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Abstract

Deep brain stimulation (DBS) provides significant therapeutic benefit for movement

disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback

(thus are open loop) and stimulation parameters are adjusted during scheduled visits with

a clinician. A closed-loop DBS system may reduce power consumption and side effects by

adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a

major step in designing such systems. Various physiological signals can be used to recognize

the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate

signal for the neural feedback, because it can be recorded from the stimulation lead and

does not require additional sensors. This thesis proposes novel detection and classification

techniques for behavior recognition based on deep brain LFP. Behavior detection from such

signals is the vital step in developing the next generation of closed-loop DBS devices.

LFP recordings from 13 subjects are utilized in this study to design and evaluate

our method. Recordings were performed during the surgery and the subjects were asked to

perform various behavioral tasks. Various techniques are used understand how the behaviors

modulate the STN. One method studies the time-frequency patterns in the STN LFP during

the tasks. Another method measures the temporal inter-hemispheric connectivity of the

STN as well as the connectivity between STN and Pre-frontal Cortex (PFC). Experimental

results demonstrate that different behaviors create different modulation patterns in STN

and it’s connectivity. We use these patterns as features to classify behaviors.
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A method for single trial recognition of the patient’s current task is proposed. This

method uses wavelet coefficients as features and support vector machine (SVM) as the clas-

sifier for recognition of a selection of behaviors: speech, motor, and random. The proposed

method is 82.4% accurate for the binary classification and 73.2% for classifying three tasks.

As the next step, a practical behavior detection method which asynchronously detects be-

haviors is proposed. This method does not use any priori knowledge of behavior onsets and

is capable of asynchronously detect the finger movements of PD patients. Our study indi-

cates that there is a motor-modulated inter-hemispheric connectivity between LFP signals

recorded bilaterally from STN. We utilize a non-linear regression method to measure this

inter-hemispheric connectivity and to detect the finger movements. Our experimental re-

sults using STN LFP recorded from eight patients with PD demonstrate this is a promising

approach for behavior detection and developing novel closed-loop DBS systems.
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Chapter 1

Introduction

1.1 Parkinson’s Disease

Parkinson’s disease (PD) is a chronic and progressive movement disorder, meaning

that symptoms continue and worsen over time. Nearly one million people in the US are

living with Parkinson’s disease. The cause is unknown, and although there is presently

no cure, there are however treatment options such as medication, surgery and deep brain

stimulation to manage its symptoms.

Parkinsons involves the malfunction and death of vital nerve cells in the brain, called

neurons. Parkinson’s primarily affects neurons in the an area of the brain called the sub-

stantia nigra [9]. Some of these dying neurons produce dopamine, a chemical that sends

messages to the part of the brain that controls movement and coordination [10]. As PD pro-

gresses, the amount of dopamine produced in the brain decreases, leaving a person unable

to control movement normally.

The specific group of symptoms that an individual experiences varies from person to

person. Primary motor signs of Parkinsons disease include the following:

• tremor of the hands, arms, legs, jaw and face

1



• bradykinesia or slowness of movement

• rigidity or stiffness of the limbs and trunk

• postural instability or impaired balance and coordination

Scientists are also exploring the idea that loss of cells in other areas of the brain and

body contribute to Parkinsons. For example, researchers have discovered that the hallmark

sign of Parkinsons disease clumps of a protein alpha-synuclein, which are also called Lewy

Bodies are found not only in the mid-brain but also in the brain stem and the olfactory

bulb.

These areas of the brain correlate to nonmotor functions such as sense of smell and

sleep regulation. The presence of Lewy bodies in these areas could explain the nonmotor

symptoms experienced by some people with PD before any motor sign of the disease appears.

The intestines also have dopamine cells that degenerate in Parkinsons, and this may be

important in the gastrointestinal symptoms that are part of the disease.

1.2 Deep Brain Stimulation

Deep brain stimulation (DBS) is a therapy including a surgical procedure for treating

several neurological disorders most commonly the debilitating motor symptoms of PD,

mentioned in 1.1. The procedure is also used to treat essential tremor [11, 12] and dystonia

[13, 14]. DBS is used only for patients whose symptoms cannot be sufficiently controlled

with medications. However, only patients who a certain degree of improvement after taking

medication for Parkinsons benefit from DBS. DBS uses a surgically implanted, battery-

operated medical device called an implantable pulse generator (IPG) - similar to a heart

pacemaker and approximately the size of a stopwatch to - deliver electrical stimulation to
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specific areas in the brain that control movement, thus blocking the abnormal nerve signals

that cause PD symptoms (Figure 1.1).

Figure 1.1: New Medtronic Activa PC+S IPG and the DBS lead.

Before the procedure, a neurosurgeon uses magnetic resonance imaging (MRI) or

computed tomography (CT) scanning to identify and locate the exact target within the

brain for surgical implantation [15, 16]. Some surgeons may use microelectrode recording

- which involves a small wire that monitors the activity of nerve cells in the target area -

to more specifically identify the precise brain area that will be stimulated [17]. Generally,

these areas are the thalamus, subthalamic nucleus, and globus pallidus. There is a low

chance that placement of the stimulator may cause bleeding or infection in the brain.

The DBS system consists of three components: the lead, the extension, and the IPG

(Figure 1.2). The lead (also called an electrode)a thin, insulated wireis inserted through a

small opening in the skull and implanted in the brain. The tip of the electrode is positioned

within the specific brain area.

The extension is an insulated wire that is passed under the skin of the head, neck, and

shoulder, connecting the lead to the implantable pulse generator. The IPG (the ”battery

3



Figure 1.2: The lead for DBS is implanted in either the subyhalamic nucleus or the
internal segment of the globus pallidus. The lead passes through a burr hole in the skull.
Attached to the lead is a connecting wire, which is tunneled under the skin of the scalp an

neck to the anterior chest wall, where it is connected to an impulse generator [1].

pack”) is the third component and is usually implanted under the skin near the collarbone.

In some cases it may be implanted lower in the chest or under the skin over the abdomen.

Once the system is in place, electrical impulses are sent from the IPG up along the

extension wire and the lead and into the brain. These impulses block abnormal electrical

signals and alleviate PD motor symptoms.

Comparing to previous surgeries for PD, DBS causes less amount of permanent sur-

gical changes to the brain. Instead, the procedure uses electrical stimulation to regulate

electrical signals in neural circuits to and from identified areas in the brain to improve PD
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symptoms. Thus, if DBS causes unwanted side effects or newer, more promising treatments

develop in the future, the implantable pulse generator can be removed, and the DBS pro-

cedure can be halted. Also, stimulation from the IPG is easily adjustable without further

surgery if the persons condition changes. Some people describe the pulse generator ad-

justments as ”programming”. Parameters like amplitude, frequency and pulse width can

be easilly adjusted through the DBS programmers. New generation of DBS devices (Activa

PC+S) can be programmed through a radio device in a completely non-invasive procedure

(Figure 1.3).

Figure 1.3: Physician programmer (middle) provides variety of adjustments. Patient
programmer (right) controls by the patients and is ablr to turn the stimulation on and off.
for the new devices the patients programmer is also ablr to initiate the data recording for

limited period of time.

Although most patients still need to take medication after undergoing DBS, many

people with Parkinsons disease experience considerable reduction of their motor symptoms

and are able to reduce their medications. The amount of reduction varies but can be

considerably reduced in most patients, and can lead to a significant improvement in side

effects such as dyskinesias (involuntary movements caused by long-term use of levodopa). In

5



some cases, the stimulation itself can suppress dyskinesias without a reduction in medication

[18]. DBS does not improve cognitive symptoms in PD and indeed may worsen them, so

it is not generally used if there are signs of dementia [19]. DBS changes the brain firing

pattern but does not slow the progression of the neurodegeneration.

1.3 Closed-loop DBS

In order to adapt to the patients’ condition, the new generation of DBS systems are

redesigned so as to include a closed-loop feedback control where the patients’ symptoms

are continuously monitored and the stimulation is adapted in response to its variations.

To design an adaptively controlled closed-loop DBS system, it is necessary to find a proper

physiological signal that can be easily measured and has predictive information on tremor as

well as patient’s behavioral tasks. One such feedback signal could be the muscular activity

measured by means of surface electromyogram (sEMG) and accelerometer (acc) signals can

be recorded non-invasively from the patient’s symptomatic extremities. Current studies on

closed-loop DBS relies on these signals because they are easy to capture and there are many

studies on using them for brain computer interfaces (BCI). New DBS systems are designed

to simultaneously stimulate and record the LFP signals which provides the opportunity for

designing a new generation of closed-loop devices that use the LFP signals as the neural

feedback (Figure 1.4).

1.4 Thesis Goals and Impacts

The main goal of this thesis is to provide a method for behavior recognition that

will ultimately be used in the next generation of closed-loop DBS devices. The stimulation
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Figure 1.4: New DBS devices are able to simultaneously record and stimulate. This
provides the hardware requirements of implementing a closed-loop DBS device [2].

parameters can be optimized based on patient’s behavioral tasks to deliver the best therapy

with the least side effects and minimal battery usage.

The superiority of a closed-loop DBS system to the current open-loop DBS devices

is due to the fact that delivering short time stimulation pulses in the right time is proven

to have similar therapeutic effects compared to continuous stimulation. In addition, it

dramatically decreases the battery usage and temporary side effects [20]. The advantage

of the proposed behavioral level closed-loop DBS system is that for some specific behaviors

such as initiating the speech, the stimulation can be problematic and hence the proposed

device is able to recognize the task initiation and apply proper adjustments.

In order to design a behavioral level closed-loop DBS device the following research

aims should be addressed:

• How the information provided by the LFP signals recorded from the stimulation lead

can be decoded to behavioral tasks?

7



• What mapping techniques can provide the optimum stimulation parameters based on

the decoded behaviors?

In this thesis we address the first research aim. Our contribution to this aim includes

analyzing the LFP signals and deep brain connectivities and subsequently using these anal-

yses to find meaningful features for classification and detection of behaviors.

1.4.1 Thesis Contribution and Road Map

• Two novel data sets of LFP recordings are used in this thesis for design and evaluation

of our method. The first dataset was recorded at the University of Washington and

the second one has been recorded in Colorado Neurological Institute (CNI) during this

research. Recordings were performed during the surgery and subjects were asked to

perform various behaviors such as speech and finger movement. Chapter 2 describes

the data set and the recording paradigms.

• In Chapter 3 we analyze the LFP and ECoG data recorded from the patients with

PD to characterized the signals during behavioral tasks performances. Our analysis

also includes investigating the temporal connectivity between the right and left STN

as well as between the STN and Prefrontal Cortex (PFC).

• Subsequently in Chapter 4, we use the analysis to identify suitable features for decod-

ing behaviors. Using the time-frequency patterns of different behaviors we are able to

classify the segments of LFP signals associated with three different behaviors: speech,

finger movement and rest.

• Since a real time closed-loop systems requires detection of self-driven spontaneous

tasks, in Chapter 5 we take our approach forward to design an asynchronous event

detector. We use a temporal connectivity approach (nonlinear regression) to develop a

8



novel asynchronous event detection technique. We then present the result of evaluating

our proposed algorithm using the LFP signals recorded from a cohort of subjects who

have bilaterally implanted DBS leads.

• We conclude the thesis in Chapter 6 with further discussion and directions for future

research.
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Chapter 2

Data Recording

2.1 Subjects

Thirteen subjects (Table 2.1) undergoing DBS as standard of care for treatment of

idiopathic PD were enrolled in this study. All subjects provided informed consent for partic-

ipation in this research study, in a manner approved by the internal review board (IRB) of

the University of Washington and HealthOne. Eighteen independent recordings/lateralities

were measured from the thirteen participants. Two subjects underwent sequential record-

ings from each side, eight had simultaneous bilateral recording, and another two subjects

were recorded with a second electrode design and amplifier system in the same hemisphere.

There were 8 left, 2 right, and 8 simultaneous bilateral recordings (16 left and 10 right), for

a total of 18 recordings for analysis (Table 2.2).

2.2 DBS Surgery and Recording Design

Subjects underwent DBS surgery per clinical routine. All subjects were in the off

medication state. Surgery was performed with a Leksell (Elekta, Sweden) stereotactic head
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Table 2.1: Subject characteristics. All subjects are diagnosed with PD.

Subject Gender Age

2 Female 51

3 Female 54

4

5

6 Male 63

7 Male 47

8 Male 53

9 Male 58

10 Male 64

11 Female 63

12 Male 70

13 Male 68

frame and Medtronic (Minneapolis, MN, USA) Frame link targeting software. Targeting of

the dorsolateral STN was based on a combination of formula based and indirect coordinates.

Microelectrodes were positioned in the center and posterior positions of a BenGun trajectory

guide, with a parallel separation of 2 mm.

LFP recording was carried out using paired microelectrodes or the DBS lead, or

both sequentially (Figure 2.1). For the paired microelectrode (pME) design, we recorded

from the macro ring electrodes (reference contact, Figure 2.2) of a pair of dual-channel

microelectrodes (Alpha Omega, Israel). The macro ring electrode is stainless steel, has a

surface area of 2.2 mm2 and impedance of 3.2kΩ (mean; 95% CI = 1.7 - 4.8 kΩ).

Although subjects may have had residual effects from propofol during the initial MER

through thalamic nuclei, we did not proceed with recording in the STN region until patients

were fully awake and conversant. All research recordings were obtained after clinician testing

for proprioceptive modulation of firing rates had begun.

After optical isolation and amplification (MicroGuide, Alpha Omega, Nazareth, Is-

rael), the signals were digitized (4 kHz) and combined with event markers and subject
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Table 2.2: Research recording

Rec.
No.

Sub.
No.

Side Electrode Amp
Channels

Left Right ECoG

1 1 Bi Medtronic DBS lead SynAMPS2 4 4 4

2 2 Bi Medtronic DBS lead SynAMPS2 4 4 8

3 3 Lt Alpha Omega pME MicroGuide 1 0 4

4 3 Lt Medtronic DBS lead SynAMPS2 4 0 4

5 4 Bi Medtronic DBS lead SynAMPS2 4 4 0

6 5 Bi Medtronic DBS lead SynAMPS2 4 4 4

7 5 Lt Alpha Omega pME MicroGuide 1 0 4

8 6 Lt Alpha Omega pME MicroGuide 1 0 4

9 6 Lt Medtronic DBS lead SynAMPS2 4 0 4

10 7 Lt Alpha Omega pME MicroGuide 1 0 4

11 7 Rt Alpha Omega pME MicroGuide 0 1 2

12 8 Lt Medtronic DBS lead SynAMPS2 4 0 4

13 9 Lt Alpha Omega pME MicroGuide 1 0 4

14 9 Rt Alpha Omega pME MicroGuide 0 1 4

15 10 Bi Medtronic DBS lead g.USBamp 4 4 0

16 11 Bi Medtronic DBS lead g.USBamp 4 4 0

17 12 Bi Medtronic DBS lead g.USBamp 4 4 0

18 13 Bi Boston Sc. DBS Lead g.USBamp 8 8 0

Figure 2.1: Atlas representation DBS lead (A) and demonstrating pME (B) in dorsal
STN (yellow) [3].

response signals (PowerLab, ADInstruments, New South Wales, Australia). The MER

guide tube was used as common reference, and the LFP channels were bipolar re-referenced

before analysis.

For the DBS lead recording design, we recorded from each of the four contacts of
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Figure 2.2: Schematic representation of recording electrodes used for LFP recordings.
(A) Medtronic 3389 DBS lead. (B) Alpha Omega neuroprobe microelectrode. Recordings

were obtained from the labeled reference contact [3].

the DBS lead (Medtronic 3389, see Figure 2.2). The DBS lead contact is platinum/iridium,

has a surface area of 6.0 mm2 and impedance of 1.7 kΩ (mean; 95% CI = 1.1 2.4 kΩ).

For one subject (subject 13) recording was performed using Boston Scientific DB-2201-

45BC; however there is no sketch available for this lead. Although primarily designed for

stimulation, these electrodes have been used for LFP recording in humans, as it does not

require modification of standard surgical practice, for example, see [21]. Signals were

amplified, digitized (5 kHz), and combined with event markers and subject response signals

(SynAMPS2, Neuroscan, Victoria, Australia). A linked mastoid common reference was

used for recording, and the LFP channels were subsequently bipolar re-referenced (0-1, 1-2,

2-3) before analysis (see Table 2.3 for more information).

Table 2.3: Amplifiers recording properties

Amplifier Fs (Hz) Band pass (Hz)

MicroGuide 4000 5 - 300

SynAMPS2 5000 1 - 1000

g.USBamp 4800 0.5 - 2000
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2.3 Behavioral Study

Behaviors included motor, speech, and combination tasks. The motor task block

consists of 15 cued repetitions of a button press using either the left or right thumb. There

are four variants of a speech initiation task: naming the months of the year, counting

upward from one, naming the months of the year with a simultaneous button press marking

the first month, counting with a simultaneous button press marking the first number. To

determine if there was an effect with silent speech, two subjects repeated the naming tasks,

but only with mental rehearsal of speech. Speech tasks were also completed in a block of

15 repetitions. On completion of a full set of speech and motor blocks, the entire paradigm

was repeated as a second set of blocks in identical order. For task initiation and completion,

subjects received an audio cue from a presentation laptop computer running E-Prime 2.0

(Psychology Software Tools, Sharpsburg, PA). A random time factor was programmed into

task length to reduce any effect of anticipation.
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Chapter 3

Task related modulations and

Interconnections

In this chapter, the LFP data recorded from STN is studied through two differ-

ent approaches. First, the data recored by each contact is studied independently in the

time-frequency domain. In another approach, connectivity of the data recorded from two

hemispheres are measured and analyzed. Both approaches try to investigate the transient

patterns in the basal ganglia created by behavioral tasks.

3.1 Background

In recent years, there has been remarkable studies on how basal ganglia process

information [22]. Various findings point out an unexpected role for basal ganglia in the

contextual analysis of the environment and using it for planning intelligent behaviors. Cere-

bral cortex sends the received information to the basal ganglia, and the outputs either return

to the frontal cortex or the motor systems in the midbrain and the hindbrain (Figure 3.1).

Various areas of cerebral cortex converge upon regions of striatum that, via pallidum and
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thalamus return back to the frontal cortex. There is also a less direct pathway from the

striatum via the external palidum and STN, and there is a shorter route from thalamus

to striatum that bypasses the cerebral cortex. In this thesis we only focus on STN and

Prefrontal Cortex (PFC) and their participation in different behavioral tasks as there are

a few studies showing that STN particularly involves in generating meaningful speech [23]

and movement [24].

Recording of local field potentials (LFP) through bilaterally implanted electrodes in

the basal ganglia as well as ECoG recordings from PFC provided a unique research tool

for this study. The LFP is the electric potential recorded in the extracellular space in

brain tissue, typically using micro-electrodes (metal, silicon or glass micropipettes). LFPs

differ from the electroencephalogram (EEG), which is recorded at the surface of the scalp,

and with macro-electrodes. It also differs from the electro-corticogram (EcoG), which are

recorded from the surface of the brain using large subdural electrodes, while LFPs are

recorded in depth, from within the cortical tissue (or other deep brain structures)(Figure

6).

3.2 Modulation of Beta Oscillatory Activity During Move-

ment and Speech Tasks

Basal ganglia and STN rhythms are modulated by behaviors by changing the am-

plitude (or power) of their oscillations [3, 25]. Time-frequency analysis of LFP recorded

from human STN revealed the suppression of β (13-30 Hz) frequency spectral power during

motor tasks meaning that beta oscillations are relatively synchronized during the rest state

and desynchronized with activity [26, 27].
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3.2.1 Brain waves

Brainwaves are divided into bandwidths to describe their functions (below), but are

best thought of as a continuous spectrum of consciousness; Delta being slow, loud and

functional - to Gamma being fast, subtle, and complex. our brainwaves change according

to what we are doing and feeling. When slower brainwaves are dominant we can feel tired,

slow, sluggish, or dreamy. The higher frequencies are dominant when we feel wired, or

hyper-alert. Brainwave speed is measured in Hertz (cycles per second) and they are dived

into bands deliniating slow, moderate, and fast waves 3.3.

3.2.1.1 Delta waves (.5 to 3 Hz)

Delta brainwaves are the slowest but loudest brainwaves (low frequency and deeply

penetrating, like a drum beat). They are generated in deepest meditation and dreamless

sleep. Delta waves suspend external awareness and are the source of empathy. Healing

and regeneration are stimulated in this state, and that is why deep restorative sleep is so

essential to the healing process.

3.2.1.2 Theta waves (3 to 8 Hz)

Theta brainwaves occur most often in sleep but are also dominant in the deep medi-

tation. It acts as our gateway to learning and memory. In theta, our senses are withdrawn

from the external world and focused on signals originating from within. It is that twilight

state which we normally only experience fleetingly as we wake or drift off to sleep. In theta

we are in a dream; vivid imagery, intuition and information beyond our normal conscious

awareness. Its where we hold our stuff, our fears, troubled history, and nightmares. Alpha

waves (8 to 12 Hz)
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3.2.1.3 Alpha waves (8 to 12 Hz)

Alpha brainwaves are dominant during quietly flowing thoughts, and in some medita-

tive states. Alpha is the power of now, being here, in the present. Alpha is the resting state

for the brain. Alpha waves aid overall mental coordination, calmness, alertness, mind/body

integration and learning.

3.2.1.4 Beta waves (12 to 38 Hz)

Beta brainwaves dominate our normal waking state of consciousness when attention is

directed towards cognitive tasks and the outside world. Beta is a fast activity, present when

we are alert, attentive, engaged in problem solving, judgment, decision making, and engaged

in focused mental activity. Beta brainwaves are further divided into three bands; Low Beta

(Beta1, 12-15Hz) can be thought of as a ’fast idle, or musing. Beta (aka. Beta2, 15-22Hz)

as high engagement. Hi-Beta (Beta3, 22-38Hz) is highly complex thought, integrating new

experiences, high anxiety, or excitement. Continual high frequency processing is not a very

efficient way to run the brain, as it takes a tremendous amount of energy.

3.2.1.5 Gamma waves (38 to 42 Hz)

Gamma brainwaves are the fastest of brain waves (high frequency, like a flute),

and relate to simultaneous processing of information from different brain areas. It passes

information rapidly, and as the most subtle of the brainwave frequencies, the mind has

to be quiet to access it. Gamma was traditionally dismissed as ’spare brain noise’ until

researchers discovered it was highly active when in states of universal love, altruism, and

the higher virtues. Gamma rhythms modulate perception and consciousness, disappearing

under anaesthesia. Gamma is also above the frequency of neuronal firing, so how it is
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generated remains a mystery. The presence of Gamma relates to expanded consciousness

and spiritual emergence.

3.2.2 Methods of Time-Frequency Analysis

There are generally two approaches for creating time-frequency spectrum of a signal:

Short Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT). STFT

applies Fourier transform to time windows that slide through the whole data [28]. Fourier

transform calculates the frequency spectrum of the data located in a window and sliding

the window adds time dimension to the spectrum:

STFT{x[n]}(m,ω) ≡ X(m,ω) =

∞∑
n=−∞

x[n]w[n−m]e−jωn (3.1)

where w[n −m] is the sliding window that moves over time by changing the values

of n from −∞ to ∞.

On the other hand wavelet transform creates the time and frequency dimensions by

sliding and scaling the wavelets respectively [29]:

YW (c, τ) =
1√
c

∞∫
−∞

y(k).Ψ(
t− τ
c

)dt (3.2)

where c is scaling factor, τ represents time shift factor and the wavelet transformation

corresponds to a convolution of a function y(t) and a wavelet function. In this study we

used the complex Morlet wavelet (cmor function in Matlab) and then used the absolute

value of the results. A complex Morlet wavelet is defined by [30]:

Ψ(t) =
1

πfb
ej2πfcte

x2

fb (3.3)
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where fb is a bandwidth parameter and fc is a wavelet center frequency. In this

study we used the values of 1 and 1.5 for fb and fc respectively.

In this research we chose to use wavelet transform for performing our time-frequency

analysis. STFT uses a constant size window for different frequencies. Therefore a short

window might not be long enough to bring up the spectral characteristics of low frequency

components and on the other hand, a long window reduces the time resolution specially for

rapid spectral changes. Wavelets on the other hand provide an adaptive length in a way

that low frequency wavelets are long enough for bringing up the frequency characteristics

and high frequency wavelets are short enough to track the temporal changes. However

STFT might be useful in other applications because it provides more control on the amount

of window length.

3.3 Bilateral Interconnection of STN and STN-PFC During

Movement and Speech Tasks

3.3.1 Background

Neurons communicate through excitatory and inhibitory synaptic connections which

result in a synchronized network [31]. This synchrony causes a rhythmical extracellular

field potential that can be measured in different scales from local field potentials (LFP)

to electrocorticography (ECoG) and electroencephalography (EEG). Higher amplitudes of

the measured signal correspond to the higher amount of excitations or more synchronized

excitations for the neurons included in the recording. However due to the non-stationary

and noisy nature of brain signals, amplitude cannot be directly related to the excitation of

the neurons. On the other hand, oscillatory phase is a more reliable measure for the neurons

oscillatory activity because it is less dependent of the noises originated from the recording
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device and the non-related neural activities [32]. When there is a correlation between the

oscillatory phases of two different regions, There is a high probability that the regions are

coupled. In other words one might control the timing of the action potentials of the other

which it is called phase synchronization [33].

Phase synchronization as a fundamental neural mechanism supports neural communi-

cation and neural plasticity [34]. Neuronal communication is both performed by oscillatory

synchronization within the group of neurons sending a message, as well as by coherence (or

phase-locking) between the oscillations in the sending group and the receiving group (Fig-

ure 3.4) [7]. Activated neuronal groups have the intrinsic property to oscillate [35, 36].

Those oscillations causes excitability fluctuations that do not only affect the output of the

neuronal group directly, but also modulates its sensitivity to input [37, 38]. Therefore,

oscillations of a neuronal group rhythmically controls (by openning and closing) the group’s

windows as a relay for communication. As a result that different groups of neurons can only

communicate effectively with each other if the rhythmic opening of their communication

windows are opened to each other. In the other words, when a sending group wants to

communicate effectively to a receiving group, the sending group’s output has to be sent a

time such that it arrives at the receiving group when that group is excitable.

Synchronization happens in different frequencies for different pairs of regions. For

regions that are anatomically located close to each other the synchronization happens in

higher frequencies due to the small amount of time required for firings to be communicated.

On the other hand, for ergions located anatomically far from each other, synchronization

happens in low frequencies due to the relatively long distance that the message should travel

to get to the receiving populations.

Synchronization in primary and secondary motor areas is responsible for coordinated
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movements in several animal experiments [39]. Theta and upper alpha band synchro-

nization are related to working memory and long term memory process [33, 40]. Phase

synchronization has also been observed in pathological activities in epilepsy and Parkinson

patients [41, 42]. With a prior knowledge of anatomical connections we supposed there is a

hyper direct connectivity between subtalamic nucleus (STN) and prefrontal cortex (PFC).

Simultaneous recordings of LFP and ECoG signals during the deep brain stimulation (DBS)

electrode implantation surgery provide us a rare opportunity to examine the brain connec-

tivity among STNs of different sides and PFC. Analysis of the LFP signals from bilateral

STN demonstrates a synchronization during button pressing tasks [43]. However, there has

not been any study of the connectivity between the STN and PFC. This study investigates

the event related phase synchronization between the LFP signals of bilateral STN recorded

through implanted DBS electrodes and ECoG signals recorded from the PFC.

3.3.2 Methods of Measuring Connectivity

Generally when the phases of two oscillators are synchronized, their rhythms are

adjusted so that they are phase-locked. Rosenblum et al. [44] define phase-locking as

when two oscillators maintain a constant value for their phase difference. However in

neuroscience, due to the noisy nature of brain signals the phase-locking is defined as an

approximately constant difference between the phases of two oscillatory signals. Our anal-

ysis uses phase-locking statistics [45] to calculate phase-locking values (PLV) among STN

of two hemispheres as well as STN Vs. prefrontal cortex (PFC).

3.3.2.1 Preprocessing

LFP and ECoG recordings are bipolar re-referenced by subtracting adjacent contacts

(1-0, 2-1, 3-2). This way power line interference (PLI) is removed without any filtering
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related distortions. Bipolar re-referencing also removes the compontn of the signal that

represents the common brain activity between the two channels. This improves the perfor-

mance of the algorithms because the common activity is mostly (not completely) is related

to the activity from the other regions. In the other words the common activity is more

likely unrealted to the task modultaed STN LFP.

An FIR zero-phase filter with transient band of 200-250 Hz (i.e. the frequency

response starts decaying at 200 Hz and it reaches to it’s minimum at 250 Hz ) is applied

on data using the filtfilt function implemented in Matlab [46]. After applying the

anti-aliasing filter, the signals are downsampled to 500Hz. Segments of data for each trial

are extracted based on the recorded Audio or EMG for speech and finger movement tasks

respectively (see Figure 3.5).

3.3.2.2 Obtaining the Phases

Capturing the phases of time series requires mapping the frequency components into

complex domain or in other words computing the analytic signal. In mathematics and signal

processing, an analytic signal is a complex-valued function that has no negative frequency

components [47]. If s(t) is a real-valued function with Fourier transform S(f), the function

Sa(f) ≡



2S(f), for f > 0

S(f), for f = 0

0, for f < 0

(3.4)

contains only the non-negative frequency components of S(f). The analytic signal

of s(t) is the inverse Fourier transform of Sa(f):

sa(t) ≡ F−1[Sa](t) = s(t) + jŝ(t) (3.5)
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where ŝ(t) is the Hilbert transform of s(t):

ŝ(t) ≡ H(s)(t) = − 1

π
lim
ε→0

∞∫
ε

u(t+ τ)− u(t− τ)

τ
dτ (3.6)

For phase extraction, the signal needs to be decomposed into its frequency compo-

nents and then the analytic signal is calculated for each component. Complex wavelets can

provide the analytic signals in a more straight forward procedure. The complex nature of

the wavelets maps the real signal to the complex domain. By using wavelets with different

scales, we decompose the signal into different frequency components. As a result we obtain

a time series of complex numbers for every trial and each frequency component (Figure 3.6).

3.3.2.3 Calculating the PLV

Since we are only interested in the phase synchrony, we created a sequence of the

phases from the sequence of the complex numbers (Figure 3.7). The phase difference be-

tween the two channels is then calculated and averaged over trials. Higher amplitudes

correspond to the phases that maintain an approximately constant value through the trial

while randomly distributed phase result is a near zero amplitude in the average. Since we

are more interested in the amount of phase locking rather than the specific synchronization

phase, the PLV is defined as the absolute value of the averaged phases (Figure 3.8).

3.3.3 Statistics

Permutation (bootstrap) analysis were applied to the time-frequency responses to

verify the significance of synchronizations/desynchronizations. Permutation was performed

by randomly shuffling the second channel through the trials. This way most likely the PLV

corresponding to a pair of signals that are happening in different times is caculated to be

compared with the actual PLV. For example, if there are three trials of data, in calculating
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the actual PLV phase difference between channel 1 and 2 for each trial is calculated and

then is averaged. On the other hand to create a random permutation, for instance phase

difference between channel 1 of trial 1 and channel 2 of trial 3 is calculated. Also phase

difference of channel 1 of trial 2 and channel 2 of trial 1 as well as channel 1 of trial 3

and channel 2 of trial 2 is calculated. Subsequently these phase differences are averaged to

create a permutation.

To correct for multiple comparisons, we segment the data into independent time

frequency windows (Figure). The size of these windows is chosen to be 0.5 Hz by 200 ms.

Since the length of time-frequency components of speech is 8 seconds and for button pressing

is 6 seconds and the interested frequency range is 1-11 Hz, the speech and button pressing

tasks require 20× 40 = 8000 and 20× 30 = 6000 multiple comparisons. We calculated the

number of bootstraps such that the resolution of our p-value is 2.5 % for the high values

and 2.5% for the low values in a two tailed T test. This calculation is 2× (2.5%/8000)−1 =

640, 000 and 2×(2.5%/6000)−1 = 480, 000 for speech and button pressing tasks respectively.

Therefore, after normalizing each PLV segment for each frequency, the sum of values in each

time-frequency segment were compared to the corresponding summation in the actual PLV.

Next, the insignificant time frequency windows are set to zero. To reduce the sharp edges,

a mean filter effect is then applied to the PLVs.

3.4 Experimental Results

The experimental results in this section are divided into single channel time-frequency

analysis results and task modulated connectivity results. Since the research presented in

this chapter was performed prior to the data recordings at CNI, only the data recorded at

the University of Washington are used in this chapter.
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3.4.1 Single channel time-frequency results

Using the described continuous wavelet transform, a time-frequency analysis of seg-

ments of LFP data correlated with speech and finger movement tasks is performed. All

the time-frequency components ate then averaged over trials to reduce noise and event un-

related patterns. Figures 3.10 and 3.11 demonstrates the time-frequency analysis of the

speech task for subjects 5 and 1 respectively. Similarly, Figures 3.12 and 3.13 demonstrates

the time-frequency analysis of the finger movement task for subjects 5 and 1 respectively.

The values demonstrated from blue(-5) to red(+5) are normalized wavelet coefficients over

each frequency. LFP recordings corresponding with the speech tasks demonstrate a sup-

pression in alpha and beta (8-30 Hz) powers starting around 500 ms before the task onset

and lasting until the task offset (Figure 3.10). The finger movement task creates a similar

pattern following with significant augmentation (Figure 3.11). For some subjects the pat-

tern however is limited to the high alpha and low beta ( 10-15 Hz) (Figure 3.12). The

motor pattern extends to theta range for some subjects (4-8 Hz) and for some subjects it

does not have high beta components (Figure 3.13).

The pattern created by a subject is limited to certain channels. For some channels

the described pattern is significantly observable while for some channels the spectrogram

only shows random fluctuations that are independent from the task (Figures 3.14 and 3.15).

To investigate the stability of the LFP data over trials, time-frequency figures cor-

responding to a single trial for the same subject and channel of Figures 3.11 and 3.13 are

illustrated in Figures 3.16 and 3.17.

3.4.2 Task modulated connectivity results

As described in the previous section, the phase locking values calculated for measur-

ing the connectivity of STN in two hemispheres as well as STN Vs. PFC are distributed in
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two dimensions (time and frequency). A permutation analysis is applied on the results of

phase synchronization to find the statistically significant components in the spectrograms.

Figures 3.18 and 3.19 demonstrates the spectrograms of plv values across 6 LFP

channels implanted in right and left STN for speech and motor tasks respectively. In the

spectrogram resulting from the connectivity of second right channel and third left channel

a significant synchronization can be observed around 4 Hz during the speech task (Figure

3.18). Similarly same synchronization pattern is observed for the motor task significantly

between third right and second left channels as well as third right and third left channels

(Figure 3.19). The synchronization however does not last as long as it lasted for the speech

task.

Synchronization among STN and PFC is demonstrated through 6 LFP and 3 ECoG

channels for speech and motor tasks in Figures 3.20 and 3.21 respectively.

3.5 Discussion

A nearly consistent pattern was observed in the time-frequency analysis of speech and

finger movement tasks over subjects. LFP recordings corresponding with the speech tasks

demonstrate a suppression in alpha and beta (8-30 Hz) powers while the finger movement

task creates a similar pattern following with significant augmentation.

Comparing the single trial results (Figures 3.16 and 3.17) to the average time-

frequency figures illustrates that there is a significant amount of brain activity that is

not related to the events. Therefore the single trial analysis is not able to provide a clear

visual illustration of different patterns.

The beta synchronization/desynchronization is related to the oscillation among basal

ganglia nuclei. Computational modeling of GPe-STN circuit suggests that the delay between

these structures is sufficient to produce beta oscilations [48]. The reason for the event
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related beta desynchronization of STN is that neurons responsible for different muscles

start firing with different phases to perform that specific task. As a results random firing

phases of neurons creates a desynchronization [27].
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Figure 3.1: Main circuits of the basal ganglia. Picture shows 2 coronal slices that have
been superimposed to include the involved basal ganglia structures. + and - signs at the
point of the arrows indicate respectively whether the pathway is excitatory or inhibitory

in effect [4].
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Figure 3.2: Comparison among single neuron (spike) recording, local field potentials and
Surface EEG. [5].

Figure 3.3: Spectrum of brain waves from high frequency (Gamma) to low frequency
(Delta) [6]
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Figure 3.4: Communication between neuronal populations through phase synchroniza-
tion. Spikes that arrive at excitability periods of the receiving neuronal group have pointed
arrowheads. Spikes that miss excitability periods have blunt arrowheads. The red and
green neuronal groups undergo coherent excitability fluctuations and their communication
is therefore effective. The black neuronal group however undergoes excitability fluctuations
that are not coherent with the green neuronal group and therefore communication between

the green and the black neuronal group is prohibited [7].
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Figure 3.5: Segments of data for each trial were extracted based on the recorded Audio
or EMG for speech and finger movement tasks respectively.
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Figure 3.6: Complex wavelet transform uses complex wavelets with different scales to
decompose the signal into different frequency components.

Figure 3.7: For each data point, the phase of the complex value is obtained to form a
sequence of phases.
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Figure 3.8: Procedure of calculating phase locking values. The phase difference between
two channels (STN LFP and PFC ECoG) are calculated. Phase differences are averaged

over trials and their absolute values are calculated as the plv of the channels.

Figure 3.9: PLVs are segmented into time-frequency windows of size 0.5 Hz by 200 ms.
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Figure 3.10: Spectral power corresponding to alpha and beta range for subject 5 are
suppressed around 500 ms before the speech task onset (0s) and lasts until the task offset

(6s).
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Figure 3.11: Spectral power corresponding to high alpha and low beta range for subject
1 are suppressed around 500 ms before the speech task onset (0s) and lasts until the task

offset (6s).
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Figure 3.12: Spectral power corresponding to theta, alpha and beta range for subject
5 are suppressed around 500 ms before the speech task onset (0s) and is followed by a

significant augmentation 1s after onset.
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Figure 3.13: Spectral power corresponding to alpha and low beta range for subject 1 are
suppressed around 500 ms before the speech task onset (0s) and is followed by a significant

augmentation 1s after onset.
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Figure 3.14: Described task modulated pattern for speech in subject 3 is significant in
channel 3 while channels 4-6 demonstrate random task independent fluctuations.
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Figure 3.15: Described task modulated pattern for finger movement in subject 3 is signifi-
cant in channel 2 while channels 4 and 5 demonstrate random task independent fluctuations.

Figure 3.16: Single trial spectral power corresponding to alpha and beta range for subject
1 for speech trial.
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Figure 3.17: Single trial spectral power corresponding to alpha and low beta range for
subject 1 for finger movement trial.

Figure 3.18: Spectrograms of PLVs across 6 LFP channels implanted in right and left
STN for speech task. In the spectrogram resulting from the connectivity of second right
channel and third left channel a significant synchronization can be observed around 4 Hz

during the speech task.
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Figure 3.19: Spectrograms of PLVs across 6 LFP channels implanted in right and left STN
for motor task. In the spectrogram resulting from the connectivity of third right and second
left channels as well as third right and third left channels, significant synchronizations can

be observed around 4 Hz during the motor task.
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Figure 3.20: Spectrograms of PLVs across 6 LFP channels Vs. 3 ECoG channels im-
planted in right and left STN as well as PFC for speech task. In the spectrogram resulting
from the connectivity of third right LFP channel and second ECoG channel, a significant

synchronization can be observed around 4 Hz during the speech task.
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Figure 3.21: Spectrograms of PLVs across 6 LFP channels Vs. 3 ECoG channels im-
planted in right and left STN as well as PFC for speech task. In the spectrogram resulting
from the connectivity of third right LFP channel and second ECoG channel, a significant

synchronization can be observed around 4 Hz during the speech task.
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Chapter 4

Classification of Behavioral Tasks

A system for recognition of patient’s activities by analyzing the LFP brain signals is

introduced. We only use the data recorded at University of Washington. Wavelet coefficients

are the features that describe the LFP signal and support vector machine (SVM) is the

classifier that predicts the patient’s task.

4.1 Background

The electrical potential recorded from the implanted DBS electrodes may provide

substantial information related to subject behavioral goals, and therefore is a candidate

signal for an adaptive or closed loop DBS system. Further, electrical potentials recorded

from the cerebral cortex have successfully been used in brain-computer interface tasks. This

chapter aims at exploring the subcortical electrical potentials in the human brain, obtained

during surgical implantation of a DBS system and classification of three different tasks

(speech, motor and random) as a part of designing a closed loop DBS system.

LFP recordings, which represent coherent activity of small cell assemblies, have been

used in humans to characterize activity within cortical regions and subcortical nuclei [49].
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As illustrated in Chapter 4, Time-frequency analysis of motor cortex ECoG [50] and subtha-

lamic nucleus (STN) LFPs [51], has revealed characteristic suppression of beta (13-30Hz)

band and augmentation of gamma (30-70Hz) band power preceding and during motor be-

haviors. Thus, the human subthalamic nucleus in PD exhibits oscillatory behavior in a

broad frequency band is modulated by motor activity.

4.2 Classification Method

The procedure of decoding the LFP signals into behavioral tasks includes three

phases: (1) preprocessing, (2) feature extraction, and (3) classification.

4.2.1 Preprocessing

LFP recordings are bipolar re-referenced by subtracting adjacent contacts (1-0, 2-

1, 3-2). Hence the power line interference (PLI) is removed without any filtering related

distortions. An FIR zero-phase filter with transient band of 40-50Hz is applied on data

using the filtfilt function implemented in Matlab [46]. After applying the anti-aliasing

filter, the signals are downsampled to 100Hz. Segments of data with 3 seconds duration,

starting from 0.5 second before the trial onsets are extracted as the samples.

4.2.2 Feature Extraction

Features are certain characteristics of the data that are significantly useful for dis-

tinguishing different classes. In this technique, features are the time-frequency components

of the LFP segments.

Based on the findings of Chapter 3, the task related patterns in LFP data fall into

the alpha and beta range (8-30 Hz). Therefore wavelet transform of the data segments
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corresponding to this range is calculated. Complex Morlet wavelet is used for transformation

and the absolute value if the results is then used as the features.

Due to the high dimensionality of the features, Principal Component Analysis (PCA)

is used to reduce the number of features from 9200 to 47 for each sample [52]. In the PCA

analysis, each sample is a trial with 9200 features which are the number of time frequency

values associated with that trial.

PCA finds the linear combination of features that have the most variance across

trials. Therefore the time-frequency points are linearly combined and the top 47 of them

that has the most variance are selected. For example, for a subject with task related

patterns in the frequency range of 8-15 Hz, these selected components are most likely the

linear combination of points corresponding to this frequency while for a subject with task

related patterns in 15-30 Hz, the higher frequency points have higher weights in the selected

components.

4.2.3 Classifier

Classification is the process of determining that the input data is closest to which pre-

defined class. In this dissertation, the input data are the time-frequency features extracted

from data segments and the predefined classes are speech, finger movement or rest.

Support Vector Machine (SVM) is a state-of-the-art method for classification and

regression which was introduced by Cortez and Vapnik [53]. It has been used widely in

pattern recognition and brain computer interfaces [54]. SVM finds an optimal hyperplane

that separates the two training classes. As seen in Figure 4.1 the samples of a class located

in the closest distance of the other class are called support vectors and the margin is the

distance between the hyperplane and the support vectors. SVM orients the margin in a

way that it is maximized.
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Figure 4.1: SVM uses risk optimization to compare various separating hyperplanes and
chooses the model with the largest margin of separation [8].

Given (xi, yi), i = 1, 2, . . . , N as N training set of samples where xi ∈ Rd, yi ∈ {-

1,+1}, SVM solves the following optimization problem described in [? ]:

Minimize
1

2
wtw + C

N∑
i=1

ξi

Subject to yi(w
tφ(xi) + w0) ≥ 1− ξi, ξi ≥ 0

(4.1)

The function φ(.) maps the vectors xi into another space so that φ(xi)’s are linearly

separable. C ≥ 0 is the penalty parameter of the error term. Lagrangian method is used

to solve the optimization problem. One maximizes the dual variable lagrangian:

Maximize

N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjxi
txj

Subject to 0 ≤ λi ≤ C,
N∑
i=1

λiyi = 0

(4.2)

A kernel function is defined as K(xi,xj) = φ(xi)
tφ(xi). The Radial Basis Function

(RBF) is given as K(xi,xj) = exp γ‖xi − xj‖2.

A proper parameter setting improves SVM classification accuracy. There are two

parameters to be set in the SVM model with RBF kernel: C and γ. Instinctively the
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γ parameter defines the distance a single training example can reach, which low values

correspond to far distances and vice versa. The C parameter trades off training examples

misclassification against decision surface simplicity. A low C ensures a smooth decision

surface while a high C attempts to classify training examples correctly. Experiments are

undertaken to evaluate SVM performance through variations of the C and γ parameters.

KNN is a type of classifier that makes decision based on the classes of k nearest

training data [55]. In this dissertation the distance between the two data points is calculated

using the l2-norm.

4.3 Experimental results

As described in the previous section, the signal is downsampled to 100 Hz to reduce

the computational complexity. Downsampling did not have a significant negative effect on

the classifier performance.

4.3.1 Feature Extraction

Wavelet coefficients corresponding to the frequencies between 8 Hz and 30 Hz with

the frequency interval of 1 Hz and a time window from 500 ms before onset to 3500 ms after

onset were used as features for motor and speech task samples. For the random segments,

a time window with the same size is applied to the random parts of signal. Note that the

time frequency representation of a random segment can be any randomly shifted rectangle

in Figure 4.2 along the time axis.

4.3.2 Classification

LibSVM toolbox is used for classification [56]. Empirically (using the evaluation

data) C and γ parameters are set to be 500 and 1, respectively. Three binary classifiers are
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Figure 4.2: Time-frequency window selected for extracting the features. Each window
starts from half a second before onset and lasts for 4 seconds.and contains freqiency com-

ponents corresponding to 8-30 Hz.

used for different permutations of tasks (i.e. motor Vs. speech, motor Vs. random, and

speech Vs. random). Also a trinary classification was done for all the tasks.

The results of the SVM classifier is compared with the k-nearest neighbor (KNN)

classifier [55] with three different k values(k = 1, 3, 5) and Euclidean distance. In both

methods, the principal component analysis (PCA) [52] was performed before classification

for reducing the dimensionality of data from 9200 to 47 features. For the evaluation of the

classifiers, 10-fold cross validation method is used and the results are presented in Table

4.1.

Table 4.1: Averaged percentage of classification accuracies for SVM and KNN classifiers

SVM KNN
linear RBF k=1 k=3 k=5

speech Vs. motor 81.44 81.36 66.20 66.42 66.90
speech Vs. random 81.69 76.56 76.72 69.46 67.35
motor Vs. random 84.08 82.03 76.93 74.89 73.26

all three classes 73.24 66.50 62.69 58.75 57.23

Two different kernel functions have been used for SVM classification: RBF and linear.

The linear function is claculated by the inner product of two vectors: k(x,y) = xty + c

where c is an optional constant. Figure 4.3 presents the comparison results.
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Figure 4.3: Three class classification results for linear and RBF kernel SVM.

4.4 Discussion

Table 4.1 shows that SVM outperforms KNN in task recognition experiments. For

KNN, as the dimensionality increases, the distant to the nearest data point approaches to

the distance to the furthest data point. Therefore, the high number of features causes the

decrease in the performance of the KNN method [57]. Also due to the high dimensionality

of features, linear kernel function provides a more proper mapping rather than RBF [58].

The variety of behavioral tasks in this research was limited by the restricted time

in the operating room to perform the tasks. The reason behind using random segments

for classification is to train the classifier to distinguish “other tasks” rather than speech

and motor. The classification results for different pairs of tasks (rows 1 to 3 in Figure 4.1)

show that the classifiers performances for speech Vs. motor is nearly the same when one is

random. This verifies that random segments are proper representations for “other tasks”.

Figure 4.3 demonstrates that some recordings lead to a highly accurate classification

(recording 5) while for some others the results are relatively poor (recordings 3, 9, and

10). Even for different recordings of the same subject (recordings 8 and 9 from subject

6) classification accuracy is considerably different (see Table 2.2 for information about the
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recordings). This may be due to the variations in positioning the recording electrodes.

The classification results show that the SVM classier is more accurate in distinguish-

ing all the tasks rather than the KNN. Also linear kernel function provides a better mapping

for the SVM rather than the RBF function and can be considered as a proper tool for task

recognition for a closed loop DBS system.

The proposed classification technique can be utilized as the initial step of designing

a high level DBS system. Recognizing patient’s current task can be led to an optimal DBS

parameter adjustment to decrease the side effects.
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Chapter 5

Asynchronous Detection of

Movement

This chapter introduces an event detection method based on STN LFP data. The

LFP data is recorded bilaterally from patients with PD during button pressing tasks. Inter-

hemispheric connectivity of STN between every bilateral pair of channels is measured as a

1-D time series signal and using the PCA, the most distinguishing component is selected.

Fig.5.1 illustrates a brief overview of the event detection procedure by which the bilateral

recordings are translated to events and nonevents time series.

5.1 Background

Most daily activities are self-paced meaning that the patient spontaneously initiates

the activity on her/himself without receiving any external cues. Thus an “asynchronous”

behavior detector is required to classify the neural data into active or idle classes. Electroen-

cephalogram (EEG) based systems has been widely used in such cases. Temporal modeling
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of EEG during self-paced hand movement is investigated and used in unsupervised move-

ment onset detection [59, 60]. Event-related (de)synchronization (ERD/ERS) is used to

detect the neural correlates of self-paced motor activity [61]. Furthermore onset detection

is applied for detecting various movement intentions: reaching [62], cursor control [63],

task force and speed [64] and movement directions [65]. Electrocorticographic (ECoG)

signals has also been a popular source for activity detection. The ERD/ERS movement

related patterns in single-channel ECoG is investigated [66] and onset and direction of

movements are decoded using human ECoG [67]. In [68] they developed a method for

grasp detection from Human ECoG during natural reach-to-grasp movements. Temporal

alignment of ECoG recordings for upper limb movement is measured and used for activity

detection [69]. Intracortically recorded spiking neural signals are also attractive for move-

ment intention detection because they can in principle provide greater fidelity of encoded

information compared to ECoG and EEGs [70]. As another example, the Utah Electrode

Array (UAE) was used to detect and classify multiple finger movements [71].

Unlike the EEG and ECoG data, local field potentials (LFP) recorded from the basal

ganglia has been rarely used for activity recognition. Mace et al. proposed an automated

approach towards detecting complex behaviors [72]. They calculated the detection contours

and adaptive thresholds to produce a binary signal indicating the presence (or absence) of

an event. LFP recorded from the STN of patients with PD has shown to be modulated

by speech production and finger movement [3]. The event related time-frequency patterns

during these tasks were used to classify multiple behavioral tasks: speech, motor and rest

[73]. This classifier is one step closer to a closed-loop DBS system that uses STN LFP as the

feedback source; however it requires a priori knowledge of trial onsets which enforces a major

limitation on the system. A more practical closed-loop DBS system would asynchronously

detect patient’s behaviors.
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STN recordings from the two hemispheres are non-stationary measures meaning that

the activity in a given area spreads to other areas over time [74]. This leads to group delay

(frequency variant phase delay that leads to a constant time delay and doeas not distort the

signal) among sources [75] where measuring their connectivity requires nonlinear methods.

Linear methods are based on intercorrelation or coherence functions and do not consider

the group delay among sources. On the other hand nonlinear methods such as non-linear

regression [76, 77], mutual information [78, 79] or synchronization of phases [43, 80] use

various techniques to compensate for the group delay originated from the distance of the

sources. In this study, we use the nonlinear regression method to calculate the amount of

interdependency among bilateral recordings.

5.2 Detection Method

5.2.1 Preprocessing

LFP recordings of each hemisphere were bipolar re-referenced by subtracting adjacent

contacts (1-0, 2-1, 3-2). This way power line interference (PLI) was removed without any

filtering related distortions. An FIR zero-phase filter with transient band of 80-100Hz is

applied on data using the filtfilt function implemented in Matlab [46]. After applying

the anti-aliasing filter, the signals were downsampled to 200Hz.

5.2.2 Non-linear Regression

Nonlinear regression of signal X and signal Y was calculated based on an estimation

of non-linear correlation h2XY (τ) which represents the dependency of the signal Y on the

signal X when signal Y is shifted τ samples forward in time:
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Figure 5.1: (a) LFP data are recorded from all four channels of each DBS lead located in
each hemisphere. (b) Signals are bipolar re-referenced and downsampled. (c) Intercorrela-
tion between each bilateral pair of channels is measured as h2∗XY [n] (total of 9 pairs). (d)
A linear combination of channels is selected using PCA. (e) Correlation between h2∗XY [n]
and the template is calculated to derive the feature vector γ2∗XY [n]. (f) Single events are

detected by thresholding the values of γ2∗XY [n].

h2XY (τ) = 1− V AR(Y [n+ τ ]|X[n])

V AR(Y [n+ τ ])
(5.1)

where V AR(Y [n + τ ]|X[n]) is the conditional variance of Y [n + τ ] given X[n] (see

appendix I). The highest amount of non-linear correlation for a limited range of time shifts
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is calculated which leads us to non-linear correlation coefficient:

h2∗XY = maxτ h
2
XY (τ)

τmin ≤ τ ≤ τmax
(5.2)

To simulate the real time implementation of non-linear regression, rectangular win-

dows of one second are applied to the downsampled data where the overlap of the two

consequent windows is 90% of the window length (Fig. 5.2(a,b)). This leads to a time

series of correlation coefficients h2∗XY [n] with the sampling period of 50 ms (Fig.5.2(c)). To

implement the time shifting, the second channel windows shifted with respect to the first

channel windows to form Y [n+ τ ].

Figure 5.2: Time windowing of two channels for non-parametric non-linear regression
analysis.

5.2.3 Component Selection

Correlation coefficients h2∗XiYj
[n] corresponding to every possible bilateral pair is cal-

culated where i, j = 1, ..., Nch and Nch is the number of bilateral pair of channels. The

optimum component c2∗XY [n] is calculated using the optimum component coefficients λ∗

obtained from training data using principal component analysis (PCA)(see appendix):
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c2∗XY [n] =

Nch
2∑

k=1

λ∗h2∗XiYj [n] (5.3)

5.2.4 Template Matching

A template matching technique using normalized correlation coefficient is used to

find the occurrences of button pressings in the simulated real time data. The technique

includes creating the template (training phase) and template matching (testing phase):

5.2.4.1 Creating the Template

Rectangular time windows of 3 seconds w[n− k] starting from 1.5 seconds (15 sam-

ples) before trial onset mi are applied to each trial i in the first task block and the results

are synchronized averaged to form a 3 seconds (30 samples) pattern for each subject [81]:

p2∗XY =

Ntrial∑
i=1

c2∗XY [n]w[n−mi] (5.4)

5.2.4.2 Real Time Template Matching

A time series of normalized correlation coefficients γ2∗XY [n] between the template

p2∗XY [n] and the most recent 3 seconds segment of the optimal component c2∗XY [n] of the real

time data was calculated:

γ2∗XY =

∑
k p

2∗
XY [k]c2∗XY [k − n]∑

k p
2∗
XY [k]

∑
k c

2∗
XY [k − n]

(5.5)

Time resolution of γ2∗XY [n] was determined by the amount of windowing step in

each template matching calculation which is assigned 50ms to keep the resolution ofc2∗XY [n].

γ2∗XY [n] is used as the feature vector for event detection.
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5.2.5 Determination of Detected Times

The feature vector γ2∗XY [n] obtained by template matching method in the previous

subsection is now fed to an event detection block to determine the detected times. Let θ be

a threshold value of the detection algorithm used to classify binary events. γ2∗XY [n] values

that are higher than θ are considered detected events (ones) and the rest are non-events

(zeros) which form a time series of zeros and ones, b2∗XY [n].

5.2.6 Evaluation

The digital button channel ev[n] is the ground truth. ev[n] is a time series of binary

values which has the same time resolution as b2∗XY [n] (50ms sampling period). The length for

each button pressing trial was set to 500ms (10 samples) which corresponds to the average

duration of the pick in h2∗XY . For evaluation, each sample was labeled either true positive

(TP), false positive (FP), true negative (TN) or false negative (FN) based on Table 5.1. The

number of condition positives and condition negatives were determined by the number of

ones and zeros in the ev[n] respectively. Then fundamental measures of detection accuracy

were obtained: true positive rate (TPR) and false positive rate (FPR) [82]. As a result ROC

curves are created based on TPR and FPR values. When ROC curve is used for evaluation,

the area under the curve (AUC) determines the performance of the detector. AUC varies

between 0 to 1 and it gives a measure of separability between events and nonevents with

the area of 1 for perfect separation.

5.3 Experimental Results

LFP data from eight subjects was utilized in this study. In calculating the nonlinear

regression of the bilateral channels, the values of τmin and τmax were assigned -100ms and

+100ms respectively because the estimated correlation delay time between the channels
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Table 5.1: Confusion matrix

Condition
(as determined by labels ev)
negative
ev = 0

positive
ev = 1

Test
outcome
b2∗XY

negative
b2∗XY = 0

true negative
TN

false negative
FN

positive
b2∗XY = 1

false positive
FP

true positive
TP

false positive rate

FPR =
∑
FP∑

FP+TN

true positive rate

TPR =
∑
TP∑

TP+FN

Figure 5.3: A segment of labels generated from the digital channel (a) and scores cre-
ated by the algorithm (b). a threshold of 0.68 is considered for event detection and the
samples are labeled as TP, FP, TN, FN based on their score γ2∗XY [n], threshold θ and the

corresponding label sample ev[n].

never exceeded these values during experiments. In a leave-one-block-out technique, for

each subject, one trial block was used for creating the template and the remaining trials

were used for evaluation. This procedure was repeated until all of the blocks were used

exactly once for training. Each ROC curve is interpolated and averaged over iterations to

form the subject specific ROC curves in Figure 5.6). Figure 5.4 illustrates the template

created from the first trial block for each subject.
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Figure 5.4: Templates created from the first trial block for each subject by averaging all
the 15 trials. The templates are 3 seconds long starting from 1.5 seconds before the trial

onset. The values are normalized and are between 0 and 1.

To investigate the robustness of this method for other behavioral tasks the templates

corresponding to speech tasks are calculated and compared the templates corresponding to

the finger movement tasks. Figure 5.5 illustrates the templates of the two tasks for the

same pair of channels of subject 3. The peak corresponding to the speech tasks is relatively

insignificant comparing to the motor task.

To investigate the effectiveness of PCA, we selected the pair of channels resulting in

the best results for each subject and ran the algorithm without lection (the dashed line in

Figure 5.6).

For a FPR value of 10% the average TPR value is 50% which this increases to

70% and 88% for the accepted FPR values of 30% and 50% respectively. The average

AUC for the proposed method without component selection (best pair of channels) is 71%

which increases to 78% when component selection is applied. The proposed algorithm

demonstrates the highest performance for subjects 2, 3, and 4 where for an accepted FPR

value of 50% the TPR is approximately 100%. The lowest results are obtained from subject
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Figure 5.5: Templates corresponding to the speech and motor task for subject 3. For
motor tasks the templates starts 1.5 seconds before the onset and lasts 3 seconds. For the
speech task the template starts 3 seconds before the onset and ends one second after the
maximum offset among the trials. The values are normalized and are between 0 and 1. the

missing points are Nan values created by division by zero.

8 who was the only subject implanted with the 8 contact electrodes. For this subject

the four most frontal contacts of each electrode are used in this study because only these

electrodes were targeting the STN. Moreover subject 8 is the only subject that applying

the component selection lowered the performance of the algorithm for all the FPR values.

On the other hand the component selection represents promising improvement for subjects

1,2,4, and 5.

5.4 Disscussion

Using the proposed detection method, we detected finger movement tasks in pa-

tients with PD using nonlinear regression. The only source of information is the LFP

signal recorded by the same DBS lead that delivers the stimulation signal. This eliminates

the need for wearing additional sensors and eventually diminishes the power consumption.
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Table 5.2: The values of true positive rate (TPR) for three different false positive rate
(FPR) values as well as area under the curve (AUC) for all subjects.

TPR (%)
AUC (%)

FPR = 10% FPR = 30% FPR = 50%

Subject
with
PCA

without
PCA

with
PCA

without
PCA

with
PCA

without
PCA

with
PCA

without
PCA

1 38 12 62 37 88 56 74 56

2 51 35 86 67 100 75 87 71

3 69 77 88 95 100 96 90 92

4 52 44 84 65 99 83 85 75

5 39 14 53 46 71 65 69 62

6 20 40 58 66 80 77 71 74

7 28 29 50 52 83 67 71 63

8 26 31 71 67 89 85 76 75

Moreover, an asynchronous detection approach using deep brain LFP may be used in the

future implanted BCI systems.

LFP signals were recorded bilaterally from STN and the inter-hemisphere connectiv-

ity was measured using nonlinear regression of the sources. In majority of subjects button

pressing caused a significant interconnection between the right and left STN. Darvas et al.

investigated the motor related bilateral connectivity in STN using phase synchronization

[43]. They captured the phase differences between two hemispheres and averaged them over

trials. The results showed that button pressing task creates a constant phase difference in

a certain frequency range which illustrates the bilateral synchrony of the STN. However

the synchronized averaging requires an off-line analysis of the recorded signals which makes

it impractical for real-time detection. A nonlinear regression method on the other hand,

does not require the statistical analysis of the signal over a long period of time and uses

nonlinear matching techniques to measure the connectivity in the real time.

As illustrated in Figure 5.6, subjects undergoing the same experimental procedure

produced varying results with different levels of performance. This may be the result of

varying electrode placement that is performed based on subjects’ responses to simple joint
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movements performed by a specialist in the operation room. In a close-loop DBS system,

the algorithm can be applied during the surgical procedure to automatically find the opti-

mum depth for the DBS leads using the ROC curves produced by the training data. Also

comparing the Figures 5.4 and 5.6 shows that generally the subjects with sharper peaks in

the template resulted in the better detection performances.

In this technique, each sample is labeled either as event or nonevent and therefore

each button press trial may contain several detected events. Conversely, there are many

nonevents labeled between activities. An alternative to this sample-by-sample labeling

method is an event-by-event approach where each trial is considered as just one event.

Although the event-by-event approach is popular in Brain Computer Interface systems, the

sample-by-sample method has provided more promising results in our work. This method

seems to be superior for future closed-loop DBS applications where motor events are of

arbitrary duration, and detected events will influence time variant DBS parameters.

Low Signal to Noise Ratio (SNR) in single trial classification, unknown trial onset in

asynchronous detection, and noisy nature of deep brain LFP data are all serious limitations

in designing an accurate detection system. An ideal closed-loop DBS system would detect

the daily tasks that are self driven. Hence detection of un-cued events becomes essential in

designing such systems. In our previous work we introduced a classification technique that

used the pre-determined segments of LFP data to recognize the patient behavior [73].

The template for speech tasks were calculated and investigated in Figure 5.5. How-

ever the significance of the peak in the template was relatively poor which led to the poor

detection results. As a future work, we can develop a more robust connectivity measurement

technique to detect presence of a higher variety of behaviors and by combing it with the

classification method we will be able to recognize patients’ different behaviors and design a

behavioral level closed-loop DBS system.
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The algorithm is senstive to the duration of the template. For templates shorter

than 3 seconds the output of template matching is noisy with multiple picks for an event

thus the FPR rate increases. On the other hand, if the template length increases there will

not be any significant change in the performance however the delay of the system increases

and in practice, the system detects the behavior when it is already done. Also regarding

the extension of the algorithm for detection of multiple behaviors, we must note that the

template might be sensitive to the target behavior. For example the template for the speech

task would be longer than the template for the button pressing. As a solution, we can use

different templates corresponding to different tasks and compare the final results to achieve

the output.

Since the closed loop parameter adjustment has not been well defined yet, it is

difficult to determine the optimum working point on the ROC curves and eventually evaluate

the overall performance of the detector. To determine the working point, it is important to

evaluate the risk of any false action. For instance, stimulating with a very high amplitude

might cause muscle contraction which might cause a fatal damage to the patients during

driving. On the other hand if a certain level amplitude augmentation does not cause any

side effects but increase the therapy dramatically, the working point can be selected on the

right top side of the curve where we allow a high FPR.
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Figure 5.6: ROC curves generated for eight subjects. x axis corresponds to the false
positive rate (FPR) and y axis corresponds to the true positive rate (TPR) as explained in
Section 5.2.6. The ROC curves generated in a leave-one-block-out technique are interpo-
lated and averaged over the iterations to produce these results. The solid line demonstrates
the proposed detector performance where any point on the line can be achieved by a certain
threshold. The dashed line curve represents the performance of the same technique; but
instead of component selection a pre-determined pair of bilateral channels that produced
the highest performance is selected. The diagonal dotted line represents the performance
of a random detector where every sample is either assigned event or nonevent by a uniform

binary random function.
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Chapter 6

Conclusion, Discussion, and Future

Research Direction

6.1 Conclusion

In this thesis we addressed the important research question of how human behaviotal

tasks can be detected and recognized through LFP signals with the implication of designing

a behavioral level closed-loop DBS system. We recorded LFP and ECoG from patients with

PD during different behavioral tasks and analyzed the data to come up with meaningful

features required for task recognition.

A beta and alpha power suppression during speech and a beta and alpha suppression

followed by an augmentation in LFP during motor task was observed in majority of subjects.

As a result, we used the time frequency features of LFP signal corresponding to beta and

alpha range (8-30 Hz) to classify the behaviors. We used a SVM classifier to find the

optimum hyper planes that separate the three classes: speech, finger movement, and rest.

The performance of SVM was evaluated for different kernel functions and compared to the

KNN algorithm. As a result, the SVM with RBF kernel was shown to have the highest
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performance which is able to perform binary classification with an average accuracy of

82.40% and 73.24% for three class classification.

Simultaneous recordings of bilateral STN LFP and PFC ECoG provided a great

chance for investigating task modulated connectivity in these regions. Using phase syn-

chronization we discovered that there is a task modulated connectivity between the STN of

the two hemispheres as well as STN and PFC. This synchronization happens around the 4

Hz frequency and is stronger in bilateral STN comparing to STN Vs. PFC.

To go one step closer towards closed-loop DBS, an asynchronous detection method

is proposed to detect self-driven finger movements. The time-frequency features of single

channel LFP data did not have enough information for asynchronous detection. Therefore,

a method based on temporal connectivity of STN between left and right hemispheres was

proposed that was able to reach an acceptable performance for most of the subjects. We

used a nonlinear regression method to measure this connectivity. Using templates matching

we picked up temporal connectivity patterns and using thresholding, we were able to detect

event and nonevent timings.

6.2 Discussion and Future Work

The computational complexity of the classification method explained in Chapter 4

is higher than the capability of the current devices. This is due to the high computational

burden of calculating continuous wavelet coefficients as well as high number of features.

However with the current state-of-the-art technology most of the computations can be

performed in a server and the device is only responsible for recording, low level preprocessing

and data packeting. The asynchronous detection method explained in Chapter 5 on the

other can be implemented on a regular embedded device. This is because the algorithm

uses only time domain features and can be implemented mainly by matrix multiplications.
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Although the phase synchronization method explained in Chapter 3 is a powerful

technique for studying the temporal connectivities, it is not useful for asynchronous detec-

tion. Calculating PLVs requires averaging the phase differences over the trials which means

we need to have all the trials to be able to average them and also we need to have the trial

onsets to align them for averaging. Therefore phase synchronization is not a practical tech-

nique for asynchronous real time detection and that’s why we migrated towards nonlinear

regression.

The proposed asynchronous algorithm is able to individually detect button pressing

tasks. However a real-time closed-loop DBS algorithm is mostly involved with long periods

of activity. For example, in the case of button pressing, the closed-loop DBS algorithm

should be able to adjust the DBS parameters when the patient is typing in a laptop computer

for minutes. This requires a higher level of decision making that decides based on several

occurrences of a certain activity. This can increase the performance of the system because

the system might miss some trials but still decide on occurrence of a task. Moving forward

with designing the higher levels of decision making however requires a higher understanding

of the next step (i.e. mapping the tasks into DBS parameters). In other words, we need to

more specifically characterize the categories of activities that need to be distinguished and

then design the higher level decision making techniques. For instance we might need the

same DBS parameters for writing and speech tasks, therefore there is no need to distinguish

between these two behaviors and they fall in the same category and they require the same

decision making strategy.

The next step of designing the behavioral closed-loop systems is finding a mapping

between activities and optimum DBS parameters. As we go forward with this step, more

understanding of the nature of detected behaviors and their varieties will be achieved and

we can adapt the current detection and classification methods to improve the performance
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of the whole system. This work is an initial step towards such closed-loop systems and will

be a starting point for more researches on using the BCI concept for deep brain stimulation.

The idea of using the connectivity of different tasks for event detection and classifi-

cation is not limited only to closed-loop DBS. This idea can be applied to variety of BCI

problems specially EEG signals that provide an extremely higher spatial variety. Also the

fact that LFP data contain enough information for classification and even event detection

can be a starting point for many closed-loop algorithm to move towards the recordings of

the DBS device instead of external electrodes and sensors.

70



Bibliography

[1] Michael S Okun, Bruno V Gallo, George Mandybur, Jonathan Jagid, Kelly D Foote,

Fredy J Revilla, Ron Alterman, Joseph Jankovic, Richard Simpson, Fred Junn, et al.

Subthalamic deep brain stimulation with a constant-current device in parkinson’s dis-

ease: an open-label randomised controlled trial. The Lancet Neurology, 11(2):140–149,

2012.

[2] 2013. URL "http://multimediacapsule.thomsonone.com/medtronic/

new-medtronic-deep-brain-stimulation-system-the-first-to--sense-and-record-brain-activity".

[3] Adam O Hebb, Felix Darvas, and Kai J Miller. Transient and state modulation of beta

power in human subthalamic nucleus during speech production and finger movement.

Neuroscience, 202:218–233, 2012.

[4] Theresa McClain Robert A Hauser. Coauthor(s): Rajesh Pahwa, Kelly

E Lyons, 2010. URL "http://commons.wikimedia.org/wiki/File:Basal_ganglia_

circuits.png".

[5] Adam O Hebb, Jun Jason Zhang, Mohammad H Mahoor, Christos Tsiokos, Charles

Matlack, Howard Jay Chizeck, and Nader Pouratian. Creating the feedback loop:

closed-loop neurostimulation. Neurosurgery Clinics of North America, 25(1):187–204,

2014.

71

"http://multimediacapsule.thomsonone.com/medtronic/new-medtronic-deep-brain-stimulation-system-the-first-to--sense-and-record-brain-activity"
"http://multimediacapsule.thomsonone.com/medtronic/new-medtronic-deep-brain-stimulation-system-the-first-to--sense-and-record-brain-activity"
"http://commons.wikimedia.org/wiki/File:Basal_ganglia_circuits.png"
"http://commons.wikimedia.org/wiki/File:Basal_ganglia_circuits.png"


[6] Maya Mendoza, 2013. URL "http://www.zenlama.com/

the-difinitive-guide-to-increasing-you-mind-power".

[7] Pascal Fries. A mechanism for cognitive dynamics: neuronal communication through

neuronal coherence. Trends in cognitive sciences, 9(10):474–480, 2005.

[8] AM Chandrasekhar and K Raghuveer. Intrusion detection technique by using k-means,

fuzzy neural network and svm classifiers. In Computer Communication and Informatics

(ICCCI), 2013 International Conference on, pages 1–7. IEEE, 2013.

[9] Julian M Fearnley and Andrew J Lees. Ageing and parkinson’s disease: substantia

nigra regional selectivity. Brain, 114(5):2283–2301, 1991.

[10] Curt R Freed, Paul E Greene, Robert E Breeze, Wei-Yann Tsai, William DuMouchel,

Richard Kao, Sandra Dillon, Howard Winfield, Sharon Culver, John Q Trojanowski,

et al. Transplantation of embryonic dopamine neurons for severe parkinson’s disease.

New England Journal of Medicine, 344(10):710–719, 2001.

[11] JP Hubble, KL Busenbark, S Wilkinson, RD Penn, K Lyons, and WC Koller. Deep

brain stimulation for essential tremor. Neurology, 46(4):1150–1153, 1996.

[12] Puneet Plaha, Nikunj K Patel, and Steven S Gill. Stimulation of the subthalamic

region for essential tremor. Journal of neurosurgery, 101(1):48–54, 2004.

[13] Joachim K Krauss, John Yianni, Thomas J Loher, and Tipu Z Aziz. Deep brain

stimulation for dystonia. Journal of Clinical Neurophysiology, 21(1):18–30, 2004.

[14] Marie Vidailhet, Marie-France Jutras, David Grabli, and Emmanuel Roze. Deep brain

stimulation for dystonia. Journal of Neurology, Neurosurgery & Psychiatry, pages

jnnp–2011, 2012.

72

"http://www.zenlama.com/the-difinitive-guide-to-increasing-you-mind-power"
"http://www.zenlama.com/the-difinitive-guide-to-increasing-you-mind-power"


[15] Thomas Foltynie, Ludvic Zrinzo, Irene Martinez-Torres, Elina Tripoliti, Erika Petersen,

Etienne Holl, Iciar Aviles-Olmos, Marjan Jahanshahi, Marwan Hariz, and Patricia

Limousin. Mri-guided stn dbs in parkinson’s disease without microelectrode recording:

efficacy and safety. Journal of Neurology, Neurosurgery & Psychiatry, 82(4):358–363,

2011.

[16] Ji Yeoun Lee, Jin Wook Kim, Jee-Young Lee, Yong Hoon Lim, Cheolyoung Kim,

Dong Gyu Kim, Beom Seok Jeon, and Sun Ha Paek. Is mri a reliable tool to locate the

electrode after deep brain stimulation surgery? comparison study of ct and mri for the

localization of electrodes after dbs. Acta neurochirurgica, 152(12):2029–2036, 2010.

[17] Marwan I Hariz. Complications of deep brain stimulation surgery. Movement disorders,

17(S3):S162–S166, 2002.

[18] H Russmann, J Ghika, P Combrement, JG Villemure, J Bogousslavsky, PR Burkhard,

and FJG Vingerhoets. L-dopa-induced dyskinesia improvement after stn-dbs depends

upon medication reduction. Neurology, 63(1):153–155, 2004.

[19] Jae-Hyeok Heo, Kyoung-Min Lee, Sun Ha Paek, Min-Jeong Kim, Jee-Young Lee, Ji-

Young Kim, Soo-Young Cho, Yong Hoon Lim, Mi-Ryoung Kim, Soo Yeon Jeong, et al.

The effects of bilateral subthalamic nucleus deep brain stimulation (stn dbs) on cogni-

tion in parkinson disease. Journal of the neurological sciences, 273(1):19–24, 2008.

[20] Helen S Mayberg, Andres M Lozano, Valerie Voon, Heather E McNeely, David Semi-

nowicz, Clement Hamani, Jason M Schwalb, and Sidney H Kennedy. Deep brain

stimulation for treatment-resistant depression. Neuron, 45(5):651–660, 2005.

73
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Conditional Variance

The conditional variance of Y [n+ τ ] given X[n] where τ is the amount of time delay

applied on signal Y is calculated as follows:

1. Normalize X[n] and Y [n+ τ ].

2. Assuming X[n] and Y [n+ τ ] have the same length, map every time point n∗ to a 2-D

space where x∗ = X[n∗] and y∗ = Y [n∗ + τ ] are the coordinates.

3. Divide the space in identical vertical bins B = {b1, b2, , bk} based on their x value.

4. The center of the bin bi is defined as ci = (xci , yci) where xci is the mean of x values

of lower and higher bin band and yci is the mean of y values of the points that fall

into the bi.

5. Connect the centers to obtain a regression function y = f(x).

6. Calculate the conditional variance from the following:

V AR(Y [n+ τ ]|X[n]) =
1

N

N∑
i=1

(yi − f(xi))
2 (1)
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Figure 1: Regression function estimated from the points corresponding to the 2-channel
data.
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Component selection

The correlation coefficients h2∗XiYj
[n] corresponding to every possible bilateral pair

are calculated from the training data. Let’s say i, j = 1, ..., Nch where Nch is the number of

bilateral channels for each side. Therefore Nch
2 possible normalized correlation coefficients

are produced. The PCA is applied to the resulting timeseries to obtain Nch
2 components

c2∗(XY )k
[n] (k = 1, ..., Nch

2) [83]. A template for all of the components is created and the

template matching algorithm is applied on each component. This results in normalized

correlation coefficients γ2∗XY k
[n] that are used to detect events and create ROC curves. Area

under curve (AUC) for all the ROC curves is calculated and the component corresponding

to the highest AUC, c2∗(XY )k
[n] is selected as the optimum component. c2∗(XY )k

[n] is a linear

combination of all the correlation coefficients h2∗XiYj
[n]:

c2∗(XY )k
[n] =

Nch
2∑

k=1

λ∗kh
2∗
XiYj [n] (2)

where λ∗k are the optimum component coefficients and are used in the system to

create the optimum component.
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