
University of Denver University of Denver 

Digital Commons @ DU Digital Commons @ DU 

Electronic Theses and Dissertations Graduate Studies 

1-1-2010 

SIFT-ME: A New Feature for Human Activity Recognition SIFT-ME: A New Feature for Human Activity Recognition 

Guosheng Wu 
University of Denver 

Follow this and additional works at: https://digitalcommons.du.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Wu, Guosheng, "SIFT-ME: A New Feature for Human Activity Recognition" (2010). Electronic Theses and 
Dissertations. 718. 
https://digitalcommons.du.edu/etd/718 

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital 
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Denver

https://core.ac.uk/display/217242831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.du.edu%2Fetd%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/718?utm_source=digitalcommons.du.edu%2Fetd%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu


 

 

 

 

SIFT-ME: A New Feature for Human Activity Recognition 

 

 

 

__________ 

 

 

 
A Thesis 

 

Presented to 

 

The Faculty of Engineering and Computer Science 

 

University of Denver 

 

 

__________ 

 
 

In Partial Fulfillment 

 

of the Requirements for the Degree 

 

Master of Science 

 

 

__________ 

 
by 

 

Guosheng Wu 

 

June 2010 

 

Advisor: Richard M. Voyles 

Co-advisor: Mohammad H. Mahoor 



 

i 
 

 

 

 

©Copyright by Guosheng Wu 2010 

 

All Rights Reserved 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Author: Guosheng Wu 

Title: SIFT-ME: A New Feature for Human Activity Recognition 

Advisor: Richard M. Voyles 

Degree Date: 06/2010 

 

ABSTRACT 
 

 Action representation for robust human activity recognition is still a challenging 

problem. This thesis proposed a new feature for human activity recognition named SIFT-

Motion Estimation (SIFT-ME). SIFT-ME is derived from SIFT correspondences in a 

sequence of video frames and adds tracking information to describe human body motion. 

This feature is an extension of SIFT and is used to represent both translation and rotation 

in plane rotation for the key features. Compare with other features, SIFT-ME is new as it 

uses rotation of key features to describe action and it robust to the environment changes. 

Because SIFT-ME is derived from SIFT correspondences, it is invariant to noise, 

illumination, and small view angle change. It is also invariant to horizontal motion 

direction due to the embedded tracking information. For action recognition, we use 

Gaussian Mixture Model to learn motion patterns of several human actions (e.g., walking, 

running, turning, etc) described by SIFT-ME features.  Then, we utilize the maximum 

log-likelihood criterion to classify actions. As a result, an average recognition rate of 

96.6% was achieved using a dataset of 261 videos comprised of six actions performed by 

seven subjects. Multiple comparisons with existing implementations including optical 

flow, 2D SIFT and 3D SIFT were performed. The SIFT-ME approach outperforms the 

other approaches which demonstrate that SIFT-ME is a robust method for human activity 

recognition.   
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I. Introduction 

1.1 Background 

Activity Recognition technology aims to recognize the actions and goals of an 

agent from a sequence of observations of the agent’s behavior and the environmental 

conditions. This research field has attracted a lot of researchers’ attention [23] since the 

1980s due to the broad range of possible applications, like automatic surveillance, human 

computer interaction, assisted living, etc. 

In order to better illustrate human activity recognition, consider the following 

applications. Human activity recognition can be used in video surveillance systems. For 

example, during a bank robbery armed gunman force bank tellers to give them money, 

and make the customers get down on the ground (examples shown in fig.1-1). Many 

recognizable patterns exist in such a scenario, like gun pointing, customers lying on the 

ground, etc. As soon as the video surveillance system detects these patterns, it can 

automatically send an alarm to the police office and let police agents stop the robbery, 

catch the criminals, and save humans lives.  

Another application is Human Computer Interaction (HCI) in a  virtual 

environment system, such as distinguishing two hands making a “zoom”  action or a one 

handed “throw” action on Microsoft’s smart table system (Fig. 1-2). Actions of the body 

can be interpreted as input information for computers. The computer analyzes the input 

data, extracts pre-defined as commands and executes them based on preprogrammed 

software.  Input devices can be unobtrusive cameras or body-attached sensors, but many 
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type of sensors are easy to break and hard to synchronize.  As technology improves, 

customers will demand products that offer more freedom. Cameras are non-contact 

sensors and can meet such requirements without the need to cover the body with sensors.  

 

(1) Bank Robber with large weapon (from FBI). 

 

(2) Bank Robbers with handguns (from FBI: unknown suspects). 
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(3) Bank Robbers with faces covered (from FBI: unknown suspects).  

Fig. 1-1 Bank Rob images 

 

Fig. 1-2 Microsoft smart table system (from Microsoft demo) 

The third application is assisting the sick and disabled. For example, Pollack et al. 

[24] describes work that automatically monitor human activities for home-based 

rehabilitation of people suffering from traumatic brain injuries. Fig. 1-3 shows Asimo 

serving customers. Human Activity can be use to recognize the hand waving actions to 

let Asimo deliver a cup of tea and take orders. 
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Fig. 1-3 Asimo serves customers (from Chinese Xinhua News) 

There are two types of activity recognition, one is sensor based and another is 

vision based. Sensor-based activity recognition integrates sensor networks with novel 

data mining and machine learning techniques to model a wide range of human activities 

[25]. Sensor-based activity recognition researchers believe that they can empower 

ubiquitous computers and sensors to monitor the behavior of agents. Vision based human 

activity recognition employs cameras as sensors to track and understand the behavior of 

agents. Vision-based human activity recognition is one of the most challenging and active 

research areas in the field of computer vision.  There are a broad range of applications for 

human activity recognition such as automatic surveillance, human computer interaction, 

video browsing and retrieval.  
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A great deal of work has been done in vision based human activity recognition 

during the past 30 years. Researchers have attempted a number of methods, such as 

optical flow [5, 6 and 16], motion trajectory [7], space time shapes [9], etc., under 

different modalities such as single camera and stereo camera. Normally, the process of 

vision based human activity recognition can be divided into four steps as shown in fig. 1-

4, namely action description, action representation, action recognition and high-level 

action evaluation. Action description is some element features which captured from video 

streams to describe actions. For example, many researchers use optical flow or 

Histograms of Optical Flow (HOOF) as motion features and silhouettes as shape features 

to represent actions. Action representation is some models which used to register patterns 

of action. There are plenty of algorithms that can model actions and classify videos like 

the Gaussian Mixture Model and the Hidden Markov Model which are often used in this 

research field. Action recognition is using the similarity of action description and action 

models to assign labels for each action. High-level action evaluation is a process that 

utilizes recognition results for knowledge inferring. 
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Fig. 1-4 Pyramid levels of Human Activity Recognition. 

1.2 Problem Statement 

Comparing the four stages of human activity recognition, action description is still 

one of the greatest challenges due to variations in environmental factors and differences 

in actor’s activities due to the variation in both environment and actor behaves. The 

environment changes include illumination variations, camera view angle difference, and 

image resolution. Such changes highly influence the performance of human activity 

recognition. First, illumination variations cause serious problems to non-robust 

background subtraction, and many research approaches fail due to the lighting problem. 

Second, videos captured under different camera view angles appear differently. If 

applying the same approach to different view angle videos, the results could have large 

differences. Third, image scales can influence the recognition accuracy and high 

High-level 
Evaluation

Action

Recognition

Action Representation

Action Description
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resolution video needs more computation time and obtains more noise than low 

resolution video. 

People look different in different videos and perform similar actions differently, 

which adds more difficulty for action recognition because similar actions can be easily 

classified into two different categories. It is also hard to differentiate between some 

actions such as walking and jogging. Therefore, a human action description method that 

can represent a wide range of actions performed by different actors under different 

conditions becomes essential.  

1.3 Proposed Approach 

A new spatiotemporal feature named SIFT-Motion Estimation (SIFT-ME) is 

presented in this thesis.  The SIFT-ME, which is derived from SIFT correspondences, 

inherits the SIFT advantages and is invariant to noise, illumination variation, and small 

view angle changes. The process of estimating SIFT-ME features from videos containing 

human activities is described as follows. First, robust background subtraction method is 

applied to videos to isolate the moving subject. Second, SIFT features of the moving 

subject (foreground) is detected using the approach present by David Lowe [3]. By 

tracking foreground subject in videos, the motion direction and the body size can be 

found. Third, translation vector between the SIFT key point correspondences can be 

calculated by finding the SIFT key point correspondences between two consecutive 

frames. Afterwards, combine the translation vectors with tracking results that signify the 

motion direction to represent the subject’s motion by a vector containing translation 

distance, translation direction, and in-plane rotation angle. Fig. 1-5 presents a comparison 

between SIFT features and SIFT-ME features in a sample video frame. Fig. 1-5(a) shows 
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the SIFT features with their direction of translation in pink fig. 1-5(b) presents SIFT-ME 

features with both translation vectors in blue and the rotation arcs around key points in 

orange. This highlights the important to difference between SIFT features and SIFT-ME 

features which is the extension from 2D motion of the key points to 3D motion of the key 

points (translation plus body rotation). 

 
(a)                                                                                          (b) 

Fig. 1-5 Comparison between (a) SIFT features and (b) SIFT-ME features. 

After extracting the SIFT-ME features which describe the body motion between 

every two consecutive frames, Gaussian Mixture Model (GMM) utilized to characterize 

the statistical behavior of SIFT-ME features in different human actions. GMM is a 

powerful heuristic tool and has become popular among empirical researchers [1]. In the 

thesis, a GMM trained to represent the extracted SIFT-ME features for each action and 

then utilize the GMMs for action recognition based on maximum log-likelihood criterion. 

 



- 9 - 
 

1.4 Contribution 

The thesis proposed one new feature for human activity recognition named SIFT-ME. 

This feature is an extension of SIFT and used to represent both translation and rotation in 

plane rotation for the key features. Compare with other features, SIFT-ME is new as it 

uses rotation of key features to describe action and it robust to the environment changes. 

Most of the approaches focus too much on translation of key features, while not 

paying enough attention to the rotation information of key features. However, human 

actions are not just key features translated from one location to another. When analyzing 

the videos of actions, we can see that many of the actions such as bending, running, 

walking are not just simple translations. The key features not only have translation 

variations but also rotation information.  The comparison of SIFT-ME and SIFT 

Translation in chapter 5 clearly illustrates that with rotation information of key features, 

SIFT-ME possess higher recognition results. 

Because SIFT-ME is based on Scale Invariant Feature Transform (SIFT), which is 

well known for its robustness to environment disturbances such as noise, illumination and 

view angles, SIFT-ME is also invariant to such kind of environment disturbances. In 

addition to SIFT, SIFT-ME reveals the key features motion information, which makes it 

as a space-time feature for action description.  

1.5 Organization 

The thesis is organized as follows. Literature review is illustrated in chapter 2 and 

the way to calculate SIFT-ME features is shown in chapter 3. Action Representation and 

action representation are presented in Chapter 4. Chapter 5 illustrates the experiment 

results and comparison results. The final conclusion is described in Chapter 6. 
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II. Literature Review 

Human action is a spatiotemporal event since there are spatial features in each 

frame and information relied on spatial features cross frames. A good action description 

feature should cover both spatial and temporal information. By reviewing the literature, 

existing approaches for action representation can be classified into two categories based 

on whether a static or a dynamic method has been used for the action description. 

2.1 Static Method 

Static method uses spatial features like pose and shape to describe activities in 

video [2, 13, 14 and 15]. These features can be easily obtained from each frame without 

any cross frames relation, which means no time information is contained. There are many 

ways to represent static information as long as the feature chosen can represent the static 

information of each action.  

 

Fig. 2-1 Silhouette extraction processes (reprint from [2]) 

A silhouette is often used to represent the shape and pose information. In order to 

obtain the silhouette of each frame, having a few steps for image processing is important.  

Fig.2-1 shows the normal processing steps to obtain the silhouette information, from left 

to right: original image, background subtraction, erosion, dilation, erosion again and edge 
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extraction. Background subtraction can be used to segment a moving object from its 

scene. The morphology method like erosion and dilation is used to remove noise and fill 

holes of the body. The Silhouette information can be encoded with many techniques. 

Cuntoor et al. [21] uses the distance of the silhouette contours from reference vertical and 

horizontal lines as complex coordinates. Wang et al. [22] computes a complex 

representation of the silhouette edge using the center of the silhouette as the origin of the 

complex coordinate system. Singh et al. [2] represents the silhouette boundary as a chain 

code by travelling eight neighbors of each boundary pixel from highest-leftmost point, 

which presents in fig. 2-2. As the chain code is cyclic in nature, it can be started from any 

point. Kellokumpu et al. [13] utilizes affine invariant Fourier descriptors from the 

contour, and then uses these descriptors as a feature vector to classify the posture with a 

radial basis SVM. The output of the posture classification module is thus a sequence of 

discrete postures. After this, they use hidden Markov models to model different activities 

and calculate the probabilities of the activities based on the posture sequence from 

posture classification module. 

 

Fig. 2-2 Chain code of Silhouette boundary (reprint from [2]) 
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Scale Invariant Feature Transform (SIFT) descriptor proposed by Lowe [3] has 

become popular in static features for human activity recognition as it has so many 

advantages, like being invariant to scale, rotation, robust to illumination, noise and small 

view angle change. SIFT features exhibit the highest matching accuracies for an affine 

transform of 50 degrees, outperform other local descriptors on both textured and 

structured scenes. Many researchers try to directly use SIFT or derive features based on 

SIFT descriptors for action representation [2, 14, 15 and 17].  

Although these approaches have some success in recognizing human actions, they 

are not capable of capturing the temporal information (dynamics) between frames.    

2.2 Dynamic Method 

Dynamic method utilizes information cross images such as motion, 

spatiotemporal shapes, and trajectory to describe actions. Such information should at 

least cover the time information in order to be classified into dynamic approach, but 

usually, information should be derived from spatial features which travel through 

sequence of frames. Most of the dynamic features which covered both space and time 

information can be considered as spatial temporal features. 

Some researchers have used optical flow as a method for body motion estimation 

(example is shown in fig. 2-3). For example, Efros et al. [5] uses optical flow to match 

the motion of a player in soccer videos. Chaudhry et al. [6] uses Histogram of Oriented 

Optical Flow features that are independent of the scale of the moving person as well as 

the direction of motion to represent human activities. Feng and Abdel-Mottaleb [16] also 

utilize optical flow and HMM for human activity recognition. However, optical flow is 

influenced by illumination variation and view angle change. In addition, optical flow is 
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only suitable for estimating rigid body motion with small displacement which makes 

optical flow a weak technique for robust motion estimation of non-rigid objects (e.g., 

human body).  

 

Fig. 2-3 Optical flow example reprint (from [5]) 

Gorelick et al. [9] uses three-dimensional shapes induced by the silhouettes in a 

space-time volume to represent action which is presented in fig.2-4. They explain human 

actions as a moving torso and collection of parts and utilize properties of the solution to 

the Poisson equation to extract space-time features such as local space-time saliency, 

action dynamics, shape structure, and orientation. Min et al. [7] uses the motion trajectory 

which is generated from body parts (hand, feet, and joints) based on optical flow 

magnitude which is shown in fig. 2-5(c). The dominate pixels’ trajectories are considered 

as feature vectors for action representation. Messing et al. [8] applies velocity history of 

tracked key points to represent motion representation which is shown in fig. 2-6. But, 

recognition accuracy of trajectory, velocity history and 3D space-time volume rely 

heavily on the viewing angle. 



- 14 - 
 

 

Fig.2-4 Space-time Shapes (reprint from [9]) 

 

Fig. 2-5 Motion Trajectory (reprint from [7]) 
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Fig. 2-6 Velocity History (reprint from [8]) 

 

2.3 SIFT Evolution 

Several researchers [2, 14, 15 and 17] have used SIFT in the static category to 

perform activity recognition. SIFT features are invariant to image scaling and rotation, 

and partially invariant to illumination change and camera view angles. They are well 

localized in both the spatial and frequency domains, reducing the probability of 

disruption by occlusion, clutter, or noise. The algorithm is efficient enough to detect large 

numbers of features. In addition, the features are highly distinctive, which allows a single 

feature to be correctly matched with a high probability against a large database of 

features, providing a basis for object and scene recognition [3]. SIFT Features are 

presented in fig. 2-7 with yellow arrows.  
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Fig. 2-7 SIFT Features (left is original and right is SIFT features, reprint from [3]) 

There are four steps to detect SIFT features on an image. First of all, difference-

of-Gaussian function applied over all of the image to identify potential points of interest 

(fig. 2-7) that are invariant to scale and orientation, which named as scale-space extrema. 

Second, all the candidate points fit into a 3D quadratic function to determine the 

interpolated location of the maximum and eliminate the edge response. Third, based on 

the key point location and image gradient direction, each key point assigns one or more 

orientations.  For an image pixel at location 𝐿(𝑥, 𝑦) at scale 𝜍, the gradient magnitude, 

𝑚𝑎𝑔(𝑥, 𝑦), and orientation, 𝜃(𝑥, 𝑦) , are pre-computed using pixel differences: 

 
𝑚𝑎𝑔 𝑥, 𝑦 =  (𝐿 𝑥 + 1, 𝑦 − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿 𝑥, 𝑦 + 1 − 𝐿(𝑥, 𝑦 − 1))2

𝜃 𝑥, 𝑦 = 𝑡𝑎𝑛−1  
𝐿 𝑥,𝑦+1 −𝐿 𝑥,𝑦−1 

𝐿 𝑥+1,𝑦 −𝐿 𝑥−1,𝑦 
                                                                 

 (2-1) 

Finally, a key point descriptor is created by computing the gradient magnitude and 

orientation at each image sample point in a region around the key point location, as 

shown to the left of fig. 2-8. These are weighted by a Gaussian window, indicated by the 

overlaid circle. These samples are then accumulated into orientation histograms, as 

shown to the right of fig. 2-8, with the length of each arrow corresponding to the sum of 

the gradient magnitudes near that direction within the region. 
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Fig. 2-8 Key descriptors (reprint from [3]) 

However, action is a spatiotemporal event, and SIFT cannot uniquely reveal broad 

classes of human action without the aid of temporal analysis. More recently, a few 

researchers have tracked SIFT features over time to describe human actions [17 and 20] 

both spatially and temporally. 3D SIFT [17] adds temporal information as a third 

dimension to the feature to quantify the time variation of the feature itself. This approach 

considers describing each pixel on image as 𝐿(𝑥, 𝑦, 𝑡). The way to calculate 3D SIFT 

features is shown in Equation 2-2. 

 
 
 

 
 𝑚𝑎𝑔 𝑥, 𝑦, 𝑡 =  𝐿𝑥

2 + 𝐿𝑦
2 + 𝐿𝑡

2

𝜃 𝑥, 𝑦, 𝑡 = 𝑡𝑎𝑛−1  
𝐿𝑦

𝐿𝑥
         

𝜙 𝑥, 𝑦, 𝑡 = 𝑡𝑎𝑛−1(
𝐿𝑡

 𝐿𝑥
2+𝐿𝑦

2
)

                                                            (2-2) 

Where 

 

𝐿𝑥 = 𝐿 𝑥 + 1, 𝑦, 𝑡 − 𝐿(𝑥 − 1, 𝑦, 𝑡)

𝐿𝑦 = 𝐿 𝑥, 𝑦 + 1, 𝑡 − 𝐿(𝑥, 𝑦 − 1, 𝑡)

𝐿𝑡 = 𝐿 𝑥, 𝑦, 𝑡 + 1 − 𝐿(𝑥, 𝑦, 𝑡 + 1)

                                                          (2-3) 

3D SIFT processing is quite similar to 2D SIFT except considering the relations 

cross frames, which is shown in fig. 2-9. However, these cross frames’ information just 
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represent the changes over time on the same location, which is clearly different with 

motion information that represents key point motion in temporal sequence. In other 

words, 3D SIFT is a spatiotemporal histogram-based representation of image patches, but 

does not capture human action across the image sequence. 

 

Fig. 2-9 3D SIFT Process (reprint from [17]) 

MoSIFT [20] was another attempt to improve SIFT for representing motion 

information by applying optical flow to SIFT key point (detail process is shown in fig. 2-

10). In this approach, SIFT features is considered as spatially distinctive interest points, 

optical flow is applied to these distinctive points to find motion constrain around. 

However, optical flow has so many weaknesses like variations to scale, rotation and view 

angles, by combining with SIFT and optical flow, MoSIFT loses these advantages which 

should be inherent directly from SIFT. 
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Fig. 2-10 MoSIFT process (reprint from [20]) 

 

Fig. 2-11 SIFT Evolution 
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SIFT is moving towards to represent motion as shown in fig. 2-11. In order to 

take full advantages from SIFT as well as interpret motion information, SIFT Motion 

Estimation (SIFT-ME) is proposed in the thesis by using an embedded quantifier for 

SIFT motion, but augmenting it further with temporal tracking across image frames, 

creating a true spatiotemporal representation. SIFT-ME is inherent invariant to 

illumination, scale and view angle change. At the same time, it not only can interpret the 

translation information of key point like optical flow, but can also describe the rotation 

information, which is a great improvement of SIFT feature. 
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III. SIFT-ME 

Recently, many techniques have been applied to interpret 2D motion, like optical 

flow, MoSIFT, and SIFT Correspondence. However, the past research on motion 

interpretation just reveals translation of key points but neglects important information, 

like rotation. In order to fully reveal the 2D object motion in videos, some research is 

done on the Motion Estimation of objects and extending the same technique for SIFT 

features which lead to a completely new motion description feature: SIFT Motion 

Estimation (SIFT-ME). 

3.1 Motion Interpretation 

Object’s transformation can be performed and represented by a mixture of 

translation and rotation in the 2D plane. For example, in Fig.3-1 assume there are three 

objects, A, B, and C, described using different shapes and each object using one dominate 

SIFT features to represent its key point. The arrows in this figure represent SIFT features 

at hypothetical key points that are assigned to these objects. Fig 3-1(a) and Fig. 3-1(b) 

registered the status of the three objects at different times. In order to interpret each 

object’s motion in 2D plane, Fig 3-1(c) compares each object’s key SIFT feature. Clearly, 

Object A in Fig. 3-1(a) is transformed by a pure translation and represented in Fig. 3-

1(b).   Similarly, Object B is transformed by a pure rotation, and object C is transformed 

using both translation and rotation. Most of the motion description features such as 

optical flow and trajectory methods signifies the translation of objects’ points without 

considering the objects’ rotation. Which is similar to interpreting the motion of object A 
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for A, B, C, neglected whether the object has rotation or not. However, human motion is 

similar to the motion of object C, which is a mixture of translation and rotation. If only 

utilizing pure translation to estimate the motion of object C, significant information 

regarding object motion (the rotation information) will be lost. In order to better interpret 

the motion in a 2D plane, rotation information should be considered. SIFT-ME feature 

represents both translation and rotation of the points between consecutive frames.  

 

Fig. 3-1 SIFT and SIFT Motion in key point: Different shapes represent objects and the arrow 

represent SIFT features. (a)  The image represents three objects at time t-1 (b) the position of the 

object after translation, rotation or both at time t. (c) the image shows the motion between objects 

in images (a) and (b).  

Equation 3-1 shows the Euclidean transformation of point, 𝐶: [𝑥𝑡−1, 𝑦𝑡−1, 1]𝑇  at 

time 𝑡 − 1 to a new location, 𝐶′ : [𝑥𝑡 , 𝑦𝑡 , 1]𝑇at time 𝑡: 

 
𝑥𝑡
𝑦𝑡
1
 =  

𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛽 𝜌𝑐𝑜𝑠𝛼
𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽 𝜌𝑠𝑖𝑛𝛼

0 0 1

  
𝑥𝑡−1

𝑦𝑡−1

1
                                                   (3-1) 
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where 𝜌, 𝛼 are translation distance and translation direction of object.  𝛽  is the rotation 

angle with respect to the object center. Vector < 𝜌, 𝛼, 𝛽 > can be used to describe the 

object’s transformation and the proposed approach has similar appearance with it.  

 The motion of object A and B can be explained by 𝛽 = 0 and 𝜌 = 0 seperatedly. 

But the movement of object C needs all three variables in that vector to be explained. In 

order to describe motion for key points existing on human body, vector < 𝜌, 𝛼, 𝛽 > can 

be used as a feature for the key points. 

 As SIFT feature orientation: 𝜃 ∈ [−𝜋, 𝜋] , and the rotation angle 𝛽 = (𝜃𝑡 −

𝜃𝑡−1) ∈ [−2𝜋, 2𝜋], there is a large duplicate space which means one to one mapping is 

no long available. For example, in Fig. 3-2, the rotation angle can be explained with two 

values: 𝜙 𝑎𝑛𝑑 − 2𝜋 + 𝜙, both of them are valid values to interpret the rotation angles 

from vector 𝑉1       to vector 𝑉2      , the difference is whether following right hand rule or left 

hand rule. In order to form one to one mapping and shrink 𝛽 to [−𝜋, 𝜋], only the smallest 

absolute angle between two vectors is counted. Besides, if rotation direction follows right 

hand rule, the value of angles is positive, otherwise, the value is negative.  
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Fig.3-2 Rotation angle 

 Considering in the vector field, the smallest angle between vector 𝑉1        and vector 

𝑉2       can be calculated use Equation 3-2. 

      𝛽 = arccos  
𝑉1      ∙𝑉2      

 𝑉1        𝑉2       
 = arccos  

 𝑉1        𝑉2       cos  𝜃2−𝜃1 

 𝑉1        𝑉2       
  

= arccos⁡(cos⁡(𝜃2 − 𝜃1))                                                               (3-2) 

The sign of 𝛽 can be calculate based on whether smallest rotation angle follow right hand 

rule or left hand rule.  

𝑉1      ×𝑉2      

 𝑉1        𝑉2       
=

 𝑉1        𝑉2        sin ⁡(𝜃2−𝜃1)

 𝑉1        𝑉2       
= sin⁡(𝜃2 − 𝜃1)                                  (3-3) 

And 𝛽 ∈ [−𝜋, 𝜋] can be easily got by applying Equation 3-4. 

𝛽 = 𝑠𝑖𝑔𝑛(sin⁡(𝜃2 − 𝜃1)) ∙ arccos⁡(cos⁡(𝜃2 − 𝜃1))                    (3-4) 
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𝑠𝑖𝑔𝑛(∙) is a function taking the positive or negative sign of input variables. In this way, 𝛽 

can be shrink into the range of – 𝜋 𝑎𝑛𝑑 𝜋, and each value only mapping to one angle in 

that region. So vector < 𝜌, 𝛼, 𝛽 > represents the motion in 2D plane with one to one 

mapping relation. 

3.2 SIFT-ME Detection 

    SIFT-ME has similar expression to 2D Euclidean transformation:  < 𝜌, 𝛼, 𝛽 >, and 

is obtained using SIFT correspondences and tracking information. Fig. 3-3 shows a 

diagram for obtaining SIFT-ME features and Fig. 3-4 illustrates images obtained in each 

step.   

Image 

Segmentation

Connected 

Component

SIFT 

Detection

SIFT 

Corresponde

nce

SIFT-MT

Tracking

ƒ

 
Fig. 3-3 the process of extracting SIFT-ME features. 

First, background subtraction is applied on video frames to segment the moving 

objects (human body) into foreground and background. Second, SIFT feature detection is 

applied to the foreground image (human body). At the same time, human’s motion 

information can be obtained by applying Kalman filters to the silhouettes. After that, 

corresponding points between every two consecutive frames are extracted using SIFT 

feature matching algorithm. Finally, by utilizing the tracking information and 

corresponding points, the SIFT-ME features are readily driven. 
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Fig. 3-4 Illustrates the process of extracting SIFT-ME features, from left to right, original 

image, segmented image, SIFT detection, tracking, SIFT correspondence, SIFT-ME 

features. 
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3.2.1 Segmentation 

Adaptive Gaussian mixture model [25 and 11] is utilized in this thesis to segment 

moving objects from static background. Changes in scene lighting can cause problems for 

many back ground subtraction methods. In order to eliminate the illumination influence, 

values of a particular pixel is modeled as a mixture of Gaussians and based on the 

persistence and the variance of each of the Gaussians of the mixture to determine which 

Gaussians may correspond to background colors. Pixel values that do not fit the 

background distributions are considered foreground until there is a Gaussian that includes 

them with sufficient, consistent evidence to support it. 

In order to remove noise and fill holes in the foreground image, morphology 

operators such as open and close are applied to the foreground mask image. The mask 

image is utilized as a filter to segment out the moving object in the scene. In fig. 3-5, the 

left image is the original scene from inside building surveillance camera and the right 

image is the result of background subtraction method. The silhouettes show exactly the 

actor’s positions and shapes.  
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Fig. 3-5 GMM and background segmentation example (Left: original frame, right: 

foreground image). 
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3.2.2 SIFT Detection 

    SIFT proposed by David Lowe [3] is a technique for robust feature extraction where 

an image is represented by a large set of features, each of which is invariant to image 

translation, scale, rotation, partially invariant to illumination changes and robust to local 

geometric distortion. Each SIFT feature is described by the coordinates of its location, 

magnitude and orientation of image gradients. In this thesis, x and y denote the position 

of SIFT key points in frame coordinate system, 𝑚𝑎𝑔 𝑎𝑛𝑑 𝜃  represent the magnitude and 

angle of SIFT key points with 𝜃 ∈ [−𝜋, 𝜋]. Fig. 3-6 shows the result for SIFT detection. 

SIFT detection is only applied to the segmented moving objects, which can reduce the 

computation time and filter out noise from the background. 

 

Fig. 3-6 SIFT detection example on the moving objects 
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3.2.3 Tracking 

A simple tracker is applied to the foreground connected components (i.e., human 

body) detected in the segmentation step. These connected components considered as 

blobs, which probably are the moving objects or parts of the moving human body. The 

detected blobs are represented using a bounding box. Kalman filter is applied to these 

bounding boxes by tracking their position and predict their location in the next frame. 

Fig. 3-7 shows the tracking result of two different times.  

Motion direction, 𝜂 , is estimated using the difference in horizontal position 

between the center of the bounding boxes in two consecutive frames under study. 

Assume that the center position in horizontal axis are 𝑥 𝑡−1 and  𝑥 𝑡 , the motion direction 

can be calculated as 

𝜂 = 𝑠𝑖𝑔𝑛 𝑥 𝑡 − 𝑥 𝑡−1                                                                        (3-5) 

Where 𝜂 -to-right or right-to-left) and will be used 

in calculating SIFT-ME features. One of the reasons that extract motion direction is to 

make the SIFT-ME feature invariant to the direction of horizontal movement. For 

example, actions such as walking and jumping can be performed from left-to-right or 

from right-to-left and there should be no difference if the actions are same. 
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Fig. 3-7 tracking example 
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3.2.4 SIFT Correspondence 

After extracting the SIFT features in each frame, finding the corresponding points 

between every two consecutive frames is necessary. A modified k-d tree method called 

Best-Bin-First [10] that can identify the nearest neighbors with highest probability is 

applied to every two consecutive frames. Bins in feature space are searched in the order 

of their closest distance from the query location. The best matched candidate for each key 

point is found by identifying its nearest neighbor. As a result of this step, corresponding 

points are detected and utilized for motion estimation. 

 

Fig. 3-8 SIFT Correspondence 
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3.2.5 SIFT-ME Representation 

Once the corresponding points are found, the 2D transformation parameters can 

readily be calculated using the coordinates of the SIFT correspondences and the 

estimated motion direction. Equation 3-6 presents the 2D transformation parameters: 

 

𝜌 =  (𝑥𝑡 − 𝑥𝑡−1)2 + (𝑦𝑡 − 𝑦𝑡−1)2                                     

𝛼 = 𝑎𝑡𝑎𝑛2  𝑦𝑡 − 𝑦𝑡−1 , 𝜂 𝑥𝑡 − 𝑥𝑡−1                               

𝛽 = 𝜂 ∗ 𝑠𝑖𝑔𝑛 sin 𝜃𝑡 − 𝜃𝑡−1  ∗ acos(cos(𝜃𝑡 − 𝜃𝑡−1))

            (3-6) 

where 𝜌  is the translation distance, 𝛼 ∈  −𝜋, 𝜋  is the direction of translation , and  

𝛽 ∈  −𝜋, 𝜋  is the rotation angle of the key point. The vector < 𝜌, 𝛼, 𝛽 > is the SIFT-ME 

features extracted for each pair of corresponding points. 

Because of adding motion direction in the translation angle and rotation 

calculation, SIFT-ME features are invariant to motion direction along x-axis (i.e., 

horizontal direction). The last image of fig. 3-9 shows SIFT-ME features, where the blue 

arrows and the orange arcs illustrate the point’s translation and the rotation respect to 

SIFT key points, respectively. 

Comparing with optical flow, SIFT-ME has many advantages. It is invariant to 

illumination, noise and view angle changes which inherited from SIFT and invariant to 

motion direction and body size which obtained from object tracking. Besides, SIFT-ME 

not only can interpret the translation of key point, but also can interpret the rotation 

around key point. Fig. 3-10 shows optical flow and SIFT-ME, SIFT-ME can register 

rotation information which displayed by orange arcs on the right image. 
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Fig. 3-9 SIFT-ME Features 
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Fig. 3-10: Optical flow extracted using LK method [18] (left) and the SIFT-ME features (right). 

3.2.6 Normalization 

In order to make SIFT-ME invariant to actors’ body size, image resolution, and 

the distance between camera and the subject, normalization of the translation vector with 

respect to the height of each actor is necessary. This normalization will make SIFT-ME 

scale invariant. Body size can be measured by calculating the height of the bounding box 

in the tracking step. Because the translation and rotation angles are scale invariant, only 

translation distance need the normalization. All the translation distances of each video 

frame are divided by the height of each actor in that video. After this step, the SIFT-ME 

is utilized for action recognition. 
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IV. Action Representation and Recognition 

4.1Action Representation 

Each SIFT-ME vector can be considered as action description, and all the SIFT-

ME vectors gathered from one action videos were put together as data for classification 

and recogtion. 

Gaussian Mixture Model (GMM) is a powerful method to learn statistical patterns 

of data [12]. GMM is applied to capture the action patterns and represent actions. Action 

motion features estimates using SIFT-ME. First of all, all the SIFT-ME features from one 

video are collected into one file and each SIFT-ME feature save as one line vector.  

Expected Maximization algorithm [1] applied to train separate GMMs each representing 

one action using SIFT-ME features extracted from videos of multiple subjects.   

4.2 Action Recognition 

The GMMs are utilized to classify the action performed in a given video into 

different classes (e.g., walking, running, etc). Let us assume that Ψ = {𝜓1, ⋯𝜓𝑧} is a set 

of GMMs registering the motion pattern of z actions, Θ = {𝜗1,⋯ 𝜗𝑧}, which 𝜗𝑧  is the 

label of each action.  

Given one 𝑑(= 3)  dimension SIFT-ME vector 𝑥 ∈ ℝ𝑑 , the distribution 

probability for N components GMM model 𝜓𝑘 = {𝜔𝑖 , 𝜑𝑖}𝑖=1
𝑁  is defined as: 

𝑓𝜓𝑘
 𝑥 =  𝜔𝑖

𝑁
𝑖=1 𝑝 𝑥 𝜑𝑖                                                   (4-1) 

where  

1. 𝜇𝑖 , Σi  are the mean and variance of Gaussian 𝜑𝑖 , 𝜇𝑖 ∈ ℝ𝑑  and  Σ𝑖  is 𝑑 × 𝑑 positive 
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matrix, 𝑖 = 1,⋯𝑁. 

2. 𝜔𝑖  is the weight of 𝑖𝑡𝑕  Gaussian component and 𝜔𝑖 > 0  and   𝜔𝑖 = 1𝑁
𝑖=1 , 

𝑖 = 1,⋯𝑁. 

3. 𝑥   is a vector with 𝑑  dimensions , the probability of 𝑥  over single Gaussian 

𝜑𝑖 = {𝜇𝑖 , Σi} is 

𝑝 𝑥 𝜑𝑖 =
1

 2𝜋𝑑  Σ𝑖 
exp⁡(−

1

2
(𝑥 − 𝜇𝑖)

𝑇Σ𝑖
−1(𝑥 − 𝜇𝑖))          (4-2) 

    After training the GMMs, Maximum Log-likelihood method is applied to classify 

actions in a given video into different classes. Given an observation sequence, 𝑋 =

(𝑥1, 𝑥2, ⋯ 𝑥𝑀)𝑇 ,  𝑋 ∈ ℝ𝑀×𝑑 , assume that the observations are independent from each 

other. The likelihood function of Gaussian 𝜓𝑘 , (𝑘 = 1,⋯ 𝑧)  is defined as: 

𝓛 𝝍𝒌 = 𝒇𝝍𝒌
 𝒙𝟏, 𝒙𝟐, ⋯𝒙𝑴 =  𝒇𝝍𝒌

 𝒙𝒋 

𝑴

𝒋=𝟏

 

=  𝒑 𝒙𝒋 𝝍𝒌 =  ( 𝝎𝒊

𝑵

𝒊=𝟏

𝒑 𝒙𝒋 𝝋𝒊 )

𝑴

𝒋=𝟏

𝑴

𝒋=𝟏

 

(4-3) 

The log-likelihood function is calculated by taking the logarithm value of the 

likelihood function: 

𝓛∗ 𝝍𝒌 = 𝐥𝐨𝐠𝓛 𝝍𝒌 =  𝐥𝐨𝐠  𝝎𝒊

𝑵

𝒊=𝟏

𝒑 𝒙𝒋 𝝋𝒊  

𝑴

𝒋=𝟏

 

(4-4) 

 

In order to classify the actions, the maximum log-likelihood criterion utilized to assign 
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the observation X to GMMs: 

𝝍 = 𝐚𝐫𝐠 𝐦𝐚𝐱𝝍𝒌∈𝚿 𝓛
∗(𝝍𝒌)                                           (4-5) 

                     

𝜓  denotes the GMM which has the largest log-likelihood for the observation data 

sequence. The action label corresponding to this GMM is assigned to the observation 

sequence: 

 𝑨𝒄𝒕𝒊𝒐𝒏 = 𝝑𝒌, 𝒊𝒇  𝝍 = 𝝍𝒌 , 𝒌 ∈ {𝟏,⋯𝒛}                  (4-6) 

 After this step, each action video can be assigned with a label of action. If the 

label is same with action performed in the video, then action recognition can be 

considered success in classification, otherwise, if the labeled name is not the one 

performed in video, the classification result is wrong. 
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V. Experiment Results 

A dataset of 261 videos of six different actions performed by seven subjects was 

used for training and test. The videos were captured using a JVC camcorder in 30 fps 

with resolution of 640x480. The actions include walking, running, turning around, 

jumping, waving, and picking up. The number of videos per action per subject is between 

3 and 7. A few sample frames are shown in Fig.5-1. 

 

 
Fig. 5-1: Examples of different actions; from left-top to right bottom, the actions are: waving, 
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picking up, walking, jumping, running, and turning around. 

Because most of the public human action datasets (e.g., Weizmann [9] and KTH 

[19]) have low resolutions (180x144 and 160x120, respectively), and SIFT-ME requires a 

handful of SIFT correspondences, therefore dataset which has a higher resolution 

(640x480) is the best choice. However, to have a fair comparison, the accuracy of 

existing methods in the literature for human activity recognition (i.e., 2D SIFT, 3D SFIT, 

optical flow) are tested with the dataset. The result comparison is presented in the 

following sections. 

5.1 SIFT-ME and GMM Results 

Leave-One-Subject-Out (LOSO) method is applied in this thesis to verify the 

performance of proposed approach and other approaches. First, all the videos of one 

subject from the training set were removed and used the videos of the left subject to train 

separate GMMs for separate actions (six GMMs for six different actions). Second, the 

excluded videos from the left subject were used to test the accuracy of the proposed 

approach in classifying the actions in the videos based on the maximum log-likelihood 

classification. This process is repeated for all subjects until every subject is used for 

testing.  

Table 5-1 presents the results of classifying actions in videos into different classes 

based on the LOSO method. Table II shows the percent of classification for each action. 

As Table II illustrates, the accuracy of proposed approach is 100% for walking and above 

93.4% for all the actions. The average recognition rate is 96.6%. 

The effect of number of Gaussian components on the accuracy of proposed approach 

in recognizing human actions is also studied. Fig. 5-1 shows the accuracy of recognizing 
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different actions while different numbers of Gaussian components are used. The 

maximum average performance is achieved when the number of GMM components is 

five (i.e., the results in Tables 5-1 and 5-2). 

Actions Running Walking Jumping Turning Waving Picking up 

Running 40      

Walking 2 47     

Jumping   42    

Turning    42 2  

Waving    1 42 2 

Picking up   1  1 39 

Total 42 47 43 43 45 41 

TABLE 5-1 CONFUSION MATRIX; RECOGNIZED NUMBER OF VIDEOS; THE NUMBER OF 

GMM COMPONENTS IS 5. 
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Actions Running Walking Jumping Turning Waving Picking up 

Running 95.2%      

Walking 4.8% 100%     

Jumping   97.7%    

Turning    97.7% 4.4%  

Waving    2.3% 93.4% 4.9% 

Picking up   2.3%  2.2% 95.1% 

Total 100% 100% 100% 100% 100% 100% 

TABLE 5-2 CONFUSION MATRIX, PERCENTAGE OF RECOGNITION; THE NUMBER OF 

GMM COMPONENTS IS 5. 
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Fig.5-1 Effect of different number of Gaussian components used in GMMs. 

From Fig. 5-1, Picking up action has large variations for different GMM 

components and the other actions have less variation as GMM components increase. At 

components five, all the action accuracies are the closest, making the recognition result 

reach the peak of 96.6% total accuracy. 

The main reason for the confusion between the picking and waving actions, is the 

similarity of the rotation pattern between these two actions which makes the recognition 

task difficult (the picking action is classified as waving). This issue becomes more severe 

when the number of Gaussian components is larger than five and thus the overall 

2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Components

A
c
c
u
ra

c
y

 

 

run

walk

jump

turn

wave

pick



- 44 - 
 

recognition rate of the system is decreased. One potential solution to this problem is to 

utilize the location information of the SIFT key points in SIFT-ME representation.    

5.2 Compare between Descriptors 

For comparison, 2D SIFT features and optical flow are utilized along with GMM 

and maximum log-likelihood for activity recognition. Based on optical flow [18], the 

motion features are extracted and used to train GMMs. Based on 2D-SIFT, the magnitude 

and angle of key points in each frame utilized to train GMMs and then maximum log-

likelihood for action classification. Because, different number of components of GMMs 

influences the classification result, several GMMs with different number of components 

(2 to 16) are trained and tested. The accuracy of action recognition using different 

number of GMM components and different feature representations (i.e., 2D SIFT, optical 

flow, and SIFT-ME) are shown in fig.5-2.  
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Fig. 5-2 Average performances for SIFT-ME, optical flow, SIFT Translation and 2D 

SIFT with different number of Gaussian components used. 

In order to find the contribution of rotation information, translation features, and 

 are utilized for action description and recognition, which reports a 93.9% recognition 

rate obtained (the SIFT Translation in Fig.8 and Table IV). Clearly, from Fig. 5-2, SIFT-

ME outperforms all other approaches (2D SIFT, optical flow, and SIFT Translation) for 

human activity recognition. In addition, the highest accuracy based on SIFT-ME is 

achieved using fewer GMM components (less than six components). The big drop after 

components 5 is because the big drop of pick action shows on fig. 5-1.  
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5.3 Compare with 3D SIFT 

Since 3D SIFT is a new technique for action recognition [17], it is applied to the 

dataset for a comparison. The process includes 3D SIFT features detection, codebooks 

generation with the Bag of Words technique [4], and then utilizes SVM for action 

recognition (exactly following the process presents in [17]).  

 

Actions Running Walking Jumping Turning Waving Picking up 

Running 36 1 5    

Walking 3 42 3    

Jumping 3 4 32 1 1  

Turning    38 1 1 

Waving   3 3 42 7 

Picking 

up 

   1 1 33 

Total 42 47 43 43 45 41 

  

TABLE 5-3 CONFUSION MATRIX OF 3DSIFT WITH MY DATASET IN NUMBERS 
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Actions Running Walking Jumping Turning Waving Picking up 

Running 85.8% 2.1% 11.6%    

Walking 7.1% 89.4% 7.0%    

Jumping 7.1% 8.5% 74.4% 2.3% 2.2%  

Turning    88.4% 2.2% 2.5% 

Waving   7.0% 7.0% 93.3% 17% 

Picking 

up 

   2.3% 2.2% 80.5% 

Total 100% 100% 100% 100% 100% 100% 

 

TABLE 5-4 CONFUSION MATRIX OF 3DSIFT WITH MY DATASET IN PERCENTAGE 

 

        Table 5-3 and table 5-4 show the confusion matrix using the results of 3D SIFT on 

the proposed dataset. The highest accuracy that achieves using 3D SIFT is 85.4%, which 

is close to the accuracy claimed by Scovanner et al. in [17].  

        Table 5-5 compares the recognition rate of optical flow, 3D SIFT and SIFT-ME on 

each action, from which one can see that although optical flow obtain is 100% accurate 

on walking, turning and picking up, however the recognition rate on jumping and waving 

is very low, which makes the total recognition rate lower at 93.5%. Compare with 3D 

SIFT and SIFT-ME, SIFT-ME has better performance on all actions than 3D SIFT.   
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Actions Optical Flow 3DSIFT SIFT-ME 

Running 90.5% 85.8% 95.2% 

Walking 100% 89.4% 100% 

Jumping 81.4% 74.4% 97.7% 

Turning 100% 88.4% 97.7% 

Waving 88.9% 93.3% 93.4% 

Picking up 100% 80.5% 95.1% 

Total 93.5% 85.4% 96.6% 

Table 5-5 Compare with optical flow, 3DSIFT and SIFT-ME on each action 

       Table 5-6 compares the highest accuracy that achieved using SIFT-ME descriptor 

with the highest accuracy that achieved using 2D SIFT, 3D SIFT, optical flow, and SIFT 

Translation. Clearly, SIFT-ME has the best recognition rate on human activity 

recognition among these descriptors. 
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Descriptor Accuracy 

2D SIFT  63.0% 

3D SIFT 85.4% 

Optical Flow 93.5% 

SIFT Translation 93.9% 

SIFT-ME 96.6% 

Table 5-6 Compare the accuracy with all descriptors at the highest accuracy 

       The comparisons show clearly that SIFT-ME is a robust feature for human activity 

recognition. SIFT-ME invariant to the environment changes like illumination, small view 

angle and noise because these advantages inherent form SIFT features as SIFT-ME based 

on SIFT features and SIFT correspondence. At the same time, SIFT-ME invariant to 

human behavior difference like motion direction and human body scale as the equation 

for SIFT-ME already covers these information and make these information as one part of 

calculation of SIFT-ME. So SIFT-ME is robust to environment variations. Besides, SIFT-

ME reveals full parameters of the motion of human body in 2D plane as it adds the 

rotation information for key point, which is a big improvement compared to existing 

techniques like optical flow, SIFT Correspondence and MoSIFT. 
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VI. Conclusion and Future Work 

6.1 Conclusion 

A new motion description method named SIFT-ME has been proposed to reduce 

the influence of environment variations for human activity recognition. SIFT-ME is 

based on SIFT features and inherits its advantages such as invariant to environment 

variations noise, illumination, and camera view angles.  Thus, SIFT-ME can be used as a 

robust method for motion description of activity recognition in the field of computer 

vision and pattern recognition. SIFT-ME features are successfully utilized for describing 

and recognizing human actions in videos.  

The experiment shows that SIFT-ME outperforms optical flow, 3D SIFT, and 2D 

SIFT features for human activity recognition. Besides, some additional experiments are 

done to find the relations of recognition result with different GMM components. SIFT-

ME features have the highest recognition rate with lowest GMM components which 

demonstrate that it is a better action description. On the other hand, compare SIFT-ME 

and SIFT translation, SIFT-ME outperforms almost 3% accuracy, which means rotation 

information is also important for activity recognition. SIFT-ME is another evolution step 

which improves SIFT to interpret 2D transformation using a three dimensional vector. 

6.2 Future Work 
 

In the future, more research will be done with SIFT-ME features for querying 

videos to detect a predefined set of actions such as walking, running, etc. This can be 

easily achieved by comparing patterns of action. SIFT-ME is a good feature 
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representation for motion, as long as finding similar motion patterns with queried one, the 

best match can be achieved and video retrieval can be realized. SIFT-ME can be 

improved by using a better matching algorithm as well as incorporating 3D translation 

and rotation by considering multiple cameras.  

As SIFT-ME is an extension of SIFT features to represent motion, it does not 

conflict with SIFT feature. As well known that SIFT can be used for object recognition 

with promising result, so there is possibility to combine SIFT and SIFT-ME to do object 

based activity recognition: recognition activity through the objects people interact with. 

For example, pick up a gun and pick up an apple are different actions in detail and results 

in different handling response actions to other people. Recognize activities through 

objects will extend the application of activity recognition in many fields and increase the 

capacity of activity recognition. 
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