movement for a short period. The activity
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contains a number of subsequent whole-body actions in a cycle which gives an

interpretation of the movement that is being performed in this cycle. For example,

”moving the right leg forward” is a limb action, and ”walking” is the whole-body

action because it consists of a set of limbs actions. While, ”fighting” is an activity

that contains a number of subsequent actions such as standing, jumping, running,

etc. In this dissertation, we adopt this classification in recognizing limb actions

and whole-body actions.

Based on Moeslund et al. [8] classification, limb actions are classified as primi-

tive actions that can be used to describe complex actions (i.e., whole-body action

and activity). One of the challenges of detecting/recognizing limb actions is to

accurately detect human body limbs and then describe body motion using the

detected limbs as Poppe [9] reported in his article.

Most of the early developed methods for human action recognition are mainly

concentrated on sequence of 2-D images captured by regular RGB cameras. This

is due to the fact that the surveillance and security systems utilized regular 2-D

cameras for video acquisition. Recently, developed depth sensors such as Kinect

have opened up new possibilities of dealing with 3-D data. Thus, a great attention

is being paid to extract 3-D spatio-temporal features based on sequences of depth

information using Kinect sensor to describe human action. The idea behind using

3-D spatio-temporal features is to detect/describe the changes in the body shape

based on dominant motions in body limbs. These features mainly focus on the

2



representation of space-time shapes. Consequently, the main concept is to recog-

nize human action by detecting/describing the changes in the body limbs either by

detecting the 3-D motion of body limbs or through measuring similarities among

different 3-D space-time shapes.

In the last two years, the research in human action recognition based on se-

quence of depth maps has motivated with the release of the Kinect (RGBD sensor)

for windows SDK [10], which provides the estimation of the 3-D joint positions.

Although the RGBD sensors produce a better quality of estimating 3-D joint po-

sitions than those estimated from RGB sensors, the estimated 3-D joint positions

are still noisy and fail when there are occlusions between human limbs such as two

limbs crossing each other. In addition, the 3-D joint positions alone are insuffi-

cient to distinguish similar actions such as ”drinking” and ”eating”, as illustrated

Figure 1.1. The 3-D joint positions for two similar actions ”drinking” and ”eating”
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in Figures 1.1. Therefore, extra informations need to be included in the feature

level to enhance the recognition rate. In this context, we developed a method that

can be used to fuse multiple types of features in order to boost the recognition

rate for human action recognition. Hence, this dissertation presents two sets of

features based on surface representation and kinematic structure for human action

recognition. These two sets of feature are fused using MKL technique at the kernel

level to enhance the recognition rate for human actions. The advantage of using

the MKL is to improve the generalization performance since a single kernel may

not perform well for different types of features.

1.1 Motivation

In many surveillance situations such as access control and parking lot monitoring,

it is necessary to not only know if humans are present but more importantly what

they are doing. Therefore, the research topic is motivated by many applications

such as surveillance systems, video analysis, human-robot interaction and a variety

of systems that involve interactions between human and computerized machines

such as human-computer interfaces.

In general, human action recognition has a wide range of potential applications

in our life. Some of these potential applications are summarized in the following

points:

• Visual surveillance in many security areas, such as banks, department stores,
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parking lots, and borders, have strong need for automated surveillance sys-

tems.

• Computer user interface is an advanced user interface in which human motion

analysis is used to interpret the control command.

• Abnormal behaviour detection used to analyze the behaviours of people and

determine whether their behaviours are normal or abnormal.

• Computer games to play video games without controller devices.

• Human motion analysis has attracted much attention of researchers in the

medical field in order to help elder people.

• Sign-language translation to help handicapped people.

In addition, the need to improve automated visual surveillance using a monoc-

ular view has attracted the attention of many researchers. Recent advances in

imaging technology, such as Kinect sensor, have made it possible to capture real

3-D data and inexpensively using one sensor. This technology has attracted the

Figure 1.2. A sequence of depth maps for Tennis Serve action.
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attention of many researchers, and given the computer vision community the moti-

vation to use real 3-D information of the scene in human action recognition field. It

has given the computer vision community the opportunity to acquire depth maps

with a good resolution 320 × 240 pixels. As we can see in Figure 1.2, the depth

map provides additional information as 3-D data which is expected to be helpful in

distinguishing poses of silhouettes. Furthermore, human action recognition based

on 3-D spatio-temporal features find more applications in various fields with the

increase in the computational power of modern computers. Therefore, with the

availability of RGBD sensors and modern computers, most of the recent research

are motivated to utilize the depth maps as 3-D data source to design a robust 3-D

spatio-temporal features.

Another motivation is that the depth map is robust to the change in color,

texture and illumination. Hence, researchers are motivated to utilize 3-D points

of the depth map to recognize human actions. These 3-D points can be used to

describe the surface of human body shape as set of 3-D features. In this disserta-

tion, human body surface provided by depth map is utilized to design a robust 3-D

shape features to describe human action. These 3-D features are typically more

invariant to illumination and texture compared with other features (e.g., SIFT,

SURF) because of depth map properties.
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1.2 Challenges

Automatic human action recognition is still one of a challenging task in the field

of computer vision due to variations in several factors such as performance, envi-

ronment and view angles variations. Furthermore, segmentation problems cause

action recognition algorithms fail to recognize the correct action because human

action recognition algorithms rely on segmenting the whole body.

In general, some of these challenges that influence human action recognition

still need further research are summarized in the following points. For further

detail, we refer our readers to the surveys by Poppe [9] and Moeslund et al. [8].

1.2.1 Performance variations

There are variations in performing actions among most people. Each actor per-

forms an action in his/her own style and in different rate compared with other

actors. For example, Waving action is different in stride length and rate among

actors. However, a robust method for human action recognition should be able to

generalize performance variations among one action and distinguish among actions

for different actors. Additionally, recognizing a large number of actions is more

challenging because of increased similarity among the actions.
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1.2.2 Environment variations

The most source of variation is the environment variation where the action per-

formance takes place. It is very challenging to detect the location (ROI) of the

person in cluttered or dynamic environments. Moreover, lighting conditions or il-

lumination of the environment can further influence the appearance of the moving

person. While, a static environment less challenging than other environments to

detect the location (ROI) of the person and represent the motion of the actor.

1.2.3 View-angle variations

Observing the same action from different view angles can lead to different image

observations and thus to a different perceived action. In this sense, multiple cam-

eras can alleviate this issue and a occlusion issue by combining and synchronizing

all image observations from different views into a consistent scene. But, because

of the synchronization problem, the challenge here becomes harder than using one

camera to capture the action. Moreover, moving the camera increase the complex-

ity of localizing the moving actor in the scene, especially when the backgrounds

are dynamic. All these challenges should be addressed explicitly or fixed before

the action take place in order to recognize human action.
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1.2.4 Temporal variations

An important effect on the temporal variations is the rate of performance while the

action is recorded, particularly when the features are extracted to represent the

action. Because of the rate variations for an action, it will be more challenging to

know the beginning and the ending of the action. Consequently, a robust method

for human action recognition should be invariant to different rates of execution

and be able to generalize rate variations among different actors.

1.3 Dissertation objectives and contributions

By considering the above challenges and issues for human action recognition, we

propose a framework that can generalize the intra-class variability among actors.

Furthermore, the proposed framework can distinguish the inter-class similarity

among actions in order to enhance the recognition rate of action classification.

The goal of this dissertation is to introduce a new methodology for human

action recognition using kinematic structure and surface representation of human

body. The first scenario of our work is based on kinematic structure of human body

to extract motion features which are employed for action classification. For this,

existing approaches to describe motion features in videos are investigated and new

features based on kinematic structure are developed. The motion features that

can represent the motion of the distal limb segments are developed. These fea-
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tures are used to describe the motion of human body in the spatial domain. The

idea behind using the distal limb segments is to convert the kinematic structure

into a discriminative features that can describe the motion of human body. The

second scenario of this work introduces a new method based on the surface rep-

resentation of human body to extract shape features which describe structure of

the silhouette. The shape features are used to describe the human body shape in

the frequency domain using spherical harmonics representation. These two sets of

features are fused at the kernel level to enhance the overall performance of human

action recognition using MKL technique. We summarize the main contributions

of this dissertation as follows:

• Reduction of the kinematic structure to the distal limbs only for action recog-

nition. Our key observation is that the change in positions of the end points

of distal limb segments can be utilized to represent the human movement as

motion features.

• 3-D spatio-temporal features based on spherical harmonics representation

for human action recognition is presented. By representing the depth map

of the silhouette in the spherical harmonics domain, the spherical harmonics

coefficients can describe the structure of the human body as a set of shape

features.

• Introducing a framework that can integrate multiple features in different

domains for recognizing human action. These different type of features are

10



fused in one kernel matrix using MKL technique in order to enhance the

classification performance.

• The proposed framework has the ability to describe the human-object in-

teractions using kinematic structure and surface representation of human

body. Also, the proposed framework is evaluated on two challenging datasets:

MSR-Action 3-D dataset [11] and Daily Activity 3-D dataset [12]. Our exper-

imental results show a promising direction in incorporating multiple features

to enhance the classification performance.

1.4 Dissertation outline

The remainder of this dissertation is organized as follows: In Chapter two, we

present a review of related work for human action recognition in two dimensional

(2-D) based methods and three dimensional (3-D) based methods. Chapter three

explains a general overview of the different techniques used in fusion. Particularly,

a feature level fusion for the task of human action recognition using MKL tech-

nique is presented in more detail. Chapter four presents a 2-D based approach

for detecting/tracking distal limb segments using kinematic structure of human

body created from visual data. Furthermore, the motion features for human ac-

tion recognition with the experimental results are presented. Chapter five presents

a 3-D based approach for human action recognition based on the surface of hu-
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man body using spherical harmonics representation with the experimental results.

Chapter six presents our multi-modal system for human action recognition using

MKL technique. We provide detailed procedures of extracting 3-D spatio-temporal

features based on kinematic structure and surface representation of human body,

and fusing multiple features at the kernel level using MKL technique. In addi-

tion, we present the experimental results on publicly available data sets. Finally

Chapter seven presents a conclusion of our work and directions for possible future

works.
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Chapter 2

Related Work

In this chapter, we present an overview of previous related works for human ac-

tion recognition. We start by reviewing the literature of 2-D based methods (i.e.

sequence of RGB images). Afterwards, we review related works for 3-D based

methods which are based on a sequence of depth maps for human action recogni-

tion. For further detail, we refer our readers to the following thesis’s and surveys

Klaser [13], Niu [14], Weinland et al. [15], Poppe [9], and Moeslund et al. [8]

which are relevant to our work on generic action and activity recognition as well

as motion analysis:

2.1 2-D based methods

According to the surveys by Poppe [9] and Moeslund et al. [8], most of the existing

methods can be broadly classified into three categories:
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• Human model based methods which employ 3-D (or 2-D) human model to

recognize the action through the pose and the movement of human body

parts.

• Holistic methods which use the knowledge about the localization and the

structure of silhouettes in video to recognize the human action.

• Local feature methods which are entirely based on multiple local regions in

each frame. These local regions are used to extract local features to recognize

human actions. These features are combined together for the whole video to

create an action descriptor.

2.1.1 Human model based methods

Human model based methods recognize actions by employing either human limbs

movements, trajectories of joint positions, or landmark points on the human body

parts. Recently, due to the advances in computer vision algorithms, marker-less

motion capture systems using a monocular view have attracted the attention of

many research groups [16, 1, 2, 17, 18, 19]. For instance, Ali et al. [16] applied

skeletonization to silhouettes to obtain 2-D stick models, and their main joint

positions are connected to joint trajectories. A sequence is represented by a set of

chaotic invariants of these trajectories, and classified based on exemplars with a

kNN-classifier. In the method proposed by Althloothi et al. [19], skeleton model,

which employing information of human body parts as well as movements, were
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fitted into silhouettes to capture the positions of distal limb segments (i.e. arms,

legs and head). The positions of distal limb segments were used as features. Then,

Gaussian mixture models were used to model the spatio-temporal distribution of

the distal limb segments over the period of an action.

Since the detection of body parts is a difficult problem in itself, other approaches

are used to model the action based on set of points along the contour of the

silhouette. For instance, Chen et al. [1] and Fujiyoshi et al. [20] developed

silhouette-based approaches. They proposed a star skeleton representation based

on the shape geometry of the silhouette (contour) to recognize human action. They

detected the extremities of the contour with respect to the centroid and assumed

that these points represent the head, hands, and feet. The center of mass of a

human silhouette and extreme points corresponding to extreme contour points are

detected as local peaks to represent the body as a single star.

Figure 2.1. The star skeleton result (Chen et al. [1]).

In order to accurately detect extreme points for human body, Yu and Aggarwal

[2] proposed a two-star skeleton representation by adding the highest contour point

as the second star, as shown in Figure 2.2. Two sets of local peaks are estimated

to find more precise extreme points. This work was modified later to variable star
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skeleton by Yu and Aggarwal [17]. The variable star skeleton was proposed to

improve the accuracy of finding extreme points. They first constructed a medial

axis from the human body contour. Then, they treated all junction points of the

medial axis as stars. For each star, they generated a set of extreme points; each

extreme point was processed according to its robustness, visibility, and proximity

to its neighbor.

Figure 2.2. Two star skeleton (Yu and Aggarwal [2]).

Another example is the work of Chun et al. [18]. They proposed 3-D star spatio-

temporal pattern based on the shape boundary information of the human posture

using eight projection maps from different views. They detected the extremities

of the silhouette with respect to the centroid as a shape features. They assumed

that these extremities represent the head, hands, and feet. They accumulated

the motion history of these features in order to create spatio-temporal pattern.

Although a star shape is simple and fast for computation, its accuracy for detecting

limbs needs further improvement. The results in these methods remain limited to

constrained video data and can not be applied in a realistic video because the
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segmentation and localization of body parts in 2-D video still a difficult problem

in itself.

2.1.2 Holistic methods

Holistic methods proceed in a top-down fashion: First, the whole body of person

is localized in the ROI which is usually obtained through tracking or background

subtraction. Then, the ROI is encoded in order to create an action descriptor that

can describe human body movements. Consequently, the action descriptor is learnt

via a global body movements without any notion of body parts. In other words,

Holistic methods use global features such as optical flow, silhouettes structure or

edge maps to represent the action descriptor trough number of frames in video. All

these features (global features) are sensitive to partial occlusions and view angle

variations because global features constrain on the structure of the whole body. To

overcome these issues, multiple images from different view angles can be utilized

to create a complete structure of human body (3-D data), or by using grid-based

approaches which can be used to divide the observation into cells spatially [9].

In general, Holistic methods are based on global features for the whole body

structure and do not require the localization of body parts. Most of existing auto-

matic Holistic methods which are based on sequence of 2-D images can be catego-

rized into two main approaches; appearance-based approaches and silhouette-based

approaches.
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Appearance-based approaches [5, 21] utilize the intensity of pixels or color

configuration within the whole body to recognize human action. These approaches

are significantly affected by the variances of clothing and body postures. In the

silhouette-based approaches [3, 22, 23, 24, 25, 4], the whole body is located using

the internal points of the silhouette or external points that can be detected along

the contour of the silhouette. The key idea is that, the global dynamics of a

silhouette via number of frames are utilized to recognize the human action.

In the past decades, the silhouette-based approaches using 2-D videos, which

are captured by regular RGB camera, are widely used in human action recognition.

In this context, there are many different approaches that are based on statistical

shape analysis of silhouette as a function of time. The shape analysis aims to

describe and locate the changes in human body shape. For instance, Blank et al.

[3] analyzed space-time volume of silhouettes to create shape features for human

action recognition, as illustrated in Figure 2.3. Cohen and Li [22] presented a 3-D

spatio-temporal features for classifying and identifying human posture using SVM.

They proposed a global features that are invariant to rotation and translation.

The main advantage of their approach is in its ability to capture human shape

variations allowing for the identification of body postures, but it needs to use

multiple cameras to create 3-D spatio-temporal volume. Another example is the

work of Yilmaz and Shah [23]. They track the contour points of a human over

time to construct spatial-temporal volume, which can be treated as 3-D object
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in a space-time volume. Then, they analyze spatial-temporal volume by using

different geometrical surface properties to describe the action.

Figure 2.3. Space-time volumes for action recognition based on silhouette information
(Blank et al. [3])

Recently, Venkatesha and Turk [24] defined a shape descriptor for interest

points on the detected contour points and built an action descriptor using a Bag of

Features (BoF) method. They used the temporal relation among matching inter-

est points across successive video frames to train/classify the action in the scene.

The limitation of this method is the difficultly to implement one-to-one matching

among corresponding points on the contour.

Yilmaz and Shah [25] represented the action as a spatio temporal volume de-

fined on structure of contour across successive video frames. The action volume

described by analyzing the differential geometry of the surface volume. The lim-

itation is an exhaustive search required for finding the correspondences between

two volumes to classify the action.

Yan et al. [4] presented an approach called Action Feature Model (4D-AFM)
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from arbitrary views using four dimension (x, y, z, t) as shown in Figure 2.4. The

modeling process starts with reconstructing 3-D surface volume. Then, spatio-

temporal action features are computed in each view by analyzing the differential

geometric surface properties of spatio-temporal volumes. Actions are recognized

based on the scores of matching action features. Although 4D-AFM approach

achieved high recognition rate, it had many limitations such as multi-cameras,

synchronization and high computational complexity.

Bobick and Davis [5] use the idea of temporal templates for action recognition.

They used both the motion energy images (MEI) which are binary masks that

indicate regions of motion, and motion history images (MHI) which weight these

regions according to the time when they occurred ( higher weight for more recent

motion), as illustrated in Figure 2.5, to represent the action.

Figure 2.4. Illustration of constructing 4D-AFM. The second row shows the locations
of the spatio-temporal action features on the surface of STVs. These action features are
mapped to the 4D action shape as shown in the third row (Yang et al. [4])
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Figure 2.5. Bobick and Davis method for computing motion history images (MHI) and
motion energy images (MEI) (Bobick and Davis [5]).

2.1.3 Local feature methods

Local feature methods are used to describe an actor as a collection of independent

local descriptors. Local feature methods are obtained in a bottom-up fashion:

First, spatial-temporal interest points are detected. Then, local patches or regions

are calculated around these interest points. Afterwards, the local patches are com-

bined into a final image representation. Local feature methods are less sensitive to

noise and partial occlusion compared with Holistic methods because Local feature

methods focus only on relevant interest points and the correlation among them.

In contrast to the Holistic methods, the local feature methods [26, 27, 28, 29, 30,

6] capture characteristic shape and motion information for a local region in video

while Holistic methods capture the global body movements for a whole region.

Also, local feature methods describe the actor as a collection of patches. These

patches which correspond to interesting motions are sampled at space-time interest

points where the local neighbourhood has a significant variation in both spatial

and temporal domain. The idea of local feature methods is to collect the interest
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points as spatio-temporal features which are distinctive and descriptive enough the

classify human actions. Therefore, the interest points detection approaches play

an important role in local feature methods in order to classify the action. A key

advantage of local features based methods is their flexibility with respect to the

type of video data and does not require labeling or detecting body parts. Also, it

is less sensitive to viewpoint, noise, and occlusions [8].

An example of local feature methods is the work done by Laptev and Lindeberg

[26]. They extended 2-D Harris corner detector to 3-D as (x, y, t) and utilized it

to detect points with high intensity variations based on velocity changes. This

detector was capable to produce distinctive interest points to recognize human

actions. Another example can be found in Efros et al. [27]. In their work, they

build their motion descriptors using optical flow that relies on spatio-temporal

correlations between two consecutive frames. Then, they matched the motion

descriptors to a database of images to report the result based on the distance.

In the related work by Scovanner et al. [28], the SIFT descriptor [31] was

extended to 3-D SIFT. The 3-D SIFT descriptor, which accurately captures the

spatial-temporal features of the video data, is a spatio-temporal histogram-based

representation of image patches. The 3-D SIFT descriptor used to recognize human

action with a bag of words paradigm. Wu et al. [29] proposed an image repre-

sentation called SIFT Motion Estimation (SIFT-ME). SIFT-ME is derived from

SIFT correspondences in a sequence of video frames and adds tracking informa-

22



tion to describe human body motion in both spatial and temporal domain. They

utilized SIFT parameters for translation and rotation to describe 2-D human body

motion with SIFT-ME as spatial-temporal interest points. Another related work

of SIFT-based approach to recognize human action is known as MoSIFT by Chen

et al. [30]. In this work, they proposed MoSIFT algorithm to detect and describe

spatial-temporal interest points. The MoSIFT algorithm detects spatially distinc-

tive interest points through local appearance to describe human body motion in

both spatial and temporal domain.

Tian et al. [6] employed Harris detector and local HOG descriptor on Motion

History Images (MHI) to perform action recognition and human detection. First,

they detect interest points as the two-dimensional Harris corners with recent mo-

tion detected by MHI. Then, a global and local spatial motion smoothing filter is

applied to the gradients of the MHI to eliminate noisy motions. They characterize

the spatial and temporal features by histograms of oriented gradient in the inten-

sity image and the MHI, respectively, and use a Gaussian-mixture-model-based

classifier for action recognition, as illustrated in Figure 2.6.

2.2 3-D based methods

Compared with the existing aforementioned 2-D based methods for human ac-

tion recognition, 3-D based methods rely on features extracted from RGBD sensor

which includes more information on human body shape than a regular RGB cam-
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Figure 2.6. The framework of Tian et al. [6] method for action recognition in crowded
videos.

era. Early, most of the 3-D based methods were used the range data as source of

3-D data. These 3-D based methods were build on a range data using laser range

sensors which is expensive and slow at acquiring data to obtain a 3-D representa-

tion.

Recently, with the release of Microsoft Kinect SDK, research of human activity

recognition based on sequence of depth maps has been explored. The Kinect

provides both RGB images and depth maps which are robust to the change in

illumination and color. In the last two years, There are a few numbers of researches

utilized Kinect sensor in human limbs detection [32], and activity recognition from
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depth maps [12, 33, 7, 34]. For instance, Shotton et al. [32] propose a method

to quickly and accurately predict 3-D positions of body joints from a single depth

image, using an object recognition approach. In human action recognition, Wang

et al [12] proposed a model for human actions, called the Actionlet Ensemble Model

which is learnt using MKL technique to represent each action and to capture the

intra-class variance. Based on the depth data and the estimated 3-D joint positions,

they propose a feature called Local Occupancy Pattern (LOP) which can be treated

as depth appearance for each 3-D joint. They utilized also the data mining solution

to discover discriminative joints to represent Actionlet Ensemble Model, which is

a linear combination of the actionlets, and their discriminative weights are learnt

via a MKL technique.

Xia et al [33] developed a method, which is based on 3-D joint positions es-

timated from depth map, to create a histograms of 3-D joint locations using a

spherical coordinate system. Then, they modeled the temporal evolutions of 3-D

joint positions by discrete hidden Markov models in order to train/classify the

action. Li et al. [7] proposed a Bag of 3-D-Points model for human action recog-

nition. In order to select the representative 3-D points from depth map, they first

projected depth maps onto three orthogonal Cartesian planes (XY, XZ, and YZ

planes). Then, they sampled 2-D points at equal distance along the contours of

the three projections, as illustrated in Figure 2.7. The sampled 2-D points were

used to characterize the posture in each frame in order to classify the activity.
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Figure 2.7. The process of sampling 3-D points from a depth map (Li et al. [7]).

Similar approach, Yang et al. [34] generated the Depth Motion Maps (DMM)

from three orthogonal planes and accumulate global activities through entire video

sequences. Then, Histograms of Oriented Gradients (HOG) are computed from

DMM as the representation of an action model. Sung et al. [35] compute a set of

features based on human pose and motion from the 3-D joint positions provided

by Prime Sense with the Kinect. They proposed a hierarchical maximum entropy

Markov model (MEMM), which considers a person’s activity as composed of a

set of sub-activities, with two-layered graph structure to train/classify different

actions.

Yang et al. [36] proposed a method based on position differences of joints. They

applied Principal Component Analysis (PCA) to differences of 3-D joint positions

to obtain EigenJoints by reducing redundancy and noise. Then, they employed the
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Nave Bayes Nearest Neighbor (NBNN) classifier for multi-class action classifica-

tion. Zhang et al. [37] proposed a 4-D local spatial-temporal descriptor that com-

bines both intensity and depth information. The feature descriptor concatenates

the intensity and depth gradients within a 4-D hyper cuboid, which is centered at

the detected feature point, as a feature. Zhao et al. [38] extract the feature vec-

tor of each video clip by combining RGB-based descriptors and depth-map based

descriptors. They used three types of features: Local Depth Pattern (LDP) which

describes the local region of interest points in depth map, HOG and HOF features

in RGB data. All these features are combined in one vector in order to classify

human action as multi-class classification using LibSVM [39].

2.3 Summary

From the literature review, we have observed that the depth map contains rich

shape information of the human body compared with RGB image. The depth

map is invariant to colour, texture and illumination variation and can capture the

changes in the body pose. Also, we have observed most of the shape features are

carried either by the interesting points on the contour or surface points on the

silhouette. The surface points which have more information than the contour, can

describe the structure of the silhouette. These observations form the core concept

of the method presented in chapter five to represent the body shape using surface

points provided by the depth map. Our proposed method is extended to a spherical
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harmonics representation in a novel way to describe the shape/pose of the human

body.

In addition, we have observed that the distal limb segments, such as forearms

and shins, provide sufficient and compact features for human action recognition.

The movement of distal limb segments provides the key to estimate 3-D motion

features of human body. Also, we have observed most of the methods in the

literature are based either on structure of silhouette or 3D joint positions, and there

are redundancy in using the joints of the human body. These observations form

the core concept of the method presented in Chapter Four. Therefore, the main

concept of our work in this dissertation is to incorporate the surface representation

based method and kinematic structure based method in a novel way to enhance

the classification accuracy.

28



Chapter 3

Fusion Strategies

In fusion strategies, incorporating information is accomplished by utilizing the in-

formation available from multiple modalities, multiple features, or multiple sources

in order to increase the accuracy and robustness of classifiers. Multiple informa-

tion can be incorporated at different levels, including the sensor level, feature level,

score level or decision level. In this chapter, we focus on the fusion strategies at the

feature level because it is relatively a new topic while fusion at the match score and

decision levels have been extensively studied in the past decades. Consequently,

this chapter presents a general overview of fusion methods at different levels, then

a feature fusion level for the task of pattern classification is presented in detail.

3.1 Introduction

The classical definition of the word ”fusion” refers to incorporating information

available from different modalities. Figure 3.1 shows various types of fusion meth-
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ods that can be used in the human action recognition. In general, fusion can be

categorized as: 1) fusion before matching and 2) fusion after matching [40]. The

fusion before matching integrates information either at the sensor level or at the

feature level. In the sensor level fusion, the raw data from the sensors are combined

while in the feature level fusion, different extracted sets of features from multiple

modalities are combined together. On the other hand, fusion after matching inte-

grates information either at the match score level or decision level by employing

dynamic classifier selection or voting scheme.

Fusion Methods

Fusion before matching

- Sensor level  fusion

- Feature level  fusion

Fusion after matching

- Score level  fusion

- Decision level  fusion  

Figure 3.1. Fusion can be accomplished at various levels.

In summary, fusion can be categorized in to four levels:

1. Sensor level fusion: Multiple data acquired from different sensors can be

processed and integrated to generate a new type of feature.

2. Feature level fusion: Multiple feature sets can be fused to create a new
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descriptor. The new descriptor is calculated from two or more sets of the

original feature sets for classification task.

3. Score level fusion: Multiple scores from different classifiers were matched and

fused to generate a single scalar score.

4. Decision level fusion: Multiple class labels were fused by employing tech-

niques like majority voting to select a single class label.

Although multiple features are noisy, overlapping, and confusing but fusing

multi-features in a suitable way will produce a better classification performance

than a single feature [41]. Hence feature fusion is an essential step for any successful

operation in pattern classification. It is necessary to identify the useful features

and remove undesired features which reduce the performance of the classifier before

fusion operation in order to fuse only the rich features that have a valuable. Thus,

features which are confused with the rest of the set and weakly correlated to the

class labels should be removed through the fusion operation to avoid the confusion

in the classifier. Therefore, selecting useful features is the key to any feature fusion

operation, and play an important role for any successful pattern classification task.

In this dissertation, we focus on the fusion at the feature level since features are

the most important cues for any successful classification task.
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3.2 Feature level fusion

In the last decade, a significant amount of research has been done on different fu-

sion techniques but only a few of them reported for feature level fusion techniques

[42, 43, 44]. Due to limited number of research on feature level fusion, it is still

not clear how to select useful features to provide better classification results. Most

of feature fusion operations deal with the fusion operation by removing redundant

and irrelevant features. For instance, let’s assume we are given a set of N training

samples {(xi, zi, yi)}Ni=1, where xi is a feature vector of the ith sample in the train-

ing set X with dimension D1, xi ∈ RD1 while zi ∈ RD2 is another feature vector

of that sample in the set Z, and yi ∈ {−1,+1} is their corresponding class label.

Therefore, if two features {(xi, zi)}Ni=1 have similar distribution, one of them is re-

dundant. Also, if one of the feature correlates poorly with the class label {(yi)}Ni=1,

the feature is considered to be irrelevant. The final set of features is fused with

useful features to obtain a better classification accuracy.

Feature level fusion involves the integration of multiple types of features which

are extracted from multiple modalities. Since the feature set contains rich informa-

tion about the subject, fusion at this level is expected to provide better recognition

rate than the match score level or decision level. However, feature level fusion is

difficult to implement in practice because of the curse of dimensionality problem

and incompatibility [40]. The curse of dimensionality problem will increase the
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computational time as result of features size. Therefore, feature fusion operation

should consider those issues in the case of using multiple features instead of single

feature. Consequently, the main aim for all feature fusion operations is to remove

the overlapping features, undistorted features and to merge only the useful features

that have a valuable in order to solve the curse of dimensionality problem.

Solving the curse of dimensionality problem is one of the strongest motivation

of the feature fusion operations. In other words, fusion different types of features is

a process to generate a new descriptor by combining useful features and removing

useless features. Hence, the main core of feature fusion operation lies in combing

the useful features in order to avoid the curse of dimensionality problem and to

enhance the classification performance. In the next section, we present a novel

technique which optimally combines the features using MKL technique by learning

multiple kernels instead of using single kernel.

3.2.1 Feature fusion using MKL-based SVM

MKL-based SVM has recently received great attention in the field of machine

learning, and provides a general framework for learning multiple features using

multiple kernel functions. MKL-based SVM aims to optimally combines and uti-

lizes multiple kernel functions and features instead of using a single kernel function

in learning kernels based SVM classifier.

SVMs [45] are the widely used classifiers for human action recognition [46, 47,
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48]. SVM classifier utilizes a hyperplane that discriminate two classes of data in

feature space, where the margin between the two classes is maximized between

the nearest data point of each class as shown in Figure 3.2. This linear classifier

is termed the optimal separating hyperplane because it maximises the margin

distance.

x1

x2 Margin

Support Vectors

Figure 3.2. The SVM classifier utilizes a hyperplane to discriminate two classes of data
in feature space.

Whereas the original problem of SVM classifier is stated in a finite dimensional

space, where the discriminate sets are not linearly separable in that space. For

this reason, it was proposed that the original finite-dimensional space be mapped
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into a much higher-dimensional space, presumably making the separation easier in

that space as illustrated in Figure 3.3. This mapping is designed to ensure that dot

products are computed in terms of the variables in the original space, by defining

them in terms of a kernel function. Thus, Kernel functions are used to accom-

modate non-linear functions and project feature vectors onto more discriminative

spaces. Also keep in mind that solving the SVM problem involved computing the

dot products between all pairs of training points using kernel function.

: X H 

Feature space: Projected space:

Figure 3.3. The original finite-dimensional space be mapped into a much higher di-
mensional space making the separation easier.

3.2.2 Literature review of MKL

Recent researches have shown that using MKL instead of a single kernel function

can enhance the performance. Senechal et al. [49] show that using multiple kernels

and different types of features instead of a single kernel with a single type of

feature can enhance the discrimination power of the classifiers and improve the

performance of SVM. The works presented in [48, 50] show that MKL can improve

the performance of classifiers during human action recognition. The idea behind
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MKL is to optimally combine different kernel matrices calculated based on multiple

features with multiple kernel functions. The authors of [51] justified the superiority

of MKL-based SVM over canonical SVM by showing that the learned discriminant

hyperplane of MKL-based SVM performs better than canonical SVM. Within this

framework, the problem of feature data representation through the kernel in SVM

is transferred to set the optimal value of kernel combination weights. Therefore, the

MKL based SVM is defined to learn both the decision boundaries between data

(features) from different classes and the kernel combination weights in a single

optimization problem.

Several MKL algorithms, as surveyed in [52], have been applied to affective

analysis and achieved better recognition results compared to single kernel SVM

with a single type of feature. There are several methods for solving the optimization

problems in MKL-based classifiers. Methods such as [53, 54], called ”Two-Step

methods”, use two nested iterative loops to optimize both the classifier and kernel

weights. Usually, in the inner iteration a solver of kernel-based classifiers such as

SVM is implemented by fixing the parameters of kernel combination function while

in the outer iteration the function’s parameters are learned with fixed parameters

of the classifier. In our method of solving the MKL based multiclass-SVM, the

Two-Step method described in [52] is used, during which a C-SVM solver with

one-against-one rule is applied in the inner loop to find the decision boundary

between each pair of classes while the combination weights of multiple kernels
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with different kernel parameters are updated in the outer loop by the SimpleMKL

algorithm [54].

Recently, MKL technique as surveyed in [51] have been proposed for feature

fusion at the kernel level within kernel-based classifiers. MKL is used to optimize

kernel weights while training the SVM. Therefore, we applied MKL technique to

combine different types of features using SimpleMKL algorithm. In SimpleMKL

algorithm, an alternative approach for fusing features is to combine kernel functions

to create a combined kernel function which is defined as the weighted sum of the

multiple kernels.

3.2.3 Advantage of using MKL

There are several reasons for preferring a multiple kernels over a single kernel.

It is mainly done to improve the accuracy and robustness of the classification

system. In some cases such as the classification among multiple classes, by using

one kernel function, the projected features may not be distinguishable for all classes

whereas using another kernel function may produce better results in several classes.

Furthermore, different features will have different distributions, and it is hard to

represent a combination of them using a single kernel. Therefore, a single kernel

cannot perform well when the nature of features are incompatible.

In summary, the most important advantages of using MKL are as follow: (1) A

multiple kernels will be an efficient approach for multiple types of features that can
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be trained with multiple kernels and the outputs are combined in order to achieve

high performance. (2) Another reason for using multiple kernels is to improve

the generalization performance: one type of kernel may not perform well for a

certain input when it is trained with multiple types of features. Finding a single

kernel to work well for all features is difficult. Hence, multiple kernels can be used

to combine different types of features and to give a better performance than a

single kernel. (3) Solving the curse of dimensionality problem is one of the most

important advantage of using MKL technique. Based on the weights, MKL fusing

the useful features in a combined kernel matrix which is defined as the weighted

sum of the individual kernels. The main core of MKL lies in optimizing kernel

weights which are used to avoid the curse of dimensionality problem while training

the SVM.

3.3 A framework of MKL-based multiclass-SVM

In this section, we focus on formulating methods for solving the optimization prob-

lem based on MKL-based multiclass-SVM [54].

3.3.1 MKL-based SVM

MKL-based SVM algorithm uses a combination of different kernels with different

parameters correspond to different representation of multiple features, and defines

an automatic learning method that picks the optimal parameters. MKL-based
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SVM was proposed to solve the primal form of the optimization problem defined

in Equation 3.1.

min
w,ξ,d

J(w, ξ, d) =
1

2

M∑
m=1

1

dm
‖wm‖2 + C

N∑
i=1

ξi

s.t. yi(
M∑
m=1

wTmφm(xi) + b) ≥ 1− ξi, i = 1, 2, ..., N

ξi ≥ 0, i = 1, 2, ..., N

M∑
m=1

dm = 1, dm ≥ 0, m = 1, 2, ...,M

(3.1)

where wm is the direction of the hyperplane in each projected mapped , w denotes

the set {wm} and M is the number of projected maps in use. In addition, d =

(d1, d2, ..., dM)T controls the weight of the squared form of wm in the objective

function.

The optimization problem defined in Equation 3.1 is solved based on its asso-

ciated dual form shown in Equation 3.2.

min
d

max
β

L(d, β) = −1

2
βT (

M∑
m=1

dmK
(m))β + yTβ

s.t.

N∑
i=1

βi = 0, 0 ≤ βiyi ≤ C, i = 1, 2, ..., N

M∑
i=1

dm = 1, dm ≥ 0, m = 1, 2, ...,M

(3.2)
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where y = (y1, y2, ..., yN)T , βi = αiyi, and K
(m)
i,j = km(xi, xj) = 〈φm(xi), φm(xj)〉

as denoted in Equation 5.11. Therefore, the kernel matrix K(m) calculated from

each projected map, and combined linearly based on kernel combination weight

vector dm as K =
∑M

m=1 dmK
(m), where d = (d1, d2, ..., dM)T is the kernel com-

bination weight vector, M is the total number of kernel functions in use, and

β = (β1, β2, ..., βN)T is known as the vector of Lagrangian coefficients in SVM.

In this manner, Two-Step method [53] is used to solve the optimization problem

defined in Equation 3.2, where two nested iterative loops are set to optimize both

the classifier and kernel combination weights. In the inner iteration a solver of SVM

is implemented by fixing the vector of kernel combination weights while in the outer

iteration a reduced gradient descent algorithm [55] with the golden section search

method [56] is used to update the combination weights with fixed parameters of

the SVM classifier. The main core of MKL-based SVM lies in optimizing kernel

weights while training the SVM classifier.

For instance, let’s assume we are given a set of training samples {(xi, zi, yi)}Ni=1,

where xi is a feature vector of the ith sample in the training set X with dimension

D1 while zi ∈ RD2 is another feature vector of that sample in the set Z, and

yi ∈ {−1,+1} is their corresponding class label. k(·, ·) is a kernel function that

maps two feature vectors to be a positive scalar. each feature should be linearly

combined with at least two kernel functions from three kernel functions: Gaussian

function, polynomial function and radial basis function (RBF), each with different
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parameters. To show how these features are linearly combined, suppose we are

given a pair of samples (e.g., the ith and jth registered images), the fusion of

({xi, xj}) features and ({zi, zj}) features at kernel level within the MKL-based

SVM framework is handled as follows,

Ki,j =
M∑
m=1

(dmkm(xi, xj) + dm+Mkm(zi, zj)) (3.3)

Hence in this fusion work, the dimensionality of kernel combination weight vector

d is 2M .

Therefore, once given a new test sample, its label (determined by y0) can be

calculated according to the follow function:

y0 = sgn[
∑N

i=1

∑M

m=1
βi(dmkm(xi, x0) + dm+Mkm(zi, z0))] (3.4)

3.3.2 MKL based multiclass-SVM

Two techniques are commonly used in the literature to classify U classes using

binary classifiers: one-against-one and one-against-rest. In the one-against-one

technique, U(U − 1)/2 binary classifiers are built from all pairs of distinct classes,

whereas in the one-against-rest technique U binary classifiers are built for each

class of data. The authors of [54] presented a structure of MKL based multiclass-

SVM algorithm in the outer iteration of the Two-Step method. In their structure, a
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single kernel combination weight vector is jointly learned for all binary classifiers in

the multiclass-SVM, and the general objective function L(d) is defined in Equation

3.5.

L(d) =
∑
u∈Φ

Lu(d) (3.5)

where Φ is the set of all pairs of distinct classes considered in the multiclass-SVM,

and Lu(d) is the object function of a binary MKL-based SVM defined in Equation

3.2 with fixed β for each binary classifier.

By this definition, the inner loop of the MKL based multiclass-SVM is to solve

the multiclass-SVM while in the outer loop a single kernel weight vector is learned

to minimize the summation of the objective functions from all binary classifiers.

Therefore, the learned optimal kernel weight vector can be used for all binary

classifiers, which generally increases the recognition result of multiclass-SVM. In

our work, the one-against-one technique is used based on the experiences of the

work in [57], and the classification of novel samples is done by a max-wins voting

strategy.

3.4 Summary

In this chapter, we have presented the concept of fusion strategies which are

achieved by utilizing the information available from multiple modalities, multi-
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ple features, or multiple sources in order to increase the accuracy and robustness

of the classifier. A general overview of fusion techniques in different levels is pre-

sented, then a feature fusion level using MKL technique for the task of pattern

classification is presented in more detail.

Fusion operations can be adopted either before matching or after matching

process. Fusion before matching integrates information either at the sensor level or

at the feature level, while fusion after matching integrates information either at the

match score level or decision level. Since the feature set contains rich information,

different types of features as multiple features in any recognition task will enhance

the classification performance. Thus, feature level fusion is expected to provide

better recognition results than the other level especially if the features used for the

classification are discriminating, undistorted and independent. Recently, MKL-

based SVM is used to fuse multiple features at the kernel level using multiple kernel

functions. The idea behind MKL technique is to optimally combine different kernel

matrices calculated from multiple features with multiple kernels. The calculated

kernel matrices are linearly combined based on corresponding kernel combination

weights in our MKL framework. Therefore, the MKL-based SVM is defined to

learn both the decision boundaries between data from different classes and the

kernel combination weights in a single optimization problem.
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Chapter 4

Kinematic Features for Human

Action Recognition

This chapter presents a method for human action recognition using kinematic

structure of human body. Since the motion of human limbs is an important source

of information for classifying human actions, a set of kinematic features that are

derived from the motion of human limbs are used to represent human actions

in videos. Within this frame, kinematic features are adopted as motion features

that can be used to describe complex actions. The idea behind using kinematic

features is to convert human skeleton model (kinematic structure) into a discrimi-

native features that can improve the motion-based action classification. One of the

challenges of extracting the kinematic features is to accurately detect body limbs

and then describing body motion using the detected limbs.

To the best of our knowledge, a good approach for detecting/representing hu-
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man body limbs is a human skeletonization (kinematic structure) which consists

of line segments linked by joints. In this case, the motion of segments or joints

provide the key to estimate the motion and recognize the action. In our work, this

concept is achieved in a novel way by detecting distal limb segments from silhou-

ette to accurately fit a human skeleton model. With the human skeleton model,

we generalize variations among different people performing the same action. The

proposed method is used to detect distal limb segments which are used to describe

the human motion in visual data.

4.1 Detecting distal limb segments

Accurate limb detection in visual data can be a challenging task because of the

invisibility of human limbs or their occlusion by other body parts in visual data.

Most of the researchers use either an automatic methods or non-automatic methods

to detect the human limbs. Automatic methods use marker-less motion capture

systems to detect the human limbs, while non-automatic methods could involve

manual interventions to set the joints in the image or involve optical markers

on the actor to detect the limbs. Although non-automatic methods are more

accurate than automatic methods, they are usually expensive and not suitable for

surveillance purposes or remote monitoring systems [58]. Due to the advances in

computer vision algorithms, marker-less motion capture systems using a monocular

view has attracted the attention of many research groups. They used different
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approaches for marker-less motion capture system to detect the human limbs.

Most often detected limbs are used to fit a human skeleton model to represent the

body posture. This process is known as skeletonization. The process of fitting a

skeleton model can be performed automatically or manually.

In our work, we present an approach for detecting distal limb segments for

accurate fitting a human skeleton model in visual data for human action repre-

sentation and recognition. Our approach for detecting the distal limb segment

consists of the following steps: First, an adaptive multi-dimensional Gaussian

model is utilized to segment a moving actor from static background. A simple

tracker is applied to the moving actor (i.e., foreground) to detect the motion direc-

tion. The foreground which represents the body silhouette is considered as a blob.

Then, a distance transform algorithm followed by a line fitting algorithm is used

to fit a nine-segment skeleton model in the body silhouette. The fitting process is

performed independently for each of the four limbs to avoid the combinatorial com-

plexity problems. After the human skeleton fitting step, a six-element descriptor

vector is extracted as kinematic features to characterize the statistical behaviour

using GMM for action recognition. Figure 4.1 illustrates a general overview of our

framework.

In summary, the contributions of our work are as follow: a novel method for

fitting distal limb segments into nine-segment skeleton model, accurate limb ex-

traction based on a nine-segment skeleton model, reduction of the skeleton to the
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distal limbs only for action recognition, evaluation of the accuracy of the approach

with respect to limb detection and human action classification.

4.2 Skeletonization

Using the silhouette points to represent a human posture is inefficient since all the

points in the silhouette are similar to each other and contour points provide only

the structure of the silhouette. On the other hand, simple information from the

silhouette like center, height and width of blob cannot represent a human posture

and it is difficult to discriminate human postures. Consequently, human skeleton

model seems to be a good way to represent a human posture. Also, it can be

utilized to extract human postures variations to characterize human actions. In

this section, we describe our approach for creating a human skeleton model from
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Figure 4.1. The process of extracting distal limb segments for human skeletonization
in order to classify the action.
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sequence of 2-D images followed by human action recognition based on kinematic

features which are extracted from the human skeleton model.

In the following, we describe our approach for background segmentation, fit-

ting a nine-segment skeleton model into the limb segments and kinematic features

extraction. Afterwards, we present pose estimation of the human limbs and action

classification using kinematic features and GMM.

4.2.1 Segmentation

Most vision-based human motion recognition systems start with Region of Interest

(ROI) segmentation in temporal or spatial domain. ROI segmentation in video

data aims at detecting regions that correspond to moving actors in a sequence of

frames. For scenes with a relatively static background, most ROI segmentation

methods are based on background subtraction algorithm, which calculates the

difference between the current image and a reference background image, pixel-by-

pixel, to detect moving actors in a sequence of frames.

In this dissertation, an adaptive Gaussian model using probability density func-

tions for image pixels were built to evaluate if the pixels belong to background or

foreground [59]. This approach is mainly utilized to segment moving actors from

the static background to represent the ROI. The first few frames (20 ∼ 30 frames)

of each video are usually used to learn the covariance matrix and the mean value

of each pixel. These values are used in the probability model to extract the ROI
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from the scene. This probabilistic model (the mean and covariance) is updated

continuously for every new frame to adapt to changes occurring in the scene during

an action performance. To increase the accuracy of the adaptive Gaussian model

for background subtraction, we modified the algorithm of Stauffer and Grimson

[59] by representing the color value of each pixel in the RGB image I(i, j) using

a multi-dimensional Gaussian distribution instead of a one dimensional Gaussian

distribution for gray scale images. Thus, the probability P (xt,i,j) of a background

pixel (i, j) with color value xt,i,j at time t is defined as:

P (xt,i,j) =
1

(2π)d/2|
∑

i,j |1/2
e−

1
2

(xt,i,j−x̄i,j)T
∑

i,j
−1(xt,i,j−x̄i,j) (4.1)

where x̄i,j is the mean and
∑

i,j is the covariance matrix of pixel (i, j). Using

this probability estimate, we compute the probability P (xt,i,j) for pixel I(i, j) in

frame t. Then, we apply the following thresholding to obtain the foreground:

I(i, j) =

{ 1 P (xt,i,j) ≤ T

0 P (xt,i,j) > T

(4.2)

where T is an experimentally selected threshold. In our experiments, we assumed

that the first few frames (20 ∼ 30 frames) of the video contain only the background

scene which used to select the threshold, T that works with the video.
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4.2.2 Human skeleton fitting

For accurate skeletonization, we need to detect human body limbs with high accu-

racy at each frame because they play an important role in presenting the human

behaviour. Once a binary image, which represents the silhouette (blob) of the mov-

ing body, is successfully extracted from the background, Medial Axis Transform

(MAT) is used to convert the silhouette into skeleton structure as shown in Figure

4.2. The MAT is a process for reducing foreground regions in a binary image into a

skeletal remnant that largely preserves the extent and connectivity of the original

region while throwing away most of the original foreground pixels to produce the

skeleton.

         (A)                             (B)                             (C)                               (D)                                                       

Figure 4.2. Illustrates the process of extracting skeleton; (A) Binary image, (B) Dis-
tance transform algorithm (C) Result of MAT algorithm, (D) Skeleton after applying
morphological operations.

The MAT can be performed in two different ways as follows:

• A morphological thinning operator successively erodes away pixels from the

boundary while preserving the end points of line segments until no more
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thinning is possible [60]. This is a repetitive and time consuming process

of testing and deletion of each pixel. The result depends upon the shape of

silhouette, the number of morphological operations, and the different orien-

tations of the silhouette.

• The second method, which is used in this dissertation, is based on Distance

Transform (DT) of each shape point to the boundary and tries to extract the

skeleton by finding the points in the medial axis of the object. The result of

the DT algorithm is a gray level image that look similar to the input image,

except that the gray level intensities of points inside foreground regions are

changed to describe the shortest distance from the edges of an object to a

given shape point in the object [61]. DT is the radius of the largest disk in

the shape centered in p(x, y).

Mathematically, the medial axis, or skeleton S(∅) of a binary image, is a scalar

field that contains the points that have maximal equal distance between two pixels

q(x, y), r(x, y) on the boundary ∂ of the object ∅ and pixel p(x, y) in the center

axis with highest distance transform value:

S(∅) = {p ∈ ∅|∃q, r ∈ ∂, q 6= r : dist(p, q) = dist(p, r)} (4.3)

These pixels are considered as medial axis of the object because they are located

equidistant with at least two boundary points from both sides of the silhouette.
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The MAT algorithm can be implemented with a high degree of parallelism for

obtaining the skeleton of the image. MAT algorithm is faster than the thinning

algorithm which iteratively removes the boundary layer from outside to inside.

After obtaining the skeleton model using MAT, binary morphological operators,

such as opening and closing operations are applied to the binary image which is

extracted using MAT algorithm to filter out some of the disconnected pixels and

also fill small gaps. Opening and closing operations are both derived from the

fundamental operations of erosion and dilation. The basic effect of the opening

operation is to remove some of the foreground pixels from the edges of regions of

foreground pixels. The closing operation enlarges the boundaries of the foreground

regions in the image and shrink the background holes in such regions. Hence,

opening removes small islands and thin filaments of foreground pixels. Likewise,

closing removes islands and thin filaments of background pixels. Overall, these two

operations smooth the boundary of the binary image and fill small gaps. Figure 4.3

shows the results of background subtraction and skeleton extraction using MAT

for sample images.

4.2.2.1 Fitting algorithm

Since MAT algorithm does not preserve the connectivity of the skeleton, line fitting

algorithm is used to resolve this issue. Therefore, nine-segment skeleton model in

each frame is created using its skeleton shape by utilizing the line fitting algorithm.

52



Figure 4.3. Illustrates the results of background subtraction and skeleton extraction
using MAT algorithm.

The skeleton model used here to represent the kinematic structure consists of nine

segments and six joints as shown in Figure 4.4. This human skeleton model is

created by applying line fitting algorithm to the skeleton generated using the MAT

algorithm.

In the line fitting algorithm, the line between the head center and the centroid

(xc, yc) point of the whole body (hip center) is utilized to represent the torso of the

body. The location of the head center is detected from the original image using

a skin detection algorithm [62]. The algorithm initially converts the images from

RGB color space to HSV color space. Then, the H channel is utilized to localize

the range of colors found in human skin. By thresholding the value of channel H
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                 (A)                                      (B)                                         (C)

Figure 4.4. Human skeleton model for throwing action (A) original image (B) skeleton
using the MAT algorithm (C) skeleton model using the fitting algorithm.

between 15 and 25, the head blob can be detected. Then, the center of the head,

which is the center of the head blob, is used to represent the head position. If the

head blob cannot be detected using the skin detection algorithm (e.g., in gray scale

images), we then assume the head center is the pixel that had the same horizontal

value xc of the centroid (xc, yc) and the same vertical value of the highest white

pixel in the range of ±10 pixels of the skeleton. This commonly occurs in the

turning around action that the face is occluded and gray scale images where color

skin detection algorithm cannot work. Examples are shown in Figure 4.5.

Since the skin detection algorithm depends on the channel H of the HSV color

space, it cannot be applied to gray-scale images. There are other methods on

finding human faces in images such as Haar features or templates matching [63]

that can be utilized. In our work, we used skin detection algorithm as a fast and
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Figure 4.5. Skeleton extraction in the case if the head blob cannot be detected using
skin detection algorithm.

efficient method to find potential facial skin regions in color images rather than

applying more complex face detection techniques that increases the execution time

of our action recognition method.

In the next step, which is a line fitting algorithm, the least squares curve fitting

method is used to represent line with an equation rather than as separate points.

To do this we use a process called line or data fitting.

In particular, for a line y = ax + b and a set of N points (xi, yi), where i =

1, 2, ..., N in 2-D plane, we aim to find the parameters a and b such that an error

criterion that describes the deviation of the N points from the line is minimized.

Thus, we utilized the vertical deviation ei which is calculated as:

ei = yi − (axi + b) (4.4)
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Therefore, data with N points has a total error E:

E = e2
1 + e2

2 + e2
3 + . . .+ e2

n =
N∑
i=1

e2
i (4.5)

Substituting the equation of ei yields,

E =
N∑
i=1

(yi − (axi + b))2 (4.6)

In order to find the best fit, E is minimized using the standard least squares

method, which attempts to minimize the sum of the squares of the error distances

(E) for all the points. In the case of horizontal and vertical lines, the algorithm

takes the average points of yi and xi to estimate the line. In the first step of

the fitting algorithm, the line from the centroid (xc, yc) of the silhouette to the

head center is fitted to represent the torso S = {S1}. Once the torso has been

successfully fitted, all four limbs are scaled based on the white pixels in the skeleton

which is extracted from the silhouette. Each limb Si is fitted independently to

avoid the combinatorial complexity problems. Therefore, the bounding box of the

silhouette is divided into four boxes based on the centroid (xc, yc) point to make

sure that all the limbs are covered using the fitting algorithm.

After fitting an appropriate lines, which are based on the number of the white

pixels in each box, all the lines are connected to the shoulder joint which is located

at 1/4 of the total distance from the head center to the centroid. These lines are
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used to identify the position of the legs and arms based on the location of the

box. In the case where the torso angle is greater than ±30 degree, as in jumping,

picking up and bending actions, the bounding box of the silhouette is divided into

two boxes based on the centroid (xc, yc) point of the silhouette. One box is used

to fit the lines for hands and the other box is used to fit the lines for feet based on

the number of the white pixels in each box, as illustrated in Figure 4.6.

4.3 Kinematic features extraction

Once the human skeleton fitting is completed, the centroid angles of the distal

segments on the limbs can be detected as features to identify the pose of the

distal limb segments. In order to determine the centroid angle, the angles of

the endpoints of the distal segment, with respect to the vertical body axis, are

averaged for each segment. Therefore, each distal limb segment is described by

its centroid angle with respect to the vertical body axis. The five-angle vector

which represents the pose of the torso and four distal limb segments is created

using these centriod angles. Since all the five-angle measurements are relative

to the vertical body axis in one frame, it is necessary to add other information

about the motion of the human as function of time to the classifier to discriminate

among the actions that have similar angles and different positions such as picking

up and jumping. Therefore, Translation Distance TD , which gives the difference

in position between two consecutive frames, is added to the descriptor vector to
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increase the classification accuracy. Consequently, the resulting kinematic features

extracted from each frame are five-angles of displacement from the vertical body

axis and TD of the position of the hip.

TD =
√

(xct − xct−1)
2(yct − yct−1)

2 (4.7)

where: (xct − xct) is the position of the hip centroid in the current frame.

This yields a six-element descriptor vector with precise orientation and transla-

tion data that represent the kinematic features of the human body for each frame,

as shown in Figure 4.6.

Figure 4.6. Each frame shows the five angles that provide orientation data of torso and
limbs.

A simple tracker, using Kalman filter, is applied to the bounding boxes which
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represent the human body to track their position and predict their location in

the next frame. With the tracker the motion direction can be readily estimated

using the difference in horizontal position between the centers of the bounding

boxes in two consecutive frames. We also assume that the camera is oriented

horizontally as indicated in Figure 4.6, therefore the motion is one-dimensional.

But the normalization procedure can also be applied to the y-axis to allow for

arbitrary camera orientation.

4.4 Action classification

GMM is a parametric probability density function represented as a weighted sum of

Gaussian component densities. GMM parameters are estimated from training data

using the iterative Expectation Maximization (EM) algorithm from a well-trained

prior model. In this dissertation, the Expectation Maximization algorithm [64] was

used to train separate GMMs each representing one action using descriptor feature

vectors extracted from video sequences of multiple subjects. Given an observation

sequence, X = (x1, x2, . . . , xM)T , and a GMM configuration, the parameters of the

GMM, which in some sense best matches the distribution of the training feature

vectors, were estimated. Afterwards, the GMMs are utilized to classify the action

performed in a given video into different classes such as walking, running, etc.

Let us assume that Ψ = {Ψ1, . . . ,Ψz} is a set of GMMs registering the motion

patterns of z actions and Ω = {θ1, . . . , θz} contains the label for the corresponding
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action. In our approach, several sequences of descriptor vectors with six dimen-

sions (five-angles and the translation distance (d = 6) was used to compute the

distribution probability for N components of GMM Ψk = {ωi,Ψi}Ni=1 , which is

defined as:

fΨk
(x) =

N∑
i=1

p(x|Ωi)p(ωi) (4.8)

where:

• x is a vector with d dimensions , the probability of x over single Gaussian

Ωi = {µi,Σi} is:

p(x|Ωi) =
1√

2π2|
∑

i |
e(− 1

2
(x−µi)T Σ−1

i (x−µi)) (4.9)

• µi,Σi are the mean and variance of Gaussian Ωi, µi ∈ <d and
∑

i is d × d

positive matrix, i = {1, . . . , N}.

• p(ωi) is the weight of ith Gaussian component and p(ωi) > 0 and
∑N

i=1 p(ωi) =

1, i = {1, . . . , N}.

• ωi the weight of the ith GMM component.

After training the GMMs using the EM algorithm, Maximum Log-likelihood

method was applied to classify actions in a given video into different classes. Given

an observation sequence X = (x1, x2, . . . , xM)T , X ∈ <M×d, and a GMM config-
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uration, by assuming the observations are independent from each other, then the

likelihood function of Gaussian Ψk, (k = 1, . . . , z) can be defined as:

ζ(ψk) = fψk
(x1, x2, . . . , xM) =

M∏
j=1

fΨk
(xj) =

=
M∏
j=1

p(xj|ψk) =
M∏
j=1

(
N∑
i=1

p(xj|Ωi)p(ωi))

(4.10)

The log-likelihood function is calculated by taking the logarithm value of the

likelihood function:

ζ∗(ψk) = log ζ(ψk) =
M∑
j=1

log(
N∑
i=1

p(xj|Ωi)p(ωi)) (4.11)

The maximum log-likelihood criterion is used to classify the action by assigning

the maximum observation data sequence of X to GMMs:

ψ̂ = arg max
ψk∈Ψ

ζ∗(ψk) (4.12)

where ψ̂ denotes the GMM which has the largest log-likelihood for the obser-

vation data sequence. The action label corresponding to this GMM is assigned to

the observation sequence as follows:

Action = θi, if(ψ̂ = ψi), i ∈ {1, . . . , z} (4.13)
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4.5 Experiments and results

In order to evaluate the performance of our approach, we evaluated the perfor-

mance of our approach for human action recognition using three different datasets;

DU dataset, Weizmann dataset [3], and KTH dataset [65].

4.5.1 Experiments on DU dataset

The DU dataset, captured at the University of Denver, consists of 305 videos

of seven different actions (walking, running, throwing, turning around, jumping,

waving, and picking up) performed by seven subjects. The videos were captured

using a JVC camcorder at 30 fps with resolution of 640 × 480. For collecting the

videos, each subject was asked to perform each action many times in front of the

camera that was fixed at a location inside a building. The actions were captured

at an angle at which the camera could view the motion with minimal occlusion.

The subjects were given freedom to perform the actions at their own pace at any

distance in front of the camera. The number of videos for each action is between

four and seven per subject. A few sample frames of the videos, with extracted

human skeleton model using our proposed approach, are shown in Figure 4.7.

Leave-One-Subject-Out (LOSO) method was applied to verify the performance

of our approach. For all the videos, one subject is removed from the training set

and the other subjects are utilized to train separate GMMs for separate actions.
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Figure 4.7. shows sample video frames with human skeleton fitting for different actions
for DU dataset.

The excluded videos were used to test the accuracy of our approach in classifying

the performed actions in videos based on the maximum log-likelihood classification.

The test subject was different from the training ones. This process was repeated

for all the subjects and all the actions in the dataset separately.

Table 4.1 shows the results of classifying actions in form of confusion matrix

for DU dataset based on LOSO. We can observe that the average classification

accuracy of our approach is 100% for walking, jumping, and turning, 98% for

waving, throwing and picking up actions, and 93% for running which is confused

with walking because of the similarity. In all, the average classification accuracy

was 98%.

Because of different number of GMM components can influence the classifi-
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Table 4.1. Confusion matrix for experiments on the DU dataset.
Actions Run Walk Jump Turn Wave Throw pick-up
Run 0.93 0.07
Walk 1
Jump 1
Turn 1
Wave 0.98 0.02
Throw 0.02 0.98
pick-up 0.02 0.98

cation result, several GMMs components were considered. In this context, DU

dataset was used as validation dataset among the other datasets in order to find

the optimum number of GMM components that yields to the best result. Partic-

ularly, several GMMs with different number of components (2 to 12) were trained

and tested. According to our experiments, the best results were obtained when the

number of Gaussian components was equal to six. Therefore, in our experiments

with KTH and Wiseman dataset, six Gaussian components were used to evaluate

the approach.

4.5.2 Experiments on Weizmann dataset

In another experiment, Weizmann dataset (Blank et al. [3]) was utilized to eval-

uate the performance of our system for recognizing different actions. Weizmann

dataset consists of 90 video sequences (180× 144), 50 fps frame rate showing nine

different subjects, each performing 10 different actions. Weizmann dataset con-

tains images with lower-resolution than DU dataset. It represents silhouettes with

varying scales, poses, and directions that make the blob detection more challenging
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compared with DU data-set. Figure 4.8 shows the results of our human skeleton

fitting for sample video frames. Table 4.2 illustrates the confusion matrix for clas-

sification experiments on Weizmann dataset based on LOSO. From Table 4.2, we

can observe that the accuracy of our approach is 100% for bend, p-jump, side, and

wave1, 88% for jack, jump, skip, wave2, and 77% for walk which is confused with

side walk and run. The lowest recognition rate (67%) is for run action because of

its similarity with other action. The average recognition rate is 90% for all the

actions and it is mostly confused by similar action classes, such as skip with run

and side walk with walk. If we remove either side walk or run action from the

experiments, the average recognition rate will increase to 94%.

Figure 4.8. shows sample video frames with human skeleton fitting for different ac-
tions with low resolution images (Weizmann dataset); from left-top to right-bottom, the
actions are:, run, jack, walk, position jump, wave1, side , wave2 and jump.
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In fact, there are two main reasons that make the recognition rate on Weizmann

dataset less than the recognition rate on DU dataset. First, the number of training

samples in Weizmann dataset is limited to one video per actor per action, compared

to DU dataset that contains multiple sample videos per action. Second, because of

the low resolution images in Weizmann dataset, actors have a smaller size which

makes the limb detection process more difficult. In all, our approach was able to

process blobs though images that have low resolution.

4.5.3 Experiments on KTH dataset

The third dataset, KTH dataset (Schuldt et al. [65]), contains six types of human

actions (walking, jogging, running, boxing, hand waving and hand clapping) per-

formed several times by 25 subjects in four different scenarios: outdoors with scale

variation and different view angles, outdoors with different clothes and indoors.

All videos were taken over homogeneous backgrounds with a static camera at 25

fps. The sequences have a spatial resolution of 160×120 pixels and had a length of

Table 4.2. Confusion matrix for experiments on Weizmann dataset.
Actions Bend Jack Jump P.jump Run Skip Side Walk Wave1 Wave2
Bend 1
Jack 0.9 0.1
Jump 0.9 0.1
P.jump 1
Run 0.7 0.3
Skip 0.1 0.9
Side 1
Walk 0.1 0.1 0.8
Wave1 1
Wave2 0.1 0.9
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four seconds in average. A few sample frames of KTH dataset with human skeleton

fitting are shown in Figure 4.9. In this dataset, we focused on two scenarios that

represent the subjects with scale variation and outdoors (scenario 2) and with dif-

ferent clothes (scenario 3) compared with the previous datasets. These scenarios

are more challenging than the indoors scenario (s1) and outdoors scenario (S4).

Figure 4.9. shows sample video frames with human skeleton fitting and skeleton for
different actions (KTH dataset); from left-top to right-bottom, the actions are: handclap,
walk, run, box, and wave.

The confusion Table 4.3 illustrates the classification results in confusion matrix

form for our experiments on the KTH dataset (scenario 2). The average recognition

rate was 94% for all the actions. Clearly, there is confusion between running,

walking, and jogging because of the similarity of these three actions. For instance
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if the jogging actions is avoided, the average recognition rate increases to 96%. In

fact, only seven out of 25 × 6 = 150 videos are misclassified in this experiment.

Three of the misclassified videos are the Jog action, which are incorrectly labeled as

Run action. One video from Clapping action is misclassified as Wave action. The

Run and Walk actions are misclassified two times, respectively. Our observation

is that these errors only for those actions which have quite a bit of similarity with

each other.

Table 4.3. Confusion matrix for experiments on the KTH dataset.
Actions Run Walk Box clap Wave jog
Run 0.9 0.1
Walk 0.05 0.95
Box 1
clap 0.95 0.05
Wave 1
jog 0.15 0.85

In order to test the robustness of our method with respect to the variations of

actors’ clothes, we performed a set of experiments by selecting different subjects

with different clothes. We observed that the recognition rate for all the actions

did not change with the variations of clothes expect only in one case, when the

color of the background and the clothes are the same. This is due to the fact that

our segmentation technique depends on the difference in the color between the

background and foreground.

We also conducted several experiments to evaluate the robustness of our method

with respect to body occlusion and failure in the limb detection. In these exper-
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iments we selected a subset of four reference angles instead of five angles. First,

the torso angle was removed from the feature vector, and we achieved an average

recognition rate of 55.2%. Classification errors were observed in packing up, bend-

ing, and jumping actions. In the second run, we removed the right distal limb angle

(right arm) from the set and achieved an average recognition rate of 63.1%. In

the third run, we removed the left distal limb angle (left leg) from the set and the

average recognition rate was 64.7%. These experiments show that the proposed

method for activity recognition is sensitive to the occlusion of individuals’ body

limbs. At the same time, we observed that the recognition rate for some actions(

e.g. bending, jumping, and picking up) that highly rely on the torso angle were

decreased significantly. But for other actions such as walking and running that

involve multiple joint angles (two angles for the legs & two angles for the arms),

removing one of these angles has less effect on the overall recognition rate.

Finally, to evaluate the effect of body posture on our approach, we applied our

approach to videos of six actions on Weizmann dataset performed in front view

or side view with respect to the camera. These actions are Jump, Bend, Wave,

Walk, run, skip. As mentioned before, we used only one single view of the camera

to construct the nine-segment skeleton model. We observed that in all the cases

of front view, the body posture can be described very well by the nine-segment

skeleton model even if the arms are close to the body as shown in Figures 4.7-

4.9. But in the case of side view, we observed that our approach may have some
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difficulties in building the nine-segment skeleton model. This is mainly due to the

self-occlusion of the body parts and also because the nine-segment skeleton model

is constructed in 2D space using only 2D information which really makes estimating

the pose of the human body difficult. To overcome such problems, using multiple

cameras and also depth sensors such as Microsoft Kinect can be very helpful.

4.5.4 Comparison with another approaches

We compared the performance of our six-element feature descriptor with other

relevant action recognition methods. These methods are the skeleton models in

[1, 17], the trajectory of the body joint points in [16] , and methods that utilized

the Weizmann or KTH datasets [28, 66]. Table 4.4 summarizes the comparison

with different approaches based on the reported results in the published papers.

Table 4.4. Comparison with different approaches.
Approach Dataset Video ResolutionFrame RateNo. of ActionsNo. of SubjectsR. Rate

Single Star Skeleton;
Chen et al. 2006 [1] Private 352× 240 30 10 5 98%

Our Six-element Descriptor DU 640× 480 30 7 7 98%

Variable Star Skeleton;
Yu and Aggarwal 2009 [17] Weizmann 180× 144 50 10 9 93%

3D SIFT;
Scovanner et al. 2007 [28] Weizmann 180× 144 50 10 9 82%
Chaotic invariants;

Ali et al. 2007 [16] Weizmann 180× 144 50 9 no skip 9 92%
Our Six-element Descriptor Weizmann 180× 144 50 10 9 90%
Five-layer hierarchical model;

Ning et al. 2008 [66] KTH 160× 120 25 6 25 95%
Our Six-element Descriptor KTH 160× 120 25 6 25 94%

The first row of Table 4.4 presents the results obtained by single star skeleton

approach which was applied on a private dataset. This method has a 98% recog-

nition rate (similar to our method on DU data-set). Because the images used to
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evaluate the single star skeleton method had higher resolution compared to other

public datasets, then it is hard to have a fair comparison with other approaches

that adopted low resolution datasets. Also, the number of videos per subject per

action used in [1] was larger (three videos per subject per action) than the number

of videos in the KTH and Weizmann datasets (only one video per subject per ac-

tion) which makes the training process and obviously the recognition rate better.

The results of three other methods, variable star skeleton approach [17], 3D SIFT

[28], and chaotic invariants approach [16], that utilized the Weizmann dataset are

compared with our approach in Table 4.4. Variable star skeleton which detects

extremities inside the contour rather than the limbs achieved a good recognition

rate 94%. The chaotic invariants approach [16] used a semi supervised joint de-

tection approach for the human body to detect the six points (two hands, two

feet, the head, and the belly point) as approximation of body joints. Based on

trajectories of these reference joints, they achieved a recognition rate of 92% with

no skip action compared with our approach that achieves 94% recognition rate

with no skip action. The 3D-SIFT [28] method, which uses the motion features

to recognize the action, has an 82% recognition rate that is 8% lower than our

method. Using the KTH dataset, Ning et al. [66] proposed a system to search for

human actions with a five-layer hierarchical space-time model and achieved a 92%

recognition rate. In summary, our six-element descriptor has better or comparable

recognition rate than other methods in classifying human actions.
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4.6 Summary

This chapter presented an approach for fitting distal limb segments in visual data

for accurate human skeletonization. The proposed nine-segment skeleton model

is suitable for a wide range of applications from surveillance to human motion

analysis and human-computer interaction (HCI). For human action recognition,

kinematic features were extracted from the nine-segment human skeleton model.

This descriptor was represented by GMMs and utilized for action classification

using maximum log-likelihood criterion. Our experiments on three different action

datasets showed that our approach is able to detect the limbs with a good accuracy

and recognize different actions with comparable or better recognition accuracy than

other relevant action classification methods.

Nevertheless, there are some restrictions with our proposed approach for dis-

tal limb detection. One limitation is the extraction of human silhouette (i.e.,

background subtraction). In fact our approach requires the body silhouette to be

accurately detected from background in images. Hence, in order to build a robust

system, a strong approach for dynamic segmentation independent of environment

needs to be developed and be utilized with our approach.
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Chapter 5

Surface Representation for Human

Action Recognition

This chapter presents an approach for human action recognition based on surface

representation of the human body obtained from depth map provided by Kinect

sensor. In our work, we utilized spherical harmonics representation to extract 3-D

shape features of the body silhouette from depth map. Then, spherical harmonics

coefficients are calculated up to a user-desired degree Lmax to describe the human

body surface as 3-D shape features. These coefficients are utilized to represent the

3-D body surface in the frequency domain. Hence, the focus of this chapter will be

on ”Given surface representation of human body”, how do we construct different

3-D shape features that can be used to track the human body and recognize human

action using sequence of depth maps.
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5.1 Overview of the method

Researchers have explored different approaches for human action recognition based

on shape features in the past few decades. Most of the approaches proceed in a

top-down fashion where the whole body of person is localized in the region of

interest (ROI), which is usually obtained through tracking or background subtrac-

tion. Then, the ROI is encoded in order to create the shape features. In general,

shape features look at the changes in the whole body shape and try to recognize

actions based on dominant motions in the body parts. In this context, two types

of methods based on shape features can be used; silhouette-based features and

contour-based features where the first method takes into account all the points

within a shape and the latter method only extracts the shape boundary (contour).

From the extensive work on silhouette-based features for human action recog-

nition presented in chapter 2, we have observed that silhouettes contain rich shape

information of the human body. However, most shape features are carried either

by the interesting points on the contour or surface points on the silhouettes. This

observation forms the core concept of our proposed method to characterize the

human action using the surface points on the silhouette obtained from sequences

of depth maps.

In the method presented here, sequence of depth maps which represent the

silhouettes of human body are acquired using Kinect sensor. Then, background
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subtraction is used to segment the body silhouette, that represents the surface

points of human body, from the scene. Afterwards, the missing points (holes) are

restored using image processing techniques such as closing operation and the image

noises (spikes) are reduced using median filtering. After preprocessing, the depth

map is adaptively sampled based on the image depth variation to reconstruct a

3-D mesh for further processing. Sample points in depth images are triangulated

using the constrained Delaunay triangulation algorithm [67] and projected in 3-D

space. Then, spherical harmonics decomposition, which decompose the 3-D mesh

structure into a set of spherical harmonics coefficients, is performed.

Spherical harmonics decomposition is defined as a 3-D extension of Fourier

transform for representing 3-D shape features using a spherical function. Specif-

ically, spherical harmonics decomposition was originally used as a type of para-

metric surface representation for radial surfaces [68, 69] and later extended to

more general shapes by representing the shape surface using a spherical function

(x(θ, φ), y(θ, φ), z(θ, φ)) with θ as the polar angle and φ as the azimuth angle.

Our 3-D shape features are developed based on spherical harmonics decomposi-

tion of depth map for human silhouette. In the spherical harmonics decomposition,

first, spherical parametrization [69] which creates a continuous and uniform map-

ping from the 3-D mesh surface to the surface of a unit sphere is adopted. The

result of the spherical parametrization process is a bijective mapping between each

vertex point on a 3-D mesh surface and a pair of spherical coordinates, θ and
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φ. The aim of the spherical parametrization is to parameterize the surface onto

a unit sphere. Afterwards, spherical harmonic expansion [70] is applied to the

spherical function (x(θ, φ), y(θ, φ), z(θ, φ))) which represents the 3-D mesh surface

to calculate a set of spherical harmonics coefficients. These coefficients (features)

are used to create the 3-D shape feature to recognize human actions using C-SVM

classifier. The accuracy of the 3-D shape feature relies only on the surface points

and the spherical harmonics band that is used to determine the number of coeffi-

cients to describe 3-D shape feature. Figure 5.1 illustrates a general overview of

our proposed method.
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Figure 5.1. Our proposed method for human action recognition using spherical har-
monics representation.

5.2 Video Processing for 3-D Shape Features

In this section, we briefly review the main steps of our method and the proposed

3-D shape features based on spherical harmonics representation that serves as the

foundation for human action recognition.
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5.2.1 Segmentation and 3-D mesh generation

An adaptive Gaussian model using probability density functions for sequence of

depth maps were built to evaluate if the pixels belong to background or foreground.

In our work, Stauffer et al. approach [59] is employed to segment moving objects

from the static background in order to represent the ROI. A median filter and

closing operation are implemented to the segmented object to reduce the high

frequency noises in the depth map and to restore the missing pixels. After the

preprocessing step, the depth map is used as 3-D data source to generate a 3-D

mesh surface. In order to reduce the number of mesh points and come up with less

number of triangles (for the sake of computation), down-sampling method is used

to extract an optimal amount of points from a depth map. After that, a triangular

mesh surface is generated from the sampled points using constrained Delaunay tri-

angulation algorithm [67]. In our approach, the external boundary points are used

as constraint in the triangulation to keep the connectivity among the silhouette

points and to generate an accurate boundary. Figure 5.2 demonstrates depth map

samples and generated 3-D mesh surface of two separate actions.

5.2.2 Spherical parametrization

Spherical harmonics was originally used as a type of parametric surface representa-

tion for radial surfaces and later extended to more general shapes by representing
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Figure 5.2. Examples of depth map and 3-D mesh surface for samples frames showing
the wave and pick-up actions.

the shape surface using spherical function S(θ, φ) = (Sx(θ, φ), Sy(θ, φ), Sz(θ, φ))

with θ as the polar angle and φ as the azimuth angle. Thus, it is convenient to use

spherical coordinates (θ, φ), as illustrated in Figure 5.3, instead of the Cartesian

coordinates. The variable θ is the polar angle with θ ∈ [0, π] and φ is the azimuth

angle with φ ∈ [0, 2π]. Radius R represents the distance from the origin of the

coordinate system, but it can be omitted for normalized coordinates, which all lie

on a unit sphere (R = 1) to create a uniform distance from the origin.

Spherical parametrization algorithm [68, 69] is used to establish a one-to-one

mapping between 3-D points on human body surface (vertices) and 3-D points on

the unit sphere. The result of the spherical parametrization process is a bijective

mapping between each 3-D point on a human body surface and a pair of spherical

coordinates, θ and φ. Therefore, the human body shape is represented as spherical

function: S(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T , where the function S(θ, φ) specifies

the distance from a specified origin point to each point on the surface of the sphere
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Figure 5.3. Conventions for the spherical coordinates.

for all three coordinates x = R cosφ sin θ, y = R sinφ sin θ, z = R cos θ.

Our method follows Shen et al. work [69], where we adapt the initial mapping

method to voxel surface without applying the optimization method in order to

accelerate the algorithm and to establish a one-to-one mapping on the unit sphere.

In our work, we convert the mesh surface into voxel surface in order to fill all the

holes on the surface before the spherical parameterization process.

In order to compute the spherical harmonics coefficients of a given 3-D human

surface, that surface needs to be a 3-D connected closed surface with no holes. In

practice, this topology requirement may not be satisfied because of the topology of

the depth map (2.5-D) and the missing data due to sensor errors. In other words,

some surface patches may have holes because of the complexity of the surface

or sensor errors. Therefore, to compute the spherical harmonics coefficients for

those surfaces, an interpolation strategy is proposed. The idea of the interpolation
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strategy is to convert 2.5-D into 3-D by closing the back side and fill the holes on

the surface resulting from missing data.Since there are no data in the back area, the

most direct solution is to fit a plane into the back side based on the boundary of the

human body. In this context, the vertices of the boundary are projected onto the

plane, then, the connectivity function is used to fill voxels onto the holes where the

data is missing. After filling the holes, the spherical harmonics coefficients for the

3-D connected closed surface of the whole body can be computed using spherical

harmonics decomposition. Figure 5.4 shows an example of 2.5-D surface and the

3-D closed surface before and after closing the surface.

Figure 5.4. Example of 2.5-D surface and the 3-D closed surface before and after closing
the surface.
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5.2.2.1 Parametrization algorithm

Parameterizing a 3-D surface over a unit sphere is equivalent to mapping its con-

nectivity surface onto a unit sphere. Specifically, a 3-D surface is mapped onto a

unit sphere under a bijective mapping (i.e. every point on the surface has to map

to one point on the sphere). In this context, a spherical function is created by map-

ping the voxel surface (vertices) to the unit sphere. Our approach follows the work

of Brechbuhler et al. [68] and adapts his initial mapping method to voxel surface

without applying local and global smoothing steps. A more detailed discussion of

parametrization and the optimization algorithm can be found in [68, 69]. Figure

5.5 shows a human body surface and its mapping onto a unit sphere.

Under this framework, a quadrate-based surface (voxel surface) serves as input

for the parameterization algorithm used to preserve and minimize the area and

topology distortion. The parametrization process is implemented in polar coordi-

nates, where the two polar coordinates θ and φ are determined for all Cartesian

coordinates (x, y, z) of vertices in two separate steps. First, with latitude θ two

vertices with maximum distance are identified in the voxel surface; these two ver-

tices have to be selected as poles for parametrization process. Then, a Laplace

equation 52θ = 0 (except at the poles),with Dirichlet conditions θnorth = 0 and

θsouth = π is solved for latitude θ to assign a latitude value for every vertex. The

Laplace equation is approximated by finite second differences of the available di-

rect neighbours for every vertex’s latitude (except the poles). These conditions
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Figure 5.5. Examples of the voxel surface and it is spherical parametrization.

form a sparse set of linear equations, which can be written in the form Aθ = B,

where A is a n × n matrix (direct neighbours for every vertex), n is the vertices

number, θ = {θ0, θ1, ..., θn}, and B is a vector of constants. The solution for this

sparse symmetric linear system of equations 5.1 has the property that latitude θ

varies monotonically between the poles.
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Algorithm 1: Initial parameterization algorithm for longitude
θ.

Input: Given voxel surface V(x,y,z) as a quadrate-based surface mesh.
Output: Spherical function S(θ, φ) presents the object surface on a unit

sphere.
1 Checking surface connectivity with Voxel surface V(x,y,z):
2 n← number of vertices
3 Set up matrix A:

for vertex← 1 to n do
4 neighbours := number of direct neighbours;

for M(x,y,z) ← 1 to neighbours do
5 if M(x,y,z) 6= pole then
6 Cvertex := −1;

7 Cvertex,neighbours := average Cvertex;
Avertex,vertex = Cvertex,neighbours

8 Set up Vector B:
9 set all entries of B to 0

10 for vertex← 1 to n do
11 neighbours := direct neighbours of south pole;

B(neighbours) = π

12 Calculate the latitude θ = {θ0, θ1, ..., θn} by solving linear system Aθ = B
return latitude vector θ



B1(1, 1)

B2(2, 2)

B3(3, 3)

...

Bn(n, n)


=



A(1, 1) A(1, 2) A(1, 3) . . . A(1, n)

A(2, 1) A(2, 2) A(2, 3) . . . A(2, n)

A(3, 1) A(3, 2) A(3, 3) . . . A(3, n)

...
...

... . . .
...

A(n, 1) A(n, 2) A(n, 3) . . . A(n, n)





θ1

θ2

θ3

...

θn


(5.1)

The following portions of pseudo-code shows how to set up the matrix A

and generates a right hand side vector in order to calculate the latitude θ =

{θ0, θ1, ..., θn} by solving linear system.
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Unlike latitude, longitude is a cyclic parameter. Thus, a date line is introduced

as discontinuous line running from pole to pole, and the step height is 2π. The date

line is chosen as a path with steepest latitude ascent in each of its vertices. The

values crossing the date line from west to east are decremented by 2π, while values

propagated to the west are incremented by 2π. Also, the poles and all links to them

are removed from the net, making the topology of the net without poles. Then, the

cyclic Laplace equation 52φ = 0 (with date line) is solved, as was done with the

equation for latitude. The new system of linear equations is structurally identical

to the one for latitude. Therefore, a latitude θ and a longitude φ are computed

for every vertex to define a continuous, unique mapping from the surface of the

original object to the surface of a sphere. A more detailed discussion of the initial

parameterization algorithm can be found in [68].

5.2.3 Spherical harmonics decomposition

After spherical parametrization, the spherical harmonic expansion [70] can be used

to compose the human surface into a complete set of spherical harmonics basis

functions and coefficients. Spherical harmonic expansion is essentially a Fourier

transform technique that defines a 3-D surface using a spherical function S(θ, φ)

and transforms them into a set of spherical harmonics coefficients (cmlx, c
m
ly , c

m
lz )

T in

the frequency domain. Theses coefficients can be calculated up to a user-desired

band Lmax by solving a system of linear equations.
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The spherical function can be transformed in terms of spherical harmonics

functions based on Brechbuhler et al. [68, 69] approach. They presented the surface

with an extended spherical harmonics which can model any simply connected 3-D

object for all spherical coordinates.

Thus, given the spherical function S(θ, φ) defined on the surface of the unit

sphere and the orthogonal spherical harmonics bases Y m
l , where Y m

l denotes the

spherical harmonic of degree l and order m:

Y m
l (θ, φ) = 2

√[
(2l + 1)(l −m)!

(4π(l +m)!)

]
Pm
l (cosθ)e(imφ) (5.2)

Pm
l (x) is the associated Legendre polynomial defined by the differential equation:

Pm
l (x) =

(−1)m

(2ll!)
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l (5.3)

Lmax is the band-width of the spherical harmonics, l and m are integers with

0 ≤ l < Lmax and |m| ≤ l.

Then, the spherical harmonics coefficients cml = (cmlx, c
m
ly , c

m
lz ) which are related

to S(θ, φ) can be calculated using the following equation:

S(θ, φ) =
Lmax∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) (5.4)

These complex-valued coefficients, cml , can also independently be decomposed in
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terms of the spherical harmonics as:

x(θ, φ) =
Lmax∑
l=0

l∑
m=−l

cmlxY
m
l (θ, φ) (5.5)

y(θ, φ) =
Lmax∑
l=0

l∑
m=−l

cmlyY
m
l (θ, φ) (5.6)

z(θ, φ) =
Lmax∑
l=0

l∑
m=−l

cmlzY
m
l (θ, φ) (5.7)

Clearly, calculating the spherical harmonics coefficients linearly depends on the

spherical harmonics band Lmax and number of surface points. In particular, these

coefficients are 3-D vectors which are computed up to a user specified maximum

band to construct the 3-D shape features. Therefore, based on spherical harmonics

decomposition, we can extract our 3-D shape features with different frequency

harmonics. This 3-D shape features defines the body shape in one frame. In

order to represent an action that includes t number of frames, our 3-D spatio-

temporal feature for all the frames are concatenated together to build a single

spatio-temporal feature vector for action description.

In our approach, spherical harmonics coefficients are determined using standard

least square technique [71]. The computational complexity of solving a standard

least square estimation using a Moore-Penrose algorithm for matrix inversion is

O(NM2) +O(M3) where N is the number of equations (surface points) and M is

the number of unknowns (number of coefficients,(M = Lmax + 1)2.
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5.2.4 3-D Shape features

A 3-D shape features (SF ) is an abstraction of the human body representation

by capturing shape information in a structure that is well-suited for comparison.

Therefore, based on spherical harmonics decomposition, we can build 3-D shape

features with different frequency harmonics (fl) up to a user maximum band Lmax

:

SF = {f0, f1, , f2, ...fLmax
} (5.8)

where fl is defined as:

fl = {cml ,m = −l, ..., l} (5.9)

By combining these two last Equations, and taking the real value for each

spherical harmonics coefficients in 3-D space, we create the 3-D shape features.

This shape feature defines the body shape in one frame. In order to represent an

action that includes t number of frames, our shape descriptor for all the frames

are concatenated together to build a feature vector for action description.
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5.3 Action classification

In our approach, a canonical C-SVM classifier with a single kernel function and

a group of kernel parameters were used to classify the action based only on the

shape features. The canonical C-SVM [72] is a discriminative classifier for binary

and non separable classification problems.

Let’s assume we are given a set of N training samples {(xi, yi)}Ni=1, where xi is

the ith feature vector of the training set X with dimension D, and yi ∈ {−1,+1}

is its corresponding class label. By solving the optimization problem defined in

Equation 5.10, SVM is able to find a linear discriminative hyperplane with the

maximum margin between samples from different classes in the feature space RD.

The hyperplane is characterized by its direction w and its exact in-space position

b as shown in Figure 3.2.

min
w,b,ξ

J(w, b, ξ) =
1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, i = 1, 2, ..., N

ξi ≥ 0, i = 1, 2, ..., N

(5.10)

where ξ = (ξ1, ξ2, ..., ξN)T is known as the vector of slack variables, and C is a

positive constant value preset to control the relative influence of non separable

samples.

In the canonical C-SVM, solving the optimization problem defined in Equation
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5.10 is usually pursued by using its dual form:

max
α

L(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi, xj)

s.t. 0 ≤ αi ≤ C,
N∑
i=1

αiyi = 0

(5.11)

where α = (α1, α2, · · · , αN)T is the vector of Lagrangian dual variables correspond-

ing to each feature vector, k(xi, xj) = 〈φ(xi), φ(xj)〉 is a kernel function which maps

two D-dimensional features to be a positive scalar, and φ(·) is a map that maps

the feature space X into a projected space H. Therefore, once given a test sam-

ple x0 ∈ RD, the label of x0 (denoted by y0) can be calculated according to the

following function:

y0 = sgn(wTφ(x0) + b) = sgn(
∑N

i=1
αiyik(xi, x0) + b) (5.12)

where sgn(·) is the sign function.

5.4 Experimental results

In order to evaluate the performance of the proposed 3-D shape feature, We used

the MSR-Action 3-D dataset [11] for recognizing human actions performed by

different subjects. MSR-Action 3-D dataset [11] is an action dataset of depth map

sequences captured by a depth camera (RGBD sensor). This dataset contains
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different human actions: high arm wave, horizontal arm wave, hammer, hand

catch, forward punch, high throw, draw x, draw tick, draw circle, hand clap, two

hand wave, side boxing, bend, forward kick, side kick, jogging, tennis swing, tennis

serve, golf swing, pick up and throw. It includes twenty actions performed by ten

subjects. Each action was performed 2 or 3 times by each subject. The size of

the depth map is 320 × 240. All the subjects were facing the camera during the

performance. The subjects were given a freedom to perform the actions at their

own place in front of the camera. Furthermore, most of the actions in this dataset

involve the movement of limbs (i.e. arm, leg) in one place, which makes most

of the actions highly similar to each other. Figure 5.6 demonstrates depth map

samples of five separate actions after segmentation. In fact, this dataset is more

challenging compared with the previous datasets such as Weizmann and KTH

datasets in human action recognition.

Figure 5.6. Sample depth maps for horizontal arm wave, hammer, high throw, draw
circle, throw, hand catch, jogging and tennis swing actions.

To perform action classification using the proposed 3-D shape feature, we used

LibSVM [39] classifier with single kernel function. First, we trained several SVMs

for different actions using Leave-One-Subject-Out (LOSO) method. For all the
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videos, one subject was removed from the training set and the other subjects were

utilized to train separate SVMs for separate actions. Then, the excluded videos

were used to test the accuracy of our approach in classifying the performed actions

in videos. The test subject was different from the training ones. This process was

repeated for all the subjects and all the actions in the dataset separately. We tested

different kernel functions such as linear function and Radial Basis Function (RBF)

where RBF kernel showed better best results, As result we used SVM classifiers

with RBF kernel.

Figure 5.7 illustrates the results of classifying actions in form of confusion

matrix. From the Figure 5.7, we can observe that the average recognition rate

of our approach is 74.1% for all the actions. The similar actions are confused by

each other. We believe this miss classification to be due the fact that our 3-D

shape feature does not consider the motion and translation (i.e., it is invariant

to object translation) which makes it difficult to recognize the action from shape

structure only. Therefore, extra motion information needs to be included in the

feature level to enhance the classification performance. In this context, we need to

develop a method that can be used to fuse shape feature and motion feature in the

feature level to enhance the recognition rate of human activity recognition. For

instance, the motion features of human limbs, such as forearms and shins, may be

augmented with the shape features that describe the silhouette in order to improve

the pattern classification performance.
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Figure 5.7. Confusion matrix using spherical harmonics coefficients as shape feature
with single kernel function (C-SVM Classifier).

5.5 Summary

This chapter presents a study on recognizing human actions using surface rep-

resentation of depth map. We have utilized the concept of spherical harmonics

representation to create 3-D shape feature. Thus, a 3-D shape feature is calcu-

lated from the surface representation of body silhouette using spherical harmonic

decomposition. Background subtraction, followed by spherical parametrization,

was used to describe the depth maps of human body by 3-D points. Afterwards,

the 3-D points were mapped onto a unit-radius sphere and then decomposed into

a set of spherical harmonic coefficients (similar to Fourier transform). The real

values of these spherical harmonic coefficients were used to create a 3-D shape

feature.
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The proposed 3-D shape feature is used to describe human actions in a sequence

of depth maps. The actions were then automatically classified using C-SVM clas-

sifier. We conducted experiments on twenty human actions performed by ten

subjects. Experimental results have clearly shown the promising performance of

the proposed method and also the advantages of using 3-D points over the 2-D

silhouettes. Therefore, the contribution of our method is summarized as follows;

new approach for human activity recognition based on a set of spherical harmonic

representation. In fact, by representing the human body in Fourier domain, the

spherical harmonics coefficients can describe the whole body shape as set of shape

features. These features are used to create the 3-D shape descriptor which is

invariant to scaling and translation.
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Chapter 6

Multi-Features for Human Action

Recognition

In this chapter, we present multi-modal approach using surface representation and

kinematic structure to characterize the human activities. Using the depth infor-

mation provided by the Kinect sensor, a set of shape features and motion features

are extracted to classify the human activities. The shape features are used to de-

scribe the human body shape using spherical harmonics representation. The other

features are the motion of the 3-D joint positions (i.e. the end points of the distal

limb segments) of the human body. These two sets of features are fused using MKL

technique for human action recognition. We evaluated and compared our proposed

method with the state-of-the-art methods using videos of two challenging human

activity datasets. The results of our experiments show promising results and a

good direction in incorporating different types of features using MKL technique.
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6.1 Overview of the method

In the past decades, significant amount of researches have been done in the field

of human action recognition in visual data using sequence of 2-D images. Most of

these researches are based either on shape features or motion features. Recently,

researchers has paid more attention to use 3-D spatio-temporal features for de-

scribing and recognizing human actions [12, 7, 33, 34, 36] due to easy access to

depth information (e.g. Kinect sensor).

In general, 3-D spatio-temporal features look at the changes in the body shape

based on dominant motions in the human limbs [12, 33]. With the 3-D spatio-

temporal features, the changes in the body shape can be detected and represented

as space-time volumes. These features mainly focus on the representation of the

shape and motion as a function of time. Therefore, the main idea of these methods

is to recognize human action by detecting/describing the changes in the human

limbs either by detecting the 3-D motion of human limbs or through measuring

similarities among different 3-D space-time volumes.

Most of the early methods for human action recognition concentrated on se-

quence of RGB data captured by regular cameras. This is due to the fact that 2-D

images are easier to acquire. In addition, surveillance and security systems utilize

regular 2-D cameras for video acquisition. Recently, the developed commodity

depth sensors such as Kinect [10] have opened up new possibilities of dealing with
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3-D data. This type of sensor has given the computer vision community the op-

portunity to acquire RGB images as well as depth maps simultaneously at a good

frame rate (30 fps) with a good resolution. The depth maps are able to provide

additional 3-D data information that can help to distinguish different silhouettes

of human body shapes. As we can see in Figure 6.1, the depth map provides

additional information as 3-D data which is expected to be helpful in distinguish-

ing poses of silhouettes. Furthermore, comparing with RGB image, the depth map

increases the amount of information that can help to detect the 3-D joint positions.

Figure 6.1. Sample of depth maps sequence with 3-D joint positions for Tennis Serve
action.

The research in human action recognition based on sequence of depth maps

has motivated with the release of the Kinect for windows SDK, which utilized to

estimate the 3-D joint positions. Although RGBD sensors produce a better quality

of 3-D motion than those estimated from RGB sensors (e.g., Stereo vision systems

for 3-D estimation), the estimated 3-D joint positions are still noisy and fails when

there are occlusions between human limbs such as two limbs crossing each other.

In addition, the motion of 3-D joint positions alone is insufficient to distinguish
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similar activities such as ”drinking” and ”eating”. Therefore, extra information

needs to be included in the feature level to enhance the classification performance.

In this context, we need to develop a method that can be used to fuse different

types of features in order to create a new feature set from multiple feature sets to

represent human action. For instance, the motion features of human limbs, such

as forearms and shins, may be augmented with the shape features that describe

the silhouette in order to create a new feature set that can help to improve the

pattern classification performance.

Feature fusion methods are widely applied in human action recognition due to

the fact that it is often insufficient for a single type of feature to represent variations

among multiple motions of human body. For lower level fusion as presented in

[73, 74], different types of features are combined at the vector level, and the fused

feature vector is sent to a single classifier for action recognition. Whereas, for

higher level feature fusion as proposed in [75, 76], multiple classifiers are designed

for human action labelling from different types of features, and the final decision

is made by taking into account the complementaries among classifiers.

Most recently, multikernel learning (MKL) techniques as surveyed in [51] have

been proposed for feature fusion at the kernel level within kernel-based classifiers.

The works presented in [48, 50] show that MKL can enhance the discrimination

power and improve the performance of classifiers during human action recognition.

The idea behind MKL is to optimally combine different kernel matrices calculated
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based on multiple features with multiple kernel functions. The authors of [51]

justified the superiority of MKL-based SVM over canonical SVM by showing that

the learned discriminant hyperplane of MKL-based SVM performs better than

canonical SVM.

This chapter presents a method to recognize human activities using a sequence

of depth maps. The basic idea of our method is illustrated in Figure 6.2. Based on

surface representation and kinematic structure, we propose a novel features that

can characterize the shape and the motion of human body. In our approach, the

shape features, which are extracted from the depth map using spherical harmonics

representation, are used to describe the 3-D silhouette structure. While, the motion

features, which are extracted from the estimated 3-D joint positions, are used to

describe the movement of the distal limb segments of human body. We adopted

the distal limb segments in our method because we believe that the distal limb

segments, such as forearms and shins, provide sufficient and compact information

for human action recognition. Therefore, each distal limb segment is described by

the orientation and translation with respect to the initial frame in order to create

a motion features. Our approach fuses the shape features with the motion features

using SimpleMKL algorithm [54] in order to produce an optimally combined kernel

matrix within Support Vector Machines (SVM) for action classification. The kernel

matrix has more discriminate power than single feature type based ones due to the

utility of multiple features with different kernel functions.
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Figure 6.2. Our proposed method for human action recognition based on shape and
motion features.

In summary, the main points of this chapter are: 1) Presenting 3-D spatio-

temporal features based on spherical harmonics representation for human action

recognition. In fact, by representing the depth map of the silhouette in the spherical

harmonics domain, the spherical harmonics coefficients can describe the human

body shape as a set of shape features in the frequency domain. 2) Presenting 3-D

motion features of the distal limb segments in the spatial domain. These different

types of features are fused in one kernel matrix in order to enhance the classification

performance. 3) The proposed features which are based on depth map are capable

to characterize the human-object interactions. These features are evaluated on

two datasets: MSRAction3-D dataset [11] and Dailyaction3-D dataset [12]. Our
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experimental results show promising direction in incorporating different types of

features using MKL technique.

6.2 Spatio-temporal features

This section gives a detailed description of two types of 3-D spatio-temporal fea-

tures that we utilized to classify actions. These features are used to characterize

the human limbs motion and the human body shape as a function of time.

In our work, we utilized spherical harmonics representation to extract 3-D shape

features of the silhouette, and the kinematic structure of human body to detect the

end points of the distal limb segments which are utilized to extract the 3-D motion

features. These features are fused using SimpleMKL algorithm [54] with different

kernel functions where both the kernel combination weights and discriminate hyper

planes of multiclass-SVMs are optimized. In the end, human action classification

based on the learnt kernel weights and discriminated hyper planes of multiclass-

SVM are used to address the issues of recognizing complex activities. The general

framework of our proposed method is demonstrated in Figure 6.2.

6.2.1 Motion features

The distal limb segments (four limbs), as illustrated in Figure 6.3, are utilized to

extract the motion features. The motion features represented the orientation and

the translation distance of the distal limb segments. In fact, the positions of the
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distal limb segments are employed to extract the motion features of the human

limbs. Our key observation is that the change in positions of the distal limb

segments can be utilized to represent the human body movement as discriminative

features. This is due to the fact that the distal limb segments provide sufficient

information for human limbs movement.

Figure 6.3. The 3-D distal limb segments (four limbs) are used to extract the motion
features.

We employed 3-D joint positions of the distal limb segments to characterize

the motion features including positions, orientation, and translation. Thus, each

distal limb segment Lk is described by its end points as 3-D vector with respect to

the body center (hip) in order to create the 3-D unit vector which represents the

orientation of the distal limb segment. The orientation of the 3-D vector is defined

by a unit vector ~Uab of frame Ft. Therefore, the 3-D coordinates of end points J(t)

of distal segments Lk in frame Ft are JLk
i (t) = {j0, j1}, where ja = (xa, ya, za) and

k is a distal limb number.
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~Vab(t) = {JLk
b (t)− JLk

a (t) | a, b = 1, 2, . . . , N ; a 6= b} (6.1)

~Vab(t) = (xb − xa)̂i+ (yb − ya)ĵ + (zb − za)k̂ (6.2)

~Uab(t) =
~Vab(t)

‖~Vab(t)‖
= Axî+ Ay ĵ + Azk̂ (6.3)

Since all the measurements are relative to the center of the body in one frame, it

is necessary to add other information about the motion of the human limbs between

the current frame Ft and the initial frame Ft0 , which tends to the neutral human

pose. Thus, the translation, which gives the difference in position for the distal

limb segments between two frames, is computed in order to create a 3-D spatio-

temporal feature, and to make the classifier discriminates between the actions that

have similar orientation but different positions. Practically, each human subject

has four distal limb segments which are tracked by the skeleton tracker [32], each

distal limb Li is represented by 3-D unit vector ~Uab and translation vector Dtt0 in

each frame.

Dtt0 = {‖J ta − J t0a ‖ | J taεFt; J t0a εFt0} (6.4)

Consequently, the features extracted from each frame is a 3-D unit vector which
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represent the orientation and translation vector with respect to the initial frame

Ft0 for each distal limbs as motion features. The combination of these vectors

for each distal limb segments forms the motion features representation for each

frame. However, all the vectors which represent the 3-D distal limb segments were

normalized to reduce intra-class variations among subjects and to be invariant to

the body size. We use linear normalization scheme to scale the features in the range

[−1 to +1]. With the tracker [32] the motion direction can be readily estimated

using the difference in horizontal position between the centers of the bodies in

two consecutive frames. These 3-D motion features define the movement of distal

limbs in one frame. In order to represent the motion that includes t number of

frames, our motion features for all the frames are concatenated together in order

to build a spatio-temporal features vector for motion description. This yields to

a spatio-temporal feature with precise orientation and translation data for each

human limb in all the frames.

6.2.2 Shape features

Due to the motion similarity in some actions, it is insufficient to only use the

motion features to fully describe and model an action. Thus, we create another

feature that can describe the human body shape in order to increase the accuracy

of the classifier. We employed spherical harmonics coefficients, as shape features,

for representation and recognition of human actions from sequence of depth maps.
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These features are developed based on spherical harmonics representation of 3-D

silhouette. In our approach, the body silhouette is described by 3-D geometric

points obtained from the depth map. To reduce the number of mesh points and

come up with less number of triangles, depth map points are down-sampled. Then,

spherical harmonics decomposition is applied to these points and a set of spherical

harmonics coefficients are extracted. These coefficients are used to build spatio-

temporal features that describe the human body shape in the spherical harmonics

domain as described in chapter 5.

6.2.3 Multi-feature fusion using SimpleMKL

Let’s assume we are given a set of N training samples {(xi, zi, yi)}Ni=1, where xi is

a feature vector of the ith sample in the training set X with dimension D1 while

zi ∈ RD2 is another feature vector of that samples (training samples) in the set Z,

and yi ∈ {−1,+1} is their corresponding class label. k(·, ·) is a kernel function that

maps two feature vectors to be a positive scalar. The SimpleMKL algorithm was

proposed to address the MKL base SVM problem by solving the convex problem
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defined in Equation 6.5.

min
d

max
β

L(d, β) = −1

2
βT (

M∑
m=1

dmK
m)β + yTβ

s.t.
N∑
i=1

βm = 0, 0 ≤ βiyi ≤ C, i = 1, 2, ..., N

M∑
i=1

dm = 1, dm ≥ 0, m = 1, 2, ...,M

(6.5)

Here, y = (y1, y2, ..., yN)T is class labels, and β = (β1, β2, ..., βN)T is known as the

vector of Lagrangian coefficients in SVM. The multikernel matrix K is generated

as K =
∑M

m=1 dmK
m, where Km is the kernel matrix calculated based on single

type of features with single kernel function. d = (d1, d2, ..., dM)T is the kernel

combination weight vector, and M is the total number of kernel functions in use.

In our work, suppose we are given a pair of samples (e.g., the ith and jth ), the

fusion of extracted shape ({xi, xj}) and motion features ({zi, zj}) at kernel level

within the SimpleMKL framework is handled as follows,

Ki,j =
M∑
m=1

(dmkm(xi, xj) + dm+Mkm(zi, zj)) (6.6)

Hence in this fusion work, the dimensionality of kernel combination weight vector

d is 2M .
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6.3 Experimental results

We choose two challenging public datasets which are known as MSR-Action 3D

dataset [11] and MSR-Daily Activity 3D dataset [12] for human activity recognition

to evaluate our proposed method. In our experiments, we used spherical harmonics

representation, with spherical harmonics band L = 12, to represent the shape

features, and the movement of distal limb segments as motion features. For each

feature two kernel functions were used; Gaussian function and polynomial function,

each with different parameters are linearly combined to classify the action using

multiclass-SVM classifier. We used the following configuration for kernel functions

to fuse multiple types of features with different kernel function parameters based

on SimpleMKL framework as defined in the following equations:

kGaussian(x, y) = e
−
‖ x− y ‖2

σ2 (6.7)

kpoly(x, y) = 〈x, y〉d, d ∈ N (6.8)

where σ is kernel parameters of Gaussian function and d is the parameter for

varying the order of polynomial function. In our experiments, we set different

values for parameters of the above two kernel functions with the criterion that

they fill a proper range of the defined domain. For Gaussian function, we set σ2 ∈
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{0.01, 0.1, 1, 5, 10, 60, 500}, for the polynomial function, we set d ∈ {1, 2, 3}. Thus,

we obtained 10 alternatives for parameterizing the two defined kernel functions

(i.e., 7 + 3 = 10). Hence, given any pair of samples (e.g., the ith and jth), the

fusion of extracted shape features ({xi, xj}) and motion features ({zi, zj}) at the

kernel level within our framework is handled as follows:

Ki,j =
10∑
m=1

[dmkm(xi, xj) + dm+10km(zi, zj)] (6.9)

where km(·, ·) is one of the 10 optional kernel functions, and d = (d1, d2, ..., d20)T

(‖d‖p = 1, p ≥ 1) is the kernel combination vector to be optimized during MKL.

Practically, two types of features are extracted from each frame t: the motion

features mi[t] from 3-D distal limbs segments, and the shape features si[t] from

spherical harmonics coefficients. For each feature two kernel functions were used:

Gaussian function and polynomial function, each with different parameters are lin-

early combined to classify the action using multiclass-SVM classifier. In addition,

the regularization parameter C is fixed to the value 1024 for SimpleMKL algo-

rithm in multiclass-SVM. Within this frame, several experiments were conducted

using different number of training samples in order to evaluate the performance

of our proposed activity recognition method. The empirical results show that our

proposed method is comparable with the state-of-the-art-methods.
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6.3.1 MSR-Action 3-D dataset

MSR-Action 3-D dataset [11] is an action dataset of depth map sequences captured

by a depth camera (RGBD sensor). This dataset contains different human actions:

high arm wave, horizontal arm wave, hammer, hand catch, forward punch, high

throw, draw x, draw tick, draw circle, hand clap, two hand wave, side boxing, bend,

forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick up and

throw. It includes twenty actions performed by ten subjects. Each action was

performed 2 or 3 times by each subject. The size of the depth map is 320 × 240.

All the subjects were facing the camera during the performance. The subjects were

given a freedom to perform the actions at their own place in front of the camera.

Furthermore, most of the actions in this dataset involve the movement of limbs

(i.e. arm, leg) in one place, which makes most of the actions highly similar to

each other. In fact, this dataset is more challenging compared with the previous

datasets such as Weizmann and KTH datasets in human action recognition.

In the first experiment, we employed the end points of distal limb segment to

calculate the orientation as a unit vector representing the distal limb segment and

the translation with respect to the initial frame. Also, the surface points of the

silhouette were employed to calculate the spherical harmonics coefficients. In addi-

tion, we trained two third of samples and the other third of the samples were used

to test the recognition rate of our proposed method in classifying the performed ac-

tions. We repeated this experiment three times, each time we change the training
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and testing samples, and the results of classifying actions were averaged. Figure

6.4 illustrates the results of classifying actions in form of confusion matrix. From

the Figure 6.4, we note that the proposed method achieves an accuracy of 0.907 for

all actions together. Also, we observe that the classification errors occur if there

are similarity among the actions, such as ”forward punch” and ”hand catch” or

if the occlusion occur among human limbs which makes the skeleton tracker fails

as in tennis swing action. Therefore, since the skeleton tracker sometimes fails

and because of the high rate of similarity among the actions, we considered the

accuracy 0.907 for twenty actions together is a good performance and comparable

with other methods.

Figure 6.4. The confusion matrix for MSR-Action 3-D dataset

In addition, we compare the performance of our proposed method with the

state-of-the-art methods which are evaluated on the same dataset (MSR-Action
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3-D dataset [11]). The first approach was developed by Xia et al[33], they modeled

the histograms of 3-D skeleton joint locations by discrete hidden Markov models

in order to train/classify the action. The second approach, Li et al. [11] proposed

a Bag-of-3-D-Points model for action recognition.

In order to make a fair comparison, we follow the same experimental settings

as [33, 11] by dividing the twenty actions into three subsets, each subset contains

eight actions, as listed in Table 6.1. We compare our method with the state-of-

the-art methods in two tests. In the first test, two third of the samples were used

as training samples and the rest as testing samples. In the second test, half of the

subjects were used as training and the rest of the subjects were used as testing.

Table 6.2 reports respectively the average recognition rates for those methods.

Table 6.1. The three subsets of actions used in comparison.

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3)
Horizontal Wave High Wave High Throw

Hammer Hand Catch Forward Kick
Forward Punch Draw X Side Kick

High Throw Draw Tick Jogging
Hand Clap Draw Circle Tennis Swing

Bend Hands Wave Tennis Serve
Tennis Serve Forward Kick Golf Swing

Pickup Throw Side Boxing Pickup Throw

As shown in Table 6.2, all methods have a high accuracy in the first test (test-1).

The overall recognition rate of our method is comparable with the other methods.

In the second test (test-2), the overall accuracies are low for all methods because

the number of training samples is low and the similarity among some actions. The
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significant improvement of our method is likely due to incorporating different types

of features in different space as a new way of recognizing human activities.

Table 6.2. Recognition Accuracy Comparison Using MSR-Action3-D dataset.
Xia et al. Li et al. Our

CVPR 2012 CVPR 2010 Method
Subset Test-1 Test-2 Test-1 Test-2 Test-1 Test-2
AS1 0.986 0.879 0.934 0.729 0.932 0.743
AS2 0.979 0.854 0.926 0.719 0.945 0.768
AS3 0.949 0.634 0.963 0.792 0.956 0.867
Overall 0.971 0.789 0.941 0.747 0.944 0.797

6.3.2 MSR-Daily activity 3-D dataset

In another experiment, MSR-Daily Activity 3-D dataset [12], which is captured by

a Kinect, was utilized to evaluate the performance of our method for recognizing

different human activities. This dataset is created to cover daily activities and

human-object interactions in the living room. Thus this dataset is more challenging

than the first dataset because of human-object interactions. It contains sixteen

different human activity: drink, eat, read book, call cellphone, write on a paper,

use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lay

down on sofa, walk, play guitar, stand-up, sit-down, each subject performs an

activity in two different poses: standing pose and sitting on sofa pose. The total

number of the samples in each pose is 160 sample, each subject has one sample

per one activity. A few sample frames of MSR-Daily Activity 3-D dataset are

shown in Figure 6.5. In our experiments, we used the standing pose to evaluate

the performance of our proposed method since the segmentation of the dataset is
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not clean in the sitting on sofa pose and skeleton tracker more noisy. We employed

the end points of distal limb segment to calculate the orientation as a unit vector,

the 3-D joint positions, and the surface points of the silhouette to calculate the

spherical harmonics coefficients.

Figure 6.5. A few sample frames of MSR-Daily Activity 3-D dataset; the activities
from left to right: drink, eat, read book, play game, use laptop, use vacuum cleaner,
play guitar.

Since this dataset has small number of samples for training, Leave-One-Subject-

Out (LOSO) test and cross subject test were applied in our experiments to verify

the performance of our method. In the LOSO test, one subject is removed from

the training set and the other subjects were utilized to train the multiclass-SVM

classifier. The excluded subject is used to test the accuracy of our method in

classifying the performed activities. The test subject was different from the training

ones. This process was repeated for all the subjects (10 subjects), and the results

of classifying actions are averaged among ten subjects. In the cross subject test,

half of the subjects were used as training data and the other subjects were used

as testing data. We repeated this experiment two times, each time we change the
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training and testing samples, and the results of classifying actions were averaged.

The average recognition rate for LOSO test and cross subject test is 0.881, and

0.856 respectively for all activities together. From the Figure 6.6, we can observe

that there are a confusion in some similar activities, such as write on a paper and

use laptop. In fact, the significant improvement of our method comes in employing

the spherical harmonic representation, which describes the interaction between the

human body parts and environmental objects.

Figure 6.6. The confusion matrix for MSR-Daily Activity 3-D dataset.

Table 6.3 compares the accuracy of the proposed method with the state of

art methods on cross-subject test. From Table 6.3, we note that the recognition

accuracy of actionlet ensemble model is 0.857, and Fourier Temporal Pyramid

method is 0.780. Regarding to our method, which employing the spherical har-

monic representation, we obtain a recognition accuracy of 0.856. By considering
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the difficulties of the dataset and the noisy of 3-D joint positions, we considered

the result is reasonably and comparable with the state of art methods.

Table 6.3. Recognition Accuracy Comparison Using MSR-Dialy Activity 3-D dataset
on cross subject test.

Method Accuracy
SVM on Fourier Temporal Pyramid [12] 0.780
Actionlet Ensemble Model [12] 0.857
Proposed Method 0.868

6.3.3 Discussion

In order to evaluate the performance of our proposed method using multiple types

of features with a SimpleMKL based multiclass-SVM classifier on human action

recognition, three independent SVM classifiers are adopted in our experiments.

The first classifier C1 is C-SVM classifier with a single kernel function and a group

of kernel parameters. In this classifier C1, we used only spherical harmonics co-

efficients as shape features of human body. The second classifier C2 is the same

as classifier C1 except the orientation of distal limb segments are used as motion

features instead of shape features. The third classifier C3, which represents our

proposed method, is built based on a SimpleMKL based multiclass-SVM classifier.

Classifier C3 is designed with two kernel functions and two types of features in-

cluding shape features and motion features. This classifier C3 used to create one

kernel weight vector for activity classification.

In our work, we tuned 20 alternative kernel function parameters for Gaussian

kernel function and polynomial kernel function and the parameter C is set to
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1024 during the training step. However, by fusing shape features and the motion

features, our proposed method using a SimpleMKL-based multiclass-SVM can au-

tomatically learn the optimal kernel combination weights. This advantage comes

from utilizing multiple types of features and different kernel functions, which en-

hance the performance of the classifier system in the kernel level.

Figure 6.7. Comparison among shape features, motion features and feature fusion using
MKL technique.

Figure 6.7 illustrates the calculated confusion matrix for the three classifiers

C1, C2 and C3 using MSR-Action 3D dataset [11]. By comparing the results,

we can observe that our proposed method using SimpleMKL-based multiclass-

SVM can generally boosts the recognition rate of human activity recognition by

fusing multiple types of features with different kernel functions and parameters as

shown in Figures 6.7. Specifically, the recognition rate for most actions have been

increased from 74.1% for classifier C1, and 83.7% for classifier C2 to 90.7% using

classifier C3 which represents multi-features with MKL.
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Based on the comparison among the experimental results of the three classifiers,

we observed the SimpleMKL-based multiclass-SVM increases the recognition rate

of human activity recognition, and outperforms single kernel function and single

feature type. In addition, the proposed framework can be applied to other appli-

cations that have different types of features and kernel functions in classification

tasks although our work focused only on one application.

6.4 Summary

This paper presents a novel framework for incorporating different types of features

via SimpleMKL algorithm based on multiclass-SVM. We have proposed a novel

3-D feature for human action recognition using sequence of depth maps obtained

by Kinect sensor. The proposed features are discriminative enough to classify

human activities even with the human object interactions. The proposed method

was applied on two public datasets to evaluate the performance of the proposed

method. Experimental results have clearly shown the advantage of using MKL

technique in combining different types of features.

In addition, our work presents the advantage of using depth maps for human

action recognition. Furthermore, we have presented the concept of spherical har-

monics representation to extract a 3-D shape features using spherical harmonic

decomposition, and the distal limb segments to extract a 3-D motion features.
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Chapter 7

Conclusion and Future Research

Direction

7.1 Summary and contributions

In this dissertation, we have introduced a new methodology for human action

recognition using motion features extracted from kinematic structure, and shape

features extracted from surface representation of the human body. The recently

released RGB-depth sensor, Kinect, has allowed simultaneous acquisition of RGB

image (2-D) and depth map (3-D) with a good resolution 320× 240 pixels. Such a

sensor allows acquiring multi-modal videos of human movement, hence illustrating

human movement using multiple descriptive features. In fact, there are advantages

in using multiple types of features for human action recognition, especially if the

features are complementary to each other (e.g. kinematic/motion features and
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shape features). For instance, challenging problems such as inter-class similarity

among actions and performance variation, which cannot be resolved easily by using

a single type of feature, can be handled by fusing multiple types of features.

To represent the kinematic structure of the human body from RGB images, an

approach for detecting/tracking distal limb segments using the kinematic structure

is developed. The idea behind using distal limb segments, such as forearms and

shins, is to convert the kinematic structure of the human body into discriminative

features that can provide sufficient and compact information to recognize human

actions. In this manner, a nine segment skeleton model is fitted to the medial axis

of the human body to detect the torso and limbs. This nine segment skeleton model

is used to create motion features based on the end-points of the distal segments. To

evaluate our approach, three action datasets with different resolutions are utilized

and the results are compared with state-of-the-art methods.

On the other hand, the surface representation is an important cue that can

be helpful in characterizing the structure of the body silhouette. This dissertation

presents a new method for representing the human body surface provided by depth

map (3-D) using spherical harmonics representation. The advantage of using the

spherical harmonics representation is to represent the whole body surface into a

finite series of spherical harmonics coefficients. Furthermore, these series can be

used to describe the pose of the body using the phase information encoded inside

the coefficients. In our approach, surface parameterization is applied to the body
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surface to achieve one-to-one mapping from the body surface to a unit sphere in

order to create spherical function. Then, spherical harmonic expansion is used to

represent the spherical function into a set of spherical harmonic coefficients in the

frequency domain. These coefficients are utilized as shape features to train/classify

human actions using the canonical C-SVM classifier.

However, the kinematic structure and the surface representation of the human

body have their own limitations, and we believe that only a multi-modal approach

can provide a robust solution for the problem of human action recognition. In

particular, we have studied and provided some useful ideas in human action recog-

nition: 1)Motion features extraction using kinematic structure. 2)Shape features

extraction using surface representation of the human body. 3) Multi-features fu-

sion at the kernel level using MKL technique. 4) Experiments on 2-D and 3-D

human action recognition using different public datasets (Weizmann, KTH, MSR-

Action-3D and MSR-Daily Activity-3D datasets).

In this dissertation, we have introduced a framework for human action recogni-

tion based on kinematic structure and surface representation of the human body.

We summarize the major contributions of this research as follows:

• A novel approach for fitting distal limb segments into nine-segment 2-D skele-

ton model. This skeleton model is used to provide precise endpoints of the

distal segments which are reduced to centroids for efficient recognition. Each

limb centroid is described by its angle with respect to the vertical body axis
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to create an action descriptor vector to represent the position of the torso and

four limb segments. The action descriptor is detected and tracked without

any manual initialization.

• Reduction of the kinematic structure to the distal limbs only for action recog-

nition, because we believe the distal limb segments (e.g. forearms and shins)

provide sufficient and compact information for human movement.

• Based on the kinematic structure only, the motion of the distal limb segments

are used as motion features in the spatial domain.

• Performance evaluation of the motion features with respect to the human

action classification using two public dataset (Weizmann and KTH datasets).

• A novel 3-D spatio-temporal features based on spherical harmonics represen-

tation for human action recognition. In fact, by representing the depth map

of the silhouette in the spherical harmonics domain, the spherical harmonics

coefficients can describe the whole body shape as a set of shape features.

• Feature fusion operation is adopted to fuse different types of features using

MKL based SVM as a novel concept of feature fusion at the kernel level in

order to enhance the classification performance.

• We have evaluated the performance of our multi-modal system for human ac-

tion recognition using two public datasets: MSR-Action 3-D dataset [11] and
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MSR-Daily Activity 3-D dataset [12]. Our experimental results show promis-

ing direction in incorporating different types of features using the MKL-based

SVM technique.

7.2 Future work

Human action recognition is an important area of research that is continuously

progressing. Possible future developments, expansions, and improvements of our

presented algorithms in this thesis are as follows:

• Clearly, there are some restrictions of the proposed framework for human

action recognition. One limitation is the extraction of human silhouette (i.e.,

back-ground subtraction). In fact, our approach requires the body silhouette

to be accurately segmented from the background. Hence, in order to build a

robust system, a strong approach for dynamic segmentation independent of

environment needs to be developed and be utilized with our framework.

• Another limitation is the viewing direction of the camera which is fixed in our

work. In reality, the camera view angle is not fixed and varies depending on

the location of the person with respect to the camera. Therefore, improving

the developed system to detect/describe human action from different view

angles is strongly needed for human action recognition. In particular, con-

structing 3-D human body shape by using two RGBD sensors or another
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technique will enhance our proposed framework to be view-invariant. There-

fore, constructing 3-D human body shape requires more research in order to

improve view invariant task.

• Extending the multi-modal approach to incorporate depth map information

and RGB information to provide more information and build more robust

features that can recognize complex activities. In addition, it is an interest-

ing to study these two challenging topics: human-human interactions and

human-object interaction in the area of activity recognition.

• Expanding the current multi-modal approach or developing a new technique

to extract more than only shape and motion features from the depth maps.

For instance, local features such as SIFT, SURF and HOG can be fused in

proposed framework in order to enhance the classification performance.

• Extracting and constructing 3-D human body shape from single view angle

is one of the most challenging problems that requires more attention and

research. Therefore, improving the efficiency of 3-D human body shape for

view invariant task makes the developed system more robust and works under

pose variations.

• Improving the efficiency of 3-D data to deal with human-human interactions

by using Kinect2, which can deal with at most six persons simultaneously.

This makes the proposed framework works with multi-agency.
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Appendix A

Spherical Harmonics Coefficients

Over the last decade, spherical harmonics coefficients have been applied to several

computer vision applications such as 3-D shape descriptors [77] as well as 3-D

model retrieval [78], medical image analysis [79] and rotation estimation [80].

According to [79, 81], spherical harmonics coefficients are suitable for shape

comparison based on surface representation because it can deal with protrusions

and intrusions. Also, it can be used as an abstract features that can characterize

the 3-D shape with different resolution depending on spherical harmonics band.

In typical cases, a 3-D surface with a few thousand vertices is represented using

spherical harmonics coefficients up to a user specified maximum band Lmax. Thus,

spherical harmonics coefficients can be used to represent a 3-D surface as shape

features in the frequency domain.

To compute the spherical harmonics coefficients up to a user-desired maximum

band for an input spherical function Sn(θi, φi), which is described by a set of n
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points, and their spherical function values i = 1, 2, ..., n are described as:

Sn(θi, φi) = (Sxn(θi, φi), Syn(θi, φi), Szn(θi, φi)) for1 ≤ i ≤ n (A.1)

Therefore, we can formulate a linear system based on Equation 5-5 in a form of

matrices with the spherical function S, basis functions Y , and spherical harmonics

coefficients C as illustrated in equation A.2.



S1

S2

S3

...

Sn


=



Y1,1 Y1,2 Y1,3 . . . Y1,k

Y2,1 Y2,2 Y2,3 . . . Y2,k

Y3,1 Y3,2 Y3,3 . . . Y3,k

...
...

... . . .
...

Yn,1 Yn,2 Yn,3 . . . Yn,k





c1

c2

c3

...

ck


(A.2)

where k = Lmax is a number of the spherical harmonics coefficients. More

specifically, the equation A.2 can be written in more precise way:



S1(θ1, φ1)

S2(θ2, φ2)

S3(θ3, φ3)

...

Sn(θn, φn)


=



Y 0
0 (θ1, φ1) Y −1

1 (θ1, φ1) Y 0
1 (θ1, φ1) . . . Y m

l (θ1, φ1)

Y 0
0 (θ2, φ2) Y −1

1 (θ2, φ2) Y 0
1 (θ2, φ2) . . . Y m

l (θ2, φ2)

Y 0
0 (θ3, φ3) Y −1

1 (θ3, φ3) Y 0
1 (θ3, φ3) . . . Y m

l (θ3, φ3)

...
...

... . . .
...

Y 0
0 (θn, φn) Y −1

1 (θn, φn) Y 0
1 (θn, φn) . . . Y m

l (θn, φn)





c1

c2

c3

...

ck


(A.3)
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From equation A.3 which represents the relation between spherical function and

spherical harmonics coefficients (S = Y ×C), we can calculate spherical harmonics

coefficients.

C = Y −1S (A.4)

Since the basis function Y m
l (θn, φn) is an orthonormal basis function for the space

of spherical function Sn(θn, φn) defined on the surface of a sphere, the pseudo

inverse matrix Y −1 of Y can be computed. Therefore, with the following:

• Spherical function Sn which defines the positions (i.e. latitude (θi) and lon-

gitude (φi)) of the sampling points n.

• The number of sample points n for the spherical function.

• The highest order of spherical harmonics band k (normally n ¿¿ k).

,

The spherical harmonics coefficients can be easily computed. In other words,

the surface points in spherical coordinate system are defined through a set of

spherical harmonics coefficients, (cmlxi , c
m
lyi
, cmlzi), where l and m denote the order

and degree of the spherical harmonics. These coefficients can be calculated up to

a user-desired band Lmax by solving a system of linear equations to describe 3-D

object in the frequency domain. The coefficients are determined using standard

least squares estimation.
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In our work, we used the spherical parametrization to create the spherical

function and the spherical harmonics decomposition to calculate the spherical har-

monics coefficients which represents a human body surface. In addition, we used

the depth map to capture the 3-D surface points of human body up to a reasonable

degree of accuracy.
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